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Finite Element Formulation of the Nagtegaal-Rice

Functional Using Constant Strain Triangles
Katsuhiro MAEKAWA* and Thomas H.C.CHILDS **
(Received August 31, 1991)

Abstract —The finite element formulations based on the Nagtegaal-Rice functional for nearly
incompressible deformation have been developed using a quadrilateral element which consists of a
pair of constant strain triangles. The replacement of a varying hydrostatic component of strain
rate in each triangle by the average for the pair could reduce overconstraint. Using such a
constant dilatation quadrilateral element, the so-called updated Lagrangian approach is employed
for the implementation. For plane strain finite deformation plasticity, several types of finite
element are examined and their corresponding computational efficiency and accuracy are compared
by means of examples of pure bending and uniaxial tension. The formulations developed in this
paper are proved to be free of overconstraint and show reasonable computational efficiency.

NOMENCLATURE
a half width of bar T4 surface traction
[B] nodal velocity-strain rate matrix t time
[D] elastic-plastic matrix ful nodal velocity
[Dq] geometric nonlinear matrix u* prescribed displacement
E Young’s modulus 14 volume
ey Lagrange strain w thickness of element
e" hydrostatic part of strain rate £} Cartesian coordinates
{F nodal force (1 matrix
G shear modulus {1 vector
o’ work hardening rate a* elastic-plastic parameter
h thickness of beam A area of triangle
I functional At time increment
2o half length of bar 8 virtual quantity
M moment Oy Kronecker delta
Miimic limit bending moment €’ equivalent plastic strain
N: shape function relevant to node i ¢ amplitude
S surface area K bulk modulus
Sij Lagrange stress v Poisson’s ratio
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a equivalent stress avg average
g Euler stress B element B
Gy yield stress mod modified quantity
¢ dilational strain rate T transposed matrix or vector
X curvature t time at ¢
@ rate of rotation t+ At time at t + At
0 initial value

Superseripts and subscripts deviatoric component
A element A . material derivative

* Jaumann derivative

1. INTRODUCTION

The three-node constant strain triangular element [1] has successfully been employed for elastic-
plastic analysis with small scale yielding as well as elastic analysis. In the fully plastic range,
however, it has been pointed out that the response of the element is too stiff to simulate the real
mode of deformation This is due to the requirement of vanishing volumetric strain increment in
the constitutive equations, although with strain hardening part of the strain increment is elastic.
A special arrangement of a quadrilateral element which consists of four constant strain triangles
obtained by connecting its diagonals was proved to be free of overconstraint for plane strain
problems [2]. This model, however, brings an inevitable increase in the number of nodes and
elements, resulting in poor efficiency of the computation. Another approach is to modify
variational principles so as to be applied to the problems with incompressible deformation [2, 3].

Based on the Nagtegaal-Rice functional [2], the present paper proposes a finite element
formulation using a quadrilateral element which consists of two constant strain triangles. Treat-
ing the triangles as a pair not only breaks through the overconstraint problem but also keeps the
number of nodes unchanged, leading to a saving of CPU time. The Nagtegaal-Rice functional
and its modification to a pair of finite elements are described in the following section. Then, the
formulation with the modified functional is implemented for a pair of triangular elements, and a
couple of examples such as pure bending and plane strain uniaxial tension are shown to discuss
the nature of the solutions in comparison with the conventional finite element method.

2. THE NAGTEGAAL - RICE FUNCTIONAL AND ITS MODIFICATION

Incremental virtual work in a continuum [4] gives
fs T,u, ds = IV .‘;‘ij e.,dV (1)

where a body force term is neglected. The volume work rate in the right-hand side may be split
into a deviatoric part §;e; and a hydrostatic part « (ém)? where « is the bulk modulus, giving

[, mwas = [, s av+ «f, Gwrav @)

As the term I , $i &; dV is positive during the deformation,
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[, fids > « [, G av (3)

If T approaches zero, as it does in problems with a limit load, then éw approaches zero as well.
This relation holds on an elastic level as well as the more obvious plastic level.

Nagtegaal et al. [2] then show that in a finite element approximation éw= 0 can lead to
problems : for example, for a three-node triangular element in plane strain, strain rates are
constant within an element. If one component of éw, say éu is specified on one boundary of an
element, then ex= 0 specifies the other component. These components, being constant within the
element, then lead to specified components in neighbouring elements and so on. This causes an
over-severe restraint on element deformation. The combination of four three-noded triangles as
shown in Fig.1 (a), where the triangular element boundaries form a quadrilateral element and
its diagonals, only successfully makes the arrangement suitable for analysis in the fully plastic
range.

Nagtegaal et al. [2] suggest a way out: modify the definition of strain rate in an element as
far as its hydrostatic component is concerned: for any element instead of defining strain rate at
any point A as éa=éa+eés, where the superscript m means hydrostatic part, replace it by ea=és+
(€™ g » i.e. replace the varying hydrostatic part by the average for the element. They also
demonstrate how this reduces overconstraint, and develop the argument for a four-node
quadrilateral element.

The four-node quadrilateral element requires Gauss’s numerial integration which is
disadvantageous from the viewpoint of computational time. On the other hand, the three-node
element interpolated by a linear function has no need for integration procedures. Consequently, it
seems most desirable that the Nagtegaal-Rice functional be formulated using the constant strain
triangle.

The functional presented by Nagtegaal et al. [2] is

1= J (G aa + kb ed) v - [, Tias (4)

where the first term in the right side denotes deviatoric work rate and the second and third ones
are related to dilatation work rate, but ¢ is constant over the volume V. Now consider the

®

k 2

(a) Crossed triangles (b) Constant dilatation
triangles

Fig. 1 Approximation of a quadrilateral by
triangles
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functional I below evaluated over the pair of elements A and B, where in the case of Fig. 1l (b)
A+B makes a quadrilateral element. Then,

1= [, (Fae + editi— Sedt)av
t [ (G + edib— S edr)av- [, | fiias (5)

¢ is an additional variable, i.e. degree of freedom, which is defined by an interpretation from
aI/a$=0:

2= it = wg)av+ [, (cati— e 4) av =0 (6)

Hence,

Joasav+ [ abav

j = (7)
! vadV+ JVBdV

Equation (7) means that ¢ is the average

of dilatation over the elements A and B. Equation (7)
enables Eq. (5) to be simplified as

1. . 1 .
:fVA(?Sijeij + ?fc¢2>dV
+ [ (=se + = wd?)av— [, Tuds (8)
g TN 2 DS
If one defines modified stresses and strains as

.mod

Sij :éij + IC¢8,’;

(9)

«mod

.. 1.
eij — €y + _,o')“ ¢' 5ij
where &y is the Kronecker delta, one obtains

1 mod .mod

1. . 1 R
?Si] €ij :“é'Sij €ij +“g/€¢2
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Consequently, the functional (8) becomes
. 1 imod .moa 1 imed .mou .-
I = IVA 2 Sij €y dv + IVB 2 Sii € dVv — JSA+ 55 T:u: dS (10)

and this is the same form as the conventional variational one [4] . By taking the first variation
in w and setting it to zero, one finds

+mod .mod

s1= [, & estav+ [, &t eamav - [, | hoiwds = o (1)

Equation (11) may yield a solution with respect to .

We consider the motion of a body in a stationary Cartesian, or fixed linear orthogonal
coordinate system, as shown in Fig.2. As for definitions of stress and strain to deal with large
deformation and/or geometric nonlinear problems, several measures have been proposed [5].
On the basis of the updated Lagrangian approach, we use the Jaumann derivative of Euler stress
{6] in conjunction with the modified velocity strain {¢”"'} and the rate of modified Lagrange
stress 5"} where the following relationship between o] and 18" holds

ol = " — [De] 1™} 12)

Initial configuration
at time O

0 yO_ 70
PSX »¥%,2°) Reference configu-

ration at time t

St

\ p(xtHAL yt+at,
ZtHAL)

gt+at

t+AL - .
X Configuration

at time t+At

o t At

Y ¥, Y

%x° , %t s Xt+At

Fig. 2 Motion of body in stationary Cartesian coordinates
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[Dc] is the geometric nonlinear term. And we postulate a constitutive equation as
lot = [D] & (13)

where [D] is the elastic stress-strain matrix for elastic deformation or the elastic-plastic
stress-strain matrix for plastic deformation. Forms of [De] and [D] will be specified in the next
section.

Accoring to the standard procedure of finite element formulation, the virtual strain rate {0 &
may have a relationship with the virtual nodal velocity 10zl as

[6e™ = [B™ {oul (14)

where [B™] is the velocity-strain rate matrix. The substitution of Eqs. (12) —(14) into Eq. (11)
yields the elemental stiffness equation in matrix form as

mod-

(j’VA B™" (D] + [Dd]) [B™] dV+jVB (81" ([D] + (De)) [B™4dV) ll
(15)
= |Fla+ (Fts

where {F"iA and {f;‘} s are the specified nodal force rate over the elements A and B, respectively.

3. IMPLEMENTATION USING A PAIR OF TRIANGULAR ELEMENTS

We confine the implementation to plane strain problems using a pair of triangular elements.
According to the standard procedures of the finite element method [1], velocity within the element
A of Fig.1 (b), luls=1{u 0l%, is given by a linear interpolaion using nodal velocities lul = {u: v

l.lj l');’ dk i)le as
o= [N [N 0N U (16)
where [I] is unit matrix of order 2 X 2, N, is given by

N = (@ + bix + Ciy) /ZAA

Qi = XjYr T XrYi (17)
b = Ni T Yr
Ci = Xk T Xj

with the other coefficients obtained by a cyclic permutation of subscripts in the order i, j and k,
and

1 Xi Vi
det 1 X Vi (18>
1 Xk Vi
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which is the area of the triangle A.
Since the modified velocity strains of Eq. (9) within the element A can be described as

.mod 2 . 1.
ex ? e — ‘é“ey 1
.mod 1. .
ey - ? e: + ‘é“ey 1
mo ma Lo, . $
[, = e = -3 (e- + e, + Py 1 (19)
€y €xy 0
ey A €yx A 0
where
. (. + &)alAa + (6. + &,)sAs
$ = Av + A, 20)
and é;= du;/dx: as usual, the similar expresion of Eq. (14) may be obtained:
€™, = [B™, tul
(21)
where
2 b; —Ci 2 bj ~Cj 2 bk —Cr 0 0
1 —b; 2 ¢i _‘bj 2 Cj —bi 2 cr 0 0
[B"wd],z\ = 6 A —bi —Ci _bj —Cj —bs —Ci 0 0
" 13 0 3¢ 0 3a 0 0 0
0 3 b 0 3 b; 0 3b: 0 0
bzA + biB CiA + CiB bjA CjA bkA + ka CkA + CkB beB CtB
1 b;‘A + bin CiA + CiB b;A C,'A bhA + ka CkA + CkB sz CeB
+ - biA + b.’B CiA + C;B b;A CjA bhA + ka CkA + CkB sz CeB (22)
6 (Aat+Ax) 0 0 0 0 0 0 .
0 0 0 0 0 0

We have already decided to use the constitutive equation of Eq. (13) which connects the Jaumann

derivatives of Euler stress 16| = lox oy
postulate an isotropic work hardening material which obeys the Mises yield criterion and the
Prandtl-Reuss flow rule, the stress-strain matrix [D] is given by

* K

T
Gs Txy Tyl

with the modified velocity strain

™. If we



60 KA FTHEERE $£39% (1991

l,__
v v v 0 0
1—2v 1—-2v 1—2v
1- y
. 0 0
1—2v 1—2v
E 11—
D] = E— 0
(D] 1+ 1—2v
Y
2 2
sym
Y By
| - 2.._
622 Gy G . O Tay0x Tye0x
9 Gx Oy gyt 6. Gy Tay0y Ty0Oy
—at* = |0 0. 6, 0 6.t Tay0z TyOz (23)
s H +3Q)| | ; . .
Cx Ty Gy T 0: Ta T ay TyeTay
G/x T yx G; T yx O'lz T yx Ty T oyx T_yxz

where «*= 0 for elastic deformation and «*=1 for the plastic state. The geometric nonlinear
matrix [De] in Eq. (12) has the following form:

70 o o T xy 0 ]
oy 0 Gy 0 — Ty
[De] = | 0. o 0 0 0 (24)
0 T ts S (o.—a) —3(o.+0)
T sy 0 T o -%(Uﬁ"ay) —é‘(ax—ay)

Consequently, using the matrices (B™], [D] and [De] of Egs. (22), (23) and (24) , respectively,
the elemental siffness equation (15) for a pair of triangular elements A and B may be obtaind as

w [(B™7 (D] + D)) (8™ A)

+ (F™" (00 + (D) B 8) ) wl = B+ R

where w is the thickness of the elements.

We finally obtain the global stiffness equations by summing up Eq. (25) over all the pairs.
Solving them with respect to the unknown nodal velocity {ul under given boundary conditions, and
then substituting [z into Eq. (21), the modified velocity strains l¢"*'} within an individual element
are obtained. Then substituting "'l into Eq. (13), we obtain the Jaumann rates of Euler stress
{s| within an element. However, l¢| is the stress observed in a rectangular coordinate system
rotating with the body. It is not influenced by a rigid body rotation of the material. We ought to
calculate the Euler stress rate {s! within an element, which is defined in the fixed Cartesian
coordinate system. The two stresses have the following relationship [6] :



Maekawa & Childs : Finite Element Formulation of the Nagtegaal-Rice Functional Using Constant Strain Triangles 61

61 = [6] = [@]" [o] — (o] [&] (26)
or
G . ;x — 2T &
Gy ;, 2T
=477 = 4T 4 o (26)"
g g. 0
i.zy ;w 0z 0y

where « is the angular velocity, being defined by

‘b=‘i‘(§—i“%> @

Using Eq. (16), Eq. (27) can be written as

w = 1A, <“‘ cui + bivi — cuw + by — crus + bhvk> (28)

Multiplying these quantities by the time increment At and adding them to those values which
have been obtained in the previous stage of deformation, i.e. at time ¢ of Fig.2, we may obtain
the updated values of the coordinate lx|, strain "™}, stress lo| and nodal force |F} at time
t+ At

} t+ot

= lx}’ + &} At

!
{em Dd! t+at
|

r = le f + e 1 At ©9)
| = lo} + lot At
R =R + [Fl At

Repeating such an incremental calculation, we can perform general elastic-plastic analysis with
large displacements and rotations and large strains.

4, NUMERICAL EXAMPLES

4.1 Pure Bending of an Elastic-Plastic Beam

We consider the simple example of a beam, in order to compare the accuracy and the
corresponding computational efficiency of the various considered elements: regular constant strain
triangle (CST), 4-crossed constant strain triangles (4 CST), 4-noded isoparametric (4IS0) and
the averaged dilatation ‘constant strain triangles (CDT). It is assumed that plane sections
perpendicular to the beam’s axis remain plane during the deformation, and a slice of unit
thickness subjected to the prescribed displacement, u*, as shown in Fig.3 (d) , is considered. For
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1 . 1.4
u
— Limit load A -
S A S T
_— —-——téi)é:gp@oo-—o'-o-—o—o-oooowovowow
—— $ 1.0} 35
g
o~
o s | ]
& [AN Constant strain
h —_— = 0-81- é X Z triangle (CST)
. o [ ﬂ Constant dilatation
N - - A, 0.6} triangles (CDT)
: o .
9 & ° Crossed triangles
] g X] (4csT) |
= 0.4 . .
_— A D 4-node isoparametric
' (41S0)
0.2
l | | ] L |
] . 0 2 4 6 8 10 12
~u
(a) ) (c) (@) Curvature  X/Xg
Fig. 3 Finite element systems for pure bending Fig.4 Moment-curvature curves for various

types of finite element

CST and CDT elements the finite element mesh shown in Fig. 3 (a), for 4 CST the finite element
3 (b), and for 4180 the finite element 3 (c) are, respectively, used. A unit increment of curvature
is 0.00001, and the incremental displacement is applied until the moment-curvature curve attains
a constant value. The beam is modelled as an elastic-perfectly plastic body, of which material
properties are E=206 GPa, 0,=300 MPa, and v =0.3. For this choice of the material properties
the analytical solution for the limit bending moment for plane strain, Mim:, assuming the Mises
yield criterion, is given by

Muni =~ o, (—;i) (30)

where h is the thickness of the beam.

Figure 4 shows the relationship between the normalized bending moment M/ (s, h*/4) and the
normalized curvature ¥ /X., where X is the curvature corresponding to M and Y. is the curvature
for which the outer fiber of the beam becomes plastic for the first time. It is seen that CST and
4ISO elements do not find a limit load at all; all elements across the thickness reach yield, and
the moment-curvature curve continues to rise. The result of using 4 CST element yields the correct
normalized load, 2 /+/ 3. Finally, the present CDT element also finds the accurate result: the
averaged incompressibility is a necessary and sufficient condition for a limit load. '

Table 1 lists the comparison of the computational time among the four different types of finite
element at X /xo=12.5. The CPU time for CDT is faster than that for 4 CST by a factor of 2.5 for
both of the computers used: a mainframe of HITAC-M682H or a 16-bit personal computer of NEC
PC9801LX with a numerical coprocessor.
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Table1 Comparison of computational time for pure bending

HITAC-M682H NEC-PC9801LX

Constant strain triangle 0.268 s 67.8 s
(CST)

Constant dilatation 0.577 118.3
triangles (CDT)

Crossed triangles (4CST) 1.364 337.3

4-node isoparametric 0.389 82.8
(41S0) )

4.2 Necking of an Elastic-Plastic Bar in Plane Strain

The necking of a rectangular bar with an initial imperfection at its central portion, is analyzed
numerically for various types of finite elements: CST, 4 CST and CDT. The bar consists of an
elastic-plastic isotropic work-hardening material, obeying a Swift’s type empirical formula given
by

7 = 683.7 (0.020 + e9*®  MPa &)

where ¢ and €’ is the equivalent true stress and plastic strain, respectively. The material
properties of the bar are the same as those used in the pure bending except for Eq. (31) and o,=
500 MPa. The finite element mesh and the geometry of the bar are shown in Fig. 5, where
symmetry is assumed about both the x axis and the y axis. A relatively coarse uniform mesh as
shown in Figs.5 (a) and (b) are used in the analytical region, but for comparison a finer mesh
shown in Fig.5 (c) is used in the case of computation using CST and CDT elements. The initial
length of the specimen is 2 £, and the initial width is 2 (a0 + Aa.). Here, Aao is an initial
geometric imperfection that is specified to be of the form

Aa, = — aocos ( T > (32)

£o

where in the calculations carried out here the amplitude ¢ is taken to be 0.01.
Computed curves of load and area reduction at the minimum section versus elongation are

y
249
(a) > o*

Analytical region

2aq
1
I

() (c)

Fig. 5 Finite element systems for plane strain
uniaxial tension
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1.4
U.L. (e) S
1. gm0, %v I
U.L. (0) =
o 1.0 - —0.5
©
o
[
= x‘Z ST
0.8 - ﬂ/d“c 0.4
o
T
3 o D P
= 0.6} o 0.3
o@ 4CST e s
/O/O ‘/./.
0.4 ’ = ’ x.X‘x/Lx‘ 0.2
7 e S
—Sex
0.2 |- %?é‘g/c -Ho.1
0.099?*
! I | ! il
% 0.05 0.1  0.15 0.2  0.25

Elongation A%/%g

Fig.6 Load and area reduction at the minimum
section as function of elongation

shown in Fig. 6 in the case of the coarse mesh systems. There is no marked difference in the
load-elongation curves in which the load reaches the maximum at around AZ /£, =0.08 and
then decreases monotonously. However, there are differences in the development of necking. The
arrows marked U.L. in Fig. 6 denote the elongations at which unloading starts in the end parts
of the model and necking starts in the center portion. Necking starts earlier for the 4 CST than
the CDT elements, and develops faster and larger. On the other hand, the CST element does not
show any concentration of deformation after the maximum load has been experienced.

Figure 7 shows the outer configuration of the bar and the distribution of €”? at an elongation
of AZ/£,=0.257. The degrees of necking and the plastic strains confirm the results of Fig.6. For
comparison, the computed results corresponding to Figs.6 and 7 are summarized in Fig.8 in the

0.26
0.26

(a) CST

0.38

(b) CDT

(c) 4CST

Fig.7 Deformed shape and distribution of equivalent
plastic strain at A£/£,=0.257
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(a) Elongation 4&/%g
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" 0.3

Fig.8 Calculated results using the CDT fine mesh:

(a) load and necking displacment vs. elongation

curves ;

(b) distribution of equivalent plastic

strain at AL/ ,=0.257
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case of computation using the CDT finer mesh. It is seen that the initiation of unloading, the

degree of necking and the deformation concentration become close to those for 4 CST elements.

This is due to the fact that the number of total nodes, i.e. degree of freedom doubled in the finer

mesh. However, the CST element yielded yet uniform deformation though the finer mesh shown in

Fig.5 (c) was used.

:I CST

4CST

CDT (coarse mesh)

CDT (fine mesh)

1 ! ! 1 J

0 10

20 30 40 50 60

Time s

Fig. 9 Comparison of computational time for
uniaxial tension
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Figure 9 shows the comparison of computational time for various element types used. The CPU
time of the finer CDT mesh is comparable to that of the 4 CST mesh.

5. CONCLUDING REMARKS

A finite element analysis based on updated Lagrangian formulations has been carried out to
solve large deformation elastic-plastic problems involving overconstaraint phenomena due to the
overstiff response of some types of finite element, particularly the widely used constant strain
trianglular element (CST). Although the so-called crossed triangles (4 CST) element shown in
Fig.1 (a) has been proved to be free of overconstraint for plane strain problems [2], the 4CST
element is not so attractive from the viewpoint of computational time. Noting the efficiency, we
have implemented the Nagtegaal-Rice functional using the quadrilateral element (CDT) which
consists of a pair of CSTs as shown in Fig. 1 (b). If one splits the components of stress and
strain into their deviatoric part and their hydrostatic part, and takes the average dilatation over
the pair, the functional results in the same form as the conventional variational principle [4] .
Consequently, only small changes of the velocity-strain rate matrix [B] and the relevant parts
make it possible to use the existing finite element computer program.

The quality of the solutions through the comparison with various element types has been
examined by means of examples of pure bending and uniaxial tension. The accuracy for the CDT
element is not so great as that of using the 4 CST element, but the computational time is faster
by a factor of 2.5. To improve the accuracy one should trade off the efficiency by using a finer
mesh.

The implementation based on the Nagtegaal-Rice functional is not restricted to a pair of
triangular elements developed in this paper, but could be applied to any type and number of finite
element. One of the authors [7] has formulated the functional using the eight-cornered brick
element, which consists of six constant strain tetrahedra, for three-dimensional problems, and
has applied it to the analysis of oblique cutting.
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