Title	An estimate for derivative of the de Ia V al lee Poussin mean
Author（s）	ITOH，Kentaro；SA KAI，Ryozi；SUZU KI，Noriaki
Citation	Mathematical Journal of Ibaraki University，47：1－18
Issue Date	2015
URL	http：／hdl．handle．net／10109／12676
Rights	

このリポジトリに収録されているコンテンツの著作権は，それぞれの著作権者に帰属 します。引用，転載，複製等される場合は，著作権法を遵守してください。

An estimate for derivative of the de la Vallée Poussin mean

Kentaro Itor, Ryozi Sakai** and Noriaki Suzuki***

Abstract

The de la Vallée Poussin mean for exponential weights on $(-\infty, \infty)$ was investigated in [6]. In the present paper we discuss its derivatives. An estimate for the Christoffel function plays an important role.

1. Introduction

Let $\mathbb{R}=(-\infty, \infty)$. We consider an exponential weight

$$
w(x)=\exp (-Q(x))
$$

on \mathbb{R}, where Q is an even and nonnegative function on \mathbb{R}. Throughout this paper we always assume that w belongs to a relevant class $\mathcal{F}\left(C^{2}+\right)$ (see section 2). A function $T=T_{w}$ defined by

$$
\begin{equation*}
T(x):=\frac{x Q^{\prime}(x)}{Q(x)}, \quad x \neq 0 \tag{1.1}
\end{equation*}
$$

is very important. We call w a Freud-type weight if T is bounded, and otherwise, w is called an Erdös-type weight. For $x>0$, the Mhaskar-Rakhmanov-Saff number (MRS number) $a_{x}=a_{x}(w)$ of $w=\exp (-Q)$ is defined by a positive root of the equation

$$
\begin{equation*}
x=\frac{2}{\pi} \int_{0}^{1} \frac{a_{x} u Q^{\prime}\left(a_{x} u\right)}{\left(1-u^{2}\right)^{1 / 2}} d u . \tag{1.2}
\end{equation*}
$$

When $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right), Q^{\prime}$ is positive and increasing on $(0, \infty)$, so that

[^0]\[

$$
\begin{equation*}
\lim _{x \rightarrow \infty} a_{x}=\infty \text { and } \lim _{x \rightarrow+0} a_{x}=0 \tag{1.3}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{a_{x}}{x}=0 \text { and } \lim _{x \rightarrow+0} \frac{a_{x}}{x}=\infty \tag{1.4}
\end{equation*}
$$

hold. Note that those convergences are all monotonically.
Let $\left\{p_{n}\right\}$ be orthogonal polynomials for a weight w, that is, p_{n} is the polynomial of degree n such that

$$
\int_{\mathbb{R}} p_{n}(x) p_{m}(x) w(x)^{2} d x=\delta_{m n}
$$

Note that when $w(x)=\exp \left(-|x|^{2}\right)$, then $\left\{p_{n}\right\}$ are Hermite polynomials.
For $1 \leq p \leq \infty$, we denote by $L^{p}(I)$ the usual L^{p} space on an interval I in \mathbb{R}. For a function f with $f w \in L^{p}(\mathbb{R})$, we set

$$
s_{n}(f)(x):=\sum_{k=0}^{n-1} b_{k}(f) p_{k}(x) \text { where } b_{k}(f)=\int_{\mathbb{R}} f(t) p_{k}(t) w(t)^{2} d t
$$

for $n \in \mathbb{N}$ (the partial sum of Fourier series). The de la Vallée Poussin mean $v_{n}(f)$ of f is defined by

$$
v_{n}(f)(x):=\frac{1}{n} \sum_{j=n+1}^{2 n} s_{j}(f)(x)
$$

In [6], we proved the following; Let $1 \leq p \leq \infty$ and $w \in \mathcal{F}\left(C^{2}+\right)$. Assume that

$$
\begin{equation*}
T\left(a_{n}\right) \leq C\left(\frac{n}{a_{n}}\right)^{2 / 3} \tag{1.5}
\end{equation*}
$$

for some $C>1$. Then there exists another constant $C>1$ such that if $f w \in L^{p}(\mathbb{R})$, then

$$
\begin{equation*}
\left\|v_{n}(f) \frac{w}{T^{1 / 4}}\right\|_{L^{p}(\mathbb{R})} \leq C\|f w\|_{L^{p}(\mathbb{R})} \tag{1.6}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$, and if $T^{1 / 4} f w \in L^{p}(\mathbb{R})$, then

$$
\begin{equation*}
\left\|v_{n}(f) w\right\|_{L^{p}(\mathbb{R})} \leq C\left\|T^{1 / 4} f w\right\|_{L^{p}(\mathbb{R})} \tag{1.7}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$. It is also known that

$$
\begin{equation*}
\left\|P^{\prime} \frac{w}{T^{1 / 2}}\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)\|P w\|_{L^{p}(\mathbb{R})} \tag{1.8}
\end{equation*}
$$

for all $P \in \mathcal{P}_{n}$, where \mathcal{P}_{n} is the set of all polynomials of degree at most n (see [5, Theorem 6.1]). Since $v_{n}(f) \in \mathcal{P}_{2 n-1}$, combining (1.7) with (1.8), we have

$$
\begin{equation*}
\left\|v_{n}^{\prime}(f) \frac{w}{T^{1 / 2}}\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)\left\|T^{1 / 4} f w\right\|_{L^{p}(\mathbb{R})} \tag{1.9}
\end{equation*}
$$

with some $C>1$. Here we use the fact that a_{n} and $a_{2 n}$ are comparable (see Lemma 2.1 (1) below). The inequality (1.9) suggests us the following: if $f w \in L^{p}(\mathbb{R})$, then

$$
\begin{equation*}
\left\|v_{n}^{\prime}(f) \frac{w}{T^{3 / 4}}\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)\|f w\|_{L^{p}(\mathbb{R})} \tag{1.10}
\end{equation*}
$$

and, if $T^{3 / 4} f w \in L^{p}(\mathbb{R})$, then

$$
\begin{equation*}
\left\|v_{n}^{\prime}(f) w\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)\left\|T^{3 / 4} f w\right\|_{L^{p}(\mathbb{R})} \tag{1.11}
\end{equation*}
$$

holds?
In the present paper, we will show that (1.10) holds for all $1 \leq p \leq \infty$ and (1.11) is true for $2 \leq p \leq \infty$ at the least. More generally, as for the j th derivative $v_{n}^{(j)}(f)$ of $v_{n}(f)$, the following theorems are established.

Theorem 1.1. Let $k \geq 2$ be an integer and let $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$ with $0<\lambda<$ $(k+3) /(k+2)$, and let $1 \leq p \leq \infty$. Then there exists a constant $C>1$ such that if $1 \leq j \leq k$, and if $f w \in L^{p}(\mathbb{R})$, then

$$
\begin{equation*}
\left\|v_{n}^{(j)}(f) \frac{w}{T^{(2 j+1) / 4}}\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j}\|f w\|_{L^{p}(\mathbb{R})} \tag{1.12}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$.
The definition of a class $\mathcal{F}_{\lambda}\left(C^{4}+\right)$ is given in section 2.
Theorem 1.2. Let k and w be as in Theorem 1.1, and let $2 \leq p \leq \infty$. Then there exists a constant $C>1$ such that if $1 \leq j \leq k$, and if $T^{(2 j+1) / 4} f w \in L^{p}(\mathbb{R})$, then

$$
\begin{equation*}
\left\|v_{n}^{(j)}(f) w\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{p}(\mathbb{R})} \tag{1.13}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$.
Theorem 1.3. Let k and w be as in Theorem 1.1, and let $1 \leq p \leq 2$. Then there exists a constant $C>1$ such that for every $1 \leq j \leq k$ and every $T^{(2 j+1) / 4} f w \in L^{2}(\mathbb{R})$, we have

$$
\begin{equation*}
\left\|v_{n}^{(j)}(f) w\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j} a_{n}^{(2-p) /(2 p)}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})} \tag{1.14}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
We note that when w is a Freud-type weight, then $1 \leq T(x) \leq C$, so that,

$$
\begin{equation*}
\left\|v_{n}^{(j)}(f) w\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j}\|f w\|_{L^{p}(\mathbb{R})} \tag{1.15}
\end{equation*}
$$

follows from Theorem 1.1. In [3, Chapter 3], Mhaskar discussed the first derivative of the de la Vallée Poussin mean for Freud-type weights. Our contribution is to deal with not only Freud-type but also Erdös-type weights. In the proofs of above theorems, we use Mhaskar's argument. In addition, there are two keys: one is to use mollification of exponential weights (see Lemma 2.4 below) which was obtained in [5], and another is to estimate the Christoffel functions which are done in section 3. Unfortunately, we do not know whether (1.13) holds true or not for $1 \leq p<2$, however, we will give another estimate which holds for all $1 \leq p \leq \infty$ in section 4. A related inequality to (1.14) is also given in section 6 .

Throughout this paper, we write $f(x) \sim g(x)$ for a subset $I \subset \mathbb{R}$ if there exists a constant $C \geq 1$ such that $f(x) / C \leq g(x) \leq C f(x)$ holds for all $x \in I$. Similarly, $a_{n} \sim b_{n}$ means that $a_{n} / C \leq b_{n} \leq C a_{n}$ holds for all $n \in \mathbb{N}$. We will use the same letter C to denote various positive constants; it may vary even within a line. Roughly speaking, $C>1$ implies that C is sufficiently large, and differently, $C>0$ means C is a sufficiently small positive number.

2. Definitions and Lemmas

We say that an exponential weight $w=\exp (-Q)$ belongs to class $\mathcal{F}\left(C^{2}+\right)$, when $Q: \mathbb{R} \rightarrow[0, \infty)$ is a continuous and even function and satisfies the following conditions:
(a) $Q^{\prime}(x)$ is continuous in \mathbb{R} and $Q(0)=0$.
(b) $Q^{\prime \prime}(x)$ exists and is positive in $\mathbb{R} \backslash\{0\}$.
(c) $\lim _{x \rightarrow \infty} Q(x)=\infty$.
(d) The function T in (1.1) is quasi-increasing in $(0, \infty)$ (i.e. there exists $C>1$ such that $T(x) \leq C T(y)$ whenever $0<x<y)$, and there exists $\Lambda \in \mathbb{R}$ such that

$$
T(x) \geq \Lambda>1, \quad x \in \mathbb{R} \backslash\{0\}
$$

(e) There exists $C>1$ such that

$$
\frac{Q^{\prime \prime}(x)}{\left|Q^{\prime}(x)\right|} \leq C \frac{\left|Q^{\prime}(x)\right|}{Q(x)}, \text { a.e. } x \in \mathbb{R}
$$

There also exist a compact subinterval $J(\ni 0)$ of \mathbb{R}, and $C>1$ such that

$$
C \frac{Q^{\prime \prime}(x)}{\left|Q^{\prime}(x)\right|} \geq \frac{\left|Q^{\prime}(x)\right|}{Q(x)}, \text { a.e. } x \in \mathbb{R} \backslash J
$$

Let $\lambda>0$. We write $w \in \mathcal{F}_{\lambda}\left(C^{2}+\right)$ if there exist $K>1$ and $C>1$ such that for all $|x| \geq K$,

$$
\begin{equation*}
\frac{\left|Q^{\prime}(x)\right|}{Q(x)^{\lambda}} \leq C \tag{2.1}
\end{equation*}
$$

holds. We also write $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$, if $Q \in C^{3}(\mathbb{R} \backslash\{0\})$ and

$$
\left|\frac{Q^{(3)}(x)}{Q^{\prime \prime}(x)}\right| \leq C\left|\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}\right| \text { and } \frac{\left|Q^{\prime}(x)\right|}{Q(x)^{\lambda}} \leq C
$$

hold for every $|x| \geq K$. Moreover, we write $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$, if $Q \in C^{4}(\mathbb{R} \backslash\{0\})$ and

$$
\left|\frac{Q^{(3)}(x)}{Q^{\prime \prime}(x)}\right| \sim\left|\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}\right|, \quad\left|\frac{Q^{(4)}(x)}{Q^{(3)}(x)}\right| \leq C\left|\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}\right| \quad \text { and } \quad \frac{\left|Q^{\prime}(x)\right|}{Q(x)^{\lambda}} \leq C
$$

hold for every $|x| \geq K$. Clearly $\mathcal{F}_{\lambda}\left(C^{4}+\right) \subset \mathcal{F}_{\lambda}\left(C^{3}+\right) \subset \mathcal{F}_{\lambda}\left(C^{2}+\right) \subset \mathcal{F}\left(C^{2}+\right)$.
A typical example of Freud-type weight is $w(x)=\exp \left(-|x|^{\alpha}\right)$ with $\alpha>1$. It belongs to $\mathcal{F}_{\lambda}\left(C^{4}+\right)$ for $\lambda=1$. For $u \geq 0, \alpha>0$ with $\alpha+u>1$ and $l \in \mathbb{N}$, we set

$$
Q(x):=|x|^{u}\left(\exp _{l}\left(|x|^{\alpha}\right)-\exp _{l}(0)\right)
$$

where $\exp _{l}(x):=\exp (\exp (\exp (\cdots(\exp x))))(l$-times $)$. Then $w(x)=\exp (-Q(x))$ is an Erdös-type weight, which belongs to $\mathcal{F}_{\lambda}\left(C^{4}+\right.$) for any $\lambda>1$ (see[1]).

In the following lemmas we fix $w \in \mathcal{F}\left(C^{2}+\right)$.
Lemma 2.1. Fix $L>0$. Then we have
(1) $a_{t} \sim a_{L t}$ on $t>0$ (see [2, Lemma 3.5 (a)]).
(2) $Q\left(a_{t}\right) \sim Q\left(a_{L t}\right), Q^{\prime}\left(a_{t}\right) \sim Q^{\prime}\left(a_{L t}\right)$ and $T\left(a_{L t}\right) \sim T\left(a_{t}\right)$ on $t>0$ (see [2, Lemma 3.5 (b)]).
(3) $\frac{1}{T\left(a_{t}\right)} \sim\left|1-\frac{a_{L t}}{a_{t}}\right|$ on $t>0$ (see [2, Lemma 3.11 (3.52)]).
(4) $\frac{t}{\sqrt{T\left(a_{t}\right)}} \sim Q\left(a_{t}\right)$ and $\frac{t \sqrt{T\left(a_{t}\right)}}{a_{t}} \sim\left|Q^{\prime}\left(a_{t}\right)\right|$ on $t>0$ (see [2, Lemma 3.4 (3.18) and (3.17)]) .
(5) Assume that w is an Erdös-type weight. Then for every $\eta>0$, there exists a constant $C_{\eta}>1$ such that

$$
\begin{equation*}
a_{x} \leq C_{\eta} x^{\eta} \quad(x \geq 1) \tag{2.2}
\end{equation*}
$$

(see [4, Proposition 3 (3.8)]).
Lemma 2.2. ([2, Theorem 1.9 (a) $])$ Let $1 \leq p \leq \infty$. Then

$$
\begin{equation*}
\|P w\|_{L^{p}(\mathbb{R})} \leq 2\|P w\|_{L^{p}\left(\left[-a_{n}, a_{n}\right]\right)} \tag{2.3}
\end{equation*}
$$

for every $n \in \mathbb{N}$ and every $P \in \mathcal{P}_{n}$.
Lemma 2.3. (1) There exist constants $C_{1}>1$ and $c_{0}>0$ such that if $|x-t|<$ $c_{0} / T(x)$ then $T(t) / C_{1} \leq T(x) \leq C_{1} T(t)$ holds (cf. [2, Theorem 3.2 (e)] see also [6, Lemma 3.4]).
(2) There exist a constant $C_{2}>1$ such that for any $n \in \mathbb{N}$, if $|t|,|x|<a_{2 n}$ and $|x-t| \leq a_{n} / n$ then $T(t) / C_{2} \leq T(x) \leq C_{2} T(t)$ holds (see [6, (4.6)]).

Lemma 2.4. ([5, Theorem 4.1 and (4.11)]) Let $m=1,2$ and let $w \in \mathcal{F}_{\lambda}\left(C^{2+m}+\right)$ with $0<\lambda<(m+2) /(m+1)$. For every $\alpha \in \mathbb{R}$, we can construct a new weight $w^{*} \in \mathcal{F}_{\lambda}\left(C^{1+m}+\right)$ such that

$$
\begin{equation*}
w^{*}(x) \sim T(x)^{\alpha} w(x) \text { and } T^{*}(x) \sim T(x) \tag{2.4}
\end{equation*}
$$

on \mathbb{R}, and

$$
\begin{equation*}
a_{x / c} \leq a_{x}^{*} \leq a_{c x} \tag{2.5}
\end{equation*}
$$

holds on \mathbb{R} with some constant $c>1$, where T^{*} and a_{x}^{*} are corresponding ones defined in (1.1) and (1.2) with respect to a weight w^{*} respectively.

Using the above lemma, we obtain the following assertions. First one is a generalization of (1.8). Second assertion was shown in [5, Corollary 6.2] under some additional assumption.

Lemma 2.5. Let $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ with $0<\lambda<3 / 2$ and let $1 \leq p \leq \infty$. For $j \in \mathbb{N}$, there exists a constant $C_{3}>1$ such that for every $n \in \mathbb{N}$ and every $P \in \mathcal{P}_{n}$, we have

$$
\begin{equation*}
\left\|P^{(j)} \frac{w}{T^{j / 2}}\right\|_{L^{p}(\mathbb{R})} \leq C_{3}\left(\frac{n}{a_{n}}\right)^{j}\|P w\|_{L^{p}(\mathbb{R})} \tag{2.6}
\end{equation*}
$$

and if we further assume that $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$ with $0<\lambda<4 / 3$, then there exists a constant $C_{4}>1$ such that

$$
\begin{equation*}
\left\|P^{(j)} w\right\|_{L^{p}(\mathbb{R})} \leq C_{4}\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{j / 2} P w\right\|_{L^{p}(\mathbb{R})} \tag{2.7}
\end{equation*}
$$

also holds.
Proof. For $i=1, \cdots, j$, let $w_{i}^{*} \in \mathcal{F}_{\lambda}\left(C^{2}+\right)$ be a weight obtained in Lemma 2.4 for $\alpha=-(i-1) / 2$. Then, since $P^{(j)} \in \mathcal{P}_{n-j}$, by (1.8) for w_{j}^{*} and by (2.4) and (2.5), there exists a constant $C>1$ such that

$$
\left\|P^{(j)} \frac{w_{j}^{*}}{T^{1 / 2}}\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n-j+1}{a_{(n-j+1) / c}}\right)\left\|P^{(j-1)} w_{j}^{*}\right\|_{L^{p}(\mathbb{R})}
$$

Since $w_{j}^{*}(x) \sim T(x)^{-1 / 2} w_{j-1}^{*}(x)$, we also see

$$
\left\|P^{(j)} \frac{w_{j}^{*}}{T^{1 / 2}}\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n-j+1}{a_{(n-j+1) / c}}\right)\left\|P^{(j-1)} \frac{w_{j-1}^{*}}{T^{1 / 2}}\right\|_{L^{p}(\mathbb{R})}
$$

Repeating this process, we have

$$
\begin{aligned}
& \left\|P^{(j)} \frac{w}{T^{j / 2}}\right\|_{L^{p}(\mathbb{R})} \leq C\left\|P^{(j)} \frac{w_{j}^{*}}{T^{1 / 2}}\right\|_{L^{p}(\mathbb{R})} \\
& \quad \leq C^{j+1}\left(\frac{n-j+1}{a_{(n-j+1) / c}}\right) \cdots\left(\frac{n}{a_{n / c}}\right)\|P w\|_{L^{p}(\mathbb{R})} \\
& \quad \leq C_{3}\left(\frac{n}{a_{n}}\right)^{j}\|P w\|_{L^{p}(\mathbb{R})}
\end{aligned}
$$

where we use Lemma 2.1 (1).

For (2.7), we first remark that if $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$, then

$$
\begin{equation*}
\left\|P^{\prime} w\right\|_{L^{p}(\mathbb{R})} \leq C_{4}\left(\frac{n}{a_{n}}\right)\left\|T^{1 / 2} P w\right\|_{L^{p}(\mathbb{R})} \tag{2.8}
\end{equation*}
$$

holds true (see $[5,(1.4)$ and its proof $]$). This is the case $j=1$. To show general case $j>1$, we consider a weight $w_{i}^{* *} \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ in Lemma 2.4 for $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$ with $\alpha=(i-1) / 2(i=1, \cdots, j)$. Applying $P^{(j-i)}$ and $w_{i}^{* *}$ to (2.8) and repeating this process for $i=1, \cdots, j$, we obtain (2.7) as in (2.6). This completes the proof.

Lemma 2.6. Let $k \in \mathbb{N} \cup\{0\}$ and $w \in \mathcal{F}_{\lambda}\left(C^{2}+\right)$ with $0<\lambda<(k+2) /(k+1)$. Then there exist constants $C_{5}>1$ and $\delta>0$ such that

$$
\begin{equation*}
T\left(a_{n}\right) \leq C_{5} n^{2 /(2 k+3)-\delta} \tag{2.9}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$.
Proof. We may assume that $w=\exp (-Q)$ is an Erdős-type weight. By (2.1), $\left|Q^{\prime}(x)\right| / Q(x)^{\lambda} \leq C$ with some constant $C>1$. Hence Lemma 2.1 (4) gives us

$$
\frac{n \sqrt{T\left(a_{n}\right)}}{a_{n}}\left(\frac{n}{\sqrt{T\left(a_{n}\right)}}\right)^{-\lambda} \leq C
$$

that is, $T\left(a_{n}\right) \leq C a_{n}^{2 /(\lambda+1)} n^{2(\lambda-1) /(\lambda+1)}$. Since $\lambda<(k+2) /(k+1)$, we can choose $\delta>0$ and $\eta>0$ such that $2(\lambda-1) /(\lambda+1)+\delta+2 \eta<2 /(2 k+3)$. Hence (2.9) follows from Lemma 2.1 (5). This completes the proof.

We remark that (2.9) implies (1.5). Hence if $w \in \mathcal{F}_{\lambda}\left(C^{2}+\right)$ with $0<\lambda<(k+$ $2) /(k+1)$, then $(1.6),(1.7),(1.8)$ and (1.9) hold true.

Lemma 2.7. Let $w \in \mathcal{F}_{\lambda}\left(C^{2}+\right)$ with $0<\lambda<2$. Then there exists a constant $C_{6}>1$ such that for every $n \in \mathbb{N}$, if $|t|,|x|<a_{2 n}$ and if $|t-x|<a_{n} /(n \sqrt{T(x)})$ then

$$
\begin{equation*}
w(t) / C_{6} \leq w(x) \leq C_{6} w(t) \tag{2.10}
\end{equation*}
$$

Proof. By Lemma 2.3 (2), we have $T(t) / C_{2} \leq T(x) \leq C_{2} T(t)$, and by (1.3) we can write $|t|=a_{s}$. Then $a_{s} \leq a_{2 n}$ implies $s \leq 2 n$. Hence (1.4) and Lemma 2.1(1) show $s a_{n} /\left(n a_{s}\right) \leq C_{7}$ with some constant $C_{7}>1$. Since $\left|Q^{\prime}(t)\right| \leq C s \sqrt{T\left(a_{s}\right)} / a_{s}$ by Lemma 2.1 (4), we have

$$
\begin{aligned}
\left|Q^{\prime}(t)\right||t-x| & \leq C \frac{s \sqrt{T\left(a_{s}\right)}}{a_{s}} \frac{a_{n}}{n} \frac{1}{\sqrt{T(x)}} \\
& \leq C \frac{a_{n}}{n} \frac{s}{a_{s}} \frac{\sqrt{T(t)}}{\sqrt{T(x)}} \leq C C_{7} \sqrt{C_{2}} .
\end{aligned}
$$

Similarly, we see $\left|Q^{\prime}(x)\right| t-x \mid \leq C C_{7}$. Hence if we put $C_{6}=e^{C C_{7} \sqrt{C_{2}}}$, then $\left|Q^{\prime}(t)\right| \mid t-$ $x \mid \leq \log C_{6}$ and $\left|Q^{\prime}(x)\right||t-x|<\log C_{6}$ hold true. From the mean value theorem for
differential calculus, there exists θ between x and t such that

$$
\frac{w(x)}{w(t)}=\exp (Q(t)-Q(x))=\exp \left(Q^{\prime}(\theta)(t-x)\right)
$$

Since Q^{\prime} is increasing, $\left|Q^{\prime}(\theta)(x-t)\right| \leq \max \left\{\left|Q^{\prime}(x)\right|,\left|Q^{\prime}(t)\right|\right\}|x-t| \leq \log C_{6}$, which shows (2.10) immediately. This completes the proof.

3. Estimates for Christoffel functions

By definition, the partial sum of Fourier series is given by

$$
\begin{equation*}
s_{n}(f)(x)=\int_{\mathbb{R}} K_{n}(x, t) f(t) w(t)^{2} d t, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{n}(x, t)=\sum_{k=0}^{n-1} p_{k}(x) p_{k}(t) . \tag{3.2}
\end{equation*}
$$

It is known that by the Cristoffel-Darboux formula

$$
\begin{equation*}
K_{n}(x, t)=\frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n}(x) p_{n-1}(t)-p_{n}(t) p_{n-1}(x)}{x-t} \tag{3.3}
\end{equation*}
$$

holds, where γ_{n} and γ_{n-1} are the leading coefficients of p_{n} and p_{n-1}, respectively. Then

$$
\begin{equation*}
a_{n} \sim \frac{\gamma_{n-1}}{\gamma_{n}} \tag{3.4}
\end{equation*}
$$

also holds (see [2, Lemma 13.9]).
The Christoffel function $\lambda_{n}(x)=\lambda_{n}(w, x)$ is defined by

$$
\lambda_{n}(x):=\frac{1}{K_{n}(x, x)}=\left(\sum_{k=0}^{n-1} p_{k}(x)^{2}\right)^{-1} .
$$

Then

$$
\begin{equation*}
\lambda_{n}(x)=\inf _{P \in \mathcal{P}_{n-1}} \frac{1}{P(x)^{2}} \int_{\mathbb{R}}|P(t) w(t)|^{2} d t \tag{3.5}
\end{equation*}
$$

holds on \mathbb{R}. We use derivative versions of (3.5). The following equality is also established.

Proposition 3.1. Let $0 \leq j<n$. Then for every $x \in \mathbb{R}$, we have

$$
\begin{equation*}
\left(\sum_{k=0}^{n-1}\left(p_{k}^{(j)}(x)\right)^{2}\right)^{-1}=\inf _{P \in \mathcal{P}_{n-1}} \frac{1}{\left(P^{(j)}(x)\right)^{2}} \int_{\mathbb{R}}|P(t) w(t)|^{2} d t \tag{3.6}
\end{equation*}
$$

Proof. In [3, Theorem 1.3.2], we see

$$
\left(\sum_{k=0}^{n-1} \Phi\left(p_{k}\right)^{2}\right)^{-1}=\inf _{P \in \mathcal{P}_{n-1}} \frac{1}{\left(\Phi(P)^{2}\right.} \int_{\mathbb{R}}|P(t) w(t)|^{2} d t
$$

for any linear functional Φ on polynomials. (3.6) follows if we consider $\Phi(P)=P^{(j)}(x)$.
The following estimate plays an important role in our later argument. We use $C_{m}(m=1, \cdots, 6)$, which are constants in lemmas of the previous section.

Proposition 3.2. Let $k \geq 2$ be an integer and let $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$ with $0<\lambda<$ $(k+3) /(k+2)$. Then there exists a constant $C_{8}>1$ such that for every $1 \leq j \leq k$ and every $n \in \mathbb{N}$,

$$
\begin{equation*}
\frac{w(x)^{2}}{T(x)^{(2 j+1) / 2}} \sum_{k=0}^{n-1}\left(p_{k}^{(j)}(x)\right)^{2} \leq C_{8}\left(\frac{n}{a_{n}}\right)^{2 j+1} \tag{3.7}
\end{equation*}
$$

Proof. It is enough to show (3.7) for sufficiently large n. By Proposition 3.1, (3.7) follows from

$$
\begin{equation*}
\left(\frac{a_{n}}{n}\right)^{2 j+1} \frac{w(x)^{2}}{T(x)^{(2 j+1) / 2}} \leq C_{8} \frac{1}{\left(P^{(j)}(x)\right)^{2}} \int_{\mathbb{R}}|P(t) w(t)|^{2} d t \tag{3.8}
\end{equation*}
$$

for $P \in \mathcal{P}_{n-1}$. Now to show (3.8), take $P \in \mathcal{P}_{n-1}$ arbitrarily. By Lemma 2.2, we can choose $\zeta \in \mathbb{R}$ such that $|\zeta| \leq a_{n-1}$ and satisfies

$$
\begin{equation*}
\|w P\|_{L^{\infty}(\mathbb{R})} \leq 2|w(\zeta) P(\zeta)| \tag{3.9}
\end{equation*}
$$

Let $0<c_{1} \leq 1$. Lemma 2.6 gives us $T\left(a_{n}\right) \leq C_{5} n^{1-\delta^{\prime}}$ with some $\delta^{\prime}>0$, so that if $t \in \mathbb{R}$ satisfies

$$
\begin{equation*}
|t-\zeta| \leq c_{1} \frac{a_{n}}{n} \frac{1}{\sqrt{T(\zeta)}} \tag{3.10}
\end{equation*}
$$

then

$$
|t| \leq|\zeta|+|\zeta-t| \leq|\zeta|+c_{1} \frac{a_{n}}{n} \frac{1}{\sqrt{T(\zeta)}} \leq a_{n-1}+\frac{a_{n}}{n} \leq a_{n}+\frac{C_{5}}{n^{\delta^{\prime}}} \frac{a_{n}}{T\left(a_{n}\right)}
$$

Since there exists a constant $C>1$ such that $a_{n}+a_{n} /\left(C T\left(a_{n}\right)\right) \leq a_{2 n}$ by Lemma 2.1 (3), if we take $n_{0} \in \mathbb{N}$ such that $n_{0}^{\delta^{\prime}}>C C_{5}$, then

$$
\begin{equation*}
|t| \leq a_{2 n} \tag{3.11}
\end{equation*}
$$

for all $n \geq n_{0}$. Hence by Lemma 2.7, w(t)/C $C_{6} \leq w(\zeta) \leq C_{6} w(t)$ holds. By monotonicity of $w, w(u) / C_{6} \leq w(\zeta) \leq C_{6} w(u)$ also holds for every u between t and ζ. Moreover,
since T is quasi-increasing, Lemma $2.3(2)$ shows $\sqrt{T(u)} \leq C \sqrt{T(\zeta)}$ with some $C>1$. Then using (2.6) for $p=\infty$ and $j=1$, we have

$$
\begin{aligned}
|P(\zeta)|-|P(t)| & \leq|P(t)-P(\zeta)|=\left|\int_{\zeta}^{t} P^{\prime}(u) d u\right| \\
& \leq C C_{6} \frac{\sqrt{T(\zeta)}}{w(\zeta)}\left|\int_{\zeta}^{t} \frac{1}{\sqrt{T(u)}} w(u) P^{\prime}(u) d u\right| \\
& \leq C C_{6}|t-\zeta| \frac{\sqrt{T(\zeta)}}{w(\zeta)}\left\|\frac{w}{\sqrt{T}} P^{\prime}\right\|_{L^{\infty}(\mathbb{R})} \\
& \leq C C_{6} C_{3}|t-\zeta| \frac{\sqrt{T(\zeta)}}{w(\zeta)} \frac{n}{a_{n}}\|w P\|_{L^{\infty}(\mathbb{R})} \\
& \leq 2 c_{1} C C_{6} C_{3}|P(\zeta)|
\end{aligned}
$$

by (3.9) and (3.10). Consequently, if we take $c_{1}>0$ so small that $2 c_{1} C C_{6} C_{3}<1 / 2$, we have

$$
\begin{equation*}
|P(t)| \geq \frac{1}{2}|P(\zeta)| \text { if }|t-\zeta| \leq c_{1} \frac{a_{n}}{n} \frac{1}{\sqrt{T(\zeta)}} \tag{3.12}
\end{equation*}
$$

Since $C_{2} T(t) \geq T(\zeta)$ and $C_{6} w(t) \geq w(\zeta),(3.9)$ and (3.12) show

$$
\begin{aligned}
\int_{\mathbb{R}} \sqrt{T(t)}|P(t)|^{2} w(t)^{2} d t & \geq \frac{\sqrt{T(\zeta)}}{\sqrt{C_{2}}} \int_{|t-\zeta| \leq c_{1} a_{n} /(n \sqrt{T(\zeta))}}|P(t)|^{2} w(t)^{2} d t \\
& \geq \frac{\sqrt{T(\zeta)}}{\sqrt{C_{2}}} \frac{|P(\zeta)|^{2}}{4} \frac{w(\zeta)^{2}}{C_{6}^{2}} c_{1} \frac{a_{n}}{n} \frac{1}{\sqrt{T(\zeta)}} \\
& \geq \frac{c_{1}}{4 \sqrt{C_{2}}} \frac{1}{C_{6}^{2}} \frac{a_{n}}{n} \frac{\|w P\|_{L^{\infty}(\mathbb{R})}^{2}}{4} \\
& =: \frac{1}{C_{0}} \frac{a_{n}}{n}\|w P\|_{L^{\infty}(\mathbb{R})}^{2} .
\end{aligned}
$$

We note that in the above argument we only use the fact that $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$. If $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$, we can construct $w^{*} \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ such that $w^{*}(x) \sim T(x)^{-1 / 4} w(x)$ by Lemma 2.4. Then it follows from (2.6) for $p=\infty$ that for every $x \in \mathbb{R}$,

$$
\begin{aligned}
\int_{\mathbb{R}} \sqrt{T^{*}(t)}|P(t)|^{2} w^{*}(t)^{2} d t & \geq \frac{1}{C_{0}} \frac{a_{n}^{*}}{n}\left\|w^{*} P\right\|_{L^{\infty}(\mathbb{R})}^{2} \\
& \geq \frac{1}{C_{0} C_{3}} \frac{a_{n}^{*}}{n}\left(\frac{a_{n-1}^{*}}{n-1}\right)^{2 j}\left\|\frac{w^{*}}{\left(T^{*}\right)^{j / 2}} P^{(j)}\right\|_{L^{\infty}(\mathbb{R})}^{2} \\
& \geq \frac{1}{C_{0} C_{3}}\left(\frac{a_{n}^{*}}{n}\right)^{2 j+1} \frac{w^{*}(x)^{2}}{T^{*}(x)^{j}}\left|P^{(j)}(x)\right|^{2}
\end{aligned}
$$

and hence by (2.4) and (2.5) we see

$$
\begin{aligned}
\int_{\mathbb{R}}|P(t)|^{2} w^{2}(t) d t & \geq \frac{1}{C} \int_{\mathbb{R}} \sqrt{T^{*}(t)}|P(t)|^{2} w^{*}(t)^{2} d t \\
& \geq \frac{1}{C C_{0} C_{3}}\left(\frac{a_{n}^{*}}{n}\right)^{2 j+1} \frac{w^{*}(x)^{2}}{T^{*}(x)^{j}}\left|P^{(j)}(x)\right|^{2} \\
& \geq \frac{1}{C}\left(\frac{a_{n / c}}{n}\right)^{2 j+1} \frac{w(x)^{2}}{T(x)^{(2 j+1) / 2}}\left|P^{(j)}(x)\right|^{2} .
\end{aligned}
$$

This together with Lemma 2.1 (1) shows (3.8) and the proof is completed.

4. Proof of Theorem 1.1

In the remaining sections, we again use $C_{m}(m=1, \cdots, 6)$ without notice, which are constants in lemmas in section 2 .

Let $1 \leq p \leq \infty, k \geq 2, w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$ with $0<\lambda<(k+3) /(k+2)$ and let $1 \leq j \leq$ k. Due to Lemma 2.4, there is $w^{*} \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ such that $w^{*}(x) \sim T(x)^{-(2 j+1) / 4} w(x)$. Take $f w \in L^{p}(\mathbb{R})$ arbitrarily. Since $v_{n}^{(j)}(f) \in \mathcal{P}_{2 n-1-j}$, applying w^{*} to (2.7), we have

$$
\begin{aligned}
& \left\|v_{n}^{(j)}(f) \frac{w}{T^{(2 j+1) / 4}}\right\|_{L^{p}(\mathbb{R})} \leq C\left\|v_{n}^{(j)}(f) w^{*}\right\|_{L^{p}(\mathbb{R})} \\
& \quad \leq C\left(\frac{2 n-j}{a_{2 n-j}^{*}}\right)^{j}\left\|\left(T^{*}\right)^{j / 2} v_{n}(f) w^{*}\right\|_{L^{p}(\mathbb{R})} \\
& \quad \leq C\left(\frac{n}{a_{2 n / c}}\right)^{j}\left\|v_{n}(f) \frac{w}{T^{1 / 4}}\right\|_{L^{p}(\mathbb{R})} \\
& \quad \leq C\left(\frac{n}{a_{n}}\right)^{j}\|f w\|_{L^{p}(\mathbb{R})} .
\end{aligned}
$$

Here we use Lemma 2.1 (1), (2.4) and (2.5). The last inequality follows from (1.6). This completes the proof of Theorem 1.1.

By a similar argument as above, we also have

$$
\begin{equation*}
\left\|v_{n}^{(j)}(f) w\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j} T\left(a_{n}\right)^{(2 j+1) / 4}\|f w\|_{L^{p}(\mathbb{R})} \tag{4.1}
\end{equation*}
$$

for all $1 \leq p \leq \infty$. In fact, take $w^{*} \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ such that $w^{*}(x) \sim T^{j / 2}(x) w(x)$. Then
by (2.7) for w and by Lemma 2.4 and Lemma 2.2 for w^{*}, we have

$$
\begin{aligned}
& \left\|v_{n}^{(j)}(f) w\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{j / 2} v_{n}(f) w\right\|_{L^{p}(\mathbb{R})} \\
& \quad \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|v_{n}(f) w^{*}\right\|_{L^{p}\left(\left[-a_{2 n}^{*}, a_{2 n}^{*}\right]\right)} \\
& \quad \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|v_{n}(f) T^{(2 j+1) / 4} \frac{w}{T^{1 / 4}}\right\|_{L^{p}\left(\left[-a_{2 c n}, a_{2 c n}\right]\right)} \\
& \quad \leq C\left(\frac{n}{a_{n}}\right)^{j} T\left(a_{n}\right)^{(2 j+1) / 4}\left\|v_{n}(f) \frac{w}{T^{1 / 4}}\right\|_{L^{p}\left(\left[-a_{2 c n}, a_{2 c n}\right]\right)} \\
& \quad \leq C\left(\frac{n}{a_{n}}\right)^{j} T\left(a_{n}\right)^{(2 j+1) / 4}\|f w\|_{L^{p}(\mathbb{R})} .
\end{aligned}
$$

Note that by Lemma $2.1(2), T(x) \leq C T\left(a_{2 c n}\right) \leq C T\left(a_{n}\right)$ holds for all $x \in\left[-a_{2 c n}, a_{2 c n}\right]$, because T is quasi-increasing.

5. Proof of Theorem 1.2

Let $k \geq 2, w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$ with $0<\lambda<(k+3) /(k+2)$ and let $1 \leq j \leq k$. We first show (1.13) for the case $p=\infty$. Suppose that $T^{(2 j+1) / 4} f w \in L^{\infty}(\mathbb{R})$. Since $v_{n}^{(j)}(f) \in \mathcal{P}_{2 n}$, by Lemma 2.2 , it is sufficient to show

$$
\begin{equation*}
\left|v_{n}^{(j)}(f)(x) w(x)\right| \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})} \tag{5.1}
\end{equation*}
$$

for every $|x| \leq a_{2 n}$. Now we set

$$
A_{n}:=\left\{t \in \mathbb{R} ;|t-x|<\frac{a_{2 n}}{2 n}\right\}, \quad B_{n}:=\left\{t \in \mathbb{R} ; \frac{a_{2 n}}{2 n} \leq|t-x|<\frac{c_{0}}{T(x)}\right\}
$$

and $C_{n}:=\mathbb{R} \backslash\left(A_{n} \cup B_{n}\right)$, where $c_{0}>0$ is a constant in Lemma 2.3 (1). Then as in the proof of (3.11), there exists $n_{0} \in \mathbb{N}$ such that if $n \geq n_{0}$ and $t \in A_{n}$, then $|t| \leq a_{4 n}$ holds. Hence Lemma 2.3 (2) implies

$$
\begin{equation*}
T(t) / C_{2} \leq T(x) \leq C_{2} T(t) \quad\left(t \in A_{n}\right) \tag{5.2}
\end{equation*}
$$

Since T is bounded on $\left[-a_{4 n_{0}}, a_{4 n_{0}}\right]$, we may assume that (5.2) holds for all $n \in \mathbb{N}$. Also by Lemma 2.3 (1),

$$
\begin{equation*}
T(t) / C_{1} \leq T(x) \leq C_{1} T(t) \quad\left(t \in B_{n}\right) \tag{5.3}
\end{equation*}
$$

holds true. Let $g(t):=f(t) \chi_{A_{n}}(t)$, where χ_{A} is the characteristic function of a set A and put $h(t)=f(t)-g(t)$. Since

$$
\int_{\mathbb{R}}\left(\sum_{k=0}^{m-1} p_{k}^{(j)}(x) p_{k}(t)\right)^{2} w(t)^{2} d t=\sum_{k=0}^{m-1}\left(p_{k}^{(j)}(x)\right)^{2}
$$

(3.2), (5.2) and the Schwarz inequality show that

$$
\begin{aligned}
& \left|s_{m}^{(j)}(g)(x) w(x)\right| \\
& \leq w(x) \int_{\mathbb{R}}\left|g(t) \sum_{k=0}^{m-1} p_{k}^{(j)}(x) p_{k}(t) w(t)^{2}\right| d t \\
& \leq\left(\sum_{k=0}^{m-1}\left(p_{k}^{(j)}(x)\right)^{2} w(x)^{2}\right)^{1 / 2}\left(\int_{A_{n}}|f(t) w(t)|^{2} d t\right)^{1 / 2} \\
& \leq C_{2}^{(2 j+1) / 4}\left(\sum_{k=0}^{m-1} \frac{w(x)^{2}}{T(x)^{(2 j+1) / 2}}\left(p_{k}^{(j)}(x)\right)^{2}\right)^{1 / 2}\left(\int_{A_{n}}\left|T(t)^{(2 j+1) / 4} f(t) w(t)\right|^{2} d t\right)^{1 / 2} \\
& \leq C\left(\sum_{k=0}^{m-1} \frac{w(x)^{2}}{T(x)^{(2 j+1) / 2}}\left(p_{k}^{(j)}(x)\right)^{2}\right)^{1 / 2}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})}\left(\frac{a_{2 n}}{2 n}\right)^{1 / 2} .
\end{aligned}
$$

Since $v_{n}^{(j)}(g)(x)=(1 / n) \sum_{m=n+1}^{2 n} s_{m}^{(j)}(g)(x)$, Proposition 3.2 gives us

$$
\begin{equation*}
\left|v_{n}^{(j)}(g)(x) w(x)\right| \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})} \tag{5.4}
\end{equation*}
$$

for all $x \in \mathbb{R}$ with $|x| \leq a_{2 n}$.
To estimate $v_{n}^{(j)}(h)$, we use (3.3). For $i=0,1, \cdots, j$, we put

$$
\begin{aligned}
& v_{n, i}(h)(x) \\
& :=\frac{1}{n} \sum_{m=n+1}^{2 n} \frac{\gamma_{m-1}}{\gamma_{m}} \int_{\mathbb{R}} h(t) \frac{p_{m}^{(j-i)}(x) p_{m-1}(t)-p_{m-1}^{(j-i)}(x) p_{m}(t)}{(x-t)^{i+1}} w(t)^{2} d t \\
& =\frac{1}{n} \sum_{m=n+1}^{2 n} \frac{\gamma_{m-1}}{\gamma_{m}}\left(b_{m-1}\left(h_{i}\right) p_{m}^{(j-i)}(x)-b_{m}\left(h_{i}\right) p_{m-1}^{(j-i)}(x)\right),
\end{aligned}
$$

where

$$
h_{i}(t):=\frac{h(t)}{(x-t)^{i+1}} \text { and } b_{k}\left(h_{i}\right):=\int_{\mathbb{R}} h_{i}(t) p_{k}(t) w(t)^{2} d t \quad(k \in \mathbb{N} \cup\{0\}) .
$$

Then

$$
\begin{equation*}
v_{n}^{(j)}(h)(x)=\sum_{i=0}^{j}(-1)^{i}\binom{j}{i} v_{n, i}(h)(x) . \tag{5.5}
\end{equation*}
$$

By (3.4), the Schwarz inequality and Proposition 3.2, we have

$$
\begin{aligned}
& \left|v_{n, i}(h)(x) w(x)\right| \\
& \leq \frac{1}{n} \sum_{m=0}^{2 n}\left|\frac{\gamma_{m-1}}{\gamma_{m}} 2 p_{m}^{(j-i)}(x) b_{m}\left(h_{i}\right) w(x)\right| \\
& \leq C \frac{a_{n}}{n}\left(w(x)^{2} \sum_{m=0}^{2 n}\left(p_{m}^{(j-i)}(x)\right)^{2}\right)^{1 / 2}\left(\sum_{m=0}^{2 n}\left|b_{m}\left(h_{i}\right)\right|^{2}\right)^{1 / 2} \\
& \leq C \frac{a_{n}}{n}\left(\frac{w(x)^{2}}{\left.T(x)^{(2(j-i)+1) / 2} \sum_{m=0}^{2 n}\left(p_{m}^{(j-i)}(x)\right)^{2}\right)^{1 / 2}\left(T(x)^{(2(j-i)+1) / 2} \sum_{m=0}^{2 n}\left|b_{m}\left(h_{i}\right)\right|^{2}\right)^{1 / 2}}\right. \\
& \leq C\left(\frac{n}{a_{n}}\right)^{(2(j-i)-1) / 2}\left(T(x)^{(2(j-i)+1) / 2} \sum_{m=0}^{2 n}\left|b_{m}\left(h_{i}\right)\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

The Bessel inequality implies that

$$
\sum_{m=0}^{2 n}\left|b_{m}\left(h_{i}\right)\right|^{2} \leq \int_{\mathbb{R}}\left|\frac{h(t)}{(x-t)^{i+1}}\right|^{2} w(t)^{2} d t=\int_{B_{n} \cup C_{n}} \frac{|f(t) w(t)|^{2}}{(x-t)^{2(i+1)}} d t
$$

and hence, by (5.3), we have

$$
\begin{aligned}
& T(x)^{(2(j-i)+1) / 2} \int_{B_{n}} \frac{|f(t) w(t)|^{2}}{(x-t)^{2(i+1)}} d t \\
& \leq C_{1}^{(2(j-i)+1) / 2} \int_{B_{n}} \frac{\left|T(t)^{(2(j-i)+1) / 4} f(t) w(t)\right|^{2}}{(x-t)^{2(i+1)}} d t \\
& \leq C\left\|T^{(2(j-i)+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})}^{2} \int_{|x-t|>\frac{a_{2 n} n}{2 n}} \frac{1}{(x-t)^{2(i+1)}} d t \\
& \leq C\left\|T^{(2(j-i)+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})}^{2}\left(\frac{n}{a_{n}}\right)^{2 i+1} \\
& \leq C\left\|T^{(2 j+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})}^{2}\left(\frac{n}{a_{n}}\right)^{2 i+1},
\end{aligned}
$$

because $T \geq 1$. On the other hand, if $|x| \leq a_{2 n}$ then $T(x) \leq C T\left(a_{n}\right)$, so that

$$
\begin{aligned}
& T(x)^{(2(j-i)+1) / 2} \int_{C_{n}} \frac{|f(t) w(t)|^{2}}{(x-t)^{2(i+1)}} d t \\
& \leq C\|f w\|_{L^{\infty}(\mathbb{R})}^{2} T(x)^{(2(j-i)+1) / 2} \int_{\frac{c_{0}}{T(x)} \leq|x-t|} \frac{1}{(x-t)^{2(i+1)}} d t \\
& \leq C\|f w\|_{L^{\infty}(\mathbb{R})}^{2} T(x)^{(2(i+j)+3) / 2} \\
& \leq C\left\|T^{(2 j+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})}^{2} T\left(a_{n}\right)^{(2(i+k)+3) / 2} .
\end{aligned}
$$

Moreover

$$
\begin{equation*}
T\left(a_{n}\right)^{(2(i+k)+3) / 2} \leq C\left(\frac{n}{a_{n}}\right)^{2 i+1} \tag{5.6}
\end{equation*}
$$

holds. In fact, to show this we may assume that w is an Erdös-type weight by (1.4). Then by Lemma 2.1 (5) and Lemma 2.6, we have

$$
T\left(a_{n}\right)^{(2 k+3) / 2} \leq C n^{(2 /(2 k+3)-\delta)((2 k+3) / 2)} \leq C n^{1-\delta^{\prime}} \leq C\left(\frac{n}{a_{n}}\right)
$$

Similarly

$$
\begin{aligned}
T(x)^{(2(i+k)+3) / 2} & \leq C T\left(a_{n}\right)^{(4 k+3) / 2} \leq C n^{(2 /(2 k+3)-\delta)((4 k+3) / 2)} \\
& \leq C n^{2-\delta^{\prime \prime}} \leq C\left(\frac{n}{a_{n}}\right)^{2} \leq C\left(\frac{n}{a_{n}}\right)^{2 i+1}
\end{aligned}
$$

holds for $i \geq 1$. Combining the above estimates, we thus have

$$
\begin{aligned}
\left|v_{n, i}(h)(x) w(x)\right| & \leq C\left(\frac{n}{a_{n}}\right)^{(2(j-i)-1) / 2}\left(T(x)^{(2(j-i)+1) / 2} \sum_{m=0}^{2 n}\left|b_{m}\left(h_{i}\right)\right|^{2}\right)^{1 / 2} \\
& \leq C\left(\frac{n}{a_{n}}\right)^{(2(j-i)-1) / 2}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})}\left(\frac{n}{a_{n}}\right)^{(2 i+1) / 2} \\
& \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})}
\end{aligned}
$$

It follows from (5.5) that

$$
\left|v_{n}^{(j)}(h)(x) w(x)\right| \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{\infty}(\mathbb{R})}
$$

This together with (5.4) shows (5.1).
We will prove (1.13) for $p=2$ in the next section. Then using the Riesz-Thorin interpolation theorem for an operator

$$
F: f \mapsto w v_{n}^{(j)}\left(\frac{f}{w}\right)
$$

we obtain (1.13) for all $2 \leq p \leq \infty$. This completes the proof of Theorem 1.2.

6. Proof of Theorem 1.3

Let $1 \leq p \leq 2$ and $T^{(2 j+1) / 4} f w \in L^{2}(\mathbb{R})$. We use the same notations as in the previous section. Then as in the estimate of $s_{m}^{(j)}(g)$ in the previous section, we have

$$
\begin{equation*}
\left|s_{m}^{(j)}(g)(x) w(x)\right| \leq C\left(\frac{n}{a_{n}}\right)^{(2 j+1) / 2}\left(\int_{A_{n}}\left|T(t)^{(2 j+1) / 4} f(t) w(t)\right|^{2} d t\right)^{1 / 2} \tag{6.1}
\end{equation*}
$$

for $|x| \leq a_{2 n}$. Hence Lemma 2.2 and the Hölder inequality imply

$$
\begin{aligned}
& \int_{\mathbb{R}}\left|s_{m}^{(j)}(g)(x) w(x)\right|^{p} d x \leq 2^{p} \int_{|x| \leq a_{2 n}}\left|s_{m}^{(j)}(g)(x) w(x)\right|^{p} d x \\
& \leq C \int_{|x| \leq a_{2 n}}\left(\frac{n}{a_{n}}\right)^{p(2 j+1) / 2}\left(\int_{A_{n}}\left|T(t)^{(2 j+1) / 4} f(t) w(t)\right|^{2} d t\right)^{p / 2} d x \\
& \leq C\left(\frac{n}{a_{n}}\right)^{p(2 j+1) / 2} \int_{|x| \leq a_{2 n}}\left(\int_{|u| \leq \frac{a_{2 n}}{2 n}}\left|T(x-u)^{(2 j+1) / 4} f(x-u) w(x-u)\right|^{2} d u\right)^{p / 2} d x \\
& \leq C\left(\frac{n}{a_{n}}\right)^{p(2 j+1) / 2} a_{n}^{(2-p) / 2} \\
& \times\left\{\int_{|x| \leq a_{2 n}}\left(\int_{|u| \leq \frac{a_{n}}{n}}\left|T(x-u)^{(2 j+1) / 4} f(x-u) w(x-u)\right|^{2} d u\right) d x\right\}^{p / 2} \\
& \leq C\left(\frac{n}{a_{n}}\right)^{p(2 j+1) / 2} a_{n}^{(2-p) / 2}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})}^{p}\left(\int_{|u| \leq \frac{a_{n}}{n}} d u\right)^{p / 2} \\
& \leq C\left(\frac{n}{a_{n}}\right)^{p j} a_{n}^{(2-p) / 2}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})}^{p},
\end{aligned}
$$

so that we have

$$
\begin{equation*}
\left\|v_{n}^{(j)}(g) w\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j} a_{n}^{(2-p) /(2 p)}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})} \tag{6.2}
\end{equation*}
$$

Next we estimate $v_{n, i}(h)$. Similarly as above, we have

$$
\begin{aligned}
& \int_{\mathbb{R}}\left|v_{n, i}(h)(x) w(x)\right|^{p} d x \leq 2 \int_{|x| \leq a_{2 n}}\left|v_{n, i}(h)(x) w(x)\right|^{p} d x \\
& \leq C\left(\frac{n}{a_{n}}\right)^{p(2(j-i)-1) / 2} a_{n}^{(2-p) / 2} \\
& \quad \times\left\{\int_{|x| \leq a_{2 n}}\left(\int_{B_{n} \cup C_{n}} \frac{\left|T(t)^{(2(j-i)+1) / 4} f(t) w(t)\right|^{2}}{(x-t)^{2(i+1)}} d t\right) d x\right\}^{p / 2}
\end{aligned}
$$

Also as in the argument of previous section,

$$
\begin{aligned}
& \int_{|x| \leq a_{2 n}}\left(\int_{B_{n}} \frac{\left|T^{(2(j-i)+1) / 4}(t) f(t) w(t)\right|^{2}}{(x-t)^{2(i+1)}} d t\right) d x \\
& \leq \int_{\mathbb{R}}\left(\int_{\frac{a_{n}}{n} \leq|u|} \frac{\left|T^{(2(j-i)+1) / 4}(x-u) f(x-u) w(x-u)\right|^{2}}{u^{2(i+1)}} d u\right) d x \\
& \leq C\left(\frac{n}{a_{n}}\right)^{2 i+1}\left\|T^{(2(j-i)+1) / 4} f w\right\|_{L^{2}(\mathbb{R})}^{2} \leq C\left(\frac{n}{a_{n}}\right)^{2 i+1}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})}^{2}
\end{aligned}
$$

On the other hand, by (5.6) we have

$$
\begin{aligned}
& \int_{|x| \leq a_{2 n}}\left(T(x)^{(2(j-i)+1) / 2} \int_{C_{n}} \frac{|f(t) w(t)|^{2}}{(x-t)^{2(i+1)}} d t\right) d x \\
& \leq C T\left(a_{2 n}\right)^{(2(j-i)+1) / 2} \int_{\mathbb{R}}\left(\int_{\frac{c_{0}}{T\left(a_{2 n}\right)} \leq|u|} \frac{|f(x-u) w(x-u)|^{2}}{u^{2(i+1)}} d u\right) d x \\
& \leq C\|f w\|_{L^{2}(\mathbb{R})}^{2} T\left(a_{2 n}\right)^{(2(j-i)+1) / 2} \int_{\frac{c_{0}}{T\left(a_{2 n}\right)} \leq|u|} \frac{1}{u^{2(i+1)}} d u \\
& \leq C T\left(a_{2 n}\right)^{(2 j+2 i+3) / 2}\|f w\|_{L^{2}(\mathbb{R})}^{2} \\
& \leq C\left(\frac{n}{a_{n}}\right)^{2 i+1}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R}) .}^{2} .
\end{aligned}
$$

Consequently we have

$$
\begin{equation*}
\left\|v_{n, i}(h) w\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j} a_{n}^{(2-p) / 2 p}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})} \tag{6.3}
\end{equation*}
$$

for $0 \leq i \leq j$, so that

$$
\left\|v_{n}^{(j)}(h) w\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j} a_{n}^{(2-p) / 2 p}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})}
$$

follows. This together with (6.2) shows (1.14). This completes the proof of Theorem 1.3 .

Under the same assumptions in Theorem 1.3, the following estimate is also established. Let $\beta>1$ and $1 \leq p \leq 2$. Then

$$
\begin{equation*}
\left\|v_{n}^{(j)}(f) \frac{w}{(1+|x|)^{(2-p) \beta /(2 p)}}\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})} \tag{6.4}
\end{equation*}
$$

holds for every $T^{(2 j+1) / 4} f w \in L^{2}(\mathbb{R})$ and every $n \in \mathbb{N}$. In fact, in the proof of Theorem 1.3 , we used

$$
\begin{aligned}
& \int_{|x| \leq a_{2 n}}\left(\int_{|x-t| \leq \frac{a_{2 n}}{2 n}}\left|T(t)^{(2 j+1) / 4} f(t) w(t)\right|^{2} d t\right)^{p / 2} d x \\
& \quad \leq a_{n}^{(2-p) / 2}\left\{\int_{|x| \leq a_{2 n}}\left(\int_{|x-t| \leq \frac{a_{n}}{n}}\left|T(t)^{(2 j+1) / 4} f(t) w(t)\right|^{2} d u\right) d x\right\}^{p / 2},
\end{aligned}
$$

which follows from the Hölder inequality. Instead of this, we use

$$
\begin{aligned}
& \int_{\mathbb{R}} \frac{1}{(1+|x|)^{(2-p) \beta / 2}}\left(\int_{|x-t| \leq \frac{a_{2 n}}{2 n}}\left|T(t)^{(2 j+1) / 4} f(t) w(t)\right|^{2} d t\right)^{p / 2} d x \\
& \quad \leq\left(\int_{\mathbb{R}} \frac{1}{(1+|x|)^{\beta}} d x\right)^{(2-p) / 2}\left\{\int_{\mathbb{R}}\left(\int_{|x-t| \leq \frac{a_{n}}{n}}\left|T(t)^{(2 j+1) / 4} f(t) w(t)\right|^{2} d t\right) d x\right\}^{p / 2}
\end{aligned}
$$

Then as in (6.2), we obtain

$$
\left\|v_{n}^{(j)}(g) \frac{w}{(1+|x|)^{(2-p) \beta /(2 p)}}\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})}
$$

For the estimate of $v_{n, i}(h)$, we take $w^{*} \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ such that $w^{*}(x) \sim w(x) /(1+$ $|x|)^{(2-p) \beta /(2 p)}$ (see [5, Theorem 4.2]). Then by Lemma 2.2,

$$
\int_{R}\left|v_{n, i}(h) \frac{w(x)}{(1+|x|)^{(2-p) \beta /(2 p)}}\right|^{p} d x \leq 2^{p} \int_{|x| \leq a_{2 n}^{*}}\left|v_{n, i}(h) \frac{w(x)}{(1+|x|)^{(2-p) \beta /(2 p)}}\right|^{p} d x .
$$

By an estimate similar to (6.3), we obtain

$$
\left\|v_{n, i}(h) \frac{w}{(1+|x|)^{(2-p) \beta /(2 p)}}\right\|_{L^{p}(\mathbb{R})} \leq C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{(2 j+1) / 4} f w\right\|_{L^{2}(\mathbb{R})}
$$

which shows (6.4).

References

[1] H. S. Jung and R. Sakai, Specific examples of exponential weights, Commun. Korean Math. Soc. 24. No. 2 (2009), pp.303-319.
[2] A. L. Levin and D. S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.
[3] H. N. Mhaskar, Introduction to the Theory of Weighted Polynomial Approximation, World Scientific, Singapore, 1996.
[4] R. Sakai and N. Suzuki, Favard-type inequalities for exponential weights, Pioneer J. of Math. Vol 3, No. 1 (2011), pp.1-16.
[5] R. Sakai and N. Suzuki, Mollification of exponential weights and its application to the Markov-Bernstein inequality, Pioneer J. of Math., Vol.7, No. 1 (2013), pp.83101.
[6] K. Itoh, R. Sakai and N. Suzuki, The de la Vallée Poussin mean and polynomial approximation for exponential weight, International J. of Analysis, Vol. 2015 (2015), Article ID 706930, 8 pages.

[^0]: Received 15 December 2014; revised 19 January 2015 2010 Mathematics Subject Classification. Primary 41A17, Secondary 41A10
 Key Words and Phrases. de la Vallée Poussin mean; Christoffel function; weighted polynomial approximation; Freud-type weight; Erdös-type weight.
 *Department of Mathematics, Meijo University, Tenpaku-ku, Nagoya 468-8502, Aichi Japan (133451501@ccalumni.meijo-u.ac.jp)
 ${ }^{* *}$ Department of Mathematics, Meijo University, Tenpaku-ku, Nagoya 468-8502, Aichi Japan (ryozi@crest.ocn.ne.jp)
 ${ }^{* * *}$ Department of Mathematics, Meijo University, Tenpaku-ku, Nagoya 468-8502, Aichi Japan (suzukin@meijo-u.ac.jp)

 This work was partially supported by Grant-in-Aid for Scientific Research (C) No.15K04939, Japan Society for the Promotion of Science.

