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On Uniformly Convex ' Spaces.

By Tadashi HIRAQKA. !

Let B denote a Banach space (linear, metric, complete, normed space), with
elements x,, - . We denote the norm of an element x by |x/.

A Banach space B is said to be uniformly convex, if to any positive number
e there exist a positive number §(¢) so that,

[x[=ly|=1, {x—y|=e x,y¢B

implies | 1% IIJ <1—0(e).
t |

%

Uniformly convex spaces were investigated by several authorities, and many
interesting results were obtained. James A. Clarkson® has shown us that spaces
i, and L, are uniformly convex for p exceeding unity. In this paper, we shall
show the' same result, with different inequalities concerning the norm from
Clarkson’s. In the first part of this paper, we shall attempt to prove on in—
equalities about /, space, by using the Lemma. Further, we shall prove the
corresponding statement to L, space by exhibiting a set of inequalities for these
spaces. At last, from the Theorem 1 and the Minkowski’s inequalities we con-
clude that spaces I, and L, are uniformly convex, with p>>1.

Now, let us prove the following Lemma.

Lemma. For any two complex numbers x, ¥

(L if 22p>1, then 27ix P|y )2l x4y B+ (p—1) | 2=y 1) Y,

(2) if D=2, then 227N(|x 74|y | x4y P4 (2P 1—1) | x—y 7.

Proof. We assume that |x|=|y{, and put 1=c ==iy|/ix. Then we
see that (1) is reduced to the next form; -

(8) 27(Ltie ™) = { | T+e+(p—D [1—cP) 2.

By elementary calculus methods and With a little attentions, we can  easily

see that we need only consider 0<c<1. Making the further transformation

1) Jemes A. Clarkson, Uniformly convex spaces. Trans. Amer. Math Soc. 40 (1936).
396-414.



78 Bulletin of the Educational Fac. of Ibaraki University. No. 1.

c=(1—2)/(14+2) (0<2<1), we reduce (3) to the form
P
A:% (L2 + 1=z} —{1+(p—1) 2%} .
Here, we must prove that A=0. So expanding each term of A in its Taylor's
series. we have

A= é {(1+2)P+(1—2z)P}=1+ p(pé'!_l) 224 P(ﬁ—12(247p)7(37'—Q 21

L p=D@—D) (k=1 u,
ot (2R A

A= {1+ (p—1) 2%} *1+ f’(l’ D ,2(1?;1,1‘%‘2;?), "

o D=2 AP AR D) iy
2%=1 (2k—1)!

e Vi IO DRI D DT N

o (k)1
Hence

P(P—=1)(2—P)(3—p) - s (2k—1—p) 27
—A= L{ (21

P(P 1)/C 1(2 P)(4 P) """ (4(k—1)—‘25) 22(2k~1)
TonT T (2k—D!

4 BO=DF@=DIp) (A ZR=1)=D) zu}
2% (2k)!

Here, if 2>p>1, by using 2k—1—p=(4(k—1)—p)/2 and 2k—p=(2(2k—1—p)/2

for k=1,2,3,--- , then

ii A {1&?_—-—_1) (2—P)(B—P)--nr (Zk_l_p),lleﬁ

L (2k—D! 2!
_12@2112 2;1" igp, Ak 1> D (p—1yzyED
N L XA
25 (P50 2 P R TR P (o bl
4 2ED=D L p—n e )]

Further, we use that (2(2k—1)—p)/d=k—1/2—p/4=k—1 for 2=p>1 and k=1,

2,3, ------. Hence, we have
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v A=>] [P(:D—IXZ—P)(LI—p) ...... (41 —p) e 1(2k 5

x| (=D 2yv p Bl pnyay) ]

k—1

,E[m —1) (B=DY A=) (AR=D=) perig ks 2
.f]- ((p— ]_)z)’(k D 1—((1‘)_1) 2% 7
l k—1 k }J

But { } is non-negative,. because for 0<w=1 and (>0, f(O=(1—w*)/f is
monotone decreasing function of 2. Then A=0 i§ proved and therefore we see
that (1) is true. ‘

Next we attempt to prove (2) under the same assumptions with the proof

of (1), and then we come to prove the following relation
Ay = {(1+z)” +(1—=2)7} =14+ (27"1—1) 27=A4,,

where

Ay =1+ zbji’ZTQ | (b~ 1)(1”3,, 2)(p-3) ,

pO—=1)(p—2) - (p—2k+1)
+ 3k g

Attty 1 KD | PO=DE-20=8)

L 1) (p— 2k+1)

o =1 } zP,

Now, p=2, so for some natural number 2 we must consider two cases; namely

2k <p<2ko+1 and 2ko-+1<p<20ko+1).

1. For some natural number ky, if 2k, §p<2ko+1 then

AY=1+ 1+ 1’0" D_z. Bb— 1X19;~2)(15 3D L
L PO=DB=2) (2Rt 1)
(2R
P(P—1)(p—2)---(p—2ko+1)(p—2ko) (p— 2ko D g .
A (2ko+2)! Fhh I
=1+[ 1+ p(?’,,,i)_ z@—l)({;!—Z)@—&) s

p(p—1)(p—2)-+- @—2%0&1] o

+ (k)
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+{1’__<,1’—1) ------ (p—2k)(p—2k—1) |
(2k+2)1

------ —1} sr=14 (2rim1y 2r= A,
where { } is non-positive.
2. If 2k+1<p<2(ky+1) for some natural number ky, then

17(15 -1 pO—1(B—=2)(p—3)

AY —1+ 2% i Zil.
L DP=DD=2) - (p=2kot 1)
(2ko)!
P(Zﬁ “D@D—2) - (D—=2k—1)  _u i,
(2k0+2)'
4 {_(j}~1)(z'1~2) ----- (p—2ko—1)(2ky+-2—Pp)(2ks+3—1)
(ko +3)1
_ B=D(D=2)-(Zko4-3—=P)(2ho+4—D) Sz g
(2ky+4)!
e R L
P(P D(p—=2) - (D=2k—1) oy 41
(2ko+2)1
+{ (D—1)(Dp—2) - (?_an—l)(2k0+2—'p)(2k0+3—p) ]
(2ks+3)1
_ =D (@p—2)------ 2k +3—Pp) 2R +4—D) 1 XD g
2k 4-4)01 :

Here, we must prove that

_ pO—1(p=2)----(p— 2kr>+1> pfp 1(p—2) - (p—2ki—1) o .
@ (21 #ot @kt D e

B=1)(B=2) - (2hy +2—P)( 2k 3—D) _us 42,
(2k\+3)1

{i)(ﬁ D(p—=2)----- (p—2k)+1) p(gl)(p 2)-(p—2k —1)
(2:)1 (2k+2)1

4 p=DY(p=2) - (2kyt 2—p) 2kt 3—D)
(2ky+3)!

So we devide the both sides of (4) by (p—1)(Pp—2)-----(p—2ky+1)2?/(2k,)! and

+

v

zP,

we put

ot —ny PP—=2RO(D—2R—1) . s,
A= T Nk T

| D=2k ) (p—2Ry—1)(2ks + 2—p)(2ko+-3=D) s 11-
(2ky+-1)(2ky+2)(2k,+3)

{H,Q\A 2k )(p—2hy—1)
ky-+1)(2k,+2)
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(p 2k Y(p—2k —1)(2k +2— p)(zk +3—p) } =0
(2k +1)(2k +2)(2k.+3) =0.

And then we come to prove that A.=0. So we differentiate A, with z. Then

a4y 1
dz  (Rky+1)(2ky+2)(2ky+3)

{ (2,41 )(2ky+2)( 2o+ 3)(2ky—p) 2%~ 11
+p(p—2k0 )(p—2ky—1)(2ky+3)(2ky+2—p) 2% ri-2

(=2 Y(b—2hy—1)(2R 2~ D) Zhrt 3—) (2 +4—p) 501 |

z:!lx'a— p—-1

=TT ok T2 He sy | PRt D @kt 2)(2hy+3)(2k—1)

+p(2k)+3)(2ky+2—D)(0—2k) Y(p—2k —1) 2*

(D=2 (D= 2= 1) (2o 2~P X2k + 3D )X 2kt 4—p) 2 |

zﬂko—p-l

(2ky+1)(2ky+2)(2ky+3) [(ﬁ—de) { (D—2k,—1)(2ky+ 2—p)(P(2ky+3)

IA

(2o + 302k D))= PR+ 1)( 2o+ 2)(2k0+-3) | | <0,

where 1>p—2k—1=0, 1=2k+2—p>0 and { } is negative. Further, if z=1,
then A¢=0. Therefore A,=0 is proved.

Furtheremore by similar methods, we see the next relation ; i.e.

...... Fot+- 21— J—
Z.{@ D@—2) QR +-21—D) o5

= (22000
_(=D(p=2)- (2k0+2l+1 —D) ’<A0+z+1>}
(Ch+21+ 11
<i{(zb D(P=2)-(2ko+21—=p) _ (p—1)(p—2)-----(2ko+20+1—p)
= (2ky 201 @k t20+1)Y }

So we understand A=A, for case 2. Therefore the proof of the Lemma is

completed.
Now, this time we consider the following Theorem on I, and L, spaces.
Theorem 1. For spaces 1, and L, the following inequalities between the

norms of two arbitrary elements x and y of the space are valid :
(5) if 2z2p>1, then 2°- (| x|+ yir = {| x+ 3 P+ (p—D | x—y ilﬂ}g}
6) if p=2, then 2*7(jx|*+|y|? = x+ylr+(22—1) | x—y |2
Proof. First, we shall prove respecting I, space. Let x==(%, Xy, - ) y=

(Yo By weeee ) be the two elements of [, space. By using the Lemma and the
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Minkowski’s® inequality, d.h. if @, b&; are arbitrary two sets of non-negative

numbers, finite or infinite in number, and 07 =1, then

1
=

1
(S 7+ (Sb T =S at by

1
further we put 0<p/2=7=<1, a—|x;+¥: and b={(p—1)% |x;—y:|}?, then we
see that the right side of (5) is ‘

Uty 2D ir—y2)*

2 1
SUCHESE IO ERRONC s SEREC DR I

e
= e

»
B3

1 )]
S x4 3 (=D x5 Y)e,

so from ( 1\)

»

SST{2P a4y DY =020 (g P )

=2 xS }:21'-1{<i2,1xm>‘i" RO MEY DR
=207 ([ x [Py [P
Thus (5) is proved.
Next we must prove (6). So from (2), we see easily that
Ix+y P4 —=1) | x—y ;?"Z? {12+, lv”+(27"1—-1) [ x—: )7}
=ST{ 277 (g Py Dy=20" Cl [P 9 PD-
Thus (6) is proved, and therefore the proof for [, space is completed.
Now, to extend these results to space L, with respect to p as seen in l,, let
[0, 11 be the interval over which the functions of our space are to be defined.
‘We consider first two functions x(%), ¥(Z) which are step.functions on a division
of [0, 1] into equal parts. It is easily verified that for such functions the re-
lations (5)'and (6) are reduced to the 'space I, case already treated, and as
these functions form a dense set in L, the result follows by continuity of the
noerm. |
Thus we see that the Theorem 1 is true for L, space, too. Therefore our

proof is completed.

At last by using Theorem 1, the following fact is concluded.

2y G. H. Haidy, J. E. Littlewood and G. Pélya, Inequalities. Cambridge (1934). 30-32.
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Theorem 2. The spaces I, and L, are uniformly convex with p>1.
Proof. Under the definition of uniform convexity; if jxil=]»li=1 and

|x—y| =¢ for any positive number ¢, then, we obtain the following fact

from (5)
=22 (| x[P+]y l{p)}f_fZ f x4y P =D [ x—y [P

Hence ‘

] P ()
then

17
e a5

and 0 6(&):1—{1—‘(15—1)(%)2}_}!

Therefore we see that I, and L, spaces are uniformly convex for 2=p>1.
Next, on the case p=2, we have from (6) and the assumption of definition
of unjform convexity

2r=201 (2P 10) 2 | 2+ P4@07=D) |2y 17,

then
e 22
hence :
=52 e r-fi-po-n(5 )]
and so ‘ 7 6(6):1—‘-{1—(21)—1_1)<;)”}‘;‘

Thus we see that Theorem 2 is true for p=2, too, and our proof is com-

pleted.

November 10, 1951

Ibaraki University.



