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Conformational transitions of a semiflexible polymer in nematic solvents
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Conformations of a single semiflexible polymer chain dissolved in a low-molecular-weight liquid crystalline
solvent~nematogen! are examined by using a mean field theory. We take into account a stiffness and partial
orientational ordering of the polymer. As a result of an anisotropic coupling between the polymer and nem-
atogen, we predict a discontinuous~or continuous! phase transition from a condensed-rodlike conformation to
a swollen one of the polymer chain, depending on the stiffness of the polymer. We also discuss the effects of
the nematic interaction between polymer segments.

DOI: 10.1103/PhysRevE.67.042701 PACS number~s!: 61.30.2v, 61.25.Hq, 64.70.Md

Mesomorphic mixtures consisting of polymers and low-
molecular-weight liquid crystals~nematogens! are of current
interest for fundamental scientific reasons and for many tech-
nological applications in electro-optical devices and high
modulus fibers. The performances of these systems are re-
lated to a conformation of a polymer in a liquid crystal
phase. One of the fundamental problems is how the polymer
in a nematic phase interacts with a nematic field surrounding
the polymer. Polymer chains have the variety of their stiff-
ness and so when the polymer is mixed with the nematogens
we can expect various conformations.

Mixtures of a flexible polymer and a nematogen show a
macroscopic phase separation between an isotropic and a
nematic phase below the nematic-isotopic transition~NIT!
temperature of the pure nematogen@1–5#. Flexible polymers
present a weak anisotropy in a nematic phase@6#. In contrast,
liquid crystalline polymers, or stiffer polymers, have good
miscibility with nematogens@7# due to the strong anisotropic
coupling between the polymer and the nematogen. Anisot-
ropy of the conformation for liquid crystalline polymers has
been experimentally@8–11# and theoretically@12–20# stud-
ied in melt and in dilute nematic solutions. It is now impor-
tant to consider the conformation of a polymer chain with
various degrees of stiffness dissolved in nematogens. Re-
cently, we presented a mean field theory to describe partial
orientational ordering~induced rigidity! of semiflexible poly-
mers dissolved in nematogens and showed various phase dia-
grams for the mixtures@20#.

In this paper, we theoretically study the conformation of a
semiflexible polymer dissolved in nematic solvents by com-
bining the previous model@20# with an elastic free energy of
the chain @21#. We show a discontinuous~or continuous!
conformational transition between two different nematic
states, depending on the stiffness of the polymer.

Consider a single linear polymer chain dissolved in nem-
atogens. In order to take into account the stiffness of the
polymer, we here assume that two neighboring bonds on the
polymer chain have either bent~gauche state! or straightened
~trans state! conformations@20,22#. Hereafter, we refer the
segments in straightened bonds as ‘‘rigid’’ segments.

Let V5R3 be the volume of the region occupied by a
polymer,n be the number of segments on the polymer chain,
andnl be the axial ratio of the nematogen. The volume frac-
tion of the polymer in the volumeV is given by f
5a3n/V, where a3 is the volume of a unit segment. To
derive an equilibrium conformation of the polymer, we con-
sider thermodynamics of our systems. The free energy den-
sity of our system can be given by

f 5 f el1 f bent1 f mix1 f nem. ~1!

The first term shows the elastic free energy due to the defor-
mation of the polymer chain. LetRz be the length of the
polymer along the directionz of the nematic director andRx
be the length along the perpendicular direction (R3

5Rx
2Rz). Combining the classical elastic free energy ob-

tained by Flory@23# with the freely jointed rod model@21#,
the elastic free energy is given as a function off and an
orientational order parameterSr of the rigid segments@21#:

b f el5
3

2n F S f

nAD 1/3

1
f
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ln A2fS 12
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lnAnf D G , ~2!

whereA[(112Sr)(12Sr)
2 andb[kBT, T is the absolute

temperature,kB is the Boltzmann constant.
The second term shows the free energy change needed to

straighten bent bonds on the polymer and is given by@20,22#

b f bent5nr~b f 0!2Scomb/kB , ~3!

wheref 0 is the local free energy difference between the bent
and straightened conformations, andnr shows the number of
the rigid segments on the polymer. The second term in Eq.
~3! is the combinatorial entropy related to the number of
ways to selectnr rigid segments out of then segments on the
polymer and is given byScomb/kB5 ln$n!/@nr!(n2nr)!#%
52n@xlnx1(12x)ln(12x)#, where we used the Stirling’s ap-
proximation andx([nr /n) shows the fraction of the rigid
segments on the polymer. The volume fractionf r of the
rigid segments on the polymer chain is given byf r5xf.
The third term in Eq.~1! is the free energy of the isotropic
mixing for the polymer and nematogens. According to the
Flory theory@23#, the free energy is given by*Electronic address: matuyama@chem.mie-u.ac.jp
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b f mix5
12f

nl
ln~12f!1xf~12f!, ~4!

where x ([U0 /kBT) is the Flory-Huggins interaction pa-
rameter related to the isotropic dispersion interactions be-
tween unlike molecular species.

The last term in Eq.~1! shows the free energy for the
nematic ordering. On the basis of the Maier-Saupe model
@24,25# for orientational dependent-attractive interactions,
the free energy of the nematic ordering is given by

b f nem5
12f

nl
E f l~u!ln4p f l~u!dV

1
f r

nr
E f r~u!ln4p f r~u!dV2

1

2
n l l Sl

2~12f!2

2n lr SlSr~12f!f r2
1

2
n rr Sr

2f r
2 , ~5!

wheredV[2psinudu, u is the angle between the nemato-
gen and the director of the orienting field. Then l l shows the
orientational dependent~Maier-Saupe! interactions between
the nematogens,n lr is that between the nematogen and the
rigid segment on the polymer, andn rr is that between rigid
segments. Thef l(u) and f r(u) show the orientational distri-
bution functions of the nematogens and that of the rigid seg-
ments on the polymer, respectively. The orientational order
parameterSl of the nematogens and thatSr of the rigid seg-
ments is given by

Si5E P2~cosu! f i~u!dV, ~6!

i 5 l ,r , whereP2(cosu)[3(cos2u21/3)/2.
The orientational distribution functionsf l(u) and f r(u)

are determined by the free energy~1! with respect to these
functions:„] f /] f i(u)…x, f j

50, under the normalization condi-

tions* f i(u)dV51. We then obtain the distribution function

f i~u!5
1

Zi
exp@h i P2~cosu!#, ~7!

h l[nl@n l l Sl~12f!1n lr Srxf#, ~8!

h r[n@xn lr Sl~12f!1x2n rr Srf2E~f,Sr !#, ~9!

where

E[
3Sr

nf~112Sr !~12Sr !
F S f

nAD 1/3

2fG . ~10!

The constantsZi ( i 5 l ,r ) are determined by the normaliza-
tion condition asZi52pI 0@h i #, where the functionI 0@h i # is
defined as

I q@h i #[E
0

1

@P2~cosu!#qexp@h i P2~cosu!#d~cosu!,

~11!

q50,1,2, . . . . Substituting Eq.~7! into Eq. ~6!, we obtain
two self-consistency equations for the two order parameters
Sl andSr :

Si5I 1@h i #/I 0@h i #. ~12!

The orientational order parameter of the polymer chain is
given bySp5xSr .

The fractionx of the rigid segments on the polymer is
determined by minimizing the free energy~1! with respect to
x: (] f /]x)Sl ,Sr

50. This yields

n rr fSr
2x1n lr SrSl~12f!2 ln

x

~12x!K
50, ~13!

whereK[exp(2bf0). By solving the coupled equations~12!
and ~13!, we can obtain the values of the two order param-
etersSl , Sr , and the fractionx of the rigid segments as a
function of temperature and concentration.

The chemical potentialm l(f) of the nematogen inside the
volume V occupied by the polymer can be calculated by
m l /nl5 f 2f(d f / f f) @21#:

bm l~f!/nl5
1
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and the chemical potentialm l
o(Sb) of the nematogen outside

the polymer is given by substitutingf50 into m l(f50).
The orientational order parameterSb of the bulk nematogens
outside the polymer is determined by the self-consistency
equationSb5I 1@hb#/I 0@hb#, wherehb[nln l l Sb . The equi-
librium concentrationf of the polymer can be determined
from the balance among the nematogens existing outside and
inside the polymer:m l(f)5m l

o(Sb)
In our numerical calculations, we further split the local

free energy differencef 0 in Eq. ~3! into two parts:f 05e0
2Ts0, wheres0(5kBlnv) is the local entropy loss ande0
(,0) is the energy change needed to straighten a bent bond.
We then obtainK5vexp(2be0). The anisotropic interaction
parametern l l is given to be inversely proportional to tem-
perature:@25# n l l 5Ua /kBT. We define the dimensionless
nematic interaction parametera[n l l /x and the stiffness pa-
rametere[2be0 /n l l of a polymer. The larger values ofe
correspond to the stiffer chains. The most flexible polymer
chain is realized whene50. We also putb5n lr /n l l and c
5n rr /n l l , where b and c are constants. In the following
calculations we usea55, nl52, n5100, v50.025, and
b51 for a typical example. Whena55, or for the larger
values ofn l l /x, the nematogen behaves as a good solvent
for the polymer because the value of the interaction param-
eter (x) between the polymer and the solvent molecule is
small @20#. However, the anisotropic interaction between the
polymer and the nematogen exists.
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Figures 1–3 show the results calculated forc50.1 with a
weak nematic interactionn rr . Figure 1 shows the orienta-
tional order parameters and the fractionx of the rigid seg-
ments on the polymer plotted against the reduced tempera-
ture T/TNI , whereTNI is the NIT temperature of the pure
nematogen outside the polymer. The value of stiffness pa-
rametere of the polymer is changed from~a! to ~d!. The
solid curve refers to the order parameterSb of the nematogen

outside the polymer and the dash-dotted line shows the order
parameterSp of the polymer. The short-dashed line shows
the order parameterSl of the nematogen inside the polymer
and the dotted line corresponds to the fractionx of the rigid
segments. Fore50.5, or a flexible polymer, the polymer is
in an isotropic state for all temperatures and there is no an-
isotropic coupling between the polymer and nematogen.
Whene51.0, we find two phase transition temperatures: one
is the temperatureTNI

p at high temperatures where the NIT of
the polymer takes place and the other is theTNN at low
temperatures where the first-order phase transition between
two different nematic states takes place. At the nematic state
of the high temperature side (TNN,T,TNI

p ), the fractionx
of rigid segments is small. The polymer and the nematogen
inside the polymer are slightly ordered~weakly ordered nem-
atic phase!. In another nematic phase atT,TNN , the value
of the fractionx is large and the polymer and the nematogen
are strongly ordered~strongly ordered nematic phase!. With
increasing stiffness,TNI

p and TNN move to higher tempera-
tures and a critical point~closed circle! for TNN appears at
e51.16.

Figure 2 shows the equilibrium volume fractionf ~swell-
ing curve! of the polymer plotted against the reduced tem-
perature for various values ofe. Whene50.5, with decreas-
ing temperature, the polymer is continuously condensed~or
the volume fraction of the polymer is increased!. The swell-
ing curve has as kink atTNI . For stiffer polymers, we find
the first-order phase transition between a condensed confor-
mation and a swollen one atTNN . As shown in Fig. 3, the
polymer is elongated along the nematic field and has a rod-
like conformation. We then find two different types in the
rodlike conformation of the polymer chain: one is the
swollen-rodlike conformation atT,TNN and the other is the
condensed-rodlike conformation atTNN,T,TNI

p . Above
the critical stiffness, the polymer is continuously swollen
with decreasing temperature.

Figure 3 shows the anisotropyRz /Rx of the polymer
chain plotted against the reduced temperature for various

FIG. 1. Orientational order parameters and the fractionx of the
rigid segments on the polymer chain plotted against the reduced
temperatureT/TNI , whereTNI is the NIT temperature of the pure
nematogen outside the polymer. The value of stiffness parametere
of the polymer is changed from~a! to ~d!.

FIG. 2. Equilibrium volume fractionf ~swelling curve! of the
polymer plotted against the reduced temperature forc50.1. The
stiffness (e) of the polymer is changed.

FIG. 3. AnisotropyRz /Rx plotted against the temperature for
c50.1, whereRz (Rx) is the projection of the radius of gyration
parallel ~perpendicular! to the nematic director.
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values ofe. The lengthsRz andRx are given as a function of
Sr @21#. Whene50.5, we haveRz5Rx and the polymer has
a spherical~coil! conformation. Fore51.0, with decreasing
temperature, the polymer is changed from a coil to a rodlike
conformation atTNI

p . The concentrationf of the polymer
segments is continuously changed atTNI

p ~see Fig. 2!. This
spontaneous change in the polymer conformation at the tran-
sition TNI

p has been reported@8,12,13#. Further decreasing
temperatures, we find the phase transition between the two

different rodlike conformations atTNN . Above the critical
stiffness, the polymer continuously changed from the
condensed-rodlike conformation to the swollen one with de-
creasing temperature.

When the anisotropic~attractive! interactionn rr between
the polymer segments is strong, the swollen-rodlike confor-
mation at lower temperatures disappears. Figure 4 shows the
swelling curve of a polymer withc51.0. With decreasing
temperature, the polymer is condensed with a rodlike confor-
mation. Whene51.5 and 2.0, we have a small jump in the
swelling curve atTNN @26#. The anisotropic interaction be-
comes an important factor on the conformation of a semi-
flexible polymer.

In conclusion, we have predicted two different rodlike
conformations of a polymer chain in a nematic solvent. The
phase transition from a condensed-rodlike conformation to a
swollen one is strongly affected by the stiffness of a polymer
and the anisotropic interaction between polymer segments.
The concept of the two different rodlike conformations is
important to the modification of the mechanical and vis-
coelastic properties of liquid crystals by the dissolved poly-
mers. The results will also be important to the conformation
of DNA chains@17# and the volume phase transition of nem-
atic gels@27# in nematic solvents.

This work was supported by a Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science and Technol-
ogy, Japan.
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FIG. 4. Swelling curve of the polymer forc51.0. The stiffness
(e) of the polymer is changed.
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