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Pressure effects on anSÄ 1
2 Heisenberg two-leg ladder antiferromagnet Cu2„C5H12N2…2Cl4
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H. Deguchi and S. Takagi
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~Received 17 August 2001; published 7 February 2002!

The pressure effects on anS51/2 Heisenberg two-leg ladder antiferromagnet~H2LLAF! Cu2(C5H12N2)2Cl4
have been investigated through magnetic and thermal measurements under pressures up to 10 kbar. The
exchange interactions along the rung and leg hardly change under pressures, but the pressurization induces
paramagnetic spins and magnetic order. This magnetic order is a pressure-induced one observed in a quantum
spin system with an energy gap. The amount of induced paramagnetic spins increases almost in accordance
with the square of pressure. The magnetic field dependence of the pressure-induced Schottky-type heat capac-
ity suggests that the induced paramagnetic spins are not completely free, but weakly correlate with the
H2LLAF system. A magnetic anomaly of the heat capacity has been observed around 2.6 K forP
>8.5 kbar, where more than 20% of the paramagnetic spins are induced. This anomaly is considered to be
intrinsic to the magnetic order of the H2LLAF system, which seems to be triggered by the modulation of the
staggered moment due to local defects. Even below the magnetic ordering temperature, the paramagnetic spins
coexit with the magnetic order of the H2LLAF system. These pressure effects are similar to the impurity
effects in another typicalS51/2 H2LLAF SrCu2O3 doped with nonmagnetic Zn21 ions.

DOI: 10.1103/PhysRevB.65.104405 PACS number~s!: 75.50.Ee, 75.40.Cx, 81.40.Vw, 75.10.Jm

I. INTRODUCTION

Low-dimensional Heisenberg antiferromagnetic~HAF!
systems show a variety of quantum effects such as the
Haldane gap1 and the spin Peierls transition.2 Isotropic one-
dimensional~1D! and two-dimensional~2D! HAF quantum
spin systems withS51/2 have continuous eigenstates above
the ground state. The ladder system, which is an intermediate
system between 1D and 2D ones, from a crystallographical
point of view, has a quantum coherent state with an energy
gap~D! above the ground state at low temperatures.3–17 This
gap originates from the strong intradimer and small inter-
dimer couplings. The Hamiltonian of theS51/2 Heisenberg
two-leg ladder antiferromagnet~H2LLAF! is expressed as

H52J'(
i

N/2

S1,i•S2,i2Ji(
i

N/2

~S1,i•S1,i 111S2,i•S2,i 11!,

~1!

whereJ' andJi denote, respectively, the interactions along
the rung and leg,Sn,i is the Heisenberg type of spin operator
with spin value 1/2, andN represents the total number of
spins. The magnitude of the gap is approximated asD.uJ'

2Jiu.10 The two-leg ladder has an energy gap, while the
three-leg one does not. The compounds SrCu2O3 ~Refs. 3–5!
and Cu2(C5H12N2)2Cl4 ~CuHpCl! ~Refs. 6–17! have been
recognized as representative compounds of theS51/2
H2LLAF systems.

SrCu2O3 has a large energy gapD/kB5420 K, and its
magnetism has been intensively investigated.3,4 In the Zn-
doped system Sr(Cu12xZnx)2O3 , an increase of the para-
magnetic susceptibility with increasingx has been observed
and, furthermore, antiferromagnetic order has been detected
in systems of 0.01,x,0.08.5 Fukuyamaet al. have ex-

plained that this ordering is triggered by the modulation of
the staggered moment induced by the local randomness.18

The gap in CuHpCl is relatively small (D/kB510.5 K),
and magnetic properties of the compounds, especially
under magnetic fields, have been studied through various
experiments such as magnetic susceptibility,7,8,10,13,14

magnetization,7,8,10,13,14 heat capacity,7,10,16,17 NMR,9,11,12

electron spin resonance~ESR!,13–15 and neutron scattering
measurements.10 From these experiments, the values of the
exchange interactions and the critical field (Hc) for quench-
ing the energy gap have been estimated asJ' /kB5
213.2 K, Ji /kB522.4 K, and Hc57.5 T, respectively.
Furthermore, through the thermal measurements in the exter-
nal magnetic fieldH above 9 T(.Hc), field-induced mag-
netic ordering has been observed around 0.7 K.10,16,17Corre-
sponding to these experimental results~Refs. 10, 16, and 17!,
some theoretical studies of the thermodynamic properties un-
der magnetic fields have been also reported.19,20

Motivated by the above studies of CuHpCl under mag-
netic fields, we have been interested in the pressure effects
on J' , Ji , andD in CuHpCl. We anticipated the following
phenomena: Pressurization might induce anisotropic inter-
molecular shrinkage, which would changeD.uJ'2Jiu. The
quenching ofD by pressurization would induce magnetic
ordering due to interladder interactions at zero magnetic
field. In this paper, we report the pressure effects on theS
51/2 H2LLAF CuHpCl through magnetic and thermal mea-
surements under pressures up to 10 kbar. The experimental
results indicate that the pressure~1! hardly changesJ' andJi

and ~2! induces paramagnetic moments and magnetic order-
ing. As for the quantum spin system with an energy gap,
field-induced magnetic order has been already observed in
some compounds such as CuHpCl~Refs. 10, 16, and 17! and
the Haldane compounds,21,22 but the pressure-induced one is

PHYSICAL REVIEW B, VOLUME 65, 104405

0163-1829/2002/65~10!/104405~7!/$20.00 ©2002 The American Physical Society65 104405-1



presented in this paper. These effects of pressure on CuHpCl
are very similar to impurity effects on SrCu2O3 doped with
nonmagnetic Zn21 ions.

Explanations about the sample and experimental appara-
tus will be given in Sec. II. In Sec. III, the experimental
results will be shown and analyzed. In Sec. IV, a model will
be proposed in order to explain the experimental results.

II. EXPERIMENTS

The preparation of Cu2(C5H12N2)2Cl4 has been followed
by a procedure described elsewhere.6 This compound crys-
tallizes in the monoclinic space groupP21 /c, and the lattice
parameters at room temperature area513.406(3) Å, b
511.454(2) Å,c512.605(3) Å, andb5115.01(2)°.6 The
copper binuclear unit forming the dimer stacks up along the
@101# direction. The dimers form an infinite ladder structure
through the hydrogen bond of Cu-Cl-H-N-Cu along the
@101# direction. The intradimer Cu-Cu distance is 3.422 Å,
and the interdimer distance along the chains is 7.00 Å. The
adjacent ladders are held together by van der Waals forces,
and the distance between two adjacent ladders exceeds 8 Å.
The interladder interaction is expected to be weak.

The pressure was produced by two types of CuBe clamp
cells with the following inner and outer diameters: 3–7 mm
for the magnetic23 and 6–12 mm for the thermal24,25 mea-
surements. As the pressure transmitting medium, fluorine oil
was used for the magnetic and Apiezon-J grease for the ther-
mal measurements. Prior to this experiment, the relation be-
tween the load at room temperature and the pressure at low
temperatures was calibrated through the change of the super-
conducting transition of metallic Pb by pressurization.26

The magnetization~M! curve against the magnetic field
H<5 T at temperatureT51.7 K and dc magnetic suscepti-
bility ~x5M /H, H50.1 T, and 1.8 K<T<100 K! were
measured with a superconducting quantum interference de-
vice ~SQUID! magnetometer~Quantum Design MPMS-5S!
in the pressure region up to 8 kbar. A powder sample of
128.0 mg was used for this magnetic measurement.

The heat capacity was measured with the adiabatic heat-
pulse method in the temperature region from 0.8 to 10 K.
The samples of CuHpCl~646.9 mg! and Apiezon-J grease
~233.6 mg! were mixed well to accelerate the thermal relax-
ation. The magnetic heat capacity (Cp) of CuHpCl was de-
rived, taking the pressure effects on the heat capacity of
Apiezon-J grease and the lattice heat capacity of CuHpCl
into consideration.24 The lattice heat capacity at each pres-
sure was estimated by the Debye function adjusted so the
total magnetic entropy forS51/2 was preserved.

At pressureP59.7 kbar, which is the maximum pressure
in the present series of experiments, the real part of the ac
susceptibility (x8) was also measured simultaneously with
the heat capacity by use of an ac bridge~the ac fieldHac
50.1 Oe peak-to-peak and the frequencyf 515.9 Hz!.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Magnetic measurement

Figure 1 shows the magnetization~M! curve up toH
55 T at T51.7 K for P50 and 8 kbar. At ambient pressure
(P50 kbar), the development ofM in the magnetic field
regionH<5 T is suppressed by the existence of the energy
gapD/gmB57.5 T. It is noted, however, that the result forM
at P58 kbar shows the paramagnetic contribution without
any behavior typical for the gap system.8,14

For simplicity, we analyze the result forM at P58 kbar
as the summation of the H2LLAF contribution and the para-
magnetic one with the Brillouin function (BS):

M ~P58 kbar!5aM ~P50 kbar!

1~12a!NgmBSBS~gSmBH/kBT!, ~2!

whereN is the Avogadro number,mB the Bohr magneton,g
Lande’s g factor, kB the Boltzmann factor, anda (0<a
<1) the amount of the spins in the H2LLAF system. Here
the change ofJ' andJi by pressurization is ignored to sim-
plify the analysis, and the contribution of the H2LLAF sys-
tem is approximated witha M (P50 kbar). The quantity
(12a) corresponds to the amount of the paramagneticS
51/2 spins, which are magnetically separated from the
H2LLAF system. We usedg52.08, referring to the result of
the ESR of the powder sample by Deguchiet al.14 Equation
~2! with S51/2, g52.08, anda50.50 mol reproduces well
the result ofM (P58 kbar) as shown in Fig. 1. This analytic
result implies that 50% of spins behave paramagnetically and
the residual 50% contribute to the dimer coupling in the
ladder atP58 kbar.

Figure 2 shows the pressure dependence of the magnetic
susceptibility~x! of CuHpCl up toP58 kbar. At ambient
pressure, an exponential-like drop below 6 K reflects the
existence of the energy gap, and a broad hump around 7 K
indicates the development of short-range ordering~SRO!.
Here the temperature is given in logarithmic scale. This
result is quantitatively consistent with previous
studies,7,8,10,13,14and the overall temperature dependence of
x is reproduced by the series expansion for theS51/2
H2LLAF ~Ref. 27! with g52.08, J' /kB5213.2 K, and
Ji /kB522.4 K. With increasing pressure, the development

FIG. 1. Magnetization~M! vs the magnetic field~H! of CuHpCl
at T51.7 K for P50 and 8 kbar. The solid and dotted curves show
data retrieved from Eq.~2! with S51/2, g52.08, and a
50.47– 0.54 mol.
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of the paramagnetic component becomes obvious, similarly
to the results forM, and tends to mask the intrinsic
exponential-like drop ofx in the S51/2 H2LLAF system.
There is no trace of theS51/2 H2LLAF system in the result
for P58 kbar.

Based on the same assumptions as those in the analysis of
M, we analyze the results forx in Fig. 2 with the following
equation including the Curie law:

x~P!5ax~P50 kbar!1~12a!
Ng2mB

2S~S11!

3kBT
, ~3!

whereg52.08 andS51/2. As shown in Fig. 2, each result
for x under pressure is well reproduced with Eq.~3! using
the following value ofa: a50.96 mol (P52 kbar), 0.89
mol ~4 kbar!, 0.78 mol~6 kbar!, and 0.50 mol~8 kbar!. The
value ofa50.50 mol atP58 kbar, is quantitatively consis-
tent with that inM.

In this section, we have analyzed the results forM andx,
based on the following two assumptions:~1! The free para-
magnetic spins are induced by pressures, and~2! the relative
changes of exchange interactions along the rung and leg in
the ladder system are very small. The assumption~2! will be
justified in the next subsection. However, the result forCp
will suggest that the induced paramagnetic spins are not
completely free, but feel some magnetic exchange fields.

B. Thermal measurement

Figure 3 shows the pressure dependence of the magnetic
heat capacity (Cp) of the present compound. At ambient
pressure, the characteristic exponential behavior ofCp is
seen below 4 K and the broad hump due to the SRO of
theS51/2 H2LLAF lies at around 5 K. The overall behavior
of Cp can be well reproduced by the theoretical calculation

of Gu et al. for the S51/2 H2LLAF CuHpCl with J' /kB
5213.2 K andJi /kB522.4 K ~see the solid curve in Fig.
3!, as reported earlier.10,19

First, we focus on the pressure effect on the broad hump
around 5 K. The application of pressure decreases the height
of the broad hump, while its position is little changed. This
suggests that exchange interactions along the rung and leg
hardly change under pressure and the amount of spins~a! in
the S51/2 H2LLAF system decreases. This result justifies
the assumption~2! in the analyses ofM andx in the previous
subsection. Thus we estimatea at each pressure by analyzing
the pressure dependence of the broad hump ofCp at around
5 K with the following equation:

Cp~P!5aCp~P50 kbar!. ~4!

It is recalled here that the paramagnetic spins usually should
not contribute toCp at zero external field. The pressure de-
pendence ofa estimated by Eq.~4! is shown together with
those estimated fromM and x in Fig. 4. The results fora
from Cp , M, andx are quantitatively consistent in the pres-

FIG. 2. Pressure dependence of magnetic susceptibility~x! of
CuHpCl up to P58 kbar. The horizontal axis is logarithmically
scaled. Four solid curves represent data obtained from Eq.~3! with
S51/2, g52.08, and the following values ofa: ~a! a50.96 mol,
~b! a50.89 mol, ~c! a50.78 mol and~d! a50.50 mol.

FIG. 3. Pressure dependence of heat capacity (Cp) of CuHpCl
at zero magnetic field forP50 kbar ~s!, 4.1 kbar~3!, 7.0 kbar
~h!, 8.5 kbar ~d!, and 9.7 kbar~m!. ~a! and ~b! stand for the
theoretical calculations of Guet al. @Eq. ~4!# for a51.00 and 0.70
mol. The inset figure shows the results below 3.6 K forP
>8.5 kbar.

FIG. 4. Pressure dependence ofa from M, x, and Cp . The
dotted curve expressesa(P)51 – 3.431023P2.
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sure region below 6 kbar. The estimation ofa from Cp is,
however, more reliable than those fromM andx. The analy-
sis of the SRO hump inCp directly estimates the amount of
the spins in the H2LLAF system. On the other hand, the
values ofa estimated fromM andx seem to be rather am-
biguous, because they are determined by the dominant para-
magnetic component (12a) under the assumption that the
paramagnetic spins are free spins. Later we will see that they
are not completely free and that atP58 kbar the paramag-
netic component (12a) has been overestimated in the
analyses ofM andx. The pressure dependence ofa from Cp
is best fitted bya(P)512(3.460.2)31023P2 in the pres-
sure region up to 10 kbar.

Next, we mention the pressure effects onCp below 3 K,
where the change ofD might be well seen. Two anomalies in
Cp newly appear at aroundT51.5 K for P>7 kbar andT
52.6 K for P>8.5 kbar, as shown in Fig. 3. We investigated
the magnetic field effects onCp to understand the character
of the two anomalies. Figure 5 shows the magnetic field
dependence ofCp at P54.1 kbar@Fig. 5~a!#, 7.0 kbar@Fig.
5~b!#, and 8.9 kbar@Fig. 5~c!#. The solid and dashed curves

stand for the theoretical calculations of Guet al.at H50 and
5 T,19 respectively, using the same values of the exchange
interactions. According to Eq.~4!, the above theoretical data
are multiplied by the following values:a50.98 mol for
P54.1 kbar, 0.88 mol forP57.0 kbar, and 0.73 mol forP
58.9 kbar. At P54.1 kbar, the change of the low-
temperature behavior from the exponential to the linear tem-
perature dependences indicates the field-induced suppression
of D, and this is qualitatively consistent with the results of
the field dependence at ambient pressure, reported
earlier.10,16,17At P57.0 and 8.9 kbar, a broad anomaly ap-
pears at around 1.5 K at zero magnetic field, but it tends to
be masked by the above changes of the initial slope due to
the suppression ofD under the magnetic fields. This mag-
netic field effect is essentially different from that of the field-
induced magnetic order reported at ambient pressure.10,16,17

This anomaly is probably not related to any magnetic long-
range ordering, and its origin will be mentioned later. Fur-
thermore, atP58.9 kbar, one more anomaly appears at
aroundT52.6 K. This anomaly survives under large mag-
netic fields, as shown in Fig. 3~c!, and shows a magnetic
field dependence different from that seen in the anomaly at
around 1.5 K. We consider that it reflects some rigid mag-
netic ordering and will also be discussed later.

In order to analyze the above two anomalies in more de-
tail, we need to separateCp into the H2LLAF componentCp
~ladder! and the restDCp5Cp2Cp ~ladder!. As for Cp ~lad-
der!, the theoretical calculations of Guet al. are used for
each magnetic field, as shown in Fig. 5. Figure 6 showsDCp
under H50 and 5 T forP54.1 kbar @Fig. 6~a!#, 7.0 kbar
@Fig. 6~b!#, and 8.9 kbar@Fig. 6~c!#. The solid and dashed
curves show the Schottky-type heat capacity~SHC! for a
two-level model, which is equivalent to the free-spin model
of S51/2 under some magnetic fields@see Fig. 7~a!#. At first,
even atP54.1 kbar, we notice the existence of a smallDCp
at around 1 K even at zero magnetic field. ApplyingH
55 T, the anomaly ofDCp shifts toward higher tempera-
tures, maintaining about the same magnitude. This is a char-
acteristic of the two-level SHC system and surely originates
from the existence of the paramagnetic component, as men-
tioned in the results forM and x. The results forDCp for
H50 and 5 T atP54.1 kbar are reproduced by the SHC
model for theS51/2 spins of 0.06 mol under the assumed
magnetic fieldsH851.060.2 and 5.560.5 T, respectively.
At zero magnetic field, however, the heat capacity due to the
free spins should be zero, and there is a deviation of about 1
T between the actual external field~H! and the assumed mag-
netic field (H8) @see Fig. 7~b!#. These results suggest that the
pressure-induced paramagnetic spins feel an exchange field
(H int5H82H). The similar result has also been reported in
Sr(Cu12xZnx)2O3 , where Azumaet al. reported that the
impurity-induced paramagnetism obeys the Curie-Weiss law
with a small negative Weiss constant~.22 K!.5 We suppose
that the exchange field of CuHpCl originates from the mag-
netic correlation between the paramagnetic spins and spins
on the H2LLAF system. The behavior seen atP54.1 kbar
becomes more pronounced atP57.0 and 8.9 kbar as seen in
Figs. 6~b! and 6~c!. The amounts of the induced paramag-
neticS51/2 spins atP57.0 and 8.9 kbar are estimated to be

FIG. 5. Magnetic field dependence ofCp of CuHpCl for P
54.1 kbar~a!, 7.0 kbar~b!, and 8.9 kbar~c!. The solid and dashed
curves show the theoretical calculations of Guet al. @Eq. ~4!# for
H50 and 5 T witha50.98 mol~a!, 0.88 mol~b!, and 0.73 mol~c!,
respectively.
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0.15 and 0.22 mol, which are close to the value of (12a)
estimated in Fig. 5 for each pressure. This paramagnetic
anomaly inDCp shifts toward higher temperatures with in-
creasing pressure, and this indicates that theH int is enhanced
by pressure. The magnetic correlation between the paramag-
netic spins and spins of the ladder also seems to be enhanced
by pressures. Figure 8 shows the pressure dependence of
H int , which has been estimated for bothH50 and 5 T. The
value of H int at H55 T is slightly larger than that atH
50 T, but qualitatively shows the similar pressure depen-
dence. TheH int seems to saturate above 7 kbar. The magni-
tude of saturated H int above 7 kbar (mBH int /kB
;1.0– 1.3 K) is as much as half of the exchange interaction
along the leg of the ladder. The deviation between the values
of a estimated fromCp and those fromM andx ~Fig. 4! may
come from overestimating the paramagnetic component (1
2a) due to ignoring the effect of the exchange field in the
latter cases.

Next, we consider the second anomaly ofCp at around
2.6 K, which appears forP>8.5 kbar. AtP58.9 kbar, we
can extract the anomaly at around 2.6 K by subtracting the
paramagnetic SHC fromDCp , as shown in Fig. 6~c!. The
estimated magnetic entropy for the second anomaly atP
58.9 kbar is 9.431022 J/K mol, which is 1.6% of the total

entropy for S51/2. This anomaly survives even underH
55 T, at around the same temperature of 2.6 K. We assume
that it is probably due to the magnetic long-range ordering of
the H2LLAF system.

Figure 9 shows the temperature dependences ofx8, Cp ,
andDCp under zero field atP59.7 kbar, which is the maxi-
mum pressure in the present series of experiments. From the
analyses ofCp and DCp , the amount of the induced para-
magnetic spins atP59.7 kbar is 0.30 mol, and the entropy
for the second anomaly at around 2.6 K is 9.8
31022 J/K mol ~1.7% of the total entropy forS51/2!. How-
ever, thex8 has no anomaly at around 2.6 K and shows a

FIG. 6. Pressure-induced heat capacityDCp5Cp2Cp ~ladder!
underH50 T ~n! and 5 T~m! for P54.1 kbar~a!, 7.0 kbar~b!,
and 8.9 kbar~c!. The solid and dashed curves stand for the
Schottky-type heat capacities under the assumed magnetic fieldsH8
with the following amount ofS51/2 spins:~a! 0.06 mol for H
50 and 5 T,~b! 0.15 mol forH50 and 5 T, and~c! 0.22 mol for
H50 T and 0.33 mol forH55 T.

FIG. 7. ~a! Energy level~E! of the free paramagnetic spin with
S51/2 under magnetic field~H!. The energy deviation between two
energy levels ofSz51/2, 21/2 is shown asd5gmBH. ~b! Energy
level of the paramagnetic spin withS51/2 feeling the exchange
field (H int). The assumed magnetic fieldH8 is H85H1H int . Even
at H50, there is the energy deviation ofgmBH int .

FIG. 8. Pressure dependence of exchange fieldH int under exter-
nal fieldsH50 and 5 T. The solid lines are guides for the eye. The
exchange field seems to saturate aboveP57 kbar.
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temperature dependence proportional to 1/T, as seen in the
solid curve~c!. On the other hand, thex8 slightly deviates
from the Curie law at around 1.4 K, where the paramagnetic
anomaly ofCp appears supposedly due to an antiferromag-
netic exchange fieldH int .

Here we define the magnetic ordering temperatureTN , at
which the second anomaly ofCp mentioned above appears,
and give its pressure dependence in Fig. 10. Magnetic order
appears above 8.5 kbar, where paramagnetic spins of more
than 0.2 mol are induced and the exchange field saturates.
The pressurization decreases the number of the interaction
paths via the increase of the paramagnetic spins in the
H2LLAF system, but simultaneously modulates the stag-
gered moments in the H2LLAF system. ThereforeTN may
show no significant enhancement by pressures (P
>8.5 kbar).

IV. DISCUSSION

In the Zn-doped system of theS51/2 H2LLAF SrCu2O3

@Sr(Cu12xZnx)2O3#, the increase of the paramagnetic sus-
ceptibility with increasingx has been observed and, further-
more, antiferromagnetic order has been detected in the doped
region of 0.01,x,0.08.5 Fukuyamaet al.have theoretically
explained that the magnetic order is triggered by the modu-
lation of the staggered moment induced by the local
randomness.18

Our experimental results of the pressure effects in CuH-
pCl are very similar to the above-mentioned doping effects
in SrCu2O3. We propose the following model to explain the
pressure effects on CuHpCl accompanying the pressure-
induced paramagnetic behavior and a magnetic ordering, re-
ferring to the above model of Fukuyamaet al.18. At first,
pressurization may apply a local strain to the ladder of
CuHpCl and destroy the dimer coupling, inducing the para-
magnetic spins magnetically separated from the H2LLAF
system~see Fig. 11!. The separated paramagnetic spins are
not completely free and have a magnetic correlation with the
H2LLAF system. The defects in the H2LLAF system bring
about a modulation of the staggered moment, whose devel-
opment triggers magnetic order in the H2LLAF system un-
der high pressure. But pressurization also decreases the in-
teraction paths and, therefore, the magnetic ordering
temperatureTN may be not significantly enhanced by further
pressurization. The magnetically separated paramagnetic
spins are not directly related to the magnetic order, and para-
magnetism and long-range order of the H2LLAF system
probably coexist belowTN .

In the study of doping effects in CuHpCl with Zn21 im-
purities, the increase of the paramagnetic susceptibility with
Zn21 concentration~up to 11.7%! has been observed by
Deguchiet al., but no anomaly of magnetic order has been
observed yet.14 The doped state with the Zn21 concentration
of about 10% corresponds to a pressurized state underP
55 – 6 kbar, where magnetic order has not been observed.

Finally we have checked the reversibility of the sample
for pressurization by a powdered x-ray diffraction experi-

FIG. 9. Temperature dependences ofCp ~s!, DCp ~m!, andx8
~d! under zero magnetic field atP59.7 kbar. The dashed curve~a!
stands for the theoretical calculations of Guet al. @Eq. ~4!# for a
50.70 mol. The dotted curve~b! is the Schottky-type heat capacity
for the S51/2 spins of 0.30 mol andH852 T. The solid curve~c!
shows the temperature dependence of 1/T, corresponding to Curie
law.

FIG. 10. Pressure dependence of magnetic ordering temperature
TN , which appears above 8.5 kbar and is slightly enhanced by the
further pressure. The solid and dashed lines are guides for the eye.

FIG. 11. ~a! A schematic view of theS51/2 H2LLAF system.
The open circle stands for the spinS51/2. The solid and dashed
lines represent the interactions along the leg and rung, respectively.
~b! A possible view of CuHpCl under pressures. The spatial pattern
of the staggered magnetization in the two-leg ladder system and the
paramagnetic spin magnetically separated from the two-leg ladder
system are schematically drawn.
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ment, as well as measuringM, x, andCp , again after releas-
ing the pressure down to ambient pressure. The reversible
results have been obtained in the considered pressure region.
We have also been trying to do a structural analysis of
CuHpCl under pressure to get structural information about
the magnetically separated paramagnetic spins, but the
analysis is very difficult due to the low structural symmetry
of CuHpCl.

V. CONCLUSION

The pressure effects on anS51/2 Heisenberg two-leg lad-
der antiferromagnet CuHpCl have been investigated through
magnetic and thermal measurements up to 10 kbar. The ex-
change interactions in the ladder hardly change under pres-
sure. But we observed that the pressurization induces the
paramagnetic spins and magnetic ordering in the H2LLAF
system. This magnetic order is the first pressure-induced one
observed in the quantum spin system with the energy gap.
The amount of induced paramagnetic spins increases almost
in accordance with the square of pressure. The induced para-
magnetic spins are not completely free, but probably have
the magnetic correlation with the H2LLAF system. Further-
more, the anomaly of the magnetic heat capacity appears at
around 2.6 K atP>8.5 kbar, where the paramagnetic spins
of more than 20% are induced and they feel the exchange

field of about 1 K. We consider that it is relevant to the
magnetic order in the H2LLAF system. These pressure ef-
fects are similar to the result of nonmagnetic impurity effects
in SrCu2O3. We assume that applying pressure in CuHpCl
locally destroys the dimer coupling and produces paramag-
netic spins, producing local defects in the ladder just as in
the case of doping effects. The local defects induce a modu-
lation of the staggered moment in the ladder, whose devel-
opment may trigger magnetic order in the H2LLAF system
under high pressures. The magnetic long-range order of the
H2LLAF system and paramagnetism are slightly dependent,
but coexist below the magnetic ordering temperature. Analy-
sis of the data of the crystal structure under pressure is cur-
rently underway.
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