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Accurate insertion, folding and assembly of newly synthesized membrane 

proteins are critical for their functions. The YidC/Oxa1/Alb3 family proteins insert 

their substrates into the membrane, thereby facilitating membrane protein 

assembly in bacteria, mitochondria and chloroplasts1,2. In the bacterial 

cytoplasmic membrane, YidC functions as an independent insertase and a 

membrane chaperone in cooperation with the SecYEG-translocon3–5. Here we 

present the crystal structure of YidC from Bacillus halodurans, at 2.4 Å resolution. 

The structure revealed a novel fold, where five conserved transmembrane helices 

form a positively-charged hydrophilic groove open toward both the lipid bilayer 

and cytoplasm, but closed on the extracellular side. Structure-based in vivo 

analyses revealed that the conserved Arg residue in the groove is important for 

membrane protein insertion by YidC. We propose an insertion mechanism for 

single-spanning membrane proteins, in which the hydrophilic environment 

generated by the groove recruits the extracellular regions of substrates into the 

low-dielectric environment of the membrane. 

The Sec translocon, a protein-conducting channel conserved in all three 

phylogenetic domains, translocates secretory proteins across the membrane and inserts 

membrane proteins via an hourglass-shaped pore formed by ten TM helices6–8. In 
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bacteria, YidC is another membrane protein involved in the insertion and folding of 

many membrane proteins9–15, such as subunit c of the F1Fo-ATPase (Foc), and thus is 

essential for cell viability3–5. YidC is considered to function as both a Sec-dependent 

membrane chaperone and a Sec-independent insertase. In the latter Sec-independent 

pathway, YidC directly interacts with the translating ribosome to mediate the insertion 

of several single or double membrane-spanning proteins16,17. Previous studies suggested 

that YidC forms a face-to-face dimer to create a channel within its dimer interface16,18, 

whereas another group reported that a monomer of membrane-embedded YidC is 

sufficient for binding to the substrate-translating ribosome19. In addition, Oxa1, the 

mitochondrial homologue of YidC, reportedly functions as a voltage-gated membrane 

channel, as well as a membrane protein insertase, probably by forming a tetramer20. 

However, the lack of a high-resolution structure of YidC has limited our understanding 

of the molecular mechanism of YidC-mediated membrane protein insertion. 

Members of the genus Bacillus have two yidC genes, encoding YidC1 and 

YidC2. We determined the crystal structures of two constructs of Bacillus halodurans 

YidC2 (BhYidC 27–266 and BhYidC27–267), which lack both the N-terminal signal and 

C-terminal non-conserved sequences (Fig. 1, Extended Data Table 1 and Extended Data 

Figs. 1, 2). A similar deletion variant of B. subtilis SpoIIIJ (YidC1), an ortholog of 
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BhYidC sharing 49.6% sequence identity, has comparable activity to the full-length 

protein in vivo (K248stop in Fig. 2a). Although the crystallographic asymmetric units of 

BhYidC27–266 and BhYidC27–267 contain one and two BhYidC molecules, respectively, 

the molecules in the crystalline lattice do not appear to form an effective oligomer, such 

as a face-to-face dimer16,18 (Extended Data Fig. 3a, b). Recent fluorescence correlation 

spectroscopy and cryo-electron microscopy analyses of YidC bound to a translating 

ribosome showed that YidC exists as a monomer in detergent solution and in lipid 

membranes17,19. Consistently, our analysis using size exclusion chromatography coupled 

to multiangle laser light scattering (SEC-MALLS) also showed that BhYidC exists as a 

monomer in detergent solution (Extended Data Fig. 3c–e). Since the overall structures 

of BhYidC27–266 and BhYidC27–267 are nearly identical (r.m.s.d. 1.79 Å over residues 

27–266), we mainly describe the structure of BhYidC27–266. 

The BhYidC structure consists of the N-terminal E1 region, the C-terminal C3 

tail, and the core region, composed of TM helices 1–5, connected by two cytoplasmic 

(C1 and C2) and two extracellular (E2 and E3) regions (Fig. 1c). The E1 region consists 

of the EH1 helix, while the C1 region forms a hairpin-like structure composed of two 

helices (CH1 and CH2) connected by a short loop. The residues in the C2 region and the 

C3 tail are structurally disordered. The EH1, CH1 and CH2 helices protrude from the 
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core region, and lie nearly parallel to the plane of the membrane. The EH1 helix is 

amphipathic, while the CH1 and CH2 helices contain mainly hydrophilic residues. This 

observation suggested that one face of the EH1 helix is embedded in the membrane, 

while the CH1 and CH2 helices are exposed to the solvent (Fig. 1a). This notion is also 

consistent with theoretical calculations using the implicit membrane model (see 

Methods). 

A comparison of the present structures of BhYidC27–266 and BhYidC27–267 

suggested the flexibility of the C1 region, which does not interact with the other part of 

YidC (Extended Data Fig. 4a–c). The CH1 helix forms a continuous helix with the TM1 

helix, which is kinked at the conserved Pro residues, Pro78 and Pro94 (Fig. 1c). The Pro 

residues and the partially disordered flexible loop connecting the CH2 and TM2 helices 

(residues 130–140), which may be embedded in the membrane, could enhance the 

flexibility of the C1 region. Indeed, this C1 region has higher B-factors than the other 

regions (Extended Data Fig. 5a). The results of the molecular dynamics (MD) 

simulation also suggested that the C1 region highly fluctuates in the lipid bilayer 

environment (Extended Data Fig. 6a, b). 

To further investigate the functional importance of the C1 region, we 

performed the structure-based genetic analysis of B. subtilis SpoIIIJ. The membrane 
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insertion of MifM, a single-spanning membrane protein, is mediated by the 

YidC/SpoIIIJ pathway21. In this analysis, we measured the β-galactosidase (LacZ) 

activity of the YidC2-LacZ translational fusion, which is increased in response to a 

defect in the SpoIIIJ-dependent insertion of MifM (Extended Data Figs. 7a and 8). 

The two C1-deletion mutants (Extended Data Fig. 7b) exhibited elevated LacZ 

activities (Fig. 2a), suggesting that the C1 region is critical for the YidC-mediated 

membrane insertion of MifM. We then performed a growth complementation analysis 

using B. subtilis (the detail is described in the legend for Extended Data Fig. 7c). The 

results also suggested that the C1 region is important for the SpoIIIJ activity (Fig. 2b). 

The extracellular halves of the TM1–5 helices, including the E2 region, are 

tightly packed with their hydrophobic side chains (Extended Data Fig. 5b, c), while the 

cytosolic halves of the TM1–5 helices loosely interact with each other to form a groove 

(~2,000 Å3). This groove contains many hydrophilic residues, including the conserved 

Thr68, Arg72, Gln82, Gln142, Gln187, Asn248 and Gln254 residues, and thus generates 

a hydrophilic environment in the lipid bilayer (Fig. 2c and Extended Data Fig. 1). The 

conserved Arg72 residue, the only charged residue in this groove, protrudes into the 

center of this groove, and creates a strong positive electrostatic potential in the groove 

(Fig. 1b, d). This hydrophilic groove is open to both the cytosolic side and membrane 
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interior. In contrast, this groove is sealed toward the extracellular side by the 

hydrophobic core, and is not accessible from that side (Fig. 1d). The hydrophobic core, 

consisting of the hydrophobic residues in the extracellular half of BhYidC, has lower 

B-factors than the other regions, suggesting its rigidity (Extended Data Fig. 5). The 

structure-based genetic analyses suggested the importance of this hydrophobic core for 

the function of YidC (Fig. 2a–c and Extended Data Fig. 7b). A comparison of the 

BhYidC27–266 and BhYidC27–267 structures revealed that the groove in BhYidC27–267 is 

narrower than that in BhYidC27–266, suggesting the structural flexibility of the groove 

(Extended Data Fig. 4d). The results of the MD simulation also suggested that the size 

of the hydrophilic groove slightly fluctuates during the 1-μs simulation (Extended Data 

Fig. 6a). In contrast, the overall architecture of the core region, and the structure of the 

hydrophilic groove, remained rather stable in the lipid bilayer (Extended Data Fig. 6b), 

and the groove was constantly filled with ~20 water molecules (Extended Data Fig. 6c). 

The extracellular side of the groove remained sealed by the hydrophobic protein 

residues and the aliphatic lipid chains, and thus was impermeable to ions and water 

molecules during the simulation. Taken together, YidC could provide a flexible, 

hydrophilic groove in the membrane, which is open toward both the cytoplasmic side 

and membrane interior, and tightly sealed on the extracellular side. 
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To investigate the functional importance of the hydrophilic groove, we examined 

the membrane insertion activities of mutants of Arg73 (Arg72 in BhYidC, in Fig. 2c) 

and conserved Gln residues of SpoIIIJ by in vivo genetic analyses (Fig. 2c). The 

mutations of Arg73 abolished the MifM-insertion activity, except for R73K, which 

slightly decreased the activity (Fig. 2d). None of the mutants of Arg73, except for R73K, 

complemented the growth of the spoIIIJ mutant cells (Fig. 2b). In contrast, none of the 

Ala mutations of Gln83, Gln140, Gln187, and Gln238 (Gln82, Gln142, Gln187, and 

Gln254, respectively, in BhYidC, in Fig. 2c) had any effects on the MifM-insertion 

activity (Fig. 2e). A similar result was obtained for a chimaera between Pf3 coat protein, 

another single-spanning membrane protein inserted via the Sec-independent pathway, 

and the cytoplasmic region of MifM (Fig. 2f and Extended Data Fig. 9a). Taken together, 

these findings highlight the importance of the positive charge in the groove for the 

membrane insertion of MifM and Pf3 coat by YidC, while the conserved polar residues 

are probably important for creating the hydrophilic environment in the groove. 

Several single-spanning membrane proteins, including MifM and Pf3 coat, 

harbor acidic residues on their N-terminal extracellular tails. Thus, the present results 

suggested that these acidic residues may interact with the Arg residue in the hydrophilic 

groove of YidC. To address this possibility, we examined the importance of these acidic 
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residues by an in vivo genetic analysis (Extended Data Fig. 9a). Although the effects of 

mutations of acidic residues in Pf3 coat were less pronounced than those in MifM, the 

results indicated that the mutations of the acidic residues in both MifM and Pf3 coat 

negatively affect their membrane insertion efficiencies, which supports our hypothesis 

(Extended Data Fig. 9b). To further confirm the direct interaction between the substrate 

and the hydrophilic groove, we performed an in vivo site-directed UV crosslinking 

analysis, using p-benzoyl-L-phenylalanine (pBpa)22. pBpa was introduced into the 

positions of either Gln187 or Trp244 in the groove, and those of Ala74 or Ile249 on the 

exterior surface of BhYidC (Fig. 2c and Extended Data Fig. 1). E. coli cells 

co-expressing MifM and the pBpa variant of BhYidC were irradiated by UV, and then 

the products cross-linked with MifM were analyzed by immunoblotting. We detected 

cross-linked products only for positions 187 and 244, suggesting that the groove can 

interact with MifM (Fig. 3). Altogether, these observations suggested that the site 

around Arg72 in the hydrophilic groove serves as the substrate-binding site, by 

recognizing the hydrophilic residues of the substrate, such as the acidic residues in the 

MifM and Pf3 coat proteins. 

Based on the present structural and functional analyses, we propose a possible 

mechanism for the insertion of single-spanning membrane proteins with an acidic 
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N-terminal extracellular region, such as MifM and Pf3 coat, mediated by monomeric 

YidC (Fig. 4). In this mechanism, the substrate protein initially interacts with the C1 

region (Fig. 4a), and then is transiently captured in the hydrophilic groove of YidC. 

This substrate binding may induce structural changes in the hydrophilic groove, to 

accommodate the various substrate proteins. In this context, the conserved Arg in the 

groove may participate in the substrate recognition (Fig. 4b). Subsequently, the TM 

region in the substrate protein is released into the membrane, with the hydrophilic 

residues translocated to the extracellular side. The substrate release may be facilitated 

by the hydrophobic interaction between the TM region and the lipid aliphatic chains. 

The membrane potential may also facilitate this process, by attracting the negative 

charge of the extracellular tail23,24 (Fig. 4c). 

 Although the above mechanism clearly explains the insertion of a certain 

class of membrane proteins, i.e., single-spanning membrane proteins with an acidic 

N-terminal extracellular region, it cannot account for the insertion mechanism of 

other classes of membrane proteins with insertion mediated by YidC. For example, in 

E. coli YidC, the deletion of the C1 region or the simultaneous Ser-substitution of five 

amino acids, including the conserved Arg residue, reportedly did not impair the 

insertion activity of an M13 procoat derivative, a double-spanning membrane 
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protein25. Therefore, it is likely that these membrane proteins are inserted by a 

different mechanism, which may involve other sites in the hydrophilic groove than the 

Arg residue or transient oligomer formation by YidC. Further structural and biological 

studies are required to clarify the mechanism of the YidC-mediated insertion of these 

classes of membrane proteins. 
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Methods Summary 

 Histidine-tagged Bacillus halodurans YidC2 (BhYidC) was overproduced in E. 

coli, solubilized from the membrane with n-dodecyl-β-D-maltoside and cholesteryl 

hemisuccinate, and purified by successive Ni-NTA and gel filtration chromatography 

steps. The histidine tag was cleaved by TEV protease after Ni-NTA chromatography. 

Crystals were grown in a lipidic cubic phase, using monoolein. Diffraction data were 

collected on beamline BL32XU at SPring-8. The structure of YidC was determined by 

the multi-wavelength anomalous diffraction method, using the Hg-derivatized BhYidC 

(Y150C mutant) crystal, and was refined to Rwork/Rfree of 24.2%/25.9% at 2.4 Å 

resolution. The molecular dynamics simulation of YidC in the explicit POPE lipid 

bilayer was performed with the program NAMD 2.8 for 1,000 ns. The MifM insertion 

activity of YidC was analyzed by the MifM-based assay, in which the β-galactosidase 

(LacZ) activity of the yidC2-lacZ translational fusion increases in response to a defect in 

the SpoIIIJ-dependent insertion of MifM. The growth complementation assay was 

performed using B. subtilis mutant cells, in which the yidC2 gene on the chromosome 

was disrupted and the spoIIIJ gene was mutated, with rescue by the plasmid harboring 

the wild-type IPTG-inducible spoIIIJ gene. In vivo photo-crosslinking was performed 

using p-benzoyl-L-phenylalanine (pBpa). B. subtilis MifM and pBpa variants of 
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BhYidC were overexpressed in E. coli, and the cells were irradiated by UV. BhYidC 

was then purified by Ni-NTA chromatography, and the products cross-linked with MifM 

were detected by immunoblotting. 
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Figure Legends 

Figure 1| Overall structure. 

a, Cartoon representations of BhYidC, viewed from the membrane and extracellular 

sides. The structure is colored blue to red from the N to C terminus. b, Surface model 

representations of BhYidC colored by the electrostatic potential, ranging from blue (+20 

kT/e) to red (−20 kT/e). c, Topology diagram of BhYidC, colored as in (a). d, Cut-away 

molecular surface representations, viewed from the membrane side. 

 

Figure 2| In vivo functional analyses of YidC. 

a, d-f, Efficiencies of MifM and Pf3-MifM membrane insertion determined by LacZ 

activities (Miller units; mean ± SD, n = 3) in the spoIIIJ mutants. K248stop represents a 

spoIIIJ derivative, which has a stop codon introduced at the 248th position. Their 

accumulation in the cell is shown (lower panel). b, Growth complementation of B. 

subtilis cells reliant on chromosomal SpoIIIJ mutant in the absence of isopropyl 

β-D-thiogalactopyranoside (IPTG). c, Close-up view of the hydrophilic groove, 

showing the side chains of the highlighted residues. The corresponding residues in 

SpoIIIJ are indicated in parentheses. 
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Figure 3| Substrate binding to the hydrophilic groove.  

In vivo photo-crosslinking between the hydrophilic groove of BhYidC and MifM. The 

pBpa positions introduced into BhYidC are indicated. Ni-NTA purified membrane 

proteins were analyzed by SDS-PAGE, and BhYidC-FLAG-His8 and MifM were 

detected by immunoblotting. The ~40 kDa-bands are attributed to cross-linked products 

of BhYidC with MifM and unidentified endogenous proteins, as indicated by YidC-X. 

The accumulation of MifM in the membrane is shown (lower panel). 

 

Figure 4| Proposed model for membrane insertion of a single spanning protein. 

a–d, The present crystal structure probably represents the resting state before substrate 

binding. The hydrophilic region of the substrate may be transiently captured in the 

hydrophilic groove of YidC, resulting in the substrate-bound state (a, b). Substrate 

release into the membrane may be facilitated by the hydrophobic interaction between 

the TM region and the lipid aliphatic chains, as well as the membrane potential (Δψ), 

attracting the negatively charged residue of the extracellular region by electrophoretic 

force (c, d). 
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Methods 

Cloning, expression and purification for structure determination 

Bacillus halodurans YidC2 (BhYidC) was cloned into a pET-modified vector26. The 

resulting two plasmids, encoding BhYidC(1–26)-H8-ENLYFQGQ-BhYidC(27–266) 

(BhYidC27–266) and 

BhYidC(1–26)-ENLYFQGQ-BhYidC(27–267)-LESSV-ENLYFQGQ-GFP-H8 

(BhYidC27–267), were expressed in E. coli C41 (DE3) cells harboring pRARE 

(Novagen), and the proteins were purified by the following protocol. The cells were 

grown in a 5 L culture at 37 °C to an A600 of 0.7, induced with 1 mM isopropyl 

β-D-thiogalactopyranoside (IPTG) at 15 °C for 16 h, harvested by centrifugation, 

resuspended in buffer containing 20 mM Tris-HCl, pH 8.0, and 0.1 mM 

phenylmethylsulfonyl fluoride, and disrupted by two passages through a Microfluidizer 

(Microfluidics) at 15,000 p.s.i. After removal of the debris by low speed centrifugation, 

the supernatant was ultra-centrifuged (138,000 g, 1 h) to pellet the membranes, which 

were then solubilized in a buffer containing 300 mM NaCl, 20 mM Tris-HCl, pH 8.0, 

20 mM imidazole, 1% n-dodecyl-β-D-maltoside (DDM), and 0.1% cholesteryl 

hemisuccinate (CHS). Insoluble materials were removed by ultra-centrifugation 
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(138,000 g, 30 min), and the supernatant was mixed with Ni-NTA Superflow 

(QIAGEN). After binding for 1 h, the resin was washed with 300 mM NaCl, 20 mM 

Tris-HCl, pH 8.0, 20 mM imidazole, 0.1% DDM, and 0.01% CHS, and BhYidC was 

eluted with the same buffer supplemented with 300 mM imidazole. The N-terminal 

residues and the His8-tag or GFP-His8-tag were cleaved by His-tagged TEV protease 

(laboratory stock), and the sample was reloaded onto the Ni-NTA column to remove 

the protease. The flow-through fraction containing BhYidC was collected, 

concentrated, and further purified by size-exclusion chromatography in 300 mM NaCl, 

20 mM Tris-HCl, pH 8.0, 0.1% DDM, and 0.01% CHS. For crystallization, the 

purified protein was concentrated to 6 mg ml-1 with a centrifugal filter device 

(Millipore, 50kDa MW cutoff), and dialyzed against a solution containing 1 mM 

Tris-HCl, pH 8.0, 0.05% DDM, and 0.005% CHS. For mercury derivatization, the 

Y150C BhYidC27–266 mutant was purified and incubated with 2 mM methyl mercury 

chloride for 1 h before crystallization. 

 

Crystallization and heavy-atom derivatization 

The protein was mixed with monoolein in a 2:3 protein to lipid ratio (w/w), using the 

twin-syringe mixing method27. Aliquots (50 nl) of the protein-LCP mixture were 
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spotted on a 96-well sandwich plate and overlaid with 800 nl of precipitant solution 

using a crystallization robot, mosquito LCP (TTP LabTech). The crystals of 

BhYidC27–266 and BhYidC27–267 were grown at 20 °C in reservoir solutions containing 

28–32% PEG500DME, 2.5 mM CdCl2, and 100 mM Na-(CH3)2AsO2, pH 6.0; and 

24–26% PEG500DME, 10 mM CuCl2, 200 mM NH4COOH, and 100 mM MES-NaOH, 

pH 6.0, respectively. The heavy atom derivative crystals were obtained by 

co-crystallization of the Y150C mutant and methyl mercury chloride in the same 

reservoir solution used for the BhYidC27–266 crystals. The crystals grew to full size in 

2-3 weeks. The crystals were flash-cooled, using reservoir solution supplemented with 

20% PEG500DME and 20% glycerol as a cryoprotectant, and stored in liquid nitrogen. 

 

Data collection and structure determination 

X-ray diffraction data sets were collected by the helical data collection method on 

beamline BL32XU at SPring-8, using a micro beam with a 1 μm width and a 10 μm 

height28. Diffraction data were processed using HKL2000 (HKL Research Inc.) or 

XDS29. One Hg site was identified with the program SHELXD30. The initial phases 

were calculated using SHARP31, followed by solvent flattening with SOLOMON32. The 

main chain was traced by automated model building using RESOLVE33. The model was 
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further built manually using COOT34 and refined using PHENIX35. The structures of 

BhYidC27–266 and BhYidC27–267 were determined by molecular replacement, using the 

program PHASER36. The Ramachandran plots were calculated with RAMPAGE37. Data 

collection and refinement statistics are provided in Extended Data Table 1. The 

BhYidC27–266 crystal contains one molecule in the asymmetric unit. The BhYidC27–267 

crystal contains two molecules in the asymmetric unit (Mol A and Mol B), but they do 

not form a face-to-face dimer. The figures of the molecular structures were prepared 

using CueMol (http://www.cuemol.org/). 

 

Bacterial strains and plasmids for in vivo functional analysis 

B. subtilis strains, plasmids, and DNA oligonucleotides are listed in Supplementary 

Tables 1–3, and were constructed as described in the Supplementary Information. 

 

β-galactosidase activity assay and immunoblotting 

B. subtilis cells were cultured at 37 °C in LB or CH medium. Aliquots (500 

μl) of cultures at OD600 = ~0.5 were harvested and used for β-galactosidase activity 

assays and immunoblotting. The β-galactosidase activities were measured as described 



 — 25 — 

previously38,39. For immunoblotting, a 500 μl aliquot of the culture was mixed with 56 

μl of 50% trichloroacetic acid and incubated on ice for at least 5 min. The cells were 

precipitated by centrifugation (4 °C, 15,000 rpm, 5 min), washed with 1 ml of 1 M 

Tris-HCl, pH 8.0, resuspended in SB buffer (33 mM Tris-HCl, pH 8.0, 40% sucrose, 1 

mM EDTA) containing 1 mg/ml lysozyme (Sigma), and incubated at 37 °C for 10 min. 

The cells were then solubilized by adding an equal volume of 2xSDS-loading buffer and 

subjected to immunoblotting, using either anti-FLAG (Sigma) or anti-BsSpoIIIJ, as 

described previously40. Antiserum production is described in the Supplementary 

Information. 

Growth complementation assay 

 B. subtilis cells were cultured at 37 °C in LB medium, containing 100 μg/ml 

spectinomycin and 1 mM IPTG. Aliquots (3.5 μl) of serially diluted (10−1–10−5), fully 

grown cultures were spotted on LB-spectinomycin agar plates with or without 1 mM 

IPTG, and incubated at 37 °C for 15 h. 

In vivo photo-crosslinking assay 

BhyidC-FLAG®(SIGMA-ALDRICH)-His8 and BsmifM were cloned into the NcoI and 

BamHI sites of MCS1 and the NdeI and XhoI sites of MCS2 in pETDuet (Novagen), 

respectively. An amber mutation, TAG, in BhyidC was introduced by site-directed 
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mutagenesis. BsmifM-deletion plasmids were generated by restriction digestion of the 

plasmids with SalI and XhoI and ligation. E. coli BL21 (DE3) cells harboring two 

plasmids, pEVOL-pBpF (addgene) and a pETDuet-based plasmid expressing BhYidC 

and BhMifM, were grown at 37˚C in M9-glucose medium supplemented with pBpa (1 

mM)22 and appropriate antibiotics until mid-log phase, and then induced with 1 mM 

IPTG for 30 min. Portions (1 ml for isolation of total membranes and 2 ml for 

purification of YidC by Ni-NTA chromatography) of the culture were transferred to a 

dish and irradiated with UV (365 nm) for 5 min, by using a B-100AP (UVP) UV lamp 

at a distance of 5 cm. The irradiated cells were collected by centrifugation, suspended in 

300 µL of 10 mM Tris-HCl buffer, pH 8.0, containing 1 mM EDTA-Na and 0.1 mM 

4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride, and disrupted by 

freeze-thawing and sonication (Qsonica) with cooling on ice. The cellular debris was 

separated by centrifugation at 9,000 g for 1 min and used for the isolation of total 

membranes or the purification of YidC. Total membranes were isolated by 

ultracentrifugation at 100,000 g for 20 min. For the purification of YidC, the membrane 

proteins were solubilized in SC buffer, containing 20 mM Tris-HCl, pH 8.0, 300 mM 

NaCl, 20 mM imidazole-HCl (pH 8.0), 1% DDM, 0.1% CHS and 0.1 mM 

4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride, for 30 min at 4˚C. Insoluble 
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materials were removed by ultracentrifugation at 100,000 g for 20 min. The supernatant 

was mixed with Ni-NTA Agarose (Qiagen) pre-equilibrated with SC buffer. After 

binding for 30 min, the resin was washed with SC buffer containing 0.1% DDM, and 

then YidC was eluted with SC buffer supplemented with 300 mM imidazole-HCl (pH 

8.0). Proteins were separated by SDS-PAGE and detected by immunoblotting, using 

anti-FLAG (Sigma) or anti-BsMifM40 antibodies. 

 

Molecular dynamics simulation 

The simulation system included BhYidC, phosphoryloleoyl 

phosphatidylethanolamine (POPE), water molecules, and 150 mM sodium chloride. 

At first, the position and orientation of BhYidC in the POPE lipid bilayer were 

optimized using the implicit solvent and membrane models (T.M. and Y. Sugita, 

manuscript in preparation). Next, the disordered region in the C2 loop (residues 

200–213) was modeled, using the program Modeller41. The missing atoms, including 

hydrogens in the protein, were built with the program VMD42. Finally, the periodic 

boundary system, including the explicit solvent and the POPE lipid bilayer43, was 

prepared. The resulting size of the simulation box was 96 (Å) × 96 (Å) × 96 (Å). The 
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net charge of the solute was neutralized through the addition of chloride and sodium 

ions. The molecular topologies and parameters from Charmm36 were used43. 

Molecular dynamics simulations were performed with the program NAMD 

2.844. The system was first energy minimized for 1,000 steps with fixed positions of 

the non-hydrogen atoms, and then for another 1,000 steps with 10 kcal/mol restraints 

for the non-hydrogen atoms. Next, we performed the long equilibration run of 50 ns 

under NVT conditions, with 10 kcal/mol restraints for protein non-hydrogen atoms 

and 0.1 kcal/mol restraints for water molecules, to optimize the locations of the lipid 

molecules around the protein, especially the hydrophilic groove. Finally, equilibration 

was performed for 5 ns under NPT conditions, with 10 and 0.1 kcal/mol restraints for 

the protein main chain and side chain atoms, respectively. The production process was 

performed for 1,000 ns. During the equilibration and production processes, the 

pressure and temperature were set to 1.0 atm and 300 K, respectively. Constant 

temperature was maintained by using Langevin dynamics. Constant pressure was 

maintained by using the Langevin piston Nose-Hoover method45. Long-range 

electrostatic interactions were calculated using the particle mesh Ewald method46. 

 

Determination of the molecular mass of YidC in detergent solution by 
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SEC-MALLS 

The instrument setup used for the SEC-MALLS experiment consisted of a Prominence 

HPLC system (Shimadzu) with an SPD-20A ultraviolet absorbance detector connected 

in series with a DAWN HELEOS II light-scattering detector (Wyatt Technology) and an 

OPTILAB T-rEX differential refractive index detector (Wyatt Technology). Analytical 

size-exclusion chromatography was performed using a Superdex 200 10/300 column 

(GE Healthcare) equilibrated with buffer containing 300 mM NaCl, 20 mM Tris-HCl, 

pH 8.0, 0.1% DDM, and 0.01% CHS. The purified BhYidC27–266 (60 µg) was injected 

into the column, and the elution was monitored in-line with the three detectors. A 

658.0-nm wavelength laser was used in the light scattering experiment. The data were 

corrected for the volume delay of UV between the other detectors and were analyzed 

using the ASTRA software (Wyatt Technology). The molecular masses of the 

protein–micelle complex, the micelle and the protein were determined as described47,48. 

The dn/dc value of the mixture of DDM and CHS in buffer, containing 300 mM NaCl 

and 20 mM Tris-HCl, pH 8.0, was determined off-line using an OPTILAB T-rEX 

refractometer with a 658.0-nm wavelength laser, as described49. 
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Extended Data Figure Legends 

Extended Data Table 1| Data collection and refinement statistics 

Extended Data Figure 1| Multiple amino acid sequence alignment of YidCs. 

Sequence alignment of Bacillus halodurans YidC2 (BhYidC2), B. halodurans YidC1 

(BhYidC1), Bacillus subtilis SpoIIIJ (BsSpoIIIJ), B. subtilis YidC2 (BsYidC2) and 

Escherichia coli YidC (EcYidC). The secondary structure of BhYidC27–266 is indicated 

above the sequences. Alpha-helices (described in the main text) and beta-strands (ES1 

and ES2 in the E2 region) are indicated by cylinders and arrows, respectively. Strictly 

conserved residues among the five species are highlighted in red boxes, and highly 

conserved residues are indicated by red letters. The hydrophilic and bulky residues that 

were mutated, and the pBpa positions introduced into BhYidC are indicated by grey, 

green, and blue triangles, respectively. The spoIIIJ-K248stop derivative has a stop 

codon introduced at the 248th position, as indicated, and thereby expresses a SpoIIIJ 

mutant that lacks the C-terminal 14 residues. 

 

Extended Data Figure 2| Electron density map of BhYidC. 
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Stereo view of the 2m|F|o−D|F|c electron density map of the TM2 helix, contoured at 1.1 

σ. 

Extended Data Figure 3| Monomeric YidC. 

a, The crystal packing of BhYidC 27–266, viewed from the plane of the membrane. The 

molecule in the asymmetric unit is colored red. b, The crystal packing of BhYidC 27–267, 

viewed from the plane of the membrane. There are two molecules (Mol A in light pink 

and Mol B in light blue) in the asymmetric unit. c, The chromatograms show the 

ultraviolet (UV), refractive index (RI) and light scattering (LS) detector readings. The 

volume delays of UV between the other detectors were corrected. The traces were 

normalized to the peak maxima. The green and blue lines in the LS chromatogram 

indicate the calculated molecular masses of the protein-detergent complex and the 

protein, respectively. d, The RI of the mixture was measured in response to 5 

concentration steps. The dn/dc value of the mixture of DDM and CHS was determined 

using linear regression of the RI versus the concentration. e, The molecular mass values 

determined by SEC-MALLS and calculated from the amino acid sequence.  

 

Extended Data Figure 4| Structural flexibility of the hydrophilic groove and C1 

region. 

a, b, Superimposition of the crystal structures of BhYidC27–266 (colored) and Mol B of 
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BhYidC27–267 (gray), viewed from the membrane (a) and extracellular (b) sides. The 

conformational changes observed in CH1 and CH2 are indicated by black arrows. c, 

Close-up view of the C1 region. The side chains of Pro111 are shown by stick models. 

In the BhYidC27–267 structure, the arrangement of the C1 region with respect to the core 

region is rotated by ~35˚, as compared with that in the BhYidC27–266 structure. As a 

result, the tip of the C1 region is displaced by ~10 Å in the BhYidC27–267 structure. d, 

Close-up views of the hydrophilic groove (left panel: BhYidC27–266, right panel: Mol B 

of BhYidC27–267). The distances between the Cα atoms of Cys136 and Met221 are 

indicated by dashed lines. 

 

Extended Data Figure 5| The hydrophobic core of BhYidC. 

a, The crystallographic B-factors are colored in a gradient varying from blue to red, 

representing 30 to 140 Å2. b, c, Stereo views of the hydrophobic core, showing the side 

chains of the hydrophobic residues. 

 

Extended Data Figure 6| MD simulation of BhYidC for 1 μs in a lipid bilayer. 

a, Snapshots of the structure over the time course of the simulation at 400 ns intervals: 0 
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ns (blue), 400 ns (magenta) and 800 ns (light green). b, Root mean square fluctuation 

(RMSF) of BhYidC during the simulation. The secondary structure of BhYidC is 

indicated below the line. c, The water probability density map in the simulation, 

contoured at 0.001 molecules/Å3⋅ns. 

Extended Data Figure 7| Gene structures of strains and YidC mutants used for in 

vivo genetic analyses. 

a, Schematic representations of the gene structures of the yidC2-lacZ reporter strains 

used for the MifM-based assay. “spoIIIJ*-(flag)” indicates either wild type or mutant 

spoIIIJ. “yidC2-lacZ” represents a translational gene fusion with the lacZ sequence in 

frame after the 6th codon of yidC2. The native mifM-yidC2 on the chromosome 

remained intact. b, Deleted regions of SpoIIIJ, viewed from the extracellular side. 

Residue numbers in SpoIIIJ are indicated. Δ92–126-GG represents the mutant in which 

the entire C1 region is replaced by a Gly-Gly linker. Δ97–103/114–120 represents the 

mutant in which both the CH1 and CH2 helices are shortened by 7 residues. c, 

Schematic representations of the gene structures used for growth complementation 

assays. SpoIIIJ becomes growth-essential for B. subtilis when yidC2 is disrupted. Cells 

with a disruption of the chromosomal yidC2 were transformed with the rescue plasmid 
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pCH1805, which expresses wild type spoIIIJ-flag under the control of the 

IPTG-inducible Pspac promoter. The native spoIIIJ on the chromosome was replaced by 

either wild type or mutant spoIIIJ (spoIIIJ*-(flag)). In the absence of IPTG, spoIIIJ-flag 

is not expressed from the plasmid, making the chromosomal spoIIIJ*-(flag) the only 

source of cellular YidC. The complementation test measures the global role of SpoIIIJ 

to insert a wide range of membrane proteins, including single- and multi-spanning 

membrane proteins. 

 

Extended Data Figure 8| Schematic explanation of the β-galactosidase activity 

assay for MifM insertion activity. 

a, b, MifM is a single-spanning membrane protein, and its membrane insertion 

is considered to be mediated by YidC/SpoIIIJ21. To evaluate the MifM insertion activity 

of SpoIIIJ, we performed a genetic analysis using B. subtilis. In B. subtilis, SpoIIIJ is 

constitutively expressed, while YidC2 is expressed only when the SpoIIIJ activity is 

compromised, by the following mechanism. The expression of yidC2 is regulated by its 

upstream cis-regulator ORF of mifM, which is cotranscribed with yidC2. During the 

synthesis of MifM, the C-terminal region of nascent MifM interacts with the peptide 
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exit tunnel of ribosome and causes translational arrest40,50. When the SpoIIIJ activity is 

normal, the translational arrest is released by the SpoIIIJ-dependent membrane insertion 

of MifM. Therefore, the translational arrest is transient or does not occur (a). In contrast, 

when SpoIIIJ activity is compromised, MifM is not inserted into the membrane and its 

translation is arrested, which causes ribosome stalling. The stalled ribosome disrupts the 

downstream stem-loop structure and exposes the Shine-Dalgarno (SD) translation 

initiation signal sequence of the yidC2 mRNA (b). Thus, we can estimate the in vivo 

SpoIIIJ activity by measuring the expression of the introduced yidC2-lacZ fusion 

(Extended Data Fig. 7a): the reduction of MifM insertion efficiency by SpoIIIJ elevates 

the LacZ activity21,50. 

 

Extended Data Figure 9| Effects of N-terminal negatively charged residues of 

substrates for insertion. 

a, Schematic representations of the N-terminal negatively charged residues of the MifM 

and Pf3-MifM chimeric proteins. b, Membrane insertion efficiencies of MifM mutants 

and Pf3-MifM mutants. The efficiencies were determined by the LacZ activities (Miller 

units; mean ± SD, n = 3). The N-terminal negatively charged residues of MifM and 

Pf3-MifM and the numbers of the charged residues are shown at the bottom (EDD: wild 
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type MifM; DD: wild type Pf3-MifM). Mutations of the acidic residues in Pf3 coat had 

less pronounced effects than those in MifM, probably because the membrane insertion 

is facilitated by multiple interacting factors depending on the amino acid sequence. 
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