-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Kyushu Institute of Technology of Academic Repository

gbobodobooobodooodn

*s Tl T2 A5 G B8 7K 1)

' Kyutacar

Fyushu Institute of Technology Academic Hepository

Title Short-wavelength stability analysis of thin vortex rings

Author(s) | Hattori, Yuji; Fukumoto, Y

Issue Date | 2003-10

URL http://hdl.handle.net/10228/565

Rights Copyright © 2003 American Institute of Physics

Kyushu Institute of Technology Academic Repository


https://core.ac.uk/display/59244086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PHYSICS OF FLUIDS VOLUME 15, NUMBER 10 OCTOBER 2003

Short-wavelength stability analysis of thin vortex rings
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Y. Fukumoto
Graduate School of Mathematics and Space Environment Research Center, Kyushu University 33,
Fukuoka 812-8581, Japan

(Received 25 September 2002; accepted 16 July 2003; published 5 September 2003

The linear stability of thin vortex rings are studied by short-wavelength stability analysis. The
modified Hill-Schralinger equation for vortex rings, which incorporates curvature effect, is
derived. It is used to evaluate growth rates analytically. The growth rates are also evaluated by
numerical calculation and they agree well with analytical values for senatich is the ratio of

core radius to ring radius. Two types of vortex rings are considered: Kelvin’'s vortex ring and a
Gaussian vortex ring. For Kelvin's vortex ring the maximum first-order growth rate is found to be
1%¢. For the Gaussian vortex ring the first-order growth rate is large in the skirts of the vortex core.
The first-order instability is significant for both vortex rings. D03 American Institute of Physics.

[DOI: 10.1063/1.1606446

I. INTRODUCTION This local stability analysis is convenient and gives correct
results for various instabilities of vortic8S:'° For the cases
i : I of vortex ring with and without swirl, LifschitZ showed by
lems in hydrodynamic stability. Compared to the parallelghq . \yavelength stability analysis that it seems unstable ge-

flows, of which stability is studied by a number of authors, peically. He and his co-workers also calculated the growth
one of the characteristic features of vortex rings is that the tas for Hill's spherical vortéd and for a fat vortex ring

vortex lines are curved along the ring radius. In this sense thg;iih, s\irl12 (see also Rozi and Fukumdtdor Hill's spheri-

vortex ring is one of the most fundamental objects for study- vortexy. For thin vortex rings, however, there are no re-
ing the curvature effect in hydrodynamic stability, which ¢ s to the authors’ knowledge.

would manifest itself also in helical vortices, circular or,

The stability of vortex rings is one of the important prob-

: i i In this paper we carry out the short-wavelength stability

more generally, three-dimensional jets, etc. _ analysis of two types of thin vortex ring: Kelvin’s vortex ring
Widnall and Tsdi showed by normal-mode analysis that 4 3 Gaussian vortex ring, whose leading-order vorticity is

Kelvin's vortex ring, i.e., a thin vortex ring whose vorticity given by a Gaussian distribution. The basic flow fields of

in the core is proportional to the distance from the axis Ofihese vortex rings are given by perturbation expansion up to
symmetry, is unstable to three-dimensional disturba®es e second order. By virtue of perturbation expansion the

also Widnallet al?). This Widnall-Tsai instability is caused firt_ order and second-order instabilities, which have differ-
by the strain flow produced by the vortex ring itself. Its gnt origins, are found separately. We calculate the corre-
mechanism is essentially the same with that of the Rankingy,nding growth rates both analytically and numerically. The

vortex in a two-dimensional strain fiekf and it IS reCOg- first-order instability is shown to be significant for both vor-
nized as the elliptical instability in the short-wave limit. is tex rings.

a second-order instability in the sense that the strain flow 114 paper is organized as follows. In Sec. Il we derive a
appears at the_second ordereiwh@ch is defined as the ratio vortex-ring version of the Hill—Schibnger equation which

of the core radius to the ring radius. Recently we found thafs ;se( to evaluate the growth rate analytically. In Sec. Il we
there exists a first-order instability for Kelvin's vortex ring  gpq,y the results for Kelvin's vortex ring. Both the first-order
and its growth rate is fairly large compared to that of theang second-order growth rates are obtained analytically and
Widnall-Tsai instability’ One problem of using Kelvin's compared to numerical results. In Sec. IV we show the re-
vortex ring is that its vorticity distribution is ideal and is not ¢ s for the Gaussian vortex fing. The first-order growth rate
close to that of real vortex rings observed in the experimentyg eyajuated analytically for a general distribution of vortic-
Unfortunately, however, it is not easy to carry out normal-jy, poth the first-order and second-order growth rates are

mode stability analysis for realistic vortex rings. obtained numerically. Finally, we conclude in Sec. V.
In the short-wavelength limit, the stability analysis is

reduced to solving a set of ordinary differential equatiofs. Il SHORT-WAVELENGTH STABILITY ANALYSIS

dpermanent address: Faculty of Engineering, Kyushu Institute We b”eﬂy summarize the method of short-wavelength

of Technology, Kitakyushu 804-8550, Japan. Electronic mail: Stabi_".ty an.aIYSisa or local Stabi_"ty analysis, a_nd deri\_/e a
hattori@mns.kyutech.ac.jp modified Hill-Schrainger equation for vortex rings which
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is used to evaluate the growth rates analytically in Secs. IlI
and IV. Since the short-wavelength stability analysis is one

of the standard methods, its details are omitted.

In the short-wavelength stability analysis, the distur-

banceu to the basic flonwd is assumed to be in the form

B p(.«lf(x,w
u=exp I 5

at the leading order, wher@is a small parameter. Substitut-

a(x,t), 1

ing it to the linearized Euler equation for incompressible

flow yields the following set of ordinary differential equa-
tions

dXx

& =V, @
dk -

G- £k )
da_ 2kkT e 4
a— W— a, (4)

where L;;=dU;/dx;(X) and the superscripT stands for
transpose. The incompressibility imposea=0. If there ex-
ists a set of initial conditions for which is unbounded in
time, the basic flow is linearly unstabfé.

Y. Hattori and Y. Fukumoto

€y ey
er
€r €2 _~¢s
L
axis of symmetry
FIG. 1. Coordinate systems.
d k. 2pkZk, HK]
d (p) alog?+trﬁl —kikz (p)
dilal s d k q/’
—? —alog?—trﬁl
0

whereL andll imply the projection ta #- or xy-plane ands

or z component, respectively is thes component of vor-
ticity while ther and # components are zergp=1+¢€y is
the distance from the axis of symmetry of the vortex ring,
and

We assume that the vortex ring is steady and has no swirl
so that its velocity field is parallel to the cross section by a
plane which includes the axis of symmetry. Then the fluid
particle moves along a closed loop periodically inside the
core of the vortex ring. We assume that the wavevector is
periodic; the condition for periodicity is discussed later. Then
the matrix in the amplitude equatigd) is periodic as well.
Therefore the Floquet theory applies to the amplitude; the
solution to Eq.(4) satisfies

a(t+T)=FT)a(t), (5

whereT is a period which depends on the particle path gen-

k:|k|, kJ_:|kJ.|! k”=|k”|,
k k
p:k_PkLaL, q:k_(kixai)'Q\'
1 L
0 1)
H_QL—l 0/’

g =unit vector in s- or z-direction.

Equation(7) is a vortex-ring version of Eq2.12 of Bayly
et al1* Eliminating p from it, we obtain

erally and A(T) is the Floquet matrix. The growth rate of d’q
amplitude is determined by the eigenvalyesof #(T) as F+V(t)q=0, ®
log| i
o= g'||'MI|‘ ©) where -
2wkik Hk, [ d? k, d

Thus our task is to solve either analytically or numerically V(D= 2z W(Iog? + g ey
Egs. (2)—(4) and evaluater=max o; ; the basic flow is ex- 8
ponentially unstable it=>0. d Kk, 2

The amplitude equatiofd) can be reduced to the Hill— T ldt Iog? TuL, ©

Schralinger equation as done by Baylgt al. for two-
dimensional incompressible floWsand Leblanc for a two-

This is the Hill-Schrdinger equation for thin vortex rings.

dimensional compressible line vort# Let us take the Note that there are additional termgfrand its derivative in

toroidal coordinate systenr (6,s), wheres is the length Eq. (9); this is due to the curvature of the vortex ring.

along the center of the torus, and the local Cartesian coordi- . I_3efore going to particular cases, we remark on the peri-
o . odicity of the wavevector. In the derivation above, we have
nate systemx,y,z) centered om=s=0 for a vortex ring as

shown in Fig. 1. The expressions below are valid both in th assumed that the wavevector is periodic. For a general steady

toroidal coordinate system generally and in the Cartesian cgpaS'C flow, there are two types of wavevector solution: one is

ordinate svstem for the sectiam=0. The lenath is non- periodic and the other grows algebraically. The latter is often
dimensionglized by the ring radius aﬁd scaledgby asmall b iscarded since it does not give rise to exponential instability.

finite parameteg, which is the ratio of the core radius to the Wg?/e\?s;'tg?'gg}[/is;ises”gorOUSIy satisfied when the initial
ring radius. Then the amplitude equation is represented for
U(X(0))-k(0)=0.

the case of vortex rings as (10
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For a Gaussian vortex ring, we impose Ef). For Kelvin's L 15er0 5

ring, however, the wavevector is periodic upQ¢e) for any oH= g V61-60cos2p+0O(e”) (14

initial condition. Thus we consider both the case with Eq.

(10) and the case without Eq10). (see Appendix B for the detajlsThus we have
w1, +0(€), (15)

g ~—~€ €
IIl. STABILITY OF KELVIN'S VORTEX RING max 256 °
A. Analytical results for growth rates at p=m/2. TheO(€) growth rates™) is maximal atro=1.

Here we calculate the growth rate for Kelvin's vortex Next we consider the second—ord_er gro_wth rate. We _set
ring. We use the Cartesian coordinate system here. op=0 or @/2 so that the wavevector is periodic up to this
course, the following calculation can be made in the coordiOrder- Foré=0, the potentiaV/(t) turns out to be
nate systemr(,6,s), but there arises a singularity when we 15 83
evaluate the second-order growth rate; in fact this singularity/(t)=4(1—sir? y) + €| — — —sm2 x+18sirf X) rosint

can be removed by choosing the stagnation point, relative to 4
the comoving frame, as the origin, but we prefer to use the 15
expression of the basic flow by Widnall and Tsdihe ve- + €% (1—sir? x){ 5+| — g TAA sir? X]
locity field and the vorticity of Kelvin's vortex ring is repre-
sented as 189 301 2 2071 81
s s 121 ﬁ'i‘ESI X 30 ——sin® X+7SIH X I'O
-y 8 8 gy — 2
- 45
U=| X |+e Xy +(1—sir? x) —A(6+4sir\2)()+—+—sm2x
0 16 8
Xz
189 645 81
Ay+ 2x2y+ Ay3— 2y -3 ﬁsmzx— ?sm x|r5jcos2
+e2| Ax+ %Xg-f— %X 2— %xzz , (11 +O(63) (16)

3
T aXyz (see Appendix A Thus the resonance by th@(e?) term

ws=2p=2(1+ey), (12) occurs around cog?=1. The corresponding growth rate is

_ found to be
up to the second order ine, where A=(15/16)

—(3/4)log 8k (see Appendix A Equationg2) and(3) with @)_ 2 27 8 135 63
the basic flow above are solved up@¢e?); see Appendix A =€152°97 " 512~ 128r0
for the detalils.

First, let us consider the first-order growth rate. We do(see Appendix B for the detajlsSince theO(€?) perturba-
not impose Eq(10) since the wavevector is periodic up to tion to the basic flow is essentially a strain field, the corre-
the first order for generap, which is the angle between an sponding growth rate?) is related to the growth rate of the
initial wavevector and the outward normal vector to aelliptical instability’ as
streamline. By substituting the solutiokét) andk(t) to Eq.

+0(€%) (17

(9), the potential(t) of the Hill-Schralinger equatior(8) @] o= 91, 1 2 (18)
becomes =07 16" 32| -
V(t)=4(1—sirf x) Note that|A—(15/32) €? is the strain rate 0D(e?) pertur-
15 3 bation at the stagnation poink,f/) =(0,3e+ O(€?)).
+erg (7— 75"12 x+12 Sirf‘)()sint A similar analysis gives the following growth rate for
d=l2:
15 9 ) )
+| = —=——sir? xy+6 sirf x |sin(t+2¢) 27 8 135 5 \? 15 2|12
4 4 o@=¢| —log—— ———=r3| +
) 64 “e 512 8 64
+0(€), (13
+0(€), (19

wherey is the angle between the vortex core axis &Gd)

andrg is the “O(1)-radius” of the orbit. According to the which takes the same maximuib8) with ¢=0 atry=0. Itis
Floguet theory, the resonance occurs[#(1—sir? x)]¥2  worth noting that the maximum of the first-order growth rate
=n/2; the most important resonance occurs at }8s for fixed ¢ varies from(15/256¢ for ¢=0 to (165/256¢
=+1/4. We restrict our attention toOy=</2 since the case for ¢==/2, while that of the second-order growth rate is the
of w/l2<y<m exhibits the identical behavior. By using same for¢=0 and 7/2. In fact, in the case of plane pure
Mathieu’s method for the Hill-Schdinger equatiori® the  shear, the growth rate does not dependfoms the potential
corresponding growth rate is found to be turns out to be
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V(t)=4(1—sir? x)+e(1—sir? x)(6+4 sirf x)
X cog2t+ ¢)+0(e?),

wheree is the rate of strain. Thus the strong dependence of

the first-order growth rate ogp seems to be a curvature ef-
fect.

We should be careful about the effectiveness of the re-

sults on the first-order instability. Whepw0 the wavevector
is not periodic if we include the higher-order terms; to
O(€?), the magnitude of the wavevectkris

. 21 . .
k?=1+ e(periodio + €2| — E5|n2)(3|r(2¢)t+(per|od|o .

(20

Thus k evolves algebraically whild, is still periodic for

¢+0,7/2. Since the resonance occurs in a regioy afound

X% of which the width is proportional ter, the wavevec-
tor fails to satisfy the resonance condition wHebecomes
smaller than the initial value b®(er,). Therefore the ex-
ponential instability saturates aroutet;=0(e 1), which

leads to

|la(ty)]
|a(0)]

log ~oWt;=0(1).

In this case the first-order instability would not be important.
For ¢=m/2, however,k is periodic up toO(e?). In fact,
there isO(€?) difference between the period of the particle
motion and that of the wavevectéAppendix B. This im-
plies ¢ may differ from /2 by O(1) aroundt=0(e 2). In
other words, the exponential instability saturates arotind
=0(e ?), which is much larger thaty for ¢+0,7/2. Thus
the corresponding first-order instability, which has the
growth rate(15), would be important since the disturbance
grows exponentially for a much longer time.

B. Energy argument

Y. Hattori and Y. Fukumoto

1
—sing cosB— Zcos¢> sing

v= o=pB<m,

1
COS¢ COSB— Zsin ¢sing

V15

TSIHIB
in a rotating framé’ In the inertial frame it becomes

u=cogk(t)-x)
{50 0-|-gendgriars
§t+¢—,8 —§CO §t+d)+ﬁ
Seros]-gs
§t+¢—,3 —§SII']
15
= {z“ﬁ)

TCO
with k(t) given by O(1) term of (A4). The equation for
disturbance energy is
d[u?
dt| 2

3
g co

3 . 1
5 Sin §t+¢+,8

8

1

=—u-[(u-V)U]-u-Vp.

The average of right-hand-side is
—u-[(u-V)U]

15

= €l 54l 5 C0§2¢+2/3) — 6 cos 2B]+0(€?)

15
~ eroﬁ\/Gl— 60 cos 2h cog2B+ApR),

where A 3= —tan Y5 sin 24/(6—5 cos 25)]. The maximum
growth rate for fixede is then evaluated as

1 —u-[(u-V)U] 15
o= ——————=~¢€ly— \61-60cos 2,
2 u? 256
2

The first-order growth rate can also be obtained by arwhich coincides with Eq(14).

energy argument as in Waleff&he inertial wave solution in
an unbounded uniformly rotating fluid is knowhFor the

C. Numerical results

first-order resonance the angular frequency is given by Equations(2)—(4) are also solved numerically to evalu-

2cosy=1/2 at the leading order. Then the disturbance or,

inertial wave fore=0 is given by

t ot
S-+uvSing|,

R: o AX
u~=cog kr)| K vco2 >

V15

4

V15

4

COoS¢

sing
1

ate the growth rates. We consider the cage® and¢= /2
since for these values @ the wavevector is periodic up to
O(€?) so that the growth rates can be obtained with suffi-
cient accuracy. Numerical and analytical results are shown in
Figs. 2—4. Figure 2 shows the growth rate obtained numeri-
cally by contour lines. Unstable regions are observed around
xP=~0.427 and x?= /3. Another unstable region with
small growth rates is observed aroupe0.237. This is due

to the third resonance by th@(e) term.

Figure 3 compares the numerical and analytical values of
the growth rates as functions of. The numerical value is
the extremal growth rate for fixed, in Fig. 2. The extrema
around y=x*) and x? are identified as first and second
orders, respectively. They are in good agreement£c0.02.
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(a) (b) 1.0e+00
77/2 ] 7r/2 S
g S 1.0e-01
7/3 W
X 8 X 5 1.0e-02
/o ' /o 1 )
8 8 Omax  1.0e-03
0
0 "o ! 0 ro ! 1.0e-04
FIG. 2. The contour lines of growth rate. Kelvin's vortex ring. The letter 1.0e-05
“S” denotes a stable region(@) e=0.1,¢=m/2, (b) €=0.3,6=0.
1.0e-06
. . . 0.001 0.01 0.1 1
For e=0.1 the difference between numerical and analytical €

values is visible for Iarge“O. This is probably due to a FIG. 4. The maximal growth rates as functionseofKelvin’s vortex ring.

higher-order effect. The numerical results are shown by the symlfoicles: first-orderg= /2,
Figure 4 compares the maxima of?) and o(® in the  crosses: first-ordep=0, squares: second-ordeand the analytical results

core of vortex ring as functions oé. The second-order are shown by the Ijnex;solid line: first-order,¢=/2, broken line: first-
growth rate forg=/2 is omitted since it is almost identical ™" #=0, dotted line: second-order

with that for ¢=0. The numerical and analytical values are

in good agreement except that the numerical value-6t

for =0 is much larger than the corresponding analyticallv. STABILITY OF A GAUSSIAN VORTEX RING

value for largee as seen in Fig. 3. According to the analytical
results, the first-order instability is stronger than the second-
order instability for G<e<1; this range would entirely in- A general procedure for obtaining the flow field of a thin
clude the values o for which the base flow given by the vortex ring up toO(e?) is described in Fukumoto and
asymptotic expansions are convergent. Moreover even favloffatt.’® Here we give a brief summary of their procedure
moderate values of, the approximation is better than ex- that is required for the following analysis. The leading-order
pected within a region of ~O(€°) since the coefficients of vorticity distribution is assumed to be a Gaussian distribution
the asymptotic expansions for velocity field decrease expo-
nentially with order of expansion§.

. Basic flow

o
O=—exp(—ar?

00015 ® whereq is a function of time in the presence of viscosity but
: first-order 0015 first-order . . . . ) .
secongorter @ otherwise is an arbitrary constant. Then the velocity field is
Eq.(17) = 0.0125 given by
0.001 001
0
o o Ul(, )=0,
0.0075
0.0005 0.005 1
UQO=_"—[1-exp —ar?
0.0025 0 277[’[ A= art],
b " 1 ¢ ro 1 whereU, andU, are the radial and the azimuthal compo-
nents of velocity fields, respectively. Note that the present
(b) expressions have some differences in the signs and the defi-
0.2 rrpr— 0.08 nition of # from the expressions in Fukumoto and Moff&t.
R The first-order and second-order fields are obtained by
0.015 m””""""‘%ﬂ% 0.06 solving the equations of motion expandeddt each order.
- The first-order flow field is
g
7 o 004
xxxxx g u®=— 1Tﬁ(l)(r)cosé?
0.005 s 002 r p Y1 )
~ s
1 b d .
b ro 0 U%l)z(?ll—ru(go)(r)>5|n0,

FIG. 3. The first-order and second-order growth rates as functiomg.of

Kelvin’s vortex ring. The numerical results are shown by symltotesses:  where

first-order, squares: second-ordand the analytical results are shown by

lines (solid line: first-order, broken line: second-orfieceft: ¢=0, right: ~01 1 1 1(0
d=mi2. () €=0.02,(b) e=0.1. P = cBHu®,
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2 ’ ’
r roog(r’)dr
\P(l)zu(o) 4 , 4 4
11 0 2 Or/[Uigoi(rr)] 3 sl P
2 2t
r e HO) e 112t 1 1}/
o) = [ U v o v o
-1 dF
L Ei(art) - 2E,2ar2) +logr + = 3+ =in 2 > A
=12 1(ar )_5 1(2ar°)+ ogr+zy+sinz N Ll ; .
4 3 2 -1 0 1 2 3 4
Here E denotes the exponential integral function and z
y=0.577 215 664 9- is Euler’s constant. The coefficieaf} (b)
i 4 4
is chosen as : ﬁ il
1 1 2 f\\\ 2| ]
(1)~
oY~ ;-2.5902739- ~0.6481848. /——\\ .
In fact, c(l) can be arbitrary because of the freedom in [ | tr
oy P . . 2 F B 2+
choosing the position of the origin=0; the above choice is N sl
the most natural since it keeps the radial position of the ori- 4L h
4 3 2 -1 0 1 2 3 4 4 3 2 -1 0 1 2 3 4

gin constant up t@(€®) at a finite Reynolds number. ST ST g
The second-order flow field is given by

(2)

FIG. 5. Streamlinegleft) and iso-vorticity linegright) of a Gaussian vortex
ring. The broken lines in the iso-vorticity lines correspondatg=0. (a)

)sm 20, €=0.02,(b) €=0.1.

1.
U@ = (2 Y-

r2 r doty d (2)
Do L S o

()| _
Vo ( 20 "2 d  dr

B. Analytical results for the first-order growth rate

The first-order growth rate can be evaluated analytically
for a general leading-order flow field. Equatiof® and
(3) are solved up to the first order; see Appendix C for the

HereTﬁ(zzl) is obtained by solving the following second-order
ordinary differential equation

d_2+ 1d i—a ~(2) details. The resultingy/(t) in the Hill-Schralinger equation
dr? rdr r? 2 (8) is
b - ~ V() =20O(ry)QO)(r,)cod
:Z(‘/’(lll))szra%”(lll) 0 0 X
+eULA(ro)F(ro)sinQO(ro)t) +O(e?), (22
1 dyfy P whereQ©@=U©/r and
+5 — U@ +r20@+ ld'br - —rll , (21) o

F(r)=0©+2cod x| (1-4sirf y) 0@ -0 ©

wherea andb are given by

a= 1 dw_w) b= 1 d_a g . 1
U@ a0 T U@ —W[(Z sif x—1) 0@+ EQ(O)] :
with the boundary conditions The O(e) term of V(t) causes parametric resonance if
WDxr? as r—0, i(nzgw(o)ﬂ(o) cog x)Y?is an integral multiple of2(®)/2, imply-
o T2 1 8 d® 0 5
W~ 129+ o '09(;)—2 + ;"_2((6)5:8;)—52)(, (N=1,2,--), 23
as r—,

among which the growth rate is @(e) only forn=1. The
wheredV) = (1)/277 We seta=1 in the following. We solve resonances for Kelvin's case are recovered by substituting
the ordinary dlfferenual equation above numerically. the constant value 2 fas(?/Q(®). There are contributions to
The streamlines and iso-vorticity lines are shown in Fig.the resonances with=2 from higher-order forcing terms
5 for e=0.02 and 0.1. Note that there is a region of weakwith angular frequencynQ(® in V(t). Figure 6 shows the
negative vorticity, which would lead to the centrifugal insta- resonance curves im (y) plane for the Gaussian vortex ring.
bility; for €=0.02, it is the upper side of the dashed line Note that the resonance curve for4 reduces to the origin
corresponding tavs=0, and fore=0.1, it is the region be- and there is no resonance for-4 when the forcing is in-
tween the two dashed lines. This region of negative vorticityfinitesimal; there can be resonancesrior4 if the forcing is
is likely an artifact of truncated perturbation expansion. Thisnot weak, as observed in the case of two-dimensional multi-
point is discussed in some detail later. polar strair®
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/2

0.005
0.0045 |
0.004
0.0035
0.003

o 00025
0.002
0.0015
0.001
0.0005

"=l —— 0.001
0.0008

/3

0.0006

X

0.0004

0.0002

/6t

FIG. 8. First-order and second-order growth rates as functiong.adbauss-
ian vortex ring. The numerical results are shown by the symimissses:

. . . first-order, squares: second-orgeiith lines and the analytical value of the
FIG. 6. Resonance curves determined by &8). Gaussian vortex ring. first-order growth rate is shown by the solid lin@) e=0.02,(b) e=0.1.

By using the resonance conditiq@3), the first-order Finally, the maximum growth rates are plotted against
growth rate is calculated to be in Fig. 9. For large values af the basic flow possesses some

amount of error which is due to truncating the perturbation
expansions, but the error may not be significant within a
region of r~0O(e’a~?) in the same way as for Kelvin's

vortex ring. Numerical results suggest that the first-order

1 3 (3 1 g
0'(1)=6|U$90)| ESIHZX—§—<§—ZSIHZX)W

+O(€?). (24) growth rate is larger than the second-order one dere,
Note thatry and y are related througk23) with n=1. ~0.35, while the analytical line of the first-order growth rate
suggestse.~0.2; therefore, the first-order instability is
C. Numerical results stronger than or the same order of magnitude with the

second-order instability for the values ©for which the base

Equations(2)—(4) are solved numerically using the flow flow Is convergent.

field up to O(e?). Figure 7 shows the contour lines of
growth rate. Unstable regions are seen around the resonange
curves in Fig. 6 with small shifts in; this is partly because
ro is simply replaced by ,.x, Which is the maximum value The asymptotic expansions for the Gaussian core entalil
of Y(t) for each periodic orbit. nonuniformity in convergence arount~O(e Y3a~%?).
Figure 8 compares the numerical and analytical resultsThe presence of a region of negative vorticity is traced to this
As seen in this figure, the first-order growth rate becomesglifficulty (see Fig. 5'° One may doubt that the results above
fairly large aroundr,~1.8~2. For smallr,, it is propor- are related to the centrifugal instability due to the negative
tional to #%eU{”, which is essentially the same with vorticity. If this is the case, these results would be wrong
Kelvin's case. For larger,, however, the change jp which  since the actual vortex rings are likely to have no region of
is due to the varying frequency ratio®/Q(© in the reso- negative vorticity. However, the unstable region correspond-
nance conditior{23), has a significant effect of changing the ing to the centrifugal instability is found in a separate region
first-order growth rate. The numerical values agree with the
analytical valug24) with small shifts inry. The behavior of
the second-order growth rate, the one for the region emanat-
ing from (ro,x)=(0,7/3), is rather similar to that of
Kelvin's vortex ring; the change iry has no major effect 1.0e-02
except for that it gives a cut-off iny around 1.5.

A remark on the effect of negative vorticity

1.0e-01 T

o0

max  1,0e-03
/2 (®) — /2 ®) . , , 7 first-order  x
ge” second-order  ©
1.0e-04 | o 5 Eq. (24) E
7/3 /3 0 €
X X R
w/61 w/6} 1.0e-05 :
0.01 0.1 1
0 0
FIG. 9. The maximum growth rates as functionseoGaussian vortex ring.
The numerical results are shown by symb@eosses: first-order, squares:
FIG. 7. Contour lines of growth rate. Gaussian vortex ri@y.e=0.02, (b) second-ordérand the analytical value is shown by the solid line for the
e=0.1. first-order growth rate.
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(a) (b) with the analytical value fore<0.15. Thus there is little
/2 ' ' /2 ' doubt about the present results, although the value. pfat
which second-order instability overtakes the first-order insta-
/3¢ ] A bility, cannot be determined correctly by the present study.
X /6 S x /6 A question would arise how and when we can observe

the first-order instability in the experiments. In the experi-
ments by Sullivaret al,?! the observed unstable waves were

L

25 3 15 4 5 25 3 supposed to be bending waves. Since it is the second-order

7o To effect that destabilizes bending waves, the first-order effect

FIG. 10. Contour lines of growth rate for largg. Gaussian vortex rinda) does not seem t,o have appe'ared in their experiments. In '[!’llS
€=0.02, (b) e=0.1. regard we mention three points about the case of Gaussian

vortex ring. First, the observed unstable waves would depend
on the method of introducing initial disturbance. The vortic-

in (r,x)-plane. Figure 10 shows the contour lines of theity is rather small where the first-order growth rate is large;
growth rate for larger values of,. For each case there is an for example, the magnitude of vorticity ak,f/)~(0,1.8),
unstable region which is irrelevant to the resonance curvegvherec(®) is maximal fore=0.1, is about 1.7% of the maxi-
Comparing Fig. 10 with Fig. 5, we see that this unstablenum. Thus we should introduce disturbances which have
region is closely related with the region of negative vorticity. large amplitude in a weak vorticity region in order to observe
For €=0.02, the vorticity on they-axis is negative fory  the first-order instability clearly. Second, viscosity can have a
>3.42; the unstable region is seenrig>3.5. Fore=0.1,  significant effect of stabilization for the first-order effect. In
the vorticity on they-axis is negative for 2.08y<3.16; the Fig. 8 we see that the first-order growth rate is large in a
unstable region is seen in 222 ,=<3.0, while the orbit is not narrow interval ofr ; near the cut-off, while the second-order
closed forrg~Y,>>3.0. Lifschitz and Hameif? showed growth rate does not vary much below the cut-off; this sug-
that a vortex ring without swirl is unstable on orbits for gests that the results on the second-order growth rate ob-
which the circulation decreases outward by short-wavelengtkained in the short-wave limit are valid for wavelengths com-
stability analysis; this is a generalization of the classical Rayparable to the core radius, but the results on the first-order
leigh stability condition. Thus the unstable region seen ingrowth rate are not. Since the viscous effect entersras
Fig. 10 is most likely due to the centrifugal instability. This — vk?, viscosity can greatly affect the first-order instability if
supports that the unstable regions in Fig. 7, which appedt appears only for short waves. Finally, nonlinearity is ne-
along the resonance curves, are irrelevant to the centrifugdllected in the present analysis. We should take account of
instability. nonlinear effect in order to deal with the large-amplitude
waves observed in Sullivaet al?*

It is of interest to study how the present results by short-
wavelength analysis are related with those by normal-mode

The linear stability of thin vortex rings is studied in the stability analysis. For Kelvin's ring, the growth raie®)
short wave limit. For both uniform and Gaussian cores the=(15¢/256) for ¢=0 is realizable by parametric resonance
first-order instability is shown to be significant. We should between the axisymmetric and the bending mddestabil-
note that there are differences between the two cases. Fiy with a larger growth rate occurs for interaction of higher
Kelvin's vortex ring the wavevector which gives the maxi- modes, which will be reported elsewhere. For the Gaussian
mum growth rate is non-orthogonal and parallel to thering, the method explored by Bayf/would give a clue.
streamline, while the anglg between the wavevector and Applying this method with required modification, the quan-
the vorticity line is fixed toy*~0.427. For the Gaussian tity C(¢) is shown to be positive for the streamline of the
vortex ring, on the other hand, the wavevector is orthogonamaximal growth rate; it strongly suggests that there is a lo-
to the streamline, while the angpewhich gives the maxi- calized normal mode which corresponds to the maximal
mum growth rate is 0. Kelvin's vortex ring is special in that growth rate found by the present short-wavelength analysis
the particle motion is isochronous up @(¢€) in the vortex  (see Appendix D for the detajls
core, which leads to the exponential instability for non-
orthogonal wavevector. ACKNOWLEDGMENTS
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SAPPENDIX A: SOLUTIONS TO EQS. (2) AND (3) FOR
KELVIN’'S VORTEX RING
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zero, the particle path lies on a plage const. We can take X=r cosf, ey=(1+ersinf)coges)—1,
s=0 without loss of generality. The basic flow in the core is
assumed to be the Rankine vortexCitl). Then the steady €z=(1+ er sin@)sin(es),

Euler equation is solved by asymptotic expansios ia give

5 rs =cosfe,+sinf cog es)e, + sin sin(es)e,
Ur=E§(1—r2)COSH+62 Art g sin 20+ 0(€3), & & sesle ese,
5 7 3 €y= —Sin e, + cosf cog es) e, + cosd sin(es)e,,
_ TR 2 _
U, r+e( 8+8r sinf+ e Ar+16 cos 20

&= —sin(es)e,+coges)e,,

+0(€%),
B with ¢ being the unit vector in théth direction, we obtain
Us=0, Eqg. (12) in this coordinate system after straightforward cal-
in (r,6,s) coordinate system shown in Fig.!2We would  culation. Note that this expression is valid ff<0O(1)
like to work in the local Cartesian coordinate systemthough we require an expression valid just around the plane

(x,¥,2). Using the relations z=0, which is identical withs=0. The matrix( is
0 -1 0 [-ix -y -z ixy A+ X+ ByP- 32— dyz
£=|1 0 O0]|+e| iy Ix 0 | +€| A+ X+ Hy - §7° 3xy —3xz
0O 0 O 2 0 X ~3yz ~3xz ~ayy
+0(€). (A1)

First, we should know the particle motiof(t) up toO(e); since the matrixC does not depend axat the leading order,
O(€?) precision is not required foX(t). Equation(2) is solved as

2

r
sin 20t
ro cost 8
X(t)=| rosinQt | +e| 5 3r5 r} +0(€?), (A2)
0 g—T—gcoszm
0

for an appropriate initial condition, whef@=1 up to the first order.
Next, substituting the particle motion above to E8), we obtain the following equations for local wavevector:

2

o 5 15 )
5r r — —sin20t k,+| —A— —=+ =—=cos 20t | k
Tocosﬂt kx—zosith Ky 32 x 327 32 y
dk —kky . r A 3rg r} ZQt)k e 0t «
—_— — +_____ —_—
T Tosith kx—zocosﬂt k| € 32 2 329 x~ 33" y
2
r
—rgcosQt k, Zosin 20t k,
+0(€d). (A3)

For the initial conditionk(0)= (sin y cose,siny sin ¢,cosy)"+0(e), the solution reads

siny cog Qt+ ¢) rosinx[sing+ sin20t+¢)]
k(t)y=| sinysin(Qt+¢) | +€ fosinx[2cose— 2cog20t+ ¢)]
cosy

—Trgcosy sin()t
rasiny[ — 35cog30t+ ¢)— 2tsinpt cod Q)]
+ €| rgsiny[— %sin3Qt+ ¢)— Ztsingt sin(Qt)]+Bsiny sin(Qt+¢) | +O(€e3), (A4)

racosy[1— 3cod2Qt+ ¢)]
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where B=—A+ 32— (7r§/16) and the angular velocity is A=A (x)

corrected as

Q=1+62(§—2—1r ) (A5)
[ON K

8 32

because of secular terms. TG ) terms ofk have aperi-

odic termst cosQt andt sinQt. For ¢=0 these terms vanish.

For ¢=/2 these terms can be included in tB¢€l) terms by
correcting the angular velocity as

Q'=0+e—— (AB)

so that the wavevectok is periodic up toO(e?). For
¢#0,71/2, k is not periodic up tdD(e?).

Finally, by substituting the solutions above into E),
we obtain Eq.(13) for general¢ and Eq.(16) for ¢=0.

APPENDIX B: GROWTH RATES OF UNSTABLE
SOLUTIONS TO HILL-SCHRO DINGER EQUATION
BY MATHIEU'S METHOD

n
Here we apply Mathieu’'s method to the Hill- HM(O)“EQ
Schralinger equatior(8) to obtain the growth rate. The po-

tential V(t) is expressed as

2
V)= > ane+0(e),
m=-2

a0=A0+ EzBo,

A* =An,

(1) 4 ¢2 %

ax

(2)

A,
=An(x)+ €
X(©

X
X 10

1 *Am
2 Ix?

(xM)?|+0(e)

X©

=AD+ Al + 2AD +O(€°).

Then Eq.(B2) becomes

2
n
[( ,u(o)+ i §Q+ e,u,(l)-f- 62,(1,(2))

+AD + AN+ 2B+ Ag))}(bggy eb(D+ e2b(7))

+e(AD+eA) (b) 1+ bl 1)
+e(A) +eA")) (b3, 1 +eb(3 )

0)14(0
+ 62A(2 )bg )

,+2AODLO) +0(e?)=0. (B3)

At O(1), weobtain

2

A 2=, B4

Without loss of generality, we obtain
p@=0, AP=N20%4, bQ,#0,
b{%=0 for n#N,

in order to have a non-trivial solution.

1. N=1

The most important resonance by the first-order term of

in the cases under consideration. Let us consider a solutiovi(t) occurs wherN=1. In this case, th®(e) relation of

of the type

q(t)=ext Z_ [ exp( i ;m) . (B1)

Substituting the above expressions to ER). we obtain the
following set of linear equations fds,, and w:

n \? 2
,Ll/‘l‘lzﬂ) bn/2+ E, ambn/z,m=0. (BZ)
m=-2

We expandy, w andb,, as
x=xV+exM+ex@+0(e),
p=puO+ eu®M+ 2@+ 0¥,
bno=b{i3+ b3+ b} + O( ).

The coefficientsA,, and B, are also expanded as

Eq. (B3) becomes
1— n2

26+ (inQu®+ AP O+ AL

+A®p©) . =0. (B5)

From the above equations fae= =1 we obtain

Q%(p®)2=|A12—(Af))2,  ImAfh=o0.

Thus the maximum ofu® is attained atA{M=0, which
implies y¥=0 and henc&Y=0; the maximum is
(0)
(1)_|A |
and we have
(0)

et
b{f)=i ALY b®. (B6)
1

Equation(B5) further gives

Downloaded 25 Dec 2007 to 150.69.123.200. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 15, No. 10, October 2003

A,
bi3/2:ﬁ1 b,,=0 for |n|#1,3.
The O(€?) relation of Eq.(B3) is now

1-n?

Q2 +inQuWbD+[inQu@+ (u®)2+ B

+AP 1O+ APb) _ +AQRL  +ADBO)
+AObLO) =0 (B7)
From the above equations for= =1 and Eq.(B6) we have

IA(O)I

+BO+AP-iu®

A (O)l
+BO+ AP +iQu®

o) A AT, o
50, TAPTLE- AP,
which impliesu(?=0. To summarize,
(1) AL 3
o=pu=c¢€ +0(€°). (B9)
2. N=2

The most important resonance by the second-order term

of V(t) occurs wherN=2. In this case, th®(e€) relation of
Eq. (B3) becomes
4-n’ W 4 AD)HO+ ALHO)

+AOLO) . =0. (B10)

From the above equations far=*=2 we obtain
OBYNORY)

Hencex™=0 andA{Y)=0. Equation(B10) further gives

1 0)1 (0 0)L (0 1
b{=—APbO) - AL, b

b,,=0 for |n|#0,2,4.
The O(€?) relation of Eq.(B3) is now

2
—Nn
—7 O+ [In0u®+ B+ AP IR+ APD

0 1
+ AT

From the above equations far= *=2 we obtain

c+ AP +ACI) =0 (B1D)

2

2
40%(u®)2+ Bg°>+Agz>—§|A<1°>|

=|AP = (A?)?2,

For Kelvin's ring, it is possible to choosg!? so thatA{?)
=—BP+2|A%/3 since @A/dx) | @#0. Thus the
maximal growth rate is

Short-wavelength stability analysis 3161

1
o®=p=e 55 |AP = (AP)?+0(€).

APPENDIX C: SOLUTIONS TO EQS. (2) AND (3) FOR
A GENERAL LEADING-ORDER BASIC FLOW UP
TO THE FIRST ORDER

Here we describe solutions to Eq®) and (3) for a
general leading-order basic flow, which are required for ob-
taining the first-order growth rat24). We use the coordinate
system ¢, 6,s) since singularity does not arise up to the first
order.

The matrixL is represented as

L O) o1
S\ot o) €Y
o U
r
E =
o du®
dr
do® 1
drr cosé —F(U§1)+U(91))sm0
+el
‘ dugl) 1 (1 (1
5 Sine F(US )+0M)coso
+0(€?), (C2)
£,=eU® coso+0(€?), (C3)
Il 0
where
_ 1. e
0=, TP =—>+ruPm).

First, we solve the particle motion. Equati@®) is writ-
ten as

R_ 90
d 7 Td

The solution is

oo
R(t)=rq+ eQ—r@sin(Q(o)t) +0(ed),
0(t)=00t+0(e).

Since the matrixC does not depend ofiat the leading order,
the O(e€) term of © is not required.

Next, we solve the wavevector equati@). It is written
as

d

a‘F kL:_‘CIk ,

0 —-Q
Q 0

in the present coordinate system. SubstitutR{g) and© (t)
to the above equations, the wavevector is found to be
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siny [ d0 U, W ]
_ (0) _ (0)
siny a®| o 1T g oy, SneT
k)= 0 |+e sinyO® +0(€),
cos — —7o,— cog Q)
X QOr,

—rgcosy sin(Q )

for the initial condition k(0)=(siny,0,cosy)"™+O(e). The  with corrections of higher order ik~ 1. The solution above

functions inO(€) terms are evaluated atrg. is localized within a region of widttO(k~*?) around the
Finally, by substituting the solutions above into Ef) streamline = iy, for which the growth rate reaches the
we obtain Eq.(22). maximum. Introducing the scaled streamline coordinate
=kY2(p— i)o), Eq. (D4) reduces to
aU, i
'\AA%FE)EENSDM D: ON THE EXISTENCE OF NORMAL (f1-V.) 9n  1ltersing Sing U3
at the leading order. This together with E§.3) gives
Here we discuss the existence of normal modes which IU
correspond to the first-order instability for the Gaussian vor-  P=—(1+er sin6)[2 () +U-V, ]| (f;- V) —1.
tex ring. We proceed in the same way as in B&flyyho a7

discussed the existence of localized unstable modes f@ubstitutingP into Eq.(D1), we obtain
centrifugal-type instability. The key issue is to calculate

C(¢) defined below by Eq(D5); since C(¢) should be — Z3"(o) 72— S, |U;
modified for the present case, we briefly describe its deriva 2
tion. ; T
=(1+ersing)(f;-V 2 (o) +U-V
For the Gaussian ring, the first-order instability has the (1+e NIV )2(o) ]
maximum growth rate g¢=0, which implies the wavevector ) 9°U,
is in the direction ofs-axis. This suggests that the corre- X(1+ersing)(f;-V, ¢) I

sponding unstable mode can be constructed in the similar. hU-V. U.=0. A . h i
way with Bayly?? Let us consider a normal-mode perturba- with U-V, U, =0. Averaging over the streamling= i, we

tion obtain
. ~ . 1 _ P
u=(t(r,0),p(r,0))expiks+St)+c.c., - 52”(%) 7°—S;|U1(7)=C(1) (9—772U1( 7),
wherek>1. We expandi as
. where
U=, Uf [y in6)(f]
~ ilis C(lﬁ)—mfo T{(l"‘EYSInlg)( 1'VL‘//)
wheref; is the Floquet characteristic vector figfdThe equa- X[ (o) + UV, J(1+ersind)(f1-V, ) }xr
tion for the perturbation reduces to (D5)
~ t ~
[S=2()+U-V Jty=—f;-V,P, (D) \which coincides with the expression in Ba$yf e=0.
[S+3()+U-V, Tl,= _f; v.P, (D2) We calcula.tei'?(t//) up to.O(e). The components of Flo-
quet characteristic vector fieldg andf, turn out to be
(SHUV, =~ 1 (D3) N H. 300
8™ 1+ersing"’ fi,=sin EQ T —52[90]200 EQ 7,
e ik 1 (1
(Vi+eg): (Usfy +Tofy) + 37— —mUs =0, (D4) fla:ng(EQ(O)T)

where (i) is the positive Floquet exponent corresponding
tof,, V,=e d,+r le,d, andf;r is the adjoint Floquet char- +e
acteristic vector field. Note that owing to the curvature effect

M, G| (3

there are some differences from the equations derived by H_ G\ (1
Bayly.??> We assume the same scalingkiwith Bayly?? +e A0~ 29(0))5”1(59(0)7),
TJ]_:Ul, Uzzk_lUZ, U3:k_l/2U3, 1 H 3
for=cog = Q07|+ ez—ssin =007
P=k 3P, S=3(yo) -k 'Sy, z 2 2[Q@1277 2 '
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1 1
f29= — Zsin<§Q(°)7)

3H, Gy, 3
_E( 8[9(0)]2_ 29(0))(:0{59( )’T
H G, 1
_6(4[9(0)]2_ 29(0))00{59( )T),
f1s=f25=0,

as functions ofr on the streamliney= ;. Here

o — Q, (20® dU%O)_Uﬁl) 20(M
=200 000 dr ro Mo
IE do
2 dr
S oW dZU(GO)+ om dul® U$1)+U$,1)
22771200 dr2 T 2r,0@ dr 2rp  2r
1 dO{H Qo
_ _ (1) (1)
T ar 4rOQ(°)(Ur Uy,

H.=(Q®+0/)G,.+200G,. ,

0Oy =uWrcoss, TP(r)=uPssing,

where all functions of in the above are evaluatedratr
and Q= (209 ) 2= (/2 for the present case. Using
these expressions, we obtain

37 41y 59(ro)

512 25615 12&5U'Y)?

C(iho) = [UPT3

41
+ 2
2562

fro o)
o HUDNHE T |

(D6)
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