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Phase transitions of a polymer threading a membrane coupled
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~Received 23 February 2004; accepted 13 April 2004!

We theoretically study phase transitions of a polymer threading through a pore imbedded in a
membrane. We focus on the coupling between a partition of the polymer segments through the
membrane and a coil-globule transition of the single polymer chain. Based on the Flory model for
collapse transitions of a polymer chain, we calculate the fraction of polymer segments and the
expansion factor of a polymer coil on each side of the membrane. We predict a first-order phase
transition of a polymer threading a membrane; polymer segments in one side are discontinuously
translocated into the other side, depending on solvent conditions and molecular weight of the
polymer. We also discuss the equilibrium conformation of the polymer chain on each side of the
membrane. ©2004 American Institute of Physics.@DOI: 10.1063/1.1758939#

I. INTRODUCTION

Translocation processes of polymer molecules@deoxyri-
bose nucleic acid~DNA!, ribonucleic acid~RNA!, proteins,
and biopolymers# threading through a pore imbedded in a
membrane play an important role for many biological
processes1 and for biological applications. Examples include
the translocation of RNA through nuclear pores2 and the in-
corporation of proteins into membranes in nearly all cells.3

In vitro experiments show that single-strand DNA polymers
can be driven through a singlea-hemolysin pore~inside di-
ameter;2 nm) by an external field.4,5

The problems of a polymer threading a membrane have
both kinetics and equilibrium aspects. Recent theoretical
studies6–13 have described the polymer translocations as a
diffusion processes through a pore imbedded in a flat mem-
brane. DiMarzioet al.14,15 have considered the equilibrium
properties of a polymer molecule whose two ends reside on
opposite sides of a membrane or partition separating two
solutions in the limit of no self-excluded volume. They have
pointed out that the polymer threading a membrane transition
is coupled to the other phase transitions of a single polymer
chain, such as a helix-random coil transition, collapse tran-
sitions, and adsorption onto a surface, and showed many
possible translocation pair couplings.14

The insertion of a single polymer chain into a pore oc-
curs in most biological cells which can transport polymers
across membrane to function. The number of conformations
of a polymer can produce an entropy force tending to pull the
chain out of the pore. It is well known that, in polymer
physics, the conformation of a polymer chain depends on
solvent conditions, temperature, and ionic strength.16–19 In a
good solvent condition, a polymer is in a coiled state, while
in a poor solvent region a polymer has a globular conforma-
tion. The change in temperature and solvent conditions can
undergo a coil-globule transition of a single polymer chain in

a solution.16,17 Then it is important to study the coupling
between a polymer threading a membrane and a coil-globule
transition.

In this paper we study the equilibrium properties of a
polymer threading a membrane, taking into account interac-
tions between polymer and solvent molecules, based on the
Flory model for coil-globule transitions of a single polymer
chain.18,19 The polymer segments on one side~region 1! of
the membrane can translocate to the other side~region 2! by
going through a pore in the flat membrane, depending on the
interaction between polymer and solvent molecules. The in-
teraction between polymer and solvent molecules in region 1
~2! can be described in terms of the Flory–Huggins interac-
tion parameterx1 (x2). In a thermal equilibrium state, the
polymer segments are partitioned into the two regions, where
the conformation of the polymer are determined by the bal-
ance between the elastic free energy and the interaction en-
ergy. We calculate the fraction of polymer segments and the
expansion factors of a polymer coil on each side of the mem-
brane and predict a first-order phase transition of a polymer
threading a membrane, depending on the solvent conditions
and the molecular weight of the polymer.

II. FREE ENERGY OF A POLYMER THREADING
A MEMBRANE

Consider a polymer threading through a pore imbedded
in a membrane. The segments of the polymer on one side
~side 1! of the membrane can translocate to the other side
~side 2! only by going through this pore whose diameter is
comparable to the size of the chemical repeat units on the
polymer. In a thermal equilibrium state, the monomer seg-
ments are divided among side 1 and side 2 as shown in Fig.
1. To derive the equilibrium conformation of the polymer
and the fraction of polymer segments on each side of the
membrane, we consider the thermodynamics of the system
based on the Flory–Huggins theory for polymer solutions.19a!Electronic mail: matuyama@bio.kyutech.ac.jp
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Let n be the number of segments~each of sizea) on a
polymer andn1 andn2 are the numbers of segments on sides
1 and 2, respectively. The polymer chain can translocate
through a membrane with finite thickness corresponding to
an0 . Then we haven5n01n11n2 . The free energy of the
polymer chain is given by

F5F11F21F0 , ~1!

whereF1 (F2) shows the free energy of the polymer on side
1 ~side 2! and F0 is the free energy of the segments in the
pore.

Let R1 (R2) be the mean radius of the occupied region
of the monomer segments on side 1~2!. Then the volume
fraction of the segments in the sphereRi is given by

f i5
4
3 pa3ni /~ 4

3 pRi
3!5a3ni /Ri

3 , ~2!

where (4/3)pa3 corresponds to the volume of an unit seg-
ment on the polymer. Hereafter the suffixi shows side 1 or 2
( i 51,2). We here define the expansion factora i of the poly-
mer chain in regioni as

a i5Ri /R0,i , ~3!

whereR0,i5aAni is the radius of gyration of the ideal chain
with ni segments. The volume fraction, Eq.~2!, of the mono-
mer segments in the spherei is then given by

f i5
1

a i
3Ani

. ~4!

The presence of the surface~membrane! may change the
polymer conformation. The chain is stretched by a factor&
in the perpendicular direction.20 In our model, we neglect the
stretching of the chain near the wall.

The free energyFi on sidei (51,2) is given by

Fi5Fi ,el1Fi ,mix , ~5!

whereFi ,el shows the elastic free energy due to the deforma-
tion of the segment distribution from the ideal state. This free
energy is given by Flory19

bFi ,el53@ 1
2 ~a i

221!2 ln a i #, ~6!

whereb[1/kBT, T is the absolute temperature, andkB is the
Boltzmann constant. The second term in Eq.~5! shows the
free energy for a mixing of a polymer chain with solvent
molecules on side i and is given by the Flory–Huggins
theory19

bFi ,mix5
Ri

3

a3 @~12f i !ln~12f i !1x if i~12f i !#, ~7!

wherex i shows the Flory–Huggins interaction parameter be-
tween a polymer segment and a solvent molecule on side (i ).
The translational entropy term (f i /n)ln fi of the polymer
chain can be neglected since the center of gravity of the
polymer chain is fixed near a membrane in a thermal equi-
librium state. The prefactorRi

3/a3 is the total number of unit
cells in the sphere of the radiusRi .

The free energyF0 of the segments in the pore is simply
given by

bF05be0n0 , ~8!

wheree0 is the interaction energy between a polymer seg-
ment and a pore. We assume here that the diameter of the
pore is of the order of the segment on the polymer. Then we
can choose the value ofn0 as one numerical parameter char-
acterizing the thickness of the membrane. In this assumption,
the free energy Eq.~8! becomes a constant, but it is an im-
portant factor for the dynamics.12

When the interaction energy between a polymer segment
and a pore is weak, the polymer can escape completely from
the vicinity of the membrane~or either side! because of the
conformational entropy of the chain. In our model, however,
the chain is tethered to the membrane. This would occur for
a polymer chain which has a large end group on the both
ends.

In a thermal equilibrium state, the expansion factorsa i

of the polymer in sidei (51,2) are determined by minimiz-
ing the free energy~1! with respect toa i :

~]F/]a1!a2 ,n1
50, ~9!

~]F/]a2!a1 ,n1
50. ~10!

These lead to

a1
2211n1F 1

f1
ln~12f1!111x1f1G50, ~11!

a2
2211n2F 1

f2
ln~12f2!111x2f2G50. ~12!

The numbern1 of the segments in side 1 is determined
by

~]F/]n1!a21,a2 ,50, ~13!

FIG. 1. A polymer molecule consisting ofn monomers is threaded through
a pore in a flat membrane. The hole is sufficiently small that double thread-
ing does not occur.
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where we have usedn25n2n02n1 before the differentia-
tion. We then obtain

a1
3An1@~ 3

2 2f1!ln~12f1!1 1
2 f11x1f1~12 1

2 f1!#

5a2
3An2@~ 3

2 2f2!ln~12f2!1 1
2 f21x2f2~12 1

2 f2!#,

~14!

where the volume fractions are given by

f15
1

a1
3An1

, ~15!

f25
1

a2
3An2n02n1

. ~16!

The equilibrium values ofa1 , a2 , and n1 are deter-
mined from the three coupled Eqs.~11!, ~12!, and~13!.

III. RESULTS AND DISCUSSION

In this section we show some results of our theory. Here
we putn051 and assume that the value of the parameterx2

in region 2 remains a constant when the parameterx1 in
region 1 is changed. The Flory–Huggins parameterx can be
changed bypH, ionic strength, solvent conditions, and
temperature.19

Figure 2 shows the fraction of polymer segments on
each side of the membrane plotted against the Flory–
Huggins parameterx1 with x250.1, which means the solu-
tion of region 2 corresponds to a good solvent condition for
the polymer. The total numbern of polymer segments is
varied. The solid curve shows the fractionn1 /n and the dot-
ted curve corresponds ton2 /n. The dash-dotted line shows
the unstable region forn510. Whenx1,x2 , most polymer
segments is in region 1. Atx15x2 we find that the polymer
segments in region 1 can be translocated into region 2 by
changing the solvent conditionx1 in region 1. A first-order
phase transition of the polymer threading a membrane occurs

at x15x2 . On increasing the molecular weight of the poly-
mer, the width of the jump becomes larger. Figure 3 shows
the expansion factor of the polymer chain on each side of the
membrane plotted againstx1 with x250.1 for various values
of n. The solid curve shows the expansion factora1 and the
dotted curve corresponds toa2 . Whenx150, the value of
the expansion factora1 in region 1 is large and the polymer
is in a coiled state. On increasingx1 , the value of the ex-
pansion factora1 is decreased and jumps atx15x250.1.
For x1.x250.1, the polymer in region 2 is in a coiled state
with a expanded conformation becausex250.1.

Figure 4~a! shows the fraction of polymer segments on
each side of the membrane plotted againstx1 with x2

50.5. The numbern of the segments on the polymer is
changed. The solid curve shows the fractionn1 /n and the
dotted curve corresponds ton2 /n. For n510, the fraction of
polymer segments in region 1 is continuously decreased with
increasingx1 and the polymer segments in region 1 are
translocated into region 2 through a hole in the membrane.
For larger values ofn, we find the first-order phase transition
of the polymer threading a membrane. When the solvent con-
dition becomes poorer, the polymer segments of a short poly-
mer chain are continuously translocated into region 2. Figure
4~b! shows the expansion factors of the polymer chain on
each side of the membrane plotted againstx1 with x250.5
for n510,100. The solid curve shows the expansion factor
a1 and the dotted curve corresponds toa2 . On increasing
x1 , the value of the expansion factora1 is decreased and
slightly jumps atx15x250.5. As shown in Fig. 4~a!, the
value of the fractionn1 is almost constant whenx1,0.5 and
drastically changed nearx15x250.5. The polymer chain in
region 1 is condensed with increasingx1 and most polymer
segments remain in region 1 forx1,x2 . At x15x250.5,
the polymer segments in region 1 are translocated into
region 2.

Figure 5~a! shows the fraction of polymer segments on
each side of the membrane plotted againstx1 with x250.7
for various values ofn. The solid curve show the fraction
n1 /n and the dotted curve corresponds ton2 /n. When n

FIG. 2. Fraction of polymer segments on each side of the membrane plotted
against the Flory–Huggins parameterx1 with x250.1. The numbern of the
segments on the polymer is varied. The solid curve shows the fractionn1 /n
and the dotted curve corresponds ton2 /n.

FIG. 3. Expansion factors plotted againstx1 with x250.1 for various values
of n. The solid curve shows the expansion factora1 and the dotted curve
corresponds toa2 .
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510, the fractionn1 /n of the polymer segments in region 1
is continuously decreased with increasingx1 . For larger val-
ues ofn, we find the first-order phase transition of the poly-
mer threading a membrane atx15x250.7. As increasing the
number of segments on a polymer, the width of the jump
becomes larger. Figure 5~b! shows the corresponding expan-
sion factors plotted againstx1 with x250.7 for 10,100,1000.
For n5100 and 1000, the expansion factora1 is sharply
decreased nearx150.5 and the conformation of a polymer
chain in region 1 is changed from a coiled state to a globular
one. At x15x250.7, the radius of the polymer chain on
each side of the membrane is discontinuously changed.

From Eq. ~3!, the gyration radiusRi of the polymer
chain in regioni (51,2) is given by

Ri /a5a iAni . ~17!

Figure 6 shows the radiusRi plotted againstx1 with n
5100 for x250.1, 0.5, and 0.7. The solid curve shows the
radius R1 /a and the dotted curve corresponds toR2 /a.
Whenx1,x2 , the radius of the polymer coil in region 1 is
larger than that in region 2. Atx15x2 , it is switched the
radius of the polymer coil in region 1 and that in region 2.
The radius of the polymer coil in region 1 becomes smaller

than that in region 2 forx1.x2 . We find that the radius of
the polymer chain on each side of the membrane is discon-
tinuously changed when the first-order phase transition of a
polymer threading a membrane takes place.

FIG. 4. ~a! The solid curve shows the fractionn1 /n and the dotted curve
corresponds ton2 /n plotted againstx1 with x250.5 for various values ofn.
~b! The expansion factor plotted againstx1 with x250.5 for n510, 100.
The solid curve shows the expansion factora1 and the dotted curve corre-
sponds toa2 .

FIG. 5. ~a! The solid curve shows the fractionn1 /n and the dotted curve
corresponds ton2 /n plotted againstx1 with x250.7. The numbern of the
segments on the polymer is varied.~b! The expansion factor plotted against
x1 with x250.7 for various values ofn. The solid curve shows the expan-
sion factora1 and the dotted curve corresponds toa2 .

FIG. 6. RadiusRi plotted againstx1 with n5100 forx250.1, 0.5, and 0.7.
The solid curve shows the radiusR1 /a and the dotted curve corresponds to
R2 /a.
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In Fig. 7, we schematically show the conformation of the
polymer chain (n5100) occupied in regions 1 and 2 in a
thermal equilibrium state. The equilibrium value of the ra-
dius for each sphere is given in Fig. 6. Circles show the
occupied region of polymer segments and the vertical line
shows the flat membrane. Whenx1,x2 , the radius of the
polymer in region 1 is larger than that in region 1. On in-
creasingx1(,x2), the polymer chain is condensed. Note
that most polymer segments remain in region 1 forx1

,x2 . At x15x2 , the conformation of the polymer chain on
each side of the membrane is drastically changed.

IV. CONCLUSION

We have theoretically studied phase transitions of a
polymer threading through a pore imbedded in a membrane.
The theory takes into account the coupling between a parti-
tion of the polymer segments through the membrane and a
coil-globule transition of a single polymer chain. Based on
the Flory model for the collapse transition of a polymer
chain, we have calculated the fraction of polymer segments
and the expansion factor of a polymer chain on each side of
the membrane.

It was found that the change in a solvent condition and
molecular weight of a polymer is an important role for phase
transitions of a polymer threading a membrane. Whenx1

,x2, most polymer segments is in region 1. Atx15x2 we
find that the segments on the polymer in one side can be
translocated into the other side by changing the solvent con-
dition. A first-order phase transition of the polymer threading
a membrane occurs atx15x2 . We also have found that the
radius of the polymer coil on each side of the membrane is
discontinuously changed when the first-order phase transi-
tion of a polymer threading a membrane takes place. When
the solution of region 2 is in a poor solvent condition (x2

.0.5), a continuous phase transition of a polymer threading
a membrane can occur for short polymer chains. In this paper
we have focused on the dependence of the phase transition
on molecular weight and solvent conditions. On increasing
the value ofn0 ~thicker membranes! the first-order phase
transition becomes the continuous one.

Our results may offer insights into a invasion of RNA
viruses into cells, incorporation of membrane proteins into a
lipid bilayer, and drug delivery systems.
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FIG. 7. Schematically shown the conformation of the polymer occupied in
regions 1 and 2 in a thermal equilibrium state. The equilibrium values of the
radius for each sphere are given in Fig. 6. Circles show the occupied region
of polymer segments and the vertical line shows the flat membrane.

608 J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 Akihiko Matsuyama

Downloaded 08 Jan 2008 to 150.69.123.200. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


