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Interplay of randomness, electron correlation, and dimensionality effects
in quasi-one-dimensional conductors
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lDepartment of Theoretical Studies, Institute for Molecular Science, Okazaki 444-8585, Japan
’Department of Functional Molecular Science, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
(Received 4 April 2000; revised manuscript received 12 June)2000

We study the interplay of randomness, electron correlation, and dimensionality effects in weakly coupled
half-filled Hubbard chains with weak quenched random potentials, based on the renormalizatio(R§spup
approach. We perform a two-loop RG analysis of an effective action derived by using the replica trick, and
examine the following crossovers and phase transitions from an incoherent metal rdgienerossover to the
Anderson localization regimé2) an antiferromagnetic phase transition, d8ga crossover to the quasi-one-
dimensional weak-localization regime. The casalefl+ e (e<<1) dimensions is also mentioned.

I. INTRODUCTION (ICM) regime,” if the latter process dominates the former.
We can confirm this scenario by using a renormalization-
The interplay of randomness-driven Anderson localiza-group(RG) approach based on the assumption that the scal-
tion and electron correlation has been a subject of controing procedure in the one-dimensional regime at high-energy
versy over the past two decadeé.In d=2 and 3 dimen- scales remains valid down to the phase transition or cross-
sions, coupling between two-particle scattering processesver energy scales. Competition between the ICEX-driven
and diffusive motion of electron&ooperon is treated per- antiferromagnetic(AF) phase transition and the 1PC in
turbatively in the weak-localization regime, starting with the half-filled'®1” and dimerized quarter-filléd organic conduc-
Fermi-liquid picture. On the other hand, ih=1 dimension, tors have been investigated based on the RG approach,
coupling between two-particle scattering processes andhere relevant B- umklapp scattering plays a key role for
random-potential scattering processes can never be treatdte ICEX-driven AF transition from the ICM regime.
perturbatively because of strong quantum fluctuations. Mu- In the case of weakly coupled half-filled chains with ran-
tual renormalization effects of randomness and correlation imlom potentials, it is also possible that the phase crosses over
d=1 have been treated through the renormalization-groufrom the ICM regime to the Anderson localizatidAL )
approach based on the bosonization technifue.the case regime!® It was recently reported that in a doped organic
of half-filling in d=1, relevant Xz umklapp scattering compound, (DI-DCNQRAg;_,Cu,, where doping of Cu
causes a charge gdblott gap. Consequently, the interplay controls the dimensionality, randomness, and filling of the
of randomness and correlation leads to competition betweesystem, an AF ordering accompanied by a charge excitation
the Anderson localization and the Mott insulator pha%e.  gap (Mott gap, the Anderson localization regime, and a
Because of the essential difference in nature betwken metal phase appear successively upon doplifithis experi-
=1, 2, and 3 dimensions, the case of quasi-one-dimension i®ental finding indicates that an interplay of correlation, ran-
of particular interest. So far, discussions on a quasi-onedomness, and dimensionality is realized in this compound. In
dimensional(Q1D) conductor with an open Fermi surface this paper, we extend work presented previod$bnd study
have been made in theoninteracting case, focused on in detail an interplay of randomness, correlation, and dimen-
weak-localization effects on conductivitgnd magnetic-field sionality effects in the Q1D half-filled Hubbard system with
effects on localization? '2Little attention has been given to weak quenched random potentials based on the RG ap-
electron correlation effects in Q1D conductors with randomproach. The effect of the varying filling is roughly simulated
potentials. by changing the umklapp scattering strength. We consider
In the case of chains, without random potentials, weaklyweakly coupled chains, and treat the interchain one-particle
coupled via interchain one-particle hopping, the system hoppingt, perturbatively to examine the consequent inter-
behaves as a 1D system at high eneftgynperaturgscales, chain one- and two-particle processes. Instead of the
w>1t, . As the energy decreases, there occurs interchain onéosonization approach, we use the Grassmann functional in-
particle propagation through the process, and the propa- tegral approach in order to incorporate the interchain one-
gation of the 1D power-law correlation through the inter- particle process explicitly. This approach is appropriate to
chain particle-hole or particle-particle exchangeCEX) obtain qualitative phase diagrams including a three-
processe$>™® The former process induces one-particledimensionally ordered phad¢he AF phase in the present
crossover(1PQ to the Fermi-liquid regime, while the latter case, but the feedback effects of the interchain processes on
process converts the 1D power-law correlation to a(®D  the intrachain processes are then missing. One way to re-
3D) long-range correlation. Since the latter process occurfrieve the interchain feedback effects is to incorporate the
irrespective of the interchain quasiparticle coheren@ imbalance between the elementary particle-partiel® and
phase transition takes place from an “incoherent metaparticle-hole(PH) loops: infrared logarithmic singularity of
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@ &,(K)=ve(lk|—kg). 1)

n U £ Based on the bandwidth regularization scheme, we restrict

=0—% 00 X—70— the electron wave numbers to the region
—_— [ o—

C=1{k|—w/2< & (k)< w/2}, 2
®) © where &r(K)=ve(k—ke) (k>0) and £ (K)=ve(—k—ke)

n & (k< Q) are the linearized dispersions for the right- and left-

X X moving electrons. The cutoff of the linearized band is param-
—— > etrized asw,=Eqe ', with a scaling parametér The cutoff

energyw, corresponds to a characteristic energy at which we
observe the system. From now on we regafdas the tem-
@ © ® perature scale~T.
The renormalization-group procedure is best formulated
in the path-integral representation of the partition function,

Z=| De%, ©)
G
®© ) where S, is the effective action of the system, afidsym-
o .B & B bolizes the measure of the path integral over the fermionic
5,] 4 ﬁf 4 Grassmann variables belonging to the regipn The action
cexeenl Yol at the energy scale specified bgontains four parts:
» AN
o B - B S=San1+Si1+S,1+ S (4)

The kinetic action is given by
FIG. 1. (a) Half-filed Hubbard chain with random potentials

considered herelb) Forward and(c) backward scattering due to

random potentialgd) Backward,(e) forward, and(f) 2k umklapp Sking1 = E 2 E [gﬁl(k) R;(k) Rs(K)
scattering vertices. Inter-replidg) forward and(h) backward scat- kel e o
tering vertices. Solid and dashed lines represent one-particle propa- +g[1(k)L*(k)L (K] (5)

gators for right- and left-moving electrons, respectively.
where k= (k,ie), with & being a fermion thermal frequency,
the PH loop is smeared fa>1.?? In the present paper, the and R, and L, are Grassmann variables representing the
(d=1+€)-dimensional case with randomness is taken upight- and left-moving electrons with a spin respectively.
only briefly, because a fuller discussion was presented sep@he one-particle propagator is given by
rately by one of the authofS.
This paper is organized as follows: In Sec. II, we consider g (k=[ie—&,(K] " (6)

an isolated halt-filled Hubbard chain with weak quenchgd.l.he two-particle scattering processes caused by the on-site

?epulsion[Fig. 1(a)] contain the normal and umklapp pro-

trick, and apply a two-loop RG analysis to it. This part is a ; : : .
reformulation of the bosonization-based approach to the €553 with the dimensionless scattering strengtplgégm

same problenf/ In Sec. 11, we extend the formulation pre- andgs, respectively. The corresponding term is written as
sented in Sec. Il to the case of the weakly coupled chains.

Based on the RG flows, we introduce characteristic energy Sp=mveT > >
scales for the ICEX-driven AF transition, the crossover to {kireCy {ei} {oj}
the AL regime, and the 1PC, and discuss a low-ener

asymptoticgphase diagram of the system. The casg=of » X Ril(kl)Lﬁz(kZ)Los(kQR%(k“)
+ € is discussed briefly in Sec. IV, followed by a summary in

1
Sec. V. —5moegsT > 2 2[Ry (kRS (ko)
kit e {&i} 01,02

II. SINGLE-CHAIN PROBLEM XL, (ko)L (Kg)+c.C], @

gU’10’2(7’30’4

We first consider an isolated half-filled Hubbard chain

. ) where T is absolute temperature, and the summation over
with weak quenched randomnd$sg. 1(a)]. b

energy and momentum is taken under the constraints
+e,—e3—e4=0 andk;+k,—k;—k,=G, with G=0 and
A. Effective action G= *+4kpg=*+27 for the normal and umklapp processes,
Here we construct an effective action via the replica trick.respectively. The normal scattering is decomposed into back-
The following derivation is similar to that done by Belitz and Ward and forward scattering as
Kirkpatrick.* We linearize the one-particle dispersion at the
Fermi points+kg=*+ /2 as g‘71"2‘73‘742gl§‘71‘736‘72‘74_925‘71”45‘72“3’ ®)
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where the forward and backward scattering strengths are de- N
noted byg, andg;, respectively. Unrenormalized scattering (ZN>=J annJ dédéx P, H D, ex 2 Sy
strengths are related to the on-site Coulomb repulkicas Ga=1 a=1

N N
91;0=92;0=03;0= U/ mvE. 9 =| II Daex;{ 21 ~S|a] (16)

Ca=1

Scattering of electrons by the weak random potehEaj. ) . .

1(a)] at a spatial position, is taken into account through a for integerN, continue the result analyucally to relll and
real field 7(x) corresponding to random forward scattering finally take the N—0 limit. Here S =50+ S+ S5,

[Fig. 1(b)] and complex fieldg(x) and&* (x) corresponding +Sg, is the replicated action corresponding to E4). Sq,ﬂ

to random backward scatterin§ig. 1(c)]. The correspond- and'S?, are written simply by replacin®, andL, in Egs.

ing actions are written as (5) and (7) with Grassman variables on theh replica, RS
. andL;, respectively.
Sp= _f drf dx>, 7()[R*(X,7)R,(X,7) Performing the Gaussian integration ovgiand ¢ fields,
’ 0 P the forward and backward random scattering parts imttte
. replica are obtained as follows:
+LE(X, 7)Ls(X,7)], (10
N 1T 1T
1T *
Sei=— fo drf xS [E0ORE (X, )L, (%,7) =7 21 2 1, dTlfo d”f xRy (X, 7)
a B* B
+§*(X)L (X T)R(,(X 7_)] (11) XRgl(X:Tl)ng (X,Tz)LO.Z(X,Tz), (17)
We assume the random potential to be governed by Gaussian N uT uT
distributions, ~g.|—7§2 > drlf dTZJ dXRG* (X, 71)
' =101,00 JO 0

><Lgl(X'Tl)Lg:(XaTz)Rgz(X,Tz)- (18

P, exp{ - D;lf dxn(x)?

P exp[—Dglj dX&(x) €% (x) |,

To set up the RG equations, we need to pick up the loga-
(12) rithmically singular contribution originating from Eql7)
and(18). To do this, we change imaginary time variablgs
_ _ andr, into Ar=7,— 7, and 7= (7, + 7,)/2, and introduce a
where D,=(mNe7,) *=ve/7, and D¢=(7Nem) " gpor'distance cutoff which characterizes the inelastic
=vg/7, With 7, . andNg being the scattering mean free gcayering regime between replicated systems. Then the re-
times and the noninteracting one-particle density of statezblon ve|Ar|<A causes an infrared logarithmic singularity,

respectively. The correlation functions of the random potensq the two- particle scattering proces¢@sdo, and contrib-
tials are then given by utes to the RG equations. Here we note that the condition
b b ve|A7|<A corresponds to the analogous angAr<a in
_Pae . _Peo the bosonization-based formulatipsee Eq(3.2) of Ref. 6],
{(n(x)7(y))= 2 Ax=y), (E(0€ (D)= 2 oX=y). where a is a short-distance cutoff parameter of the order
(13 of the lattice constant. We also note that elementary
particle-hole and particle-particle loops for a fixed
In the case of quenched randomness, the free energy is aternal energye make contributions;— EkngR(k )G (k
eraged over random potentials by the replica trick, which is_ o 2, 2
based on the identity ~2ke &) = ZkeqGr(k,e)GL(—k, —e) = 2fo [dé/(&7+e%)]

~mle, for e<Ey. The infrared logarithmic singularity

N comes from integration over the internal enerdyde/¢),
INZ= lim (14)  which we encounter only in the inelastic channel. From now
N—0 on, we keep only the regiong|A7|<A in Egs.(17) and

(18). Then, taking the Fourier transformation
By introducingN identical replicas of the system labeled by
the indexa, we obtain

Ra(x) Tl/ZE E i (kx— ST)Ra(k)

keC e
(15)

ZN= H D exp[Z SHE

C a=1
Ra*(x) Tl/ZE 2 e i(kx— sr)Ra*(k) (19)
where D, symbolizes the measure of the path integral over ke e
the fermionic Grassmann variables in théh replica. Then
we take an average with x=(x,7) and k=(k,ie), we have
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~ D A N Ill, we need to take account of the self-energy effects which
C=—T > > > X RG* (ky) are treated at thawo-looplevel. The derivation of the two-
Ur  {kifeq {ei} 01,02 =1 loop RG equations is left to Appendix A. The RG equations
XLE (k)LE (Ka)R, (K, (20  fakethe forms
oA \ dg, /dI=w,—26g,-D,, 27)
T 5 ak
=——T R (k ~ ~ o
&l UVE {ki}Eeq {;,} o’%z [321 Ul( 1) dgzld|=W2—2092—D,}, (28)
X Lg;(kZ)Lgl(k3)Rg2(k4)l (21) d93/d|:W3_2993, (29)
where the summation over energy and momentum is taken = _ o
under the constraints;+e,—e3—e,=0 andk;+k,—Kks db,/dI=w,+(1=26)D,, (30
- k4:0 ~ _ ~
Now random scattering termsside the same replicare dD/dl=w,+(1-26)D,. (3D

absorbed into the intrachain two-particle scattering terms aghe self-energy processes give

Sa e a a a 1/~ ~ ~ o~ 1 = =

SH=moegT 2 > 2 R (k)L (ko)LE (Ks) 0= | 92+93- 0,0, + 505-D2-D2|, (32
{kreq {ef} opop 1 2 ! 4 2 K

~ and the vertex corrections give
xR} (kg) = mveG,T 2 2 2 REF (k)L (ky)

{kiteC {ei} 01,02 1 1 1 1
L w2, Tmmy et 9 X =)
Xng(ks)Rgl(kO Wi = gl+ 29192 29192+ 4glgI3+D§ 2ng '
(33
1
—5morgaT 32 3[R (kRE (k) 1, 1, 1, 1, 1., L,
Hake vaih o1, Wo=—501F 503+ 5921 50102~ 59192~ 401
XLg,(ka)Lg (kq)+c.c], (22)
P e B S s Y (34)
where 291937 202037 502U, 7 50, Ve,
al:gl_ﬁgv 52292_5771 (23) ~ ~ l~2 1. -
W3=—0103+ 209203~ 592934' 5919203
D,=DAlmvi, D,=D,Almv. (24)
1. 1 -
The normal §, andg,) and the umklapp ds) scattering +Zgigs+ Egstp (35)
vertices are represented in Figgdjl 1(e), and Xf), respec-
tively. On the other hand, random scattering teimesveen T T T T
different replicasare written as w,,=§D§+ EggD,,Jr EgiD,,— EgzDg— 591920,
S=queD, T R* (kq)LP* (k Lo, 1~ 1., 1o o,
n=mveD, {k%q {28.:} 0%2 ﬂ;ﬂ oy (KD)LG (k) +20:D¢ - 793D,— 5D 5D, D¢, (36)

XLE (k3R (Ka), (25 5

S=-mvD T X X X X R (kLA (k)

{ki}eC {&i} 01,00 BFa —ZBE_Bibg (37)

XL (ka)RY (Ka), (26) _ _ _
1 2 C. RG flows and low-energy asymptotics of the single chain
where the co_rres_ponding inter-replica S(_:attering vertices are Here we discuss the RG flows obtained through solutions

represented in Figs.(d) and Xh), respectively. of Egs. (27)—(31) with initial values of the scattering

o strengths gy .o=02.0= U3.0= U/ mvg, D0, andD .
B. Two-loop renormalization

In the perturbative renormalization-groufPRG ap- 1. One-loop RG flows
proach, we assume that scattering strengths @., 9. To grasp qualitative nature of the RG flow, here we pause

D,, andD,) are considerably smaller thafy, and set up to look briefly at the one-loop counterparts of the RG equa-
7 il . )

low-order RG equations whose solutions indicate whetheHONS:

these small perturbations grow toward the low-energy scales

or not. To discuss the interchain one-particle process in Sec. dg,/dl=-D,~gf+DZ, (38)
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@ Ufnup = 0.1 o) Umvp =03 © Ujrvp =0.5 @ Ufmvp =0.7
2 ~ 2 |~ 2
/D,, | Dn 93
L5 / Ls / L5
/ /
1 / 1 / 1
/ //
os| / o5 o5 /B, N\ 93 5 FIG. 2. Two-loop RG flows
- NG - ~; pbo—<7 hen the random forward scatter-
L l I — I when the random forward scatter
24 6 &l 2 4 6 8 2 4 6 8 2 4 6 8 ing is present, but the random

backward scattering is absent
© Ufmvp = 0.05 ® Ujnvp =0.1 @ Ulnvp =03 ®) U/nvp =0.5 [(@—(d)], and when both the ran-
dom forward and backward scat-

4 | 4 ) 4 4 ]
| \ﬁ 1\ terings are preseifite)—(h)].
3 ! ! 3
/ g3 ~ | 3] g3
Dy |l 9

w
w

D, ~
2 Dol 2 2 Bl 2 .
A A4 1 i 1 De
TR LS JN"D e
// J(\ D§ l // \\ Df l 74’/ \\ Df l _‘._4—/—"(_\\1),1 l
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
dEJz/dl _ —577—55/2+ g§/2, (39) 2. Two-loop RG flows
Next we discuss the two-loop RG flows obtained through
dgs/dl=—g3(9;—20,), (40)  solutions of Eqs(27)—(31).
Case A: D,,#0 and D.,=0. In Figs. 2a)-2(d), we show
d~D,,/dI=5,,+'I5§/2, (41) th.e ﬂgws forU/vazo:l, 0.3,.0.5, and 0.7,.resp§ctl\:ely,
with D,.,=0.08. The fixed points are classified intg3(
dD,/dI=(1-29,+9,)D,+D,D,-2D2. (49 =0, G*=x,Dj=x)andg3=2,G*=-2,D;=0). The

former fixed point is equivalent to the corresponding one-
loop fixed point. On the other hand, the latter fixed point is
equivalent to the nontrivial fixed point at the two-loop

?e'vel,24 corresponding to the pure Mott insulator. We thus
see that two-loop analysis does not qualitatively modify the

Case A:'D,,,#0 and D;,,=0. When the random back-
ward scattering is absent, the one-loop RG equations are r
duced to

—of _ 2 one-loop RG flows and, for a fixed 70, @ quantum phase
dG/dI=2D, g3, (43 transition would occur at some critical strendgdh, between
the metal and the Mott insulator fixed poir(ter example,
dgs/dl=—gsG, (44)

U.~0.484ru for D,,0=0.08).

whereD,=D,,0¢' and G=g,—2g,. In this case, as seen le"‘s‘? BI: '37;0753 a”dh D§;0¢0|- The ba}:lkward sgatterifr_\gd
from Eq. (43), 5,7 competes withg; and, consequently, the qua |t§t|vey mg ifies the two-loop RG flows, an _wetin
i i L _ o mx the fixed point @%~2.4003, G*=-2.4349, D} =
fixed points are classified intogg =0, G* =, D7 =) =, ~ =7

and (@3 ==, G*=—=», D} =). This result is consistent I—(I):._056(2{,D)§2—(r(])).9844)hforam/s:t Ofo>S/- Dn;o_,gr:)dngol-
with the finding by Fujimoto and KawakarhiThe former ' 95 48)—4N), We Showthe Tlows ToU/aur=10.09, U.4,
fixed point corresponds to the metal phase, where the rafl-3, and 0.5, respectively, with ,;,=D ;o= 0.08.

dom forward scattering overwhelms the umklapp scattering, NOw we introduce the characteristic scalgg, and | o
while the latter corresponds to the Mott insulator phaBer  through the conditiongy;=1 at I =1gqp and D‘f:ll at |

a fixedD ,,, a quantum phase transition occurs at some criti-=lioc- The corresponding energy scaléga;=Eoe ' and
cal strengthU., between the metal{<U_) and the Mott  Eioc=Eo€ ¢, can be regarded as characterizing the Mott

insulator U>U,) fixed points (for example, U, 9ap opening and the Anderson localization, respectively. In
~0.4927v; for 5,7;0=O.08). Figs. 4e)-2(h), we see that,.<lga, for smallerU, while

T~ ~ lioc> 1 4ap fOr larger U. This behavior may indicate a cross-

Case B: B,o#0 and D;o70. When both random forward  oyer from the Anderson-insulator-like phase to the Mott-
and backward scatterings are present, the RG flows are mqusuIator-Iike phase upon increasitl
fied, and the fixed points are classified intg3E0, G* The quantum critical behavior between two distinct fixed
=, D} =%, Df=%) and (@3=%, G*=—=, D} =%,  points, which is observed in the one-loop analysis, is appar-
'|f')f§c =), The former fixed point corresponds to the Ander-€ntly missing here. However, the fixed point found here is
son insulator phase, while the latter corresponds to the Moglearly out of the perturbative domain where the RG is valid
insulator phasé. For 57];0:550:0'08’ a quantum phase and lies |_n the V|C|r_1|ty_of the f_lx:ed point of the clean system.
transition takes place & .~0.439rv between the former I fact, since at this fixed poird’ = —0.0560<0, whereas
(U<U, and the latter ¢ >U,). by the definition oD, [Eq. (13)], one must hav®* >0, the
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(@) where K= (kg ,Kkp ke, ig), with k,, k,, and k. the wave
numbers along the, b, andc axes, respectively. The corre-
' 4 ' sponding one-particle processes are represented in Klgs. 3
C - ; . and 3c¢).
J\tJ_ By multiple use of the interchain one-particle processes
a ~ U : and the intrachain two-particle processes, the interchain two-
b . L g , particle processes are dynamically generated during the
: renormalizationt>~® We consider only the case where the
Y

. ] most dominant correlation is an antiferromagnetic one. The
corresponding term is written as

mo s ~a __7TU|:T -
E ___{>_§ tJ_ SZJ_;I_ NL % JQLSQ(Q)SQ( Q)

TUET
@ © - Ko [S7(2ket 00 i)

-§(2kg—Qa,—q, ,—iw)+c.c], (46)

whereN, is the number of chains and=€)q,,q, ,i ), with
g, =(9p,9.) and w being a boson thermal frequenc:;lqL

and Kq, represent the strengths of the interaction between

different chains through the normal and umklapp scattering,

FIG. 3. () Three-dimensional regular array of parallel chains respectivelysee Figs. 81) and 3e)]. The X, spin density is
weakly coupled via the interchain one-particle hopping considerecbiven by

here. Interchain one-particle processes (for right- and (c) left-

moving electrons. The interchain interaction in the antiferromag-

netic channel classified int@) normal and(e) umklapp processes. S“(Q) = E E
b

y
, ~
. S
': K ;\
’ .
. .

> R (K+Q)

field »(x) being real, it is clear that the fixed point is an
artifact of the two-loop RG. Thus we believe that the physics p
found by Fujimoto and Kawakarhat one-loop renormaliza- X 5 Lg,(K). (47)
tion is not changed at two-loop renormalization.

Derivation of the RG equations for the interchain pro-

. WEAKLY COUPLED CHAINS cesses is left to Appendix B. We obtain the RG equations
In this section, we consider three-dimensionategular dint, /dlI=1-9, (48
array of parallel chains weakly coupled via the interchain
one-particle hopping, , as shown in Fig. &), and examine dJq /dlzwfh—ZeJqL, (49
the interchain one- and two-particle processes caused by
Here we stress that we deal with a three-dimensional system d Kq, /dl :WEL - ZHK%' (50)

where infinitesimal random potentials do not induce Ander-

son localization We take thea axis in the direction parallel where
to the chains, and thie andc axes in directions perpendicu-

lar to the chains. The interchain one-particle hopping process
between the nearest-neighbor chains causes a dispersion,
—2t, (cosk,+ cosk.). Throughout this section, we assume

that the scaling procedure in the one-dimensional regime at
high-energy scales«(>t,) remains valid down to the en-

ergy scales at which the crossover or phase transition takes

J—£~2+42t/E2 +
Wq, = 2(92 93)(t, /Eq)“(cosqy+ cosqc)

1 = 1 2 2
+5(923q, +405Kg )~ 7(35 +4KZ), (8D

place. W =20205(t, /Eo)*(cosqy+ cosdc)
A. Renormalization of the interchain processes +2(52qu+93JqL)_'JqquL- (52)
The gctic_)n fo_r the interchain one-particle process in theye see that renormalization of the interchain one-particle
ath replica is written as process comes solely from the intrachain self-energy pro-

cesses, where a nonuniversal exponéns given by Eq.

— (32). During the renormalization process, no new interchain
u;l:zkEEC _ngzk - g ; t, (cosky+ cosk) one-particle hopping is generated. In Figs(@4nd 14b) of
a bt Appendix B, we show contribution ta andwy , respec-
X[LZ* (K)LG(K)+Rg* (K)RG(K) ], (45 tively. Although the unrenormalized values df, .o and
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| U=0.170p, Dy.o= De,o=0.08
(@) t1;0 = 0.01E0 (b)tL0 = 0.044F0 (©tL0 = 0.08Fo
15 5 15 t 15 te ~
1 % 1 y 1 D§

05 tL os /5/ K os 'K
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B N T\ FIG. 4. RG flows oft, , D,
_ J, andK for U=0.17v¢ [(@)—(c)]
| U=04nv Dyo= Deo=0.08 | andU =0.47v¢ [(d)—()].
(d)ti0 = 0.01Eo () ty;0 = 0.03450 (®)ti0 = 0.08E0
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Kq, -0 are zero, the first terms of Eq1) and (52), which have already been introduced previously, characterize the
L

crossover to the Anderson localization regime inside the
; . . ; CM regime and the ICEX-driven AF phase transition from
of Appendix B, respectively, generate finite magnitudes 01J . X ) .

. the ICM regime, respectively. The scdlgc gives a qualita-
Jg, 0 and Kq, 10 Then the s-econd terms, which come from tive measure around which the one-particle crosséieQ
the processes shown in Figs.(&4) and 14b-2), respec- occurs and interchain one-particle band motion begins to
tively, induce their exponential growth. Finally the third evolve®® Once the interchain one-particle band motion
terms, which come from the processes shown in Figsevolves, randomness effects may be treated as weak-
14(a-3 and 14b-3), respectively, cause divergence &f  localization corrections to the Q1D Fermi liquidFL), as
andK_at the critical scaling parametiywhich depends on  discussed by AbrikosoVThus we call this regime the Q1D
the momentung, in the interchain direction. The divergence weak-localization(Q1DWL) regime. We shall mention the

corresponds to the phase transition to the long-range Order%v%eak-locahzatmn effects in the Q1D FL regime later in this

phase from the ICM regime at a temperature corresponding bsection.

| h f bl in-densi . Here we stress again that we are dealing with a three-
t0 1¢(q,). The most favorable spin-density-wave Vector is gimensional system where infinitesimal random potentials do

given by the commensurate oreg,=Q = (), at which ot cause Anderson localization. This is what justifies the
the first terms of Eqs(51) and (52) become negative and identification of the fixed point dominated by interchain hop-
have maximum absolute values. From now on, wedix  ping with a Fermi liquid. This identification is certainly in-
=QI, and introducel=Jg+, K=K, andly=1¢(Ql). The  valid in two dimensions, where infinitesimal random poten-
temperatureTy=Eqe "'V gives the antiferromagnetic transi- tials would still cause Anderson localizati¢AL ).
tion temperature. We note here that E(l) and (52) have We solve the coupled RG equatio(£)—(31) and (48)—
the same form as those in the pure cHsexcept thag, and ~ (50), and check which of Eqe53)—(59) is satisfied at the
g, in the pure case are merely replaced vgthandg, [see highest-energy scalése., the smalllegt). HeLe we fix initial
Eq. (23)]. In the present formulatiomandomness effects on Strengths of the random scattering,,;o=D,0=0.08. In
the interchain processes are incorporated through the modiFigs. 4a)—4(c) are shown the RG flows df , D, J, andK
fied intrachain two-particle scattering strengths, gndg,. ~ With t,;0/Eq=0.01, 0.044, and 0.08, respectively, for
=0.17vg . In this case, due to weaker, growth ofJ andK
B. RG flows and phase diagrams is overwhelmed by growth of eithar or 55, and conse-

. . ently the low-temperature phases are determined by the
Based on the RG flows obtained through solutions of Eqsqu y W perature p I y

. ~1°competition between the AL and the 1PC. We see that the
(_27)—(31) and(48)—(50), we introduce the three characteris- AL overwhelms the 1PCI(.<lypd for t,.o/Eo<0.044,
tic scales) oc, l1pc, andly: :

while the 1PC overwhelms the Al {pc<l|oc) for t,.o/Eq
>0.044.

In Figs. 4d)—4(f) are shown the RG flows df , 55, J,
andK with t, .o/E;=0.01, 0.034, and 0.08, respectively, for
U=0.4mve and D,,,=D;=0.08. In this case, due to

J=K=-= atl=ly. (55  strongerU, growth off)g is overwhelmed by growth of ei-
thert, or J or K, and consequently the low-temperature
Corresponding temperature scales drg.=Eqe 'oc, Ty phases are determined by the competition between the AF
=Eq e 'V, andT,pc=Eqe 'tPc. The scale$,c andly, which  transition and the 1PC. We see that the AF transition over-

come from the processes shown in Figsiatd and 14b-1)

D=1 atl=lp, (53

tJ_/EO:]. at Izllpc, (54)
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FIG. 5. Phase diagram spanned Bynvg, t,.o/Eq, and the
temperature scal/E for D,,o=D,o=0.08.

0.02 0.04 0.06

whelms the 1PCI<Ilpg for t,.q/Eq<<0.034, while the
1PC overwhelms the AF transitior ;6<ly) for t, ./Eq
>0.034.

By examining the RG flows for various andt, .o, we
obtain a phase diagram spannedWblyrv g andt, ./Eg, and
the temperature scale/E, for D ,.o=D,=0.08, as shown
in Fig. 5. We see that for very smadll .o, the AL regime

JUN-ICHIRO KISHINE AND KENJI YONEMITSU

PRB 62

FIG. 7. (a) Self-energy processes caused by the random poten-
tials. (b) Weak-localization correction to the classical conductivity.

A double solid line represents the Q1D one-particle propagator
ngD.

we need to go beyond the perturbative scheme, which is
outside the scope of the present PRG approach.

Now let us briefly mention the weak-localization effects
in the Q1DWL Fermi-liquid regime. For the present, we
shall confine our attention to the noninteracting case. The
present model gives the Q1D impurity-averaged propagator

GUP(k,e)=[ie—vg(|ka —kg) +2t, (cosk,+ cosk)
+isgre)/2r] 1, (56)

where the inverse scattering timeé1=nv?/vg is caused by
the self-energy processes, as shown in Fig\.. Heren is the
density of impurities, and is the strength of the short-range
random potential. Then the Cooperon propagator is obtained
as

shrinks asU increases and the AF phases appears for
U/mve=0.28. This crossover from the AL to AF phase is

caused mainly by the increase of the umklapp scattering
strength, which enhances the interchain AF correlation and
suppresses the interchain one-particle prote¥s. under the condition

In Fig. 6, we compare the cases with randomnég;({

=5§;0=0.08) and without randomness foi/ v = 0.4. We
see that the AF transition temperaturg in the case with
randomness is suppressed as compared with the case WithoHJT'

. o . _ is condition justifies choosing the Cooperon diagrams as
randomness. This suppression Is mainly ascribed to SUPPTeRe main quantum correction to the conductivity. Then, we

sion of the umklapp process due to the random forward scalspiain the weak-localization correctidiFig. 7(b)] to the
tering. It should be noted here that randomness effects MaY-ssical conductivityr,

also remain in the AF phase. However, to clarify this issue,

C(q,0)=nv’{|o|+iTved,

+872t2(sir? qu/2+ sif /217, (57

t, singg/2<r L.
(58

VEQa<<7T 1, t, singy2<7l,

dqg
(2m)3

T/Es

Aolog=— Tzf
0.2

C(q.,0), (59

where the integration is performed under condit{&8). In
the case where the warping of the Fermi surface is much
larger than the broadening * due to the random scattering
(t, 1), the main contribution tad o/ oo comes from very
small moment&** q,,q.<(t, 7). Then, we obtain
Aclog~—(t, 7)~2, which is the same as that obtained by
AbrikosoV’ in the case of the quadratic dispersion along the
a axis. In the opposite case with <1, we can integrate
over g, and g, in the entire Brillouin zone, and obtain
Aogl/ay~0(1), which indicates that the weak-localization
picture breaks down. We see that the weak-localization pic-
ture on the randomness effects in the Q1D FL regime breaks
down ast, 7 approaches unity from the side bfr>1. The
FIG. 6. The AF transition and 1PC temperatures in the casesriteriat, 7~1 may characterize a breakdown of the weak-
with randomnessTy and Tipc, [D,.0=D;0=0.08], and without  localization regime from the side of the Fermi liqidthis
randomnessTR'" and T{RE, for U/7v=0.4. criteria may be consistent with the RG-based critérige,

0.15

0.1

0.05

0.2 tio /Eﬂ

0.05 0.1 0.15
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032 T/ Eo The phase diagraniFig. 5 may help account for this
- experimental finding on successive crossoy&b— AL —
’ Ta 1} U=0.0 metallic phasgupon doping, although the present approach

misses being correct in the following two respects. First, in
actual (DI-DCNQI»Ag;_,Cu,, the charge localization for
small x has been attributed to the relevankc4umklapp
proces&’?8instead of the R umklapp process at half-filling
considered in this paper. Thekd umklapp process is not
treated in the RG formulation unless we take higher-order
scattering processes into account. In the present discussion,
the presence of thek?2 umklapp scattering is essential to
cause an ICEX-driven AF transition from the ICM regime.

0.08F;
0.06,
0.04f

-, U=0.4
0.02}

0.1

& 0.2,11{ ; We believe that this argument is applicable to the case of
=y quarter-filling, where the relevantkd umklapp scattering
%, 03 o also suppresses the interchain one-particle process. Second,

0.~ oo oo o L0/ EO in actual (DI-DCNQI»Ag; _xCu, the closing of the charge
gap may be attributed to changing the filling with fixed in-
FIG. 8. Phase diagram in the case where the umklapp scatterid§raction strength, instead of changing the interaction
is absent. The notations are the same as in Fig. 5. strength with fixed filling. To explicitly change the filling,
we should employ the approach used in Ref. 29, which is
~5§=D§A/m§=(1/va)(/\/r§), which characterizes the €ssentially equivalent to the bosonization-based approach in

crossover from the AL regime to the Q1D regime from theRef. 30 in lowest order, although the cutoff functions are

one-dimensional side. different in each case. To avoid further complexity, we
Here we consider the case sufficiently away from halfvould not employ this approach. _ _ _

filing, where the umklapp scattering is absent. In Fig. 8, we _ K€€Ping these points in mind, we try a simple simulation

show a corresponding phase diagram spanned/by  and ;)Inta?lfxe)((j?rigrr?;gﬁm S:fsggﬁﬁ‘tﬁ)‘i\/s{uCcﬁisé\ﬁaﬁrozﬁgvﬁs' For
t,.0/Eo, and the temperature scal/E, for D, =D, ’ y L0 ’

: ) ) . umklapp scattering may still survive at high-energy scales,
=0.08. In this case the AL regime shrinks dsincreases ; ; - ;
. ' but it may decrease upon doping. By simply assuming that
but the AF phase never appears. Reduction of the localiz ! Y up ping. By simply uming

. ; ! Yecreases as doping increases for s we simulate a
tion temperature upon increasikgcan be understood by the Ping mad

S : crossover from the AF regime to the AL regime for small
fact that repulsive interactions tend to make the charge derlfor further dopingt, ., may increase and the phase crosses

;';y d?snézirszaﬁﬂdo;hgzi?ﬁggie;ﬁ g'tzgﬁs:srznalﬁgzishﬁ%“gn’over to the Q1DWL regime. We indicate these successive
y Y-crossovers by the arrows in Fig. 5.

Comparing this result with that of Fig. 5, we see that the
presence of the umklapp scattering is essential to cause the
ICEX-driven AF transition from the ICM regime. This situ- IV. CASE OF d=1+¢€ DIMENSIONS

ation is similar to the case without randomné&s¥ o . .
It may be worth mentioning thedE 1+ €)-dimensional

case with randomness. Because fuller discussion on this
topic is presented separatéihere we comment only briefly
on the relevance to Sec. lll. In Sec. Ill, we assumed that the
Here we mention an experimentally suggested phasecaling procedure in the one-dimensional regime at high-
diagram of a doped organic compound, energy scales¢>t,), where both the elementary particle-
(DI-DCNQI),Ag; _,Cu,,?* where dimensionality, random- particle(PP) and particle-holéPH) loops exhibit logarithmic
ness, and filling vary upon doping. In the undoped case ( singularities, remains valid down to the energy scale at
=0), this compound consists of nearly isolated quarter-filledvhich the crossover or phase transition takes place. Then we
chains along the DCNQI columns and exhibits an AF orderireatedt, perturbatively to examine the interchain one- and
ing accompanied by the charge excitation §apipon dop-  two-particle processes causedtby This approach is appro-
ing Cu, the filling decreases gradually from 134<(0) down  priate to obtain qualitative phase diagrams including a three-
to 1/3 (x=1), and dimensionality is raised by the increase ofdimensionally ordered phagéhe AF phase in the present
the interchain charge transfer via Cu sites. The degree dfase, but the feedback effects of the interchain processes on
randomness caused by Cu substitution increases and dée charge gap formation are then missing. As a conse-
creases upon doping, with a maximum located around afguence, we cannot clarify the reason why the charge gap
intermediate doping region. Resistivity measurements indidecreases as dimensionality is raised. One way to retrieve
cate that the charge excitation gap rapidly collapses upointerchain feedback effects is to incorporate the imbalance
small doping, and then the Anderson localization phase ageetween the PP and PH loops: the infrared logarithmic sin-
pears at around a 48% doping of Cu, where threegularity of the PH loop is smeared fa>1. One of the
dimensional variable range hopping is clearly observedpresent authors studied the low-energy asymptotics ofithe
Upon further doping, dimensionality is raised, and the sys=1+¢ (e<1) dimensional Hubbard model with a circular
tem exhibits metallic behavior down to low temperatures in-Fermi surface where K= umklapp scattering is preseat
stead of localization. priori.?® Here we compare thed& 1+ €)-dimensional case

C. AF phase, Anderson localization, and metallic phase
in a doped organic compound(DI-DCNQI ),Ag;_,Cuy
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with the case of the weakly coupled chains discussed in Sec. 08 T/EO
M.

In d=1+ ¢, the real part of the elementary PP loop at the ¢
zero total momentum exhibits an infrared logarithmic singu-
larity of the form

Rer(w)"’ -

Tmos In(w/Eq), (60)
whereE is the bandwidth cutoff. On the other hand, the real PETIIRT R oy
part of the elementary PH loop ak2 momentum transfer no e e o e
longer exhibits an infrared singularity fa>1 and, ind
=1+ e, takes the form

we/Z

€2

Rell, (@)~ +C.|, (62)

2’7TU|:

N L
g 12 14 16 18 >d

where w= w/2veke andC, is a constant independent of 0.74
By taking account of this imbalance between the PP and PH
loops, and repeating similar procedures presented in Sec. Il, FIG. 9. Phase diagram spannedW¥mve, d, and the tempera-
we obtain the one-loop RG equations instead of the one-loojsire scaleT/E, for D,.o=D,0=0.08.
counterpart of Eqs(27)—(31),%
phase occurs i/ mv=0.44. We see thaby,,decreases as
d91 ~ =5 dincreases for a fixed/mv g, indicating that the charge gap
dl ~D¢= 0102 +1(9:- 9091 + DN, (62 decreases as dimensionality increases.

In Fig. 10, we show a phase diagram in the case where the
> _ ey~ - umklapp scattering is absent, which_corresponds to Fig. 8 in
TR D, —(g1+93)/2+(g5+g3)\ /2, (63)  the case of the weakly coupled chains. We see Thatde-

creases as a whole &kincreases, but the AL regime is the
dgs B B only possible low-energy asymptotic phase.
W:_g3(gl_292))\la (64)
V. SUMMARY

Q.

7 = =2 In this paper, we have studied the interplay of random-
| D,+D/2, (69 ness, correlation, and dimensionality effects in the Q1D half-
filed Hubbard system with weak quenched random poten-
dDg B tials based on the RG approach. We first discussed chains
ar =D +D§D,, [(29:— gz)D§+ 2D§])\|, (66)  weakly coupled via the interchain one-particle hopping

using a two-loop RG analysis based on the assumption that

where the PH loop gives rise to the smooth ciffoff the scaling procedure in the one-dimensional regime remains
valid down to the energy scale at which the crossover or

=exd—el/l2]. (67 08 T/EO
In this case, a quantum phase transition takes place from the
Anderson insulator fixed poinD(} =, D% =, g5=0) to
the Mott insulator fixed point@}f =c, D¥ =, g§ =) as

)\|527TU|:

i ® Relly (w)| -

U increases. 04
In Fig. 9, we show a phase diagram spannedJibyrv g,
d, and the temperature sca®/E, for D, ,=D,,=0.08, 02

which corresponds to Fig. 5 in the case of weakly coupled
chains. The definition oT . is the same as in Sec. lll. The
magnitude of the charge gap is qualitatively given by the
energy scalewqa=Eqe™ lsap, at which the umklapp scatter-
ing strength exceeds unitgz=1.%3'In Fig. 9, we show the
dependence obg,, on U/7ve andd. In d=1+ ¢, both the
three—dimensional AF phase transition and the one-particle

crossover cannot be specified. Instead, the Mott insulator 06 \ 12
phase without the AF long-range order appears where the
umklapp scattering; overwhelmsD,. In d=1, a quantum FIG. 10. Phase diagram in the case where the umklapp scatter-

phase transition from the AL regime to the Mott insulatoring is absent. The notations are the same as in Fig. 9.
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phase transition occurs. We discussed the following crossA/e split up the set ok points C, into two subsets as)
overs and phase transitions from the incoherent nig@ll) = ,,®dC 4, where G g =1{K||£,(K)|<w,q/2} and
regime: (1) the crossover to the Anderson localizati@kl ) dcj‘l+d|E{k|w|+d|/2S|§V(k)|<w|/2} represent the low- and
regime; (2) the ICEX-driven antiferromagnetitAF) phase  high-energy shells, respectively. Accordingly, the action is

transition; and (3) the crossover to the Q1D weak- d d aS-% 1% Int fi th
localization regimg¢Q1DWL), where the randomness eﬁectsgeoc§£ﬁgiie h?;ﬁ-er?lerg)l/ sﬁeJrlldlg.ivers], egration over the

can be treated as weak-localization corrections to the Q1
Fermi liquid (FL). The main result is summarized in the %
phase diagram shown in Fig. 5. The presence of umklapp 7= f H D exr{ Z [ a2 d%qr”-
scattering is essential to cause an ICEX-driven AF transition Chgr =1 p.g,r=1

from the ICM regime In the absence of umklapp scattering, (A1)
only competition between crossovers to the AL regime and
QIDWL regime occurs(Fig. 8). Based on this result, we A)I(I t;neSI:;er?ormallzatlon effects come from the perturbative
tried a simple simulation of the experimentally suggesteae P

successive crossovers (AFAL— metallic phasg upon 1

doping in the organic compound, d = <[ LS 1S ] >
(DI-DCNQI),Ag, ,Cu,.2* We also mentioned thel=1 Spar~prgirt <[Siral 1Snical TS al >

+ € (e<1) dimensional case. (A2)
wherefclidIHZ‘:lDa means that the fermion momenta are

restricted to the low-energy shell. The average over

We acknowledge K. Kanoda and T. Itoh for stimulatingthe modes in the high energy shell is defined as
conversation. This work was supported by a Grant-in-Aid for<(- - -)>=2 1fdc o= N D, exp[Sfm lrarlC-o+), with
Encouragement of Young Scientists from the Ministry on —fdc> - 1D exn[Si“.nHm] and the subscripe rep-

Education, Science, Sports and Culture, Japan. )
resents the connected diagrams. We perform a perturbative
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APPENDIX A: DERIVATION OF TWO-LOOP RG expansion by picking up the Feynmann diagrams whose con-
EQUATIONS IN SINGLE-CHAIN PROBLEM tribution is in proportion todl. Note that diagrams in pro-
portion tod| give rise to the corresponding logarithmic sin-
In this section, we set up two-loop RG equations for thegularity as [ydl’=I= In(Ey/w). Then the renormalized

single-chain problem described by the effective ac®n  action is written in the form

+d.+ E ASar= > > Y A+ edD[GRUKR (KRA(K) +G [ KLY (K)LE(K)]

kECH,c“ & a

+ave(@rtwid)T > X X R (k)Lgr (ko)LE (ka)RS (Ka)

{ki}eCivar {eit 01,02

—mp(GatwodDT > X > RIF (k)L (kp)L (ka)RG (Ka)

{kiteCrar {ei} 01,02

1
—5mR(GatwadDT > X X [REF (KRG (ko)L (Ke) LG, (k) +C]

{ki}eCliar {&i} 01,02

+aoe(D,+w,dDT 2 E > 2 R (k)LE (ko)LE (ka)RY (Ky)

{kiteCisqr {eit 01,02 B#a

—meDetwdDT > X X X R (k)L (k)LE (ka)RE (Ky). (A3)

{kiteCiqr {eit 01,00 B#a

Note that{k;} € C|. 4 here, instead ofk;} €C, in Egs. (5)— R 9—3

(26). R(k)=| 1+ le R(k) (A5)
Next, to restore the original cutoff, we rescale the mo-

menta and frequencies as to keep the kinetic action scale-invariant. We must bear in

< mind that the length scal& contained in the random scat-
k=e"k, (A4 tering strengths ), and D,) is also rescaled to\e®'=A
and perform the field renormalization +Adl. Then the renormalized actioffA3) takes the form
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> 2 2 [GrMRRE (R(k) +G MRLer (kL]

keC e @

+ e[ 9+ (W =260, -DdIIT 3 X X R (kLo (ko)L (ke) RS (k)
{ki}eC {gj} 91,92

—mve[Got (W= 260,-D,)dIT X X X Ry (kp)Le¥ (ko)L (ka)RS (ky)
{kiteq {ei} 71292

1 ~ ~ A A A A A
—5muelgst (We—26g9)dI]T X X 2 [RE* (k)R (ko) L5 (ko)L (k) +c.c]

{kiyeq fei} 71:02

FavelByt{w, H(1-20B,4dT X X X 3 R (k)L (kLG (k)R (k)
{kiteC {ej} 7192 P74

— e[ Dt {wet (1-20)D4dIT X X X ﬁZ R (k)L (ko)L (ka)RE (Ky). (A6)
{kiteC {e} 9192 P7a

Note that{k;} eC, here again, and the original cutoff has  The diagrams which contribute tw, are shown in Fig.
been restored. By identifying the quantities in bracketsl2@-1)—12a-4). We subtract contribution Fig. 12-1') and
[---]in the second to sixth lines with the renormalized scat-12(@-2), which are fictitiously counted in Fig. 121 and
tering strengths, we obtain the RG equations in the form ofl2(@-2), respectively. Thus we obtain
Egs. (27)—(31).

We evaluated, wq, w,, W3, W,, andw, at the two-loop
level. The self-energy diagrams which contribute &care
shown in Figs. 1@a)—11(d). Since the contribution of the (A8)

~, 1., 1. 1. ~ 1. -
wi=—gi+ 59193_ ngéﬁ ;1919§+ Df- Engi-

dia_grams conta_ining a loop cor!nec.ted V"”? the rand_om SCaKI:he first, second,. . ., sixth terms of the right-hand side
tering to outer lines, as shown in Fig. (&}, is proportional . "c Figs iga-lj-lZ(a-4) 12a-1), and 12a-2), re-
to the number of replicady, and vanishes in the replica limit spectively ’ ' ' ’

N—0O, we subtract the contribution of Figs. (A1) and
11(b"), which are fictitiously counted in Figs. (& and
11(b), respectively. Thus we obtain

The diagrams which contribute t@, are shown in Figs.
12(b-1)-12(b-8). We subtract contribution of Figs. (23')
and 12b-4'), which are fictitiously counted in Figs. ({23
and 12b-4), respectively. Thus we obtain

HZZ

~p oy w1,y o

917929192+ 595 D5 = D5 (A7)
1, 1, 1, 1L, 1.., 1, 1L ,

Wo==501F 503+ 5051 59102~ 59105~ 7911 79103

The first, second,. . ., sixth terms of the right-hand side
come from Figs. 1(), 11(b), ..., 11d), 11(a@), and 11b"),
respectively L oo Lo 1o o)
' ~ 29293~ 59205+ 5D, D (A9)
(a)x"<""~-\ The first, second,. . ., tenth terms of the right-hand side
¥ A come from Figs. 1®-1), ..., 12b-8), 12(b-3'), and
T 12(b-4'), respectively. Two diagrams labeled in Fig.(4:B)
give the eighth term.
@ The diagrams which contribute tw; are shown in Figs.
12(c-1)-12(c-5). We subtract contribution of Fig. 1&3'),
+ 9 9 which is fictitiously counted in Fig. 12-3). Thus we obtain
aanadl >...
~ ~ 1, 1. -
© 5 W3=—0103+ 20203~ 59293 59109293
Z 5§>§<\£/;f< B * N-0 1, 1 =
B=12,..0..N T'i": + Zglg3+ EgsD 7 (A10)
FIG. 11. (8—(d), (&) and (b') are the self-energy diagrams The first, second,. .., sixth terms of the right-hand side
which contribute tos. Diagram(e) is proportional to the number of come from Figs. 1@-1), ..., 13c-5) and 12c-3'), respec-

replicasN, and vanishes in the replica limit—0. tively.



@3)
o

(c 1) (c- 1) (c2) (c-2)
4 \vvd \/::}/

(G

FIG. 12. Vertex correction diagrams which contributédapw,,
(b) w,, and(c) ws.

The diagrams which contribute t,, are shown in Figs.
13(a-1)-13a-7). We subtract contribution of Figs. (82)
and 13a-3), which are fictitiously counted in Figs. (882
and 13a-3), respectively. Thus we obtain

1., 1. L. 1., 1. ...
W, =5D¢+ 5020, + 501D~ 50,0~ 59:9.D,,

1., 1.
-5D3-5D,D2.

5D5-5D, (A11)

1 .
+ Zngé_ Zgg
The first, second,. .., ninth terms of the right-hand side
come from Figs. 1@&-1), ., 13a-7, 13@-2), and
13(a-3), respectively.

The diagrams which contribute tw; are shown in Figs.
13(b-1)-13(b-5). We subtract contribution of Figs. (t81')
and 13b-4'), which are fictitiously counted in Figs. (t81)
and 13b-4), respectively. Thus we obtain

~5 ~o~
—2D;—-D’D;. (A12)
The first, second,. . ., seventh terms of the right-hand side
come from Figs. 1®-1), ., 13b-5), 13b-1'), and

13(b-4'), respectively. Expression27)—(31) and(32)—(37)
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FIG. 13. Vertex correction diagrams which contribute@pw,
and(b) w,

APPENDIX B: DERIVATION OF RG EQUATIONS
FOR INTERCHAIN PROCESSES

Now, it is straightforward to extend the RG formulation in
the single-chain problem to the case of the coupled chain
problem. Integration over the modes in the high-energy shell
gives, instead of EqAL)

H D ex;{}j‘, [ Stat qrES‘,t ld%m’ :

Clal @

(B1)

where

1
dsgqrst W«[Sl |+d|]p[sn I+d|]q[sgl+d|]r

XS e all TSl e (B2

HereS,, Sj., andSg, denote the two-particle interaction,
random forward scattering, and random backward scattering
terms of independeniN, chains, respectively. Then the
renormalized actions for the interchain processes are written
in the forms

> > > > t, (cosky,+ cosk,)

kKaeCl1q —7<kp.kes7 & o

XL (K)LG(K)+ R (K)RG(K)] (B3)

complete the two-loop RG equations for the single-chain

problem.

and
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””FE[J W) S Q- Sihar(— Q)

B TUE K
N % [Kq, +wg dI]

X[S% qi(2Kg+ 04,0, i)

S a1(2ke—da,

corresponding t&{", andS5[", , respectively. The first and
second terms of the expressi@B4) correspond to Figs.
(149 and(14b), respectively.

Next,
K=(e%%, k, ,eie), with =(kp,k) and Q
—(ed'qa,qL ,ed'lw), and perform the field renormalization

—-q,,—iw)+c.q, (B4)

N 0—3

In the rescaling proceduré, andq, arenotrescaled, be-

cause in the energy scale considered here the one-particl;, | = —
thermal coherence length across the chains becomes compa-

JUN-ICHIRO KISHINE AND KENJI YONEMITSU

__<__.
we rescale the momenta and frequenmes au,_;

PRB 62

(a-1)
_q__. _<__.
tog

g, ﬂ K el Jan XN

tJ_é SO S o dK 7 ‘\
AJ

FIG. 14. Renormalization of the ICEX processes in the AF
channel for thga) normal and(b) umklapp processes.

TS [3q, + (W), — 260, )dNE(O) - §(-O)
N, o I

rable to the distance between the adjacent chains and, con-

sequently, the scaling procedure is invalid in the direction
perpendicular to the chains. Then the renormalized action for

the interchain processes takes the forms

2> > X 2 (1— 6d1)t, (cosk,+ cosk)

aeC| 71'\kb kc\77 P
XL (K)LY(K) +R2* (K)RY(K)], (B5)

and

UVE K
N E@ [Kq, +(Wg —26Kq )dl]

X[S(2ke+04,q, i)

—q,,—iw)+c.d, (B6)

.1, respectively. Thus we have

-§*(2ke—Qa,

corresponding t&{7" andSs

reached the RG equat|ons for the interchain processes, EQs.

(48)—(50).
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