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An estimate for derivative
of the de la Vallée Poussin mean

Kentaro IToH] Ryozi SAKAT*™ and Noriaki SUZUKIT***

Abstract
The de la Vallée Poussin mean for exponential weights on (—oo,00) was
investigated in [6]. In the present paper we discuss its derivatives. An estimate
for the Christoffel function plays an important role.

1. Introduction

Let R = (—o00,00). We consider an exponential weight

w(x) = exp(=Q(z))

on R, where @) is an even and nonnegative function on R. Throughout this paper we
always assume that w belongs to a relevant class F(C?+) (see section 2). A function
T =T, defined by

2Q'(x)
Qx)
is very important. We call w a Freud-type weight if T is bounded, and otherwise, w is

called an Erdos-type weight. For x > 0, the Mhaskar-Rakhmanov-Saff number (MRS
number) a; = a;(w) of w = exp(—Q) is defined by a positive root of the equation

2 [t a;u@’ (azu)
T
/o

(1.2) T=_ (1= u2)12 u.

(1.1) T(x):= x#0

When w = exp(—Q) € F(C?+), Q' is positive and increasing on (0, ), so that
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(1.3) lim a, =00 and lim a, =0
T—00 x——+0

and

(1.4) lim o _ 0 and lim Qo _ 00
r—00 I z—+0 T

hold. Note that those convergences are all monotonically.
Let {p,} be orthogonal polynomials for a weight w, that is, p,, is the polynomial
of degree n such that

/pn(x)pm(x)w(x)2dx = Smn-
R

Note that when w(x) = exp(—|z|?), then {p,} are Hermite polynomials.
For 1 < p < 0o, we denote by LP(I) the usual LP space on an interval I in R. For
a function f with fw € LP(R), we set

sMﬁ@%—i}Mﬁm@)mebmﬂ—/fwmwwwmt
k=0 R

for n € N (the partial sum of Fourier series). The de la Vallée Poussin mean v, (f) of
f is defined by

2n

W@ =1 3 ()

j=n+1
In [6], we proved the following; Let 1 < p < oo and w € F(C?+). Assume that

(1.5) T(a,) < C (")2/3

Qnp

for some C' > 1. Then there exists another constant C > 1 such that if fw € LP(R),
then

w
(1.6) o () pizaller@) < Cllfwloe@)
holds for all n € N, and if T'/*fw € LP(R), then

(L.7) [on(fwll o) < CITY* ful Lo (g

holds for all n € N. It is also known that

, W n
(18 [P ]y <€ () NPulioce

for all P € P,, where P, is the set of all polynomials of degree at most n (see [5,
Theorem 6.1]). Since v, (f) € Pan—1, combining (1.7) with (1.8), we have

n
<C <> 1TV fwl Lo w)
Lr(R) [o7%%

(1.9) ‘ v

(D773
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with some C > 1. Here we use the fact that a, and as, are comparable (see Lemma
2.1 (1) below). The inequality (1.9) suggests us the following: if fw € LP(R), then

n
§0()nﬁuMw
L?(R) an

(1.10) ‘

w
and, if T3/4 fw € LP(R), then

n
(1) e 0llingey < € (2 ) 1T/ Pl

holds?
In the present paper, we will show that (1.10) holds for all 1 < p < oo and (1.11)

is true for 2 < p < oo at the least. More generally, as for the jth derivative vgj )( f) of
vn(f), the following theorems are established.

Theorem 1.1. Let k > 2 be an integer and let w € Fy(C*+) with 0 < A <
(k+3)/(k+2), and let 1 < p < co. Then there exists a constant C' > 1 such that if
1<j <k, and if fw € LP(R), then

J
. w n
(1.12) ||U§LJ)(f)WHLP(R) <C <an> | fwll Lew)

holds for all n € N.
The definition of a class Fy(C?+) is given in section 2.

Theorem 1.2. Let £ and w be as in Theorem 1.1, and let 2 < p < co. Then
there exists a constant C' > 1 such that if 1 < j < k, and if T(2I+D/4 fyy € LP(R), then

J
. n .
(1.13) o (Dl <€ () IO ol

n

holds for all n € N.

Theorem 1.3. Let k£ and w be as in Theorem 1.1, and let 1 < p < 2. Then there
exists a constant C' > 1 such that for every 1 < j < k and every T +1/4 fyy € L2(R),
we have

J
. n _ .
(1.14) ||v£LJ)(f)w||Lp(R) <C <a) a512 P)/(QP)||T(23+1)/4fw||L2(R)

for all n € N.

We note that when w is a Freud-type weight, then 1 < T'(z) < C, so that,

J
: n
(1.15) ol <€ () ulioe
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follows from Theorem 1.1. In [3, Chapter 3], Mhaskar discussed the first derivative of
the de la Vallée Poussin mean for Freud-type weights. Our contribution is to deal with
not only Freud-type but also Erdos-type weights. In the proofs of above theorems, we
use Mhaskar’s argument. In addition, there are two keys: one is to use mollification
of exponential weights (see Lemma 2.4 below) which was obtained in [5], and another
is to estimate the Christoffel functions which are done in section 3. Unfortunately, we
do not know whether (1.13) holds true or not for 1 < p < 2, however, we will give
another estimate which holds for all 1 < p < oo in section 4. A related inequality to
(1.14) is also given in section 6.

Throughout this paper, we write f(z) ~ g(x) for a subset I C R if there exists
a constant C' > 1 such that f(x)/C < g(z) < Cf(z) holds for all € I. Similarly,
apn ~ b, means that a,/C < b, < Ca, holds for all n € N. We will use the same
letter C' to denote various positive constants; it may vary even within a line. Roughly
speaking, C' > 1 implies that C is sufficiently large, and differently, C' > 0 means C is
a sufficiently small positive number.

2. Definitions and Lemmas

We say that an exponential weight w = exp(—@Q) belongs to class F(C?+), when
Q@ : R — [0,00) is a continuous and even function and satisfies the following conditions:
(a) @Q'(x) is continuous in R and Q(0) = 0.
(b) Q"(z) exists and is positive in R \ {0}.
(c) hm Q(z) = 0.
d)

( The function T in (1.1) is quasi-increasing in (0, co)(i.e. there exists C' > 1 such
that T'(z

) < CT(y) whenever 0 < z < y), and there exists A € R such that
T(xz)>A>1, zeR\{0}.
(e) There exists C' > 1 such that

Q) _ Q)
Q@ = Qw)

There also exist a compact subinterval J(3 0) of R, and C > 1 such that

a.e. ¢ €R.

Q"(x)  |Q' (=)
C|Q’(x)| > Q0) a.e. € R\ J.

Let A > 0. We write w € F(C?+) if there exist K > 1 and C' > 1 such that for
all x| > K,

(2.1) Q) <C

holds. We also write w € Fy(C3+), if @ € C3*(R\ {0}) and
Q¥ (x) Q" (z) Q' (2)]
7o <¢lo| = G <©
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hold for every |z| > K. Moreover, we write w € Fy(C*+), if Q € C*(R\ {0}) and
‘Q(B) (@)] Q" (=) <C ) Q" () Q' ()]
Q" (x) Q' () T Q) Q(x)A

hold for every |z| > K. Clearly F(C%+) C FA(C3+) C FA(C?*+) C F(C?*+).
A typical example of Freud-type weight is w(z) = exp(—|z|¥) with @ > 1. Tt
belongs to Fy(C*+) for A = 1. For u >0, a > 0 with a +u > 1 and | € N, we set

Q) := [a]"(expy(|z]") — exp; (0)),

where exp;(x) := exp(exp(exp(- - - (expz)))) (I-times). Then w(z) = exp(—Q(z)) is an
Erdos-type weight, which belongs to Fy(C*+) for any A > 1 (see[1]).

<C

QW(z)
[t

‘ and

In the following lemmas we fix w € F(C?+).

Lemma 2.1. Fix L > 0. Then we have
(1) ay ~ar, ont >0 (see [2, Lemma 3.5 (a)]).
(2) Q(ar) ~ Qlare), Q' (ar) ~ Q'(ars) and T(ary) ~ T(ar) ont > 0 (see [2, Lemma
3.5 (b)]). X
3) @)
(4 —
VT (at)
and (3.17)]) .
(5) Assume that w is an Erdés-type weight. Then for every n > 0, there exists a
constant C,, > 1 such that

art

~ ‘1 — —| ont>0 (see [2, Lemma 3.11 (3.52)]).
ag

N

~ Q(as) and ti"z(at) ~|Q'(at)] on t > 0 (see [2, Lemma 3.4 (3.18)
t

(2.2) ag < Cpa (x> 1)
(see [4, Proposition 3 (3.8)]).
Lemma 2.2. ([2, Theorem 1.9 (a)]) Let 1 < p < oo. Then
(2.3) [Pw| e r) < 2[[Pw| 20 ((~ap,an])
for every n € N and every P € P,.

Lemma 2.3. (1) There exist constants C; > 1 and ¢y > 0 such that if |z — ¢| <
¢o/T(x) then T(t)/C1 < T(xz) < C1T(t) holds (cf. [2, Theorem 3.2 (e)] see also [6,
Lemma 3.4]).

(2) There exist a constant Co > 1 such that for any n € N, if |¢],|z| < agy, and
| —t] < an/n then T(t)/Cy < T(x) < CT(t) holds (see [6, (4.6)]).

Lemma 2.4. ([5, Theorem 4.1 and (4.11)]) Let m = 1,2 and let w € F)(C?*T™+)
with 0 < A < (m +2)/(m + 1). For every @ € R, we can construct a new weight
w* € F\(C™+) such that

(2.4) w*(z) ~ T(x)*w(x) and T*(x) ~ T(x)



6 K. Itoh, R. Sakai and N. Suzuki

on R, and
(25) am/c < a; < Qeyg

holds on R with some constant ¢ > 1, where T™ and a}, are corresponding ones defined
in (1.1) and (1.2) with respect to a weight w* respectively.

Using the above lemma, we obtain the following assertions. First one is a general-
ization of (1.8). Second assertion was shown in [5, Corollary 6.2] under some additional
assumption.

Lemma 2.5. Let w € F\(C3+) with 0 < A < 3/2 and let 1 < p < co. For j € N,
there exists a constant C3 > 1 such that for every n € N and every P € P,,, we have

and if we further assume that w € F\(C*+) with 0 < A < 4/3, then there exists a
constant C4 > 1 such that

(2.6) HP<J>

TJ/2‘

(2.7 [P, < (2 12 Pullincy
Lp

also holds.

Proof. For i = 1,---,j, let w; € Fa(C?+) be a weight obtained in Lemma 2.4
for a = —(i — 1)/2. Then, since PY) € P,_;, by (1.8) for w} and by (2.4) and (2.5),
there exists a constant C' > 1 such that

* 1 1 .

Bt <C (”ﬁ'> ||P(J*1)w;f||Lp(R)
LP(R) A(n—j+1)/c

Since w3 (w) ~ T(x)_l/Qw;f_l(x), we also see
(o)l

LP(R) A(n—j+1)/c T

Repeating this process, we have

Hpmw

LP(R) '

HP(J) w ‘

< CHPU)

»(R) TY2 || Lo ry

; n—j+1 n
< ot () ( ) 1Pl
(n—j 1) /e e

n\J
<Cs (a) [Pw|l oy »

where we use Lemma 2.1 (1).
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For (2.7), we first remark that if w € Fy(C3+), then

n
(2.8 1Pl < € () IT2Pulioce

holds true (see [5, (1.4) and its proof]). This is the case j = 1. To show general case
j > 1, we consider a weight w}* € F,(C3+) in Lemma 2.4 for w € F)\(C*+) with
a=(i—-1)/2 G =1,---,7). Applying PU~) and w* to (2.8) and repeating this
process for i = 1,--- . j, we obtain (2.7) as in (2.6). This completes the proof.

Lemma 2.6. Let k € NU{0} and w € F\(C%+) with 0 < A < (k+2)/(k + 1).
Then there exist constants Cs > 1 and § > 0 such that

(2.9) T(a,) < Cyn?/(2k+3)=9
holds for all n € N.

Proof. We may assume that w = exp(—Q) is an Erdés-type weight. By (2.1),
|Q'(x)|/Q(x)* < C with some constant C' > 1. Hence Lemma 2.1 (4) gives us

-
ny/T(ap) ( n )) <c

an T(

that is, T'(a,) < CaZ/ M p20-1)/0+1) " Since A < (k+2)/(k+ 1), we can choose
4 > 0 and n > 0 such that 2(A—1)/(A+ 1)+ 6 + 2n < 2/(2k + 3). Hence (2.9) follows
from Lemma 2.1 (5). This completes the proof.

We remark that (2.9) implies (1.5). Hence if w € Fy(C?+) with 0 < A\ < (k +
2)/(k+ 1), then (1.6), (1.7), (1.8) and (1.9) hold true.

Lemma 2.7. Let w € F)(C?+) with 0 < A < 2. Then there exists a constant
Cs > 1 such that for every n € N, if [t],|z| < ag, and if |t — x| < ay/(ny/T(z)) then

(2.10) w(t)/Cs < w(x) < Cow(t)

Proof. By Lemma 2.3 (2) , we have T'(t)/Ce < T'(z) < CoT(t), and by (1.3) we
can write |t| = as. Then as < ag, implies s < 2n. Hence (1.4) and Lemma 2.1(1) show
<

0 Csy/T(as)/as by Lemma

san/(nas) < C7 with some constant C7 > 1. Since |Q'(?)]
2.1 (4), we have

T(as)an 1
s n \/T(x)

T(t
<o’ ()gcawc.

= nas /T ()

Similarly, we see |Q'(z)|t — 2| < CCyr. Hence if we put Cg = €7V then |Q’(t)||t —
x| < logCs and |Q'(z)||t — x| < log Cs hold true. From the mean value theorem for

Q)| —a| < C°
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differential calculus, there exists # between x and ¢ such that

2 = explQ() - Q) = exp(Q(O)(t — ).

Since @’ is increasing, |Q'(0)(x — t)| < max{|Q’(z)|,|Q'(t)|}|z — t| < logCs, which
shows (2.10) immediately. This completes the proof.

3. Estimates for Christoffel functions

By definition, the partial sum of Fourier series is given by

(3.1) (D) = [ Kalwt)f 0wt dr
R

where

n—1
(3.2) Kn(z,t) =Y pr(@)pi(t)

k=0
It is known that by the Cristoffel-Darboux formula
(3.3) Koo 1) = Jn=t P (2)pn—1(t) — pu(t)pn_1(x)

Tn r—t

holds, where ~,, and ~,_1 are the leading coefficients of p,, and p,_1, respectively.
Then

Yn—1
3.4 A, ~
34 " mm

also holds (see [2, Lemma 13.9]).
The Christoffel function A\, (z) = A, (w, z) is defined by

n—1 -1
A () i= m = (kzzopk(x)2> .

Then
(3.5) M) = i /|P (1)[2dt.

holds on R. We use derivative versions of (3.5). The following equality is also estab-
lished.

Proposition 3.1. Let 0 < j < n. Then for every x € R, we have

n—1 -1
(3.6) (Z@Sﬁ')(x»?) S el A OOl

k=0
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Proof. In [3, Theorem 1.3.2], we see

n—1 -1
2 _ 2
(Zf@m) = o L IPOuOPd

for any linear functional ® on polynomials. (3.6) follows if we consider ®(P) = P\ (z).

The following estimate plays an important role in our later argument. We use
Cp (m=1,---,6), which are constants in lemmas of the previous section.

Proposition 3.2. Let k > 2 be an integer and let w € F)(C*+) with 0 < A <
(k4 3)/(k 4+ 2). Then there exists a constant Cg > 1 such that for every 1 < j < k
and every n € N|

w(@)? N () n \7*
(3.7) a2 PE (@) < Cs | — ~
T(x)2i+1)/2 kZ:O Pi s (an>

Proof. Tt is enough to show (3.7) for sufficiently large n. By Proposition 3.1, (3.7)
follows from

ap\&+tt w(x)?
(3.8) (Z) T(x)2i+1)/2 =C p(a) /'P ()l dt

for P € P,,_1. Now to show (3.8), take P € P,,_; arbitrarily. By Lemma 2.2, we can
choose ¢ € R such that || < a,_; and satisfies

(3.9) [wP]| Lo r) < 2lw(C)P(C)]-

Let 0 < ¢; < 1. Lemma 2.6 gives us T'(a,) < Csnl=?" with some &' > 0, so that if
t € R satisfies

a 1
(3.10) t—¢ <a———=,
n \/T(C)
then
an C’5 (275
t < -t < Qp— — < n s’ .
(< 1C+ 10—t < I¢l 4+ 22 vﬁ—f_ L S s

Since there exists a constant C' > 1 such that a,, + a,/(CT(a,)) < a2, by Lemma 2.1
(3), if we take ng € N such that n§ > CCs, then

(3.11) It < asn

for all n > ng. Hence by Lemma 2.7, w(t)/Cs < w(¢) < Csw(t) holds. By monotonic-
ity of w, w(u)/Cs < w(¢) < Csw(u) also holds for every u between ¢t and ¢. Moreover,
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since T is quasi-increasing, Lemma 2.3 (2) shows /T (u) < C+/T(¢) with some C' > 1.
Then using (2.6) for p = co and j = 1, we have

P(O)| — [P()] < |P(t) — P(Q)] = \/ P (u)du

< oo, Tl w<<>

VT | w o,
< CClt =] w(() H\/TP L (R)

T
< CCsCst — (| ﬁ: |wP|| o
< 2¢,CCsCs|P(C)|

VP! (u)du

(R)

by (3.9) and (3.10). Consequently, if we take ¢; > 0 so small that 2¢;CCsC3 < 1/2,
we have

1

1 a
. — if [t — L
(3.12) [P@)] = SIPO] i [t —¢f < e 0

Since CoT'(t) > T(¢) and Cew(t) > w(¢), (3.9) and (3.12) show

/F|P Pt > VIO |P()Pw(t)*dt
VG Jj- c\<c1an/(n\/m)
\/7|P an 1
o dn

- VO, 4 02 Y'n JT(0)
c1 ial||wp||Lw(R)

o 4\/ CQ 02 n 4
1 a,

= o PPl

We note that in the above argument we only use the fact that w € Fy(C3+). If

w € F\(C*+), we can construct w* € Fy(C3+) such that w*(z) ~ T(x)~"*w(z) by
Lemma 2.4. Then it follows from (2.6) for p = oo that for every = € R,

* 1 * * 2
[ VTOP@O P @ > o2 0 Pl

2

Lo (R)
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and hence by (2.4) and (2.5) we see

2, 2 1 " 2,
[ P@rewa = 5 [ VEmpel

1 ax\ P w*(x)? ,
> n 1P (2)]2
TN (n> T*(x)j\ ()]

> (an/c)wl T W PO @),

=c\n z)2i+D)/2

This together with Lemma 2.1 (1) shows (3.8) and the proof is completed.

4. Proof of Theorem 1.1

In the remaining sections, we again use Cy, (m = 1,--- ,6) without notice, which
are constants in lemmas in section 2.

Let 1 <p<oo,k>2we F\(C+)with0 <A< (k+3)/(k+2)and let 1 < j <
k. Due to Lemma 2.4, there is w* € Fy(C®4) such that w*(z) ~ T(x)~@+D/ 4y (z).
Take fw € LP(R) arbitrarily. Since v(])(f) € Pan—1—j, applying w* to (2.7), we have

. w . x
vwf)m\ iy S I D e
2n — " *
<C J [(T*) 20, (f)w |l ®)
a2n -7
w
<C ’
- <a2n/c> )Tl/“ Lr(R)
sc( ) T

Here we use Lemma 2.1 (1), (2.4) and (2.5). The last inequality follows from (1.6).
This completes the proof of Theorem 1.1.

By a similar argument as above, we also have

J
. n .
(a1) 9 (Ol <€ () T/ fulngey

for all 1 < p < co. In fact, take w* € Fy(C®+) such that w*(x) ~ T7/2(x)w(z). Then
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by (2.7) for w and by Lemma 2.4 and Lemma 2.2 for w*, we have

n#%wmm®<0< )w%m>mm®

n

J
<O (2] 1m0 o

n

v (T

T1/4 Lp([*G«chua?cn])
n\’ ) w
<C(—) T(an)®*t/* v, 7‘
< (an) ((l ) (% (f)T1/4 LP([—a2en,a2en])

7
<c(”) T(an) &) fuol| o .

Gnp,
Note that by Lemma 2.1 (2), T'(z) < CT(azen) < CT(ay,) holds for all @ € [—asen, azenl,

because T is quasi-increasing.

5. Proof of Theorem 1.2

Let k > 2,w € Fa(C*+) with 0 < A < (k+3)/(k+2) and let 1 < j < k. We
first show (1.13) for the case p = oo. Suppose that 77 +1/4fy € L(R). Since

vr(lj)(f) € Pay,, by Lemma 2.2, it is sufficient to show

G.) (D@ < ¢ (L) [T ful g

n
for every |z| < ag,. Now we set

A, = {teR; |tfx|<aﬂ} B,

}

T(ﬂﬂ)

and C, := R\ (A, U B,,), where ¢y > 0 is a constant in Lemma 2.3 (1). Then as in
the proof of (3.11), there exists ny € N such that if n > ng and ¢t € A,,, then [t| < agy,
holds. Hence Lemma 2.3 (2) implies

(5.2) T(t)/Cy < T(x) < CoT(t) (t€ Ay).

Since T is bounded on [—a4n,, G4n,], we may assume that (5.2) holds for all n € N.
Also by Lemma 2.3 (1),

(5.3) T(t)/Cy < T(x) < C1T(t) (t € By)

holds true. Let g(t) := f(t)xa, (t), where x4 is the characteristic function of a set A
and put h(t) = f(t) — g(t). Slnce

m—1 2 m—
A(zﬁ?mmm>w §j“> :
- -
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(3.2), (5.2) and the Schwarz inequality show that

m—1

159 (9) (z)w()|
9t) > p? (@)pr(t)w(t)?

<ula) [ >

m—1 1/2 1/2
(4)
< <§ (py (l’))zw(z)2> (/An |f(t)w(t)|2dt>

dt

k=0
—1

< O§2j+1)/4 (
k=0

m—1 1/2
w(z)? () ()2 (2j+1)/4 agn\ /2
<C <1;) W(pk (7)) T Jwlze®) <%> .

Since v,(Lj)(g)(a:) = (1/n) Zf::nﬂ s (9)(z), Proposition 3.2 gives us

(5.0 g e < 0 (1) T e

n

for all x € R with |z| < agy,.
To estimate v,(f)(h), we use (3.3). For i =0,1,---,4, we put

Un,i(h)(x
1 S5 s P (@)pm-1(t) = P53 (@)pm (#)
- > = b (b)) (@) = b (i) 23 (),
m=n+1 m
where
hi(t) := @ f(;)iﬂ and by (h;) := /Rhi(t)pk(t)w(t)th (k e NU{0}).

Then
(55) @) =3V (7 onith(e)

m 1/2 12
S e @) [T(6) 2D/ f eyt Pt
T(gj)( J )/ A

13
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By (3.4), the Schwarz inequality and Proposition 3.2, we have

D
" " on 1/2 on 1/2
<t <w<x>2 > (4 <x>>2> (Z bm<hi>|2>
m_; o " 1/2 on 1/2
<ot (T(@};’fjwm_(fp%%)f) (T@)WZ‘>“>/2m2_o|bm<hi>|2>

n \ 2G—)-1)/2 - on 1/2
<C <> T(x)(2(1—z)+1)/2 Z by ()] )
n m=0

The Bessel inequality implies that

2 ht) )P F)w(t)|?
> (kP < /R e _(t))m w(t)2dt = /B . ('x (_)t)z((il)dt

and hence, by (5.3), we have
2
(2(j—i)+1)/2 Lf)w(t)|
riyeo-sen | LSOE

< oG- [ IO Rw)P
=1 (z — t)2(¢+1)

n

o 1
< C||ITCG=D+D/ 12 / b
< fwllzem) ot]>2ga (2 — £)20FD)

n 2i+1
< CTCED 2 ()
an

' o\ 2t
< C||T(2J+1)/4fw||2Loo(R) () 7
a

n

because T' > 1. On the other hand, if |z| < ag, then T'(z) < CT(a,), so that

T(m)(Q(j—i)+1)/2/ |f(t)w(t)? dt

c., ([L’ _ t)2(i+1)

- 1
< Ol @07 [ ot
T(a) =17

= CHfw||ioo(R)T(x)(Q(i+j)+3)/2
< CHT(2]+1)/4fwH%w(R)T(an)(2(l+k)+3)/2.
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Moreover

2i+1
(56) T(an)(2(i+k)+3)/2 <C <n>

an

holds. In fact, to show this we may assume that w is an Erdés-type weight by (1.4).
Then by Lemma 2.1 (5) and Lemma 2.6, we have

T(ay)+3/2 < Op2/(2h+3)=8)(2k+3)/2) < cnt-Y < (”) .
an

Similarly
T(2)REHRN3)/2 < OT(q,,)#+3)/2 < Op(2/(2k+3)-0)((4k+3)/2)

n 2 n 21+1
<Cn?> % <C () <C ()
an a’!l

holds for ¢ > 1. Combining the above estimates, we thus have

o\ 2U—D-1)/2 (0jiya1))2 2n , 1/2
o= ()20~ b (i
() (@ 3 (k)

N N
0() ||T<2J+1>/4fw||Lm(R)< )
(7%

an

[vn,i(h) (z)w ()]

IN

IN

J
n .
<C <> | TRV f]| oo ().
79

It follows from (5.5) that

J
. n 1
[ (h)(z)w(z)| < C <a> TGO/ fr| oo ().

n

This together with (5.4) shows (5.1).
We will prove (1.13) for p = 2 in the next section. Then using the Riesz-Thorin
interpolation theorem for an operator

F o f = wl (f),
w

we obtain (1.13) for all 2 < p < co. This completes the proof of Theorem 1.2.

6. Proof of Theorem 1.3

Let 1 < p < 2 and TH+D/4fyy € L?(R). We use the same notations as in the
previous section. Then as in the estimate of s,(%) (g) in the previous section, we have

Qn

61)  |s9 () @w)| < C (”)WW ( / n |T<t><2j+1>/4f<t>w<t>|2dt)”2
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for || < as,. Hence Lemma 2.2 and the Holder inequality imply

[s@@@eepre<r [ @@@uepe
|z|<azn

W \PEIHD/2 | p/2
<C / (a) ( / |T(t) 27 +1)/4 f(t)w(t)|2dt> da
|z|<azn n An

1\ P2IHD/2 A v/
C () /| - /| o 1T (x —u) P/ f (2 — w)w(z — u)2du dx
z|<azn u| <5

p(2j+1)/2
o™ a2-9)/2
a TL

p/2
{ o] <e: ( < |T(l‘—u)(2j+1)/4f($_u)w(x_u)|2du> dx}

p(2j+1)/2 p/2
C ) (2 ’ /2HT(2J+1 /4wap2(R </ |<an du)

Cl—) a2 peith) /4fw||p
Qnp

IN

IN

IN

IN

so that we have
(6.2) ||v§Lj>(g)wHLp(R) <C (c:;)J ag—p)/(zm|\T(2j+1)/4waL2(R).
Next we estimate v, ;(h). Similarly as above, we have
/ [Un,i (B ()|Pdz < 2/| - [vn,i (R)(z)w(x)|Pdx
z|<azn

0\ PEG-D-1)/2
<C () o2-P)/2
an

L /2
|T(#) =00/ f(1)a(t) | "
. {/z|§a2n </Bnucn (LL' - t)2(i+1) dt) dx .

Also as in the argument of previous section,

[ TCO=IFVA@) f(#)w(t)]?
-/x|<a2" </B" (l‘ - t)2(i+1) dt) e

G-/ (5 — y) f(z — )P
() (@ =l =l =P\
R \J22 < w2+l

o\ 21 . n \ 21 ‘
<C <> ‘|T(2(371)+1)/4f’U)”2L2(R) <C <) ||T(2J+1)/4fw||%2(R).
a A,

n
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On the other hand, by (5.6) we have

- f t t 2

2
< C’T(agn)(Q(j*i)H)ﬁ/ </ |f($ - Z)(llflm) — u)| du) dx
R \J e <Jul ust

T
1
w2 du

SC”fwH%z(R)T(a?n)(2(j_i)+1)/2/ Y

T(agy) =

< OT (aza)#H2HD2| ful|Fo g

n 2i+1 )
< c( ) [T/ 2
an

Consequently we have

n

J
(63) ||'Un77;(h,)w||Lp(R) < C <a ) a;Q*P)/2P||T(2J+1)/4fw”LQ(R)

mn

for 0 < i < j, so that

J
. n - ‘
[0 (R)w]| o gy < C (a> a(2=P)/22|| T30/ |

n

follows. This together with (6.2) shows (1.14). This completes the proof of Theorem
1.3.

Under the same assumptions in Theorem 1.3, the following estimate is also estab-
lished. Let 8 >1and 1 < p < 2. Then

) w n
(6.4) v (f) 1+ |x|)(2,p)ﬁ/(2p) ”LP(R) <C (a

holds for every T(27+1)/4 fy ¢ L?(R) and every n € N. In fact, in the proof of Theorem
1.3, we used

p/2
/|< (/ i<z |T(t)(2j+1)/4f(t)w(t)|2dt> dr

2n

p/2
< aﬁg—p)/Z {/ </ T(t)(2j+1)/4f(t)w(t)|2du> dx} ,
|z|<azn |[z—t|<en

which follows from the Holder inequality. Instead of this, we use
1 p/2
—_— TE)FDA D wt)?dt | de
| e (/ T £ty (o)

< ([ o) e { / ( /|| IT(t)(2j+1)/4f(t)w(t)Ith> dx}m.

J
) ||T(2J+1)/4fw”L2(R)

n
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Then as in (6.2), we obtain

w

(9)

J
n .
e <€ (2 ) 1T ul g,

For the estimate of v, ;(h), we take w* € Fy(C3+) such that w*(z) ~ w(x)/(1 +
|z[)(2=P)B/(2P) (see [5, Theorem 4.2]). Then by Lemma 2.2,

J

By an estimate similar to (6.3), we obtain

p

w(z) dx.

w(z)
Un,i(h) (1 + |z|)(2—P)B/(2p)

Un,i(h) 1+ |x|)(2—p)ﬁ/(2p)

J
v n 2j+1)/4
<1+x|><2pm/<2p>LP<R><C(G) T EIHDA fu| 2 ),

n

[[on,i(h)

which shows (6.4).
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