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The linear stability of thin vortex rings are studied by short-wavelength stability analysis. The
modified Hill–Schro¨dinger equation for vortex rings, which incorporates curvature effect, is
derived. It is used to evaluate growth rates analytically. The growth rates are also evaluated by
numerical calculation and they agree well with analytical values for smalle which is the ratio of
core radius to ring radius. Two types of vortex rings are considered: Kelvin’s vortex ring and a
Gaussian vortex ring. For Kelvin’s vortex ring the maximum first-order growth rate is found to be
165
256e. For the Gaussian vortex ring the first-order growth rate is large in the skirts of the vortex core.
The first-order instability is significant for both vortex rings. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1606446#

I. INTRODUCTION

The stability of vortex rings is one of the important prob-
lems in hydrodynamic stability. Compared to the parallel
flows, of which stability is studied by a number of authors,
one of the characteristic features of vortex rings is that the
vortex lines are curved along the ring radius. In this sense the
vortex ring is one of the most fundamental objects for study-
ing the curvature effect in hydrodynamic stability, which
would manifest itself also in helical vortices, circular or,
more generally, three-dimensional jets, etc.

Widnall and Tsai1 showed by normal-mode analysis that
Kelvin’s vortex ring, i.e., a thin vortex ring whose vorticity
in the core is proportional to the distance from the axis of
symmetry, is unstable to three-dimensional disturbances~see
also Widnallet al.2!. This Widnall–Tsai instability is caused
by the strain flow produced by the vortex ring itself. Its
mechanism is essentially the same with that of the Rankine
vortex in a two-dimensional strain field,3,4 and it is recog-
nized as the elliptical instability in the short-wave limit.5 It is
a second-order instability in the sense that the strain flow
appears at the second order ine which is defined as the ratio
of the core radius to the ring radius. Recently we found that
there exists a first-order instability for Kelvin’s vortex ring
and its growth rate is fairly large compared to that of the
Widnall–Tsai instability.6 One problem of using Kelvin’s
vortex ring is that its vorticity distribution is ideal and is not
close to that of real vortex rings observed in the experiments.
Unfortunately, however, it is not easy to carry out normal-
mode stability analysis for realistic vortex rings.

In the short-wavelength limit, the stability analysis is
reduced to solving a set of ordinary differential equations.7,8

This local stability analysis is convenient and gives correct
results for various instabilities of vortices.5,9,10 For the cases
of vortex ring with and without swirl, Lifschitz11 showed by
short-wavelength stability analysis that it seems unstable ge-
nerically. He and his co-workers also calculated the growth
rates for Hill’s spherical vortex11 and for a fat vortex ring
with swirl12 ~see also Rozi and Fukumoto13 for Hill’s spheri-
cal vortex!. For thin vortex rings, however, there are no re-
sults to the authors’ knowledge.

In this paper we carry out the short-wavelength stability
analysis of two types of thin vortex ring: Kelvin’s vortex ring
and a Gaussian vortex ring, whose leading-order vorticity is
given by a Gaussian distribution. The basic flow fields of
these vortex rings are given by perturbation expansion up to
the second order. By virtue of perturbation expansion the
first-order and second-order instabilities, which have differ-
ent origins, are found separately. We calculate the corre-
sponding growth rates both analytically and numerically. The
first-order instability is shown to be significant for both vor-
tex rings.

The paper is organized as follows. In Sec. II we derive a
vortex-ring version of the Hill–Schro¨dinger equation which
is used to evaluate the growth rate analytically. In Sec. III we
show the results for Kelvin’s vortex ring. Both the first-order
and second-order growth rates are obtained analytically and
compared to numerical results. In Sec. IV we show the re-
sults for the Gaussian vortex ring. The first-order growth rate
is evaluated analytically for a general distribution of vortic-
ity. Both the first-order and second-order growth rates are
obtained numerically. Finally, we conclude in Sec. V.

II. SHORT-WAVELENGTH STABILITY ANALYSIS

We briefly summarize the method of short-wavelength
stability analysis, or local stability analysis, and derive a
modified Hill–Schro¨dinger equation for vortex rings which
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is used to evaluate the growth rates analytically in Secs. III
and IV. Since the short-wavelength stability analysis is one
of the standard methods, its details are omitted.

In the short-wavelength stability analysis, the distur-
banceu to the basic flowU is assumed to be in the form

u5expS i
C~x,t !

d Da~x,t !, ~1!

at the leading order, whered is a small parameter. Substitut-
ing it to the linearized Euler equation for incompressible
flow yields the following set of ordinary differential equa-
tions

dX

dt
5U~X!, ~2!

dk

dt
52L Tk, ~3!

da

dt
5S 2kkT

uku2
2I DLa, ~4!

where Li j 5]Ui /]xj (X) and the superscriptT stands for
transpose. The incompressibility imposesk"a50. If there ex-
ists a set of initial conditions for whicha is unbounded in
time, the basic flow is linearly unstable.7,8

We assume that the vortex ring is steady and has no swirl
so that its velocity field is parallel to the cross section by a
plane which includes the axis of symmetry. Then the fluid
particle moves along a closed loop periodically inside the
core of the vortex ring. We assume that the wavevector is
periodic; the condition for periodicity is discussed later. Then
the matrix in the amplitude equation~4! is periodic as well.
Therefore the Floquet theory applies to the amplitude; the
solution to Eq.~4! satisfies

a~ t1T!5F~T!a~ t !, ~5!

whereT is a period which depends on the particle path gen-
erally andF(T) is the Floquet matrix. The growth rate of
amplitude is determined by the eigenvaluesm i of F(T) as

s i5
logum i u

T
. ~6!

Thus our task is to solve either analytically or numerically
Eqs. ~2!–~4! and evaluates5maxi si ; the basic flow is ex-
ponentially unstable ifs.0.

The amplitude equation~4! can be reduced to the Hill–
Schrödinger equation as done by Baylyet al. for two-
dimensional incompressible flows14 and Leblanc for a two-
dimensional compressible line vortex.15 Let us take the
toroidal coordinate system (r ,u,s), where s is the length
along the center of the torus, and the local Cartesian coordi-
nate system (x,y,z) centered onr 5s50 for a vortex ring as
shown in Fig. 1. The expressions below are valid both in the
toroidal coordinate system generally and in the Cartesian co-
ordinate system for the sectionz50. The length is non-
dimensionalized by the ring radius and scaled by a small but
finite parametere, which is the ratio of the core radius to the
ring radius. Then the amplitude equation is represented for
the case of vortex rings as

d

dt S p
qD5S d

dt
log

k'

k
1trL'

2rki
2k'Hk'

T

k'
2 k2

2
vs

r
2

d

dt
log

k'

k
2trL'

D S p
qD ,

~7!

where' andi imply the projection toru- or xy-plane ands
or z component, respectively,vs is thes component of vor-
ticity while the r and u components are zero,r511ey is
the distance from the axis of symmetry of the vortex ring,
and

k5uku, k'5uk'u, ki5ukiu,

p5
k

k'

rk'•a' , q5
k

k'

~k'3a'!•ei ,

H5L'S 0 1

21 0D ,

ei5unit vector in s- or z-direction.

Equation~7! is a vortex-ring version of Eq.~2.12! of Bayly
et al.14 Eliminating p from it, we obtain

d2q

dt2 1V~ t !q50, ~8!

where

V~ t !5
2vski

2k'
THk'

k'
2 k2 1F d2

dt2 S log
k'

k D1
d

dt
~ trL'!G

2F d

dt S log
k'

k D1trL'G2

. ~9!

This is the Hill–Schro¨dinger equation for thin vortex rings.
Note that there are additional terms trL' and its derivative in
Eq. ~9!; this is due to the curvature of the vortex ring.

Before going to particular cases, we remark on the peri-
odicity of the wavevector. In the derivation above, we have
assumed that the wavevector is periodic. For a general steady
basic flow, there are two types of wavevector solution: one is
periodic and the other grows algebraically. The latter is often
discarded since it does not give rise to exponential instability.
The periodicity is rigorously satisfied when the initial
wavevector satisfies

U~X~0!!•k~0!50. ~10!

FIG. 1. Coordinate systems.
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For a Gaussian vortex ring, we impose Eq.~10!. For Kelvin’s
ring, however, the wavevector is periodic up toO(e) for any
initial condition. Thus we consider both the case with Eq.
~10! and the case without Eq.~10!.

III. STABILITY OF KELVIN’S VORTEX RING

A. Analytical results for growth rates

Here we calculate the growth rate for Kelvin’s vortex
ring. We use the Cartesian coordinate system here. Of
course, the following calculation can be made in the coordi-
nate system (r ,u,s), but there arises a singularity when we
evaluate the second-order growth rate; in fact this singularity
can be removed by choosing the stagnation point, relative to
the comoving frame, as the origin, but we prefer to use the
expression of the basic flow by Widnall and Tsai.1 The ve-
locity field and the vorticity of Kelvin’s vortex ring is repre-
sented as

U5S 2y
x
0
D 1eS 5

8 2 5
8 x22 7

8 y22 1
2 z2

1
4 xy

xz
D

1e2S Ay1 3
16 x2y1 1

16 y32 3
8 yz2

Ax1 1
16 x31 3

16 xy22 3
8 xz2

2 3
4 xyz

D , ~11!

vs52r52~11ey!, ~12!

up to the second order ine, where A5(15/16)
2(3/4)log 8/e ~see Appendix A!. Equations~2! and~3! with
the basic flow above are solved up toO(e2); see Appendix A
for the details.

First, let us consider the first-order growth rate. We do
not impose Eq.~10! since the wavevector is periodic up to
the first order for generalf, which is the angle between an
initial wavevector and the outward normal vector to a
streamline. By substituting the solutionsX(t) andk(t) to Eq.
~9!, the potentialV(t) of the Hill–Schrödinger equation~8!
becomes

V~ t !54~12sin2 x!

1er 0F S 15

2
2

37

2
sin2 x112 sin4 x D sint

1S 2
15

4
2

9

4
sin2 x16 sin4 x D sin~ t12f!G

1O~e2!, ~13!

wherex is the angle between the vortex core axis andk(0)
and r 0 is the ‘‘O(1)-radius’’ of the orbit. According to the
Floquet theory, the resonance occurs if@4(12sin2 x)#1/2

5n/2; the most important resonance occurs at cosx(1)

561/4. We restrict our attention to 0<x<p/2 since the case
of p/2<x<p exhibits the identical behavior. By using
Mathieu’s method for the Hill–Schro¨dinger equation,16 the
corresponding growth rate is found to be

s (1)5
15er 0

256
A61260 cos 2f1O~e3! ~14!

~see Appendix B for the details!. Thus we have

smax
(1) 5

165

256
er 01O~e3!, ~15!

at f5p/2. TheO(e) growth rates (1) is maximal atr 051.
Next we consider the second-order growth rate. We set

f50 or p/2 so that the wavevector is periodic up to this
order. Forf50, the potentialV(t) turns out to be

V~ t !54~12sin2 x!1eS 15

4
2

83

4
sin2 x118 sin4 x D r 0 sint

1e2F ~12sin2 x!H 51S 2
15

8
14AD sin2 xJ

2S 189

32
1

301

16
sin2 x2

2071

32
sin4 x1

81

2
sin6 x D r 0

2

1~12sin2 x!H 2A~614 sin2 x!1
45

16
1

15

8
sin2 x

1S 2
189

32
1

645

32
sin2 x2

81

2
sin4 x D r 0

2J cos 2t G
1O~e3! ~16!

~see Appendix A!. Thus the resonance by theO(e2) term
occurs around cosx(2)51

2. The corresponding growth rate is
found to be

s (2)5e2S 27

64
log

8

e
2

135

512
2

63

128
r 0

2D1O~e3! ~17!

~see Appendix B for the details!. Since theO(e2) perturba-
tion to the basic flow is essentially a strain field, the corre-
sponding growth rates (2) is related to the growth rate of the
elliptical instability5 as

s (2)ur 0505
9

16UA2
15

32Ue2. ~18!

Note thatuA2(15/32)ue2 is the strain rate ofO(e2) pertur-

bation at the stagnation point (x,y)5(0,5
8e1O(e2)).

A similar analysis gives the following growth rate for
f5p/2:

s (2)5e2F S 27

64
log

8

e
2

135

512
2

5

8
r 0

2D 2

1S 15

64
r 0

2D 2G1/2

1O~e3!, ~19!

which takes the same maximum~18! with f50 atr 050. It is
worth noting that the maximum of the first-order growth rate
for fixed f varies from ~15/256!e for f50 to ~165/256!e
for f5p/2, while that of the second-order growth rate is the
same forf50 and p/2. In fact, in the case of plane pure
shear, the growth rate does not depend onf as the potential
turns out to be
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V~ t !54~12sin2 x!1«~12sin2 x!~614 sin2 x!

3cos~2t1f!1O~«2!,

where« is the rate of strain. Thus the strong dependence of
the first-order growth rate onf seems to be a curvature ef-
fect.

We should be careful about the effectiveness of the re-
sults on the first-order instability. WhenfÞ0 the wavevector
is not periodic if we include the higher-order terms; to
O(e2), the magnitude of the wavevectork is

k2511e~periodic!1e2F2
21

16
sin2 x sin~2f!t1~periodic!G .

~20!

Thus k evolves algebraically whileki is still periodic for
fÞ0,p/2. Since the resonance occurs in a region ofx around
x (1) of which the width is proportional toer 0 , the wavevec-
tor fails to satisfy the resonance condition whenk becomes
smaller than the initial value byO(er 0). Therefore the ex-
ponential instability saturates aroundt5t f5O(e21), which
leads to

log
ua~ t f !u
ua~0!u

;s (1)t f5O~1!.

In this case the first-order instability would not be important.
For f5p/2, however,k is periodic up toO(e2). In fact,
there isO(e2) difference between the period of the particle
motion and that of the wavevector~Appendix B!. This im-
plies f may differ fromp/2 by O(1) aroundt5O(e22). In
other words, the exponential instability saturates aroundt
5O(e22), which is much larger thant f for fÞ0,p/2. Thus
the corresponding first-order instability, which has the
growth rate~15!, would be important since the disturbance
grows exponentially for a much longer time.

B. Energy argument

The first-order growth rate can also be obtained by an
energy argument as in Waleffe.5 The inertial wave solution in
an unbounded uniformly rotating fluid is known.17 For the
first-order resonance the angular frequency is given by
2 cosx51/2 at the leading order. Then the disturbance or
inertial wave fore50 is given by

uR5cos~k"r!S k̂3v cos
t

2
1v sin

t

2D ,

k̂5
k

k
5S A15

4
cosf

A15

4
sinf

1

4

D ,

v5S 2sinf cosb2
1

4
cosf sinb

cosf cosb2
1

4
sinf sinb

A15

4
sinb

D , 0<b,p,

in a rotating frame.17 In the inertial frame it becomes

u5cos~k~ t !•x!

3S 3

8
cosS 3

2
t1f2b D2

5

8
cosS 1

2
t1f1b D

3

8
sinS 3

2
t1f2b D2

5

8
sinS 1

2
t1f1b D

A15

4
cosS 1

2
t2b D D ,

with k(t) given by O(1) term of ~A4!. The equation for
disturbance energy is

d

dt S u2

2 D52u•@~u"“ !U#2u"“p.

The average of right-hand-side is

2u•@~u"“ !U#

5er 0

15

256
@5 cos~2f12b!26 cos 2b#1O~e2!

'er 0

15

256
A61260 cos 2f cos~2b1Db!,

where Db52tan21@5 sin 2f/(625 cos 2f)#. The maximum
growth rate for fixedf is then evaluated as

s5
1

2

2u•@~u"“ !U#

u2

2

'er 0

15

256
A61260 cos 2f,

which coincides with Eq.~14!.

C. Numerical results

Equations~2!–~4! are also solved numerically to evalu-
ate the growth rates. We consider the casesf50 andf5p/2
since for these values off the wavevector is periodic up to
O(e2) so that the growth rates can be obtained with suffi-
cient accuracy. Numerical and analytical results are shown in
Figs. 2–4. Figure 2 shows the growth rate obtained numeri-
cally by contour lines. Unstable regions are observed around
x (1)'0.42p and x (2)5p/3. Another unstable region with
small growth rates is observed aroundx50.23p. This is due
to the third resonance by theO(e) term.

Figure 3 compares the numerical and analytical values of
the growth rates as functions ofr 0 . The numerical value is
the extremal growth rate for fixedr 0 in Fig. 2. The extrema
aroundx5x (1) and x (2) are identified as first and second
orders, respectively. They are in good agreement fore50.02.
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For e50.1 the difference between numerical and analytical
values is visible for larger 0 . This is probably due to a
higher-order effect.

Figure 4 compares the maxima ofs (1) and s (2) in the
core of vortex ring as functions ofe. The second-order
growth rate forf5p/2 is omitted since it is almost identical
with that for f50. The numerical and analytical values are
in good agreement except that the numerical value ofs (1)

for f50 is much larger than the corresponding analytical
value for largee as seen in Fig. 3. According to the analytical
results, the first-order instability is stronger than the second-
order instability for 0,e,1; this range would entirely in-
clude the values ofe for which the base flow given by the
asymptotic expansions are convergent. Moreover even for
moderate values ofe, the approximation is better than ex-
pected within a region ofr;O(e0) since the coefficients of
the asymptotic expansions for velocity field decrease expo-
nentially with order of expansions.18

IV. STABILITY OF A GAUSSIAN VORTEX RING

A. Basic flow

A general procedure for obtaining the flow field of a thin
vortex ring up to O(e2) is described in Fukumoto and
Moffatt.19 Here we give a brief summary of their procedure
that is required for the following analysis. The leading-order
vorticity distribution is assumed to be a Gaussian distribution

v (0)5
a

p
exp~2ar 2!,

wherea is a function of time in the presence of viscosity but
otherwise is an arbitrary constant. Then the velocity field is
given by

Ur
(0)50,

Uu
(0)5

1

2pr
@12exp~2ar 2!#,

whereUr and Uu are the radial and the azimuthal compo-
nents of velocity fields, respectively. Note that the present
expressions have some differences in the signs and the defi-
nition of u from the expressions in Fukumoto and Moffatt.19

The first-order and second-order fields are obtained by
solving the equations of motion expanded bye at each order.
The first-order flow field is

Ur
(1)52

1

r
c̃11

(1)~r !cosu,

Uu
(1)5S dc̃11

(1)

dr
2rU u

(0)~r ! D sinu,

where

c̃11
(1)5C11

(1)2c11
(1)Uu

(0) ,

FIG. 2. The contour lines of growth rate. Kelvin’s vortex ring. The letter
‘‘S’’ denotes a stable region.~a! e50.1,f5p/2, ~b! e50.3,f50.

FIG. 3. The first-order and second-order growth rates as functions ofr 0 .
Kelvin’s vortex ring. The numerical results are shown by symbols~crosses:
first-order, squares: second-order! and the analytical results are shown by
lines ~solid line: first-order, broken line: second-order!. Left: f50, right:
f5p/2. ~a! e50.02, ~b! e50.1.

FIG. 4. The maximal growth rates as functions ofe. Kelvin’s vortex ring.
The numerical results are shown by the symbols~circles: first-order,f5p/2,
crosses: first-order,f50, squares: second-order! and the analytical results
are shown by the lines~solid line: first-order,f5p/2, broken line: first-
order,f50, dotted line: second-order!.
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C11
(1)5Uu

(0)H r 2

2
1E

0

r g~r 8!dr 8

r 8@Uu
(0)~r 8!#2J ,

g~r !5E
0

r

r 8@Uu
(0)~r 8!#2dr 8

5
1

4p2 FE1~ar 2!2
1

2
E1~2ar 2!1 log r 1

1

2
g1

1

2
ln

a

2G .
Here E1 denotes the exponential integral function and
g50.577 215 664 9̄ is Euler’s constant. The coefficientc11

(1)

is chosen as

c11
(1)'

1

4a
2.590 273 95

1

a
0.648 184 8.

In fact, c11
(1) can be arbitrary because of the freedom in

choosing the position of the originr 50; the above choice is
the most natural since it keeps the radial position of the ori-
gin constant up toO(e3) at a finite Reynolds number.

The second-order flow field is given by

Ur
(2)5S 1

2
c̃11

(1)2
2c̃21

(2)

r
D sin 2u,

Uu
(2)5S 2

r 2

2
Uu

(0)1
r

2

dc̃11
(1)

dr
2

dc̃21
(2)

dr
D cos 2u.

Here c̃21
(2) is obtained by solving the following second-order

ordinary differential equation

S d2

dr 2 1
1

r

d

dr
2

4

r 2 2aD c̃21
(2)

5
b

4
~ c̃11

(1)!21rac̃11
(1)

1
1

2
S 2rU u

(0)1r 2v (0)1
dc̃11

(1)

dr
2

c̃11
(1)

r
D , ~21!

wherea andb are given by

a5
1

Uu
(0)

dv (0)

dr
, b5

1

Uu
(0)

da

dr
,

with the boundary conditions

c̃21
(2)}r 2 as r→0,

c̃21
(2);

r 2

4 H Ż(0)1
1

8p F logS 8

er D22G J 1
d(1)

4

as r→`,

whered(1)5c11
(1)/2p. We seta51 in the following. We solve

the ordinary differential equation above numerically.
The streamlines and iso-vorticity lines are shown in Fig.

5 for e50.02 and 0.1. Note that there is a region of weak
negative vorticity, which would lead to the centrifugal insta-
bility; for e50.02, it is the upper side of the dashed line
corresponding tovs50, and fore50.1, it is the region be-
tween the two dashed lines. This region of negative vorticity
is likely an artifact of truncated perturbation expansion. This
point is discussed in some detail later.

B. Analytical results for the first-order growth rate

The first-order growth rate can be evaluated analytically
for a general leading-order flow field. Equations~2! and
~3! are solved up to the first order; see Appendix C for the
details. The resultingV(t) in the Hill–Schrödinger equation
~8! is

V~ t !52v (0)~r 0!V (0)~r 0!cos2 x

1eUu
(0)~r 0!F~r 0!sin~V (0)~r 0!t !1O~e2!, ~22!

whereV (0)5Uu
(0)/r and

F~r !5V (0)12 cos2 xF ~124 sin2 x!v (0)2V (0)

2
g

r 2~Uu
(0)!2 H ~2 sin2 x21!v (0)1

1

2
V (0)J G .

The O(e) term of V(t) causes parametric resonance if
(2v (0)V (0) cos2 x)1/2 is an integral multiple ofV (0)/2, imply-
ing

v (0)

V (0) 5
n2

8 cos2 x
, ~n51,2,¯ !, ~23!

among which the growth rate is ofO(e) only for n51. The
resonances for Kelvin’s case are recovered by substituting
the constant value 2 forv (0)/V (0). There are contributions to
the resonances withn>2 from higher-order forcing terms
with angular frequencynV (0) in V(t). Figure 6 shows the
resonance curves in (r ,x) plane for the Gaussian vortex ring.
Note that the resonance curve forn54 reduces to the origin
and there is no resonance forn.4 when the forcing is in-
finitesimal; there can be resonances forn.4 if the forcing is
not weak, as observed in the case of two-dimensional multi-
polar strain.9

FIG. 5. Streamlines~left! and iso-vorticity lines~right! of a Gaussian vortex
ring. The broken lines in the iso-vorticity lines correspond tovs50. ~a!
e50.02, ~b! e50.1.

3156 Phys. Fluids, Vol. 15, No. 10, October 2003 Y. Hattori and Y. Fukumoto

Downloaded 25 Dec 2007 to 150.69.123.200. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



By using the resonance condition~23!, the first-order
growth rate is calculated to be

s (1)5euUu
(0)uU 1

2
sin2 x2

3

8
2S 3

8
2

1

4
sin2 x D g

r 0
2~Uu

(0)!2 U
1O~e2!. ~24!

Note thatr 0 andx are related through~23! with n51.

C. Numerical results

Equations~2!–~4! are solved numerically using the flow
field up to O(e2). Figure 7 shows the contour lines of
growth rate. Unstable regions are seen around the resonance
curves in Fig. 6 with small shifts inr ; this is partly because
r 0 is simply replaced byYmax, which is the maximum value
of Y(t) for each periodic orbit.

Figure 8 compares the numerical and analytical results.
As seen in this figure, the first-order growth rate becomes
fairly large aroundr 0'1.8;2. For smallr 0 , it is propor-
tional to 15

256eUu
(0) , which is essentially the same with

Kelvin’s case. For largerr 0 , however, the change inx, which
is due to the varying frequency ratiov (0)/V (0) in the reso-
nance condition~23!, has a significant effect of changing the
first-order growth rate. The numerical values agree with the
analytical value~24! with small shifts inr 0 . The behavior of
the second-order growth rate, the one for the region emanat-
ing from (r 0 ,x)5(0,p/3), is rather similar to that of
Kelvin’s vortex ring; the change inx has no major effect
except for that it gives a cut-off inr 0 around 1.5.

Finally, the maximum growth rates are plotted againste
in Fig. 9. For large values ofe the basic flow possesses some
amount of error which is due to truncating the perturbation
expansions, but the error may not be significant within a
region of r;O(e0a21/2) in the same way as for Kelvin’s
vortex ring. Numerical results suggest that the first-order
growth rate is larger than the second-order one fore,ec

'0.35, while the analytical line of the first-order growth rate
suggestsec'0.2; therefore, the first-order instability is
stronger than or the same order of magnitude with the
second-order instability for the values ofe for which the base
flow is convergent.

D. A remark on the effect of negative vorticity

The asymptotic expansions for the Gaussian core entail
nonuniformity in convergence aroundr;O(e21/3a21/2).
The presence of a region of negative vorticity is traced to this
difficulty ~see Fig. 5!.19 One may doubt that the results above
are related to the centrifugal instability due to the negative
vorticity. If this is the case, these results would be wrong
since the actual vortex rings are likely to have no region of
negative vorticity. However, the unstable region correspond-
ing to the centrifugal instability is found in a separate region

FIG. 6. Resonance curves determined by Eq.~23!. Gaussian vortex ring.

FIG. 7. Contour lines of growth rate. Gaussian vortex ring.~a! e50.02,~b!
e50.1.

FIG. 8. First-order and second-order growth rates as functions ofr 0 . Gauss-
ian vortex ring. The numerical results are shown by the symbols~crosses:
first-order, squares: second-order! with lines and the analytical value of the
first-order growth rate is shown by the solid line.~a! e50.02, ~b! e50.1.

FIG. 9. The maximum growth rates as functions ofe. Gaussian vortex ring.
The numerical results are shown by symbols~crosses: first-order, squares:
second-order! and the analytical value is shown by the solid line for the
first-order growth rate.
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in (r ,x)-plane. Figure 10 shows the contour lines of the
growth rate for larger values ofr 0 . For each case there is an
unstable region which is irrelevant to the resonance curves.
Comparing Fig. 10 with Fig. 5, we see that this unstable
region is closely related with the region of negative vorticity.
For e50.02, the vorticity on they-axis is negative fory
.3.42; the unstable region is seen inr 0.3.5. For e50.1,
the vorticity on they-axis is negative for 2.08,y,3.16; the
unstable region is seen in 2.2,r 0<3.0, while the orbit is not
closed for r 0'Ymax.3.0. Lifschitz and Hameiri20 showed
that a vortex ring without swirl is unstable on orbits for
which the circulation decreases outward by short-wavelength
stability analysis; this is a generalization of the classical Ray-
leigh stability condition. Thus the unstable region seen in
Fig. 10 is most likely due to the centrifugal instability. This
supports that the unstable regions in Fig. 7, which appear
along the resonance curves, are irrelevant to the centrifugal
instability.

V. CONCLUDING REMARKS

The linear stability of thin vortex rings is studied in the
short wave limit. For both uniform and Gaussian cores the
first-order instability is shown to be significant. We should
note that there are differences between the two cases. For
Kelvin’s vortex ring the wavevector which gives the maxi-
mum growth rate is non-orthogonal and parallel to the
streamline, while the anglex between the wavevector and
the vorticity line is fixed tox (1)'0.42p. For the Gaussian
vortex ring, on the other hand, the wavevector is orthogonal
to the streamline, while the anglex which gives the maxi-
mum growth rate is 0. Kelvin’s vortex ring is special in that
the particle motion is isochronous up toO(e) in the vortex
core, which leads to the exponential instability for non-
orthogonal wavevector.

In general, inclusion of higher-order terms does not al-
low the wavevectork(t) to be periodic whenfÞ0. If so, k
evolves algebraically in time and the perturbation goes
through amplification only for such a short time as not to
grow much as discussed at the end of Sec. III A. Kelvin’s
vortex ring is an exception in thatk is periodic up toO(e2)
also forf5p/2. The most unstable disturbance occurs in this
extreme.

The accuracy of the basic flow of the Gaussian vortex
ring may not be sufficient for large value ofe. However, the
numerical value of the first-order growth rate agrees well

with the analytical value fore<0.15. Thus there is little
doubt about the present results, although the value ofec , at
which second-order instability overtakes the first-order insta-
bility, cannot be determined correctly by the present study.

A question would arise how and when we can observe
the first-order instability in the experiments. In the experi-
ments by Sullivanet al.,21 the observed unstable waves were
supposed to be bending waves. Since it is the second-order
effect that destabilizes bending waves, the first-order effect
does not seem to have appeared in their experiments. In this
regard we mention three points about the case of Gaussian
vortex ring. First, the observed unstable waves would depend
on the method of introducing initial disturbance. The vortic-
ity is rather small where the first-order growth rate is large;
for example, the magnitude of vorticity at (x,y)'(0,1.8),
wheres (1) is maximal fore50.1, is about 1.7% of the maxi-
mum. Thus we should introduce disturbances which have
large amplitude in a weak vorticity region in order to observe
the first-order instability clearly. Second, viscosity can have a
significant effect of stabilization for the first-order effect. In
Fig. 8 we see that the first-order growth rate is large in a
narrow interval ofr 0 near the cut-off, while the second-order
growth rate does not vary much below the cut-off; this sug-
gests that the results on the second-order growth rate ob-
tained in the short-wave limit are valid for wavelengths com-
parable to the core radius, but the results on the first-order
growth rate are not. Since the viscous effect enters ass
2nk2, viscosity can greatly affect the first-order instability if
it appears only for short waves. Finally, nonlinearity is ne-
glected in the present analysis. We should take account of
nonlinear effect in order to deal with the large-amplitude
waves observed in Sullivanet al.21

It is of interest to study how the present results by short-
wavelength analysis are related with those by normal-mode
stability analysis. For Kelvin’s ring, the growth rates (1)

5(15e/256) for f50 is realizable by parametric resonance
between the axisymmetric and the bending modes.6 Instabil-
ity with a larger growth rate occurs for interaction of higher
modes, which will be reported elsewhere. For the Gaussian
ring, the method explored by Bayly22 would give a clue.
Applying this method with required modification, the quan-
tity C(c) is shown to be positive for the streamline of the
maximal growth rate; it strongly suggests that there is a lo-
calized normal mode which corresponds to the maximal
growth rate found by the present short-wavelength analysis
~see Appendix D for the details!.
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APPENDIX A: SOLUTIONS TO EQS. „2… AND „3… FOR
KELVIN’S VORTEX RING

Here we describe some details of solving Eqs.~2! and
~3! for Kelvin’s vortex ring. Since the basic flow is axisym-
metric and the azimuthal component of velocity~swirl! is

FIG. 10. Contour lines of growth rate for larger 0 . Gaussian vortex ring.~a!
e50.02, ~b! e50.1.
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zero, the particle path lies on a planes5const. We can take
s50 without loss of generality. The basic flow in the core is
assumed to be the Rankine vortex atO(1). Then the steady
Euler equation is solved by asymptotic expansion ine to give

Ur5e
5

8
~12r 2!cosu1e2S Ar1

r 3

8 D sin 2u1O~e3!,

Uu5r 1eS 2
5

8
1

7

8
r 2D sinu1e2S Ar1

r 3

16D cos 2u

1O~e3!,

Us50,

in (r ,u,s) coordinate system shown in Fig. 1.1 We would
like to work in the local Cartesian coordinate system
(x,y,z). Using the relations

x5r cosu, ey5~11er sinu!cos~es!21,

ez5~11er sinu!sin~es!,

er5cosuex1sinu cos~es!ey1sinu sin~es!ez ,

eu52sinuex1cosu cos~es!ey1cosu sin~es!ez ,

es52sin~es!ey1cos~es!ez ,

with ei being the unit vector in thei th direction, we obtain
Eq. ~11! in this coordinate system after straightforward cal-
culation. Note that this expression is valid foruzu<O(1)
though we require an expression valid just around the plane
z50, which is identical withs50. The matrixL is

L5S 0 21 0

1 0 0

0 0 0
D 1eS 2 5

4 x 2 7
4 y 2z

1
4 y 1

4 x 0

z 0 x
D 1e2S 3

8 xy A1 3
16 x21 3

16 y22 3
8 z2 2 3

4 yz

A1 3
16 x21 3

16 y22 3
8 z2 3

8 xy 2 3
4 xz

2 3
4 yz 2 3

4 xz 2 3
4 xy

D
1O~e3!. ~A1!

First, we should know the particle motionX(t) up toO(e); since the matrixL does not depend onx at the leading order,
O(e2) precision is not required forX(t). Equation~2! is solved as

X~ t !5S r 0 cosVt
r 0 sinVt

0
D 1eS r 0

2

8
sin 2Vt

5

8
2

3r 0
2

4
2

r 0
2

8
cos 2Vt

0

D 1O~e2!, ~A2!

for an appropriate initial condition, whereV51 up to the first order.
Next, substituting the particle motion above to Eq.~3!, we obtain the following equations for local wavevector:

dk

dt
5S 2ky

kx

0
D 1eS 5r 0

4
cosVt kx2

r 0

4
sinVt ky

7r 0

4
sinVt kx2

r 0

4
cosVt ky

2r 0 cosVt kz

D 1e2S 2
r 0

2

32
sin 2Vt kx1S 2A2

5

32
1

r 0
2

32
cos 2Vt D ky

S 2A1
35

32
2

3r 0
2

2
2

7r 0
2

32
cos 2Vt D kx2

7r 0
2

32
sin 2Vt ky

r 0
2

4
sin 2Vt kz

D
1O~e3!. ~A3!

For the initial conditionk(0)5(sinx cosf,sinx sinf,cosx)T1O(e), the solution reads

k~ t !5S sinx cos~Vt1f!

sinx sin~Vt1f!

cosx
D 1eS r 0 sinx@sinf1 3

4 sin~2Vt1f!#

r 0 sinx@ 1
2 cosf2 3

4 cos~2Vt1f!#

2r 0 cosx sinVt
D

1e2S r 0
2 sinx@2 9

32 cos~3Vt1f!2 21
16 sinft cos~Vt !#

r 0
2 sinx@2 9

32 sin~3Vt1f!2 21
16 sinft sin~Vt !#1B sinx sin~Vt1f!

r 0
2 cosx@ 1

4 2 3
8 cos~2Vt1f!#

D 1O~e3!, ~A4!
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where B52A1 15
322 (7r 0

2/16) and the angular velocity is
corrected as

V511e2S 5

8
2

21

32
r 0

2D , ~A5!

because of secular terms. TheO(e2) terms ofk have aperi-
odic termst cosVt andt sinVt. Forf50 these terms vanish.
For f5p/2 these terms can be included in theO(1) terms by
correcting the angular velocity as

V85V1e2
21r 0

2

16
, ~A6!

so that the wavevectork is periodic up to O(e2). For
fÞ0,p/2, k is not periodic up toO(e2).

Finally, by substituting the solutions above into Eq.~9!,
we obtain Eq.~13! for generalf and Eq.~16! for f50.

APPENDIX B: GROWTH RATES OF UNSTABLE
SOLUTIONS TO HILL–SCHRÖ DINGER EQUATION
BY MATHIEU’S METHOD

Here we apply Mathieu’s method to the Hill–
Schrödinger equation~8! to obtain the growth rate. The po-
tential V(t) is expressed as

V~ t !5 (
m522

2

ameimVt1O~e3!,

a05A01e2B0 , a615eA61 , a625e2A62 ,

A2m* 5Am ,

in the cases under consideration. Let us consider a solution
of the type

q~ t !5emt (
n52`

`

bn/2 expS i
n

2
Vt D . ~B1!

Substituting the above expressions to Eq.~8! we obtain the
following set of linear equations forbn andm:

S m1 i
n

2
V D 2

bn/21 (
m522

2

ambn/2 2m50. ~B2!

We expandx, m andbn/2 as

x5x (0)1ex (1)1e2x (2)1O~e3!,

m5m (0)1em (1)1e2m (2)1O~e3!,

bn/25bn/2
(0)1ebn/2

(1)1e2bn/2
(2)1O~e3!.

The coefficientsAm andB0 are also expanded as

Am5Am~x!

5Am~x (0)!1e
]Am

]x U
x(0)

x (1)1e2F ]Am

]x U
x(0)

x (2)

1
1

2

]2Am

]x2 U
x(0)

~x (1)!2G1O~e3!

5Am
(0)1eAm

(1)1e2Am
(2)1O~e3!.

Then Eq.~B2! becomes

F S m (0)1 i
n

2
V1em (1)1e2m (2)D 2

1A0
(0)1eA0

(1)1e2~B0
(0)1A0

(2)!G~bn/2
(0)1ebn/2

(1)1e2bn/2
(2)!

1e~A1
(0)1eA1

(1)!~bn/2 21
(0) 1ebn/2 21

(1) !

1e~A21
(0)1eA21

(1) !~bn/2 11
(0) 1ebn/2 11

(1) !

1e2A2
(0)bn12 22

(0) 1e2A22
(0)bn/2 12

(0) 1O~e3!50. ~B3!

At O(1), weobtain

F S m (0)1 i
n

2
V D 2

1A0
(0)Gbn/2

(0)50. ~B4!

Without loss of generality, we obtain

m (0)50, A0
(0)5N2V2/4, b6N/2

(0) Þ0,

bn/2
(0)50 for nÞN,

in order to have a non-trivial solution.

1. NÄ1

The most important resonance by the first-order term of
V(t) occurs whenN51. In this case, theO(e) relation of
Eq. ~B3! becomes

12n2

4
V2bn/2

(1)1~ inVm (1)1A0
(1)!bn/2

(0)1A1
(0)bn/2 21

(0)

1A21
(0)bn/2 11

(0) 50. ~B5!

From the above equations forn561 we obtain

V2~m (1)!25uA1
(0)u22~A0

(1)!2, Im A0
(1)50.

Thus the maximum ofm (1) is attained atA0
(1)50, which

implies x (1)50 and henceAn
(1)50; the maximum is

m (1)5
uA1

(0)u
V

,

and we have

b1/2
(0)5 i

A1
(0)

uA1
(0)u

b2 1/2
(0) . ~B6!

Equation~B5! further gives
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b63/25
A61

(0)b61/2
(0)

2V2 , bn/250 for unuÞ1,3.

The O(e2) relation of Eq.~B3! is now

12n2

4
V2bn/2

(2)1 inVm (1)bn/2
(1)1@ inVm (2)1~m (1)!21B0

(0)

1A0
(2)#bn/2

(0)1A1
(0)bn/2 21

(1) 1A21
(0)bn/2 11

(1) 1A2
(0)bn/2 22

(0)

1A22
(0)bn/2 12

(0) 50. ~B7!

From the above equations forn561 and Eq.~B6! we have

uA1
(0)u2

V2 1B0
(0)1A0

(2)2 iVm (2)

uA1
(0)u2

V2 1B0
(0)1A0

(2)1 iVm (2)

5
b1/2

(0)

b2 1/2
(0) •

2A21
(0)b1/2

(1)1 iuA21
(0)ub2 1/2

(1)

2 iuA1
(0)ub1/2

(1)2A1
(0)b2 1/2

(1) 51, ~B8!

which impliesm (2)50. To summarize,

s (1)5m5e
uA1

(0)u
V

1O~e3!. ~B9!

2. NÄ2

The most important resonance by the second-order term
of V(t) occurs whenN52. In this case, theO(e) relation of
Eq. ~B3! becomes

42n2

4
V2bn/2

(1)1~ inVm (1)1A0
(1)!bn/2

(0)1A1
(0)bn/2 21

(0)

1A21
(0)bn/2 11

(0) 50. ~B10!

From the above equations forn562 we obtain

m (1)5A0
(1)50.

Hencex (1)50 andAm
(1)50. Equation~B10! further gives

b0
(1)52A1

(0)b21
(0)2A21

(0)b1
(0) , b62

(1)5
A61

(0)b61
(0)

3
,

bn/250 for unuÞ0,2,4.

The O(e2) relation of Eq.~B3! is now

42n2

4
V2bn/2

(2)1@ inVm (2)1B0
(0)1A0

(2)#bn/2
(0)1A1

(0)bn/2 21
(1)

1A21
(0)bn/2 11

(1) 1A2
(0)bn/2 22

(0) 1A22
(0)bn/2 12

(0) 50. ~B11!

From the above equations forn562 we obtain

4V2~m (2)!21S B0
(0)1A0

(2)2
2

3
uA1

(0)u D 2

5uA2
(0)2~A1

(0)!2u2.

For Kelvin’s ring, it is possible to choosex (2) so thatA0
(2)

52B0
(0)12uA1

(0)u2/3 since (]A0 /]x) ux(0)Þ0. Thus the
maximal growth rate is

s (2)5m5e2
1

2V
uA2

(0)2~A1
(0)!2u1O~e3!.

APPENDIX C: SOLUTIONS TO EQS. „2… AND „3… FOR
A GENERAL LEADING-ORDER BASIC FLOW UP
TO THE FIRST ORDER

Here we describe solutions to Eqs.~2! and ~3! for a
general leading-order basic flow, which are required for ob-
taining the first-order growth rate~24!. We use the coordinate
system (r ,u,s) since singularity does not arise up to the first
order.

The matrixL is represented as

L5S L' 0

0T Li
D , ~C1!

L'5S 0 2
Uu

(0)

r

dUu
(0)

dr
0

D
1eS dŨr

(1)

dr
cosu 2

1

r
~Ũr

(1)1Ũu
(1)!sinu

dŨu
(1)

dr
sinu

1

r
~Ũr

(1)1Ũu
(1)!cosu

D
1O~e2!, ~C2!

Li5eUu
(0) cosu1O~e2!, ~C3!

where

Ũr
(1)~r !52

1

r
c̃11

(1)~r !, Ũu
(1)~r !5

dc̃11
(1)

dr
1rU u

(0)~r !.

First, we solve the particle motion. Equation~2! is writ-
ten as

dR

dt
5Ur , R

dQ

dt
5Uu .

The solution is

R~ t !5r 01e
Ũr

(1)

V (0) sin~V (0)t !1O~e2!,

Q~ t !5V (0)t1O~e!.

Since the matrixL does not depend onu at the leading order,
the O(e) term of Q is not required.

Next, we solve the wavevector equation~3!. It is written
as

F d

dt
1S 0 2V

V 0 D Gk'52L'
Tk' ,

dki

dt
52Liki ,

in the present coordinate system. SubstitutingR(t) andQ(t)
to the above equations, the wavevector is found to be
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k~ t !5S sinx
0

cosx
D 1eS 2

sinx

V (0) FdŨr
(1)

dr
1S V (0)2

dUu
(0)

dr D Ũr
(1)

V (0)r 0
Gsin~V (0)t !

2
sinxŨr

(1)

V (0)r 0
cos~V (0)t !

2r 0 cosx sin~V (0)t !

D 1O~e2!,

for the initial condition k(0)5(sinx,0,cosx)T1O(e). The
functions inO(e) terms are evaluated atr 5r 0 .

Finally, by substituting the solutions above into Eq.~9!
we obtain Eq.~22!.

APPENDIX D: ON THE EXISTENCE OF NORMAL
MODES

Here we discuss the existence of normal modes which
correspond to the first-order instability for the Gaussian vor-
tex ring. We proceed in the same way as in Bayly,22 who
discussed the existence of localized unstable modes for
centrifugal-type instability. The key issue is to calculate
C(c) defined below by Eq.~D5!; since C(c) should be
modified for the present case, we briefly describe its deriva-
tion.

For the Gaussian ring, the first-order instability has the
maximum growth rate atx50, which implies the wavevector
is in the direction ofs-axis. This suggests that the corre-
sponding unstable mode can be constructed in the similar
way with Bayly.22 Let us consider a normal-mode perturba-
tion

u5~ ũ~r ,u!,p̃~r ,u!!exp~ iks1St!1c.c.,

wherek@1. We expandũ as

ũ5(
i 51

3

ũi f i ,

wheref i is the Floquet characteristic vector field.22 The equa-
tion for the perturbation reduces to

@S2S~c!1U"“'#ũ152f1
†
•“'p̃, ~D1!

@S1S~c!1U"“'#ũ252f2
†
•“'p̃, ~D2!

~S1U"“'!ũ352
ik

11er sinu
p̃, ~D3!

~“'1eey!•~ ũ1f11ũ2f2!1
ik

11er sinu
ũ350, ~D4!

whereS~c! is the positive Floquet exponent corresponding
to f1 , “'5er ] r1r 21eu ]u andf i

† is the adjoint Floquet char-
acteristic vector field. Note that owing to the curvature effect
there are some differences from the equations derived by
Bayly.22 We assume the same scaling ink with Bayly22

ũ15U1 , ũ25k21U2 , ũ35k21/2U3 ,

p̃5k23/2P, S5S~c0!2k21S1 ,

with corrections of higher order ink21. The solution above
is localized within a region of widthO(k21/2) around the
streamlinec5c0 , for which the growth rate reaches the
maximum. Introducing the scaled streamline coordinateh
5k1/2(c2c0), Eq. ~D4! reduces to

~ f1•“'!
]U1

]h
52

i

11er sinu
U3 ,

at the leading order. This together with Eq.~D3! gives

P52~11er sinu!@S~c0!1U"“'#F ~ f1•“'!
]U1

]h G .
SubstitutingP into Eq. ~D1!, we obtain

F2
1

2
S9~c0!h22S1GU1

5~11er sinu!~ f1
†
•“'c!@S~c0!1U"“'#

3~11er sinu!~ f1•“'c!
]2U1

]h2 ,

with U"“'U150. Averaging over the streamlinec5c0 , we
obtain

F2
1

2
S9~c0!h22S1GŪ1~h!5C~c0!

]2

]h2 Ū1~h!,

where

C~c!5
1

T~c!
E

0

T(c)

dt$~11er sinu!~ f1
†
•“'c!

3@S~c0!1U"“'#~11er sinu!~ f1•“'c!%X(t) ,

~D5!

which coincides with the expression in Bayly22 if e50.
We calculateC(c) up toO(e). The components of Flo-

quet characteristic vector fieldsf1 and f2 turn out to be

f 1r5sinS 1

2
V (0)t D2e

H1

2@V (0)#2 cosS 3

2
V (0)t D ,

f 1u5
1

4
cosS 1

2
V (0)t D

1eS 3H1

8@V (0)#2 2
G11

2V (0)D sinS 3

2
V (0)t D

1eS H2

4@V (0)#2 2
G12

2V (0)D sinS 1

2
V (0)t D ,

f 2r5cosS 1

2
V (0)t D1e

H1

2@V (0)#2 sinS 3

2
V (0)t D ,
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f 2u52
1

4
sinS 1

2
V (0)t D

2eS 3H1

8@V (0)#2 2
G11

2V (0)D cosS 3

2
V (0)t D

2eS H2

4@V (0)#2 2
G12

2V (0)D cosS 1

2
V (0)t D ,

f 1s5 f 2s50,

as functions oft on the streamlinec5c0 . Here

G165
V f

4V (0) S 2Ũr
(1)

r 0V (0)

dUu
(0)

dr
2

Ũr
(1)

r 0
1

2Ũu
(1)

r 0
D

7
1

2

dŨr
(1)

dr
,

G2656S Ũr
(1)

2V (0)

d2Uu
(0)

dr 2 1
Ũr

(1)

2r 0V (0)

dUu
(0)

dr
2

Ũr
(1)

2r 0
1

Ũu
(1)

2r 0

1
1

2

dŨu
(1)

dr
D 2

V f

4r 0V (0) ~Ũr
(1)1Ũu

(1)!,

H65~V (0)6V f !G1612V (0)G26 ,

Ũr
(1)~r !5Ur

(1)/cosu, Ũu
(1)~r !5Uu

(1)/sinu,

where all functions ofr in the above are evaluated atr 5r 0

andV f5(2V (0)v (0))1/25V (0)/2 for the present case. Using
these expressions, we obtain

C~c0!5e@Uu
(0)#3F 37

512
2

41c11
(1)

256r 0
2 2

5g~r 0!

128r 0
2~Uu

(0)!2

1
41

256r 0
2 E

0

r 0 g~r !

r $Uu
(0)~r !%2 dr G , ~D6!

after long but straightforward calculation. The numerical
value for the Gaussian vortex ring isC(c0)/$e@Uu

(0)#3%
55.8066̄ 31022.0. The positivity of C(c0) strongly
suggests that a normal mode corresponding to the maximal
growth rate exists for the Gaussian vortex ring.
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