ROSEリポジトリいばらき (茨城大学学術情報リポジトリ)

1

Title	Some Relationship between Anti-Integral Extensions of Noetherian Domains
Author(s)	BABA, Kiyoshi; ODA, Susumu; YOSHIDA, Ken-ichi
Citation	Mathematical Journal of Ibaraki University, 32: 63-67
Issue Date	2000
URL	http://hdl.handle.net/10109/3081
Rights	

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属 します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先

茨城大学学術企画部学術情報課(図書館) 情報支援係 http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html

Some Relationship between Anti-Integral Extensions of Noetherian Domains

Kiyoshi Baba*, Susumu Oda** and Ken-ichi Yoshida***

ABSTRACT. Let R be a Noetherian domain with quotient field K and let α be an anti-integral element of degree d over R. Let β be an element of $R[\alpha]$ (resp. $R[\alpha, \alpha^{-1}]$) such that β is an anti-integral element over R and that $R[\alpha]$ (resp. $R[\alpha, \alpha^{-1}]$) is integral over $R[\beta]$). We shall investigate some properties descending from $R[\alpha]$ (resp. $R[\alpha, \alpha^{-1}]$) to $R[\beta]$, *i.e.*, flatness and faithful flatness, and study the ideals $J_{[\alpha]}$, $J_{[\beta]}$, $\tilde{J}_{[\alpha]}$ and $\tilde{J}_{[\beta]}$.

Let R be a Noetherian domain and R[X] a polynomial ring. Let α be an element of an algebraic extension field L of the quotient field K of R and let $\pi: R[X] \to R[\alpha]$ be the R-algebra homomorphism sending X to α . Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with deg $\varphi_{\alpha}(X) = d$ and write $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$. Then η_i $(1 \le i \le d)$ are uniquely determined by α . Let $I_{\eta_i} := R :_R \eta_i$ and $I_{[\alpha]} := \bigcap_{i=1}^d I_{\eta_i}$. If $\operatorname{Ker}(\pi) = I_{[\alpha]}\varphi_{\alpha}(X)$, we say that α is anti-integral over R. When α is an anti-integral element over R, the extension $R[\alpha]$ is called an anti-integral extension of R. Put $J_{[\alpha]} := I_{[\alpha]}(1,\eta_1,\ldots,\eta_d)$. Then $J_{[\alpha]} = \mathcal{C}(I_{[\alpha]}\varphi_{\alpha}(X))$, where $\mathcal{C}(\)$ denotes the ideal generated by the coefficients of the polynomials in (), that is, the content ideal of (). Let $\tilde{J}_{[\alpha]} := I_{[\alpha]}(1,\eta_1,\ldots,\eta_{d-1})$. For a prime ideal $p \in \operatorname{Spec}(R)$, k(p) denotes the residue field R_p/pR_p at p.

All rings considered in this paper are commutative and have identity. We use the notation above unless otherwise specified. Our general reference for unexplained technical terms is [M2].

Key words and phrases. anti-integral, flat, faithfully flat, quasi-finite, blowing-up

e-mail:

Received January 18, 2000.

¹⁹⁹¹ Mathematics Subject Classification. Primary 13C20, Secondary 13F99

^{*} Department of Math., Faculty of Education and Welfare Science, Oita University, Oita 870-1192 JAPAN

e-mail:

^{**} Matsusaka C. H. School, Toyohara 1600, Matsusaka, Mie 515-0205, JAPAN e-mail:

^{***} Department of Applied Math., Faculty of Science, Okayama University of Science, Ridai-cho, Okayama 700-0005, JAPAN

1. Simple Sub-Extension of $R[\alpha]$.

We say that $R[\alpha]$ has a *blowing-up* at p if the following two conditions are satisfied :

(1) $pR_p[\alpha] \cap R_p = pR_p$ (equivalently, $pR[\alpha] \cap R = p$),

(2) $R_p[\alpha]/pR_p[\alpha]$ is isomorphic to a polynomial ring k(p)[T].

Let A be an R-algebra of finite type and let $P \in \text{Spec}(A)$. We say the A is quasi-finite over R at P if A_P/pA_P is finite over k(p), where $p := P \cap R$. We say that A is quasi-finite over R if A is quasi-finite over R at every point $P \in \text{Spec}(A)$. We say also that A is quasi-finite over R at $p \in \text{Spec}(R)$ if A_p is quasi-finite over R_p .

It is easy to see the following remark by definition.

Remark 1. Let A be an R-algebra of finite type.

(1)For a prime ideal P of A, A is quasi-finite over R at P if and only if P is isolated in its fiber, *i.e.*, in Spec $(A \otimes_R k(p))$, where $p := P \cap R$.

(2) A is quasi-finite over R if and only if the fiber $A \otimes_R k(p)$ is finite over k(p) for all $p \in \text{Spec}(R)$.

(3) Let $p \in \text{Spec}(R)$. When $A = R[\alpha]$, a simple extension of R, the following statements are equivalent :

(i) A is quasi-finite over R at $p \in \operatorname{Spec}(R)$,

(ii) A does not have a blowing up at p,

(iii) either $pA \cap R \neq p$ or for every $P \in \text{Spec}(A)$ with $P \cap R = p$, k(P) is algebraic over k(p).

We recall the following fundamental result for later use :

Lemma 2(cf.[OSY,(2.6)]). Assume that α is anti-integral over R. Let $p \in$ Spec(R). Then the following are equivalent :

(i) $\operatorname{rank}_{k(p)}(R[\alpha] \otimes_R k(p))$ is finite;

(ii) $\overline{\alpha}$ is algebraic over k(p);

(iii) $J_{[\alpha]} \not\subseteq p$;

(iv) $R_p[\alpha]$ is flat over R_p ;

(v) $R_p[\alpha]$ is quasi-finite over R_p ;

(vi) $R[\alpha]$ does not have a blowing-up at p.

Proof. The equivalences (i) \sim (v) follow from [OSY,(2.6)]. The equivalence (v) \Leftrightarrow (vi) follows from Remark 1(3). \Box

Proposition 3. Assume that α is an anti-integral element of degree d over R. Let β be an element in $R[\alpha]$ such that β is anti-integral over R and that $R[\alpha]$ is integral over $R[\beta]$. Then the following two assertions hold :

(1) $R[\alpha]$ is flat over R if and only if $R[\beta]$ is flat over R,

(2) $R[\alpha]$ is faithfully flat over R if and only if $R[\beta]$ is faithfully flat over R.

Proof. (1) By Lemma 2, we know that $R[\alpha]$ (resp. $R[\beta]$) is flat over R if and only if $R[\alpha]$ (resp. $R[\beta]$) does not have a blowing-up at any point in Spec(R). So we have only to show that $R[\alpha]$ does not have a blowing-up at any point in

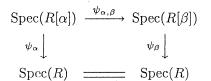
64

 $\operatorname{Spec}(R)$ if and only if $R[\beta]$ does not have a blowing-up at any point in $\operatorname{Spec}(R)$. Let p be a prime ideal of R.

 (\Rightarrow) If $pR_p[\beta] \cap R_p \neq pR_p$, then $R[\beta]$ does not have a blowing-up at p by definition. So we may assume that $pR_p[\beta] \cap R_p = pR_p$. Take a prime ideal Q of $R[\beta]$ such that $Q \cap R = p$. Since $R[\alpha]$ is integral over $R[\beta]$, there exists $P \in \text{Spec}(R[\alpha])$ such that $P \cap R[\beta] = Q$. Since $R[\alpha]$ does not have a blowing-up at p, k(P) is algebraic over k(p). Since $k(P) \supseteq k(Q) \supseteq k(p)$, we have that k(Q) is algebraic over k(p). Thus $R[\beta]$ does not have a blowing-up at p.

 (\Leftarrow) Since $R[\alpha]$ is integral over $R[\beta]$, $R_p[\alpha]$ is integral over $R_p[\beta]$ and hence is finite over $R_p[\beta]$. Thus $R_p[\alpha]$ is quasi-finite over $R_p[\beta]$. Since $R_p[\beta]$ is quasi-finite over R_p by Lemma 2, the composite $R_p \to R_p[\beta] \to R_p[\alpha]$ is quasi-finite. So by Lemma 2, we conclude that $R[\alpha]$ does not have a blowing-up at p.

(2) By virtue of (1), it suffices to show that the canonical map ψ_{α} : Spec $(R[\alpha]) \rightarrow \operatorname{Spec}(R)$ is surjective if and only if the canonical map ψ_{β} : $\operatorname{Spec}(R[\beta]) \rightarrow \operatorname{Spec}(R)$ is surjective. Consider the following commutative diagram :



Since $R[\alpha]$ is integral over $R[\beta]$, the canonical map $\psi_{\alpha,\beta}$: Spec $(R[\alpha]) \rightarrow$ Spec $(R[\beta])$ is surjective. So $\psi_{\alpha} = \psi_{\beta} \cdot \psi_{\alpha,\beta}$ is surjective if and only if ψ_{β} is surjective. We are done. \Box

Remark 4. (1) Let β be an element of $R[\alpha]$ and write $\beta = f(\alpha)$ with $f(X) \in R[X]$. If f(X) is monic, then $R[\alpha]$ is integral over $R[\beta]$ because α is a solution of $f(X) - \beta = 0$.

(2) Assume that R is a Noetherian Krull domain and that α is integral over R. Then both α and $\beta \in R[\alpha]$ are anti-integral elements over R by [OSY,(1.12) and (1.13)]. Thus $R[\alpha]$ is flat (resp. faithfully flat) over R if and only if so is $R[\beta]$ over R by Proposition 3.

Recall the following result.

Lemma 5(cf.[OSY,(3.7)]). Assume that α is an anti-integral element of degree d over R. Then Spec $(R[\alpha]) \rightarrow$ Spec(R) is surjective if and only if $\sqrt{J_{[\alpha]}} = \sqrt{\tilde{J}_{[\alpha]}}$.

Proposition 6. Assume that α is an anti-integral element of degree d over R. Let β be an element of $R[\alpha]$ such that β is anti-integral over R and that $R[\alpha]$ is integral over $R[\beta]$. Then the following two equalities hold :

(1) $\sqrt{J_{[\alpha]}} = \sqrt{J_{[\beta]}}$, (2) $\sqrt{\tilde{J}_{[\alpha]}} = \sqrt{\tilde{J}_{[\beta]}}$.

Proof. (1) Let p be a prime ideal in $\operatorname{Spec}(R)$. Then $J_{[\alpha]} \not\subseteq p$ if and only if $R_p[\alpha]$ is a flat over R_p by Lemma 2. Proposition 3 yields that $J_{[\alpha]} \not\subseteq p$ if and only if $J_{[\beta]} \not\subseteq p$. Hence $\sqrt{J_{[\alpha]}} = \sqrt{J_{[\beta]}}$.

65

(2) We know that the contraction map $\operatorname{Spec}(R[\alpha]) \to \operatorname{Spec}(R)$ is surjective if and only if $\sqrt{J_{[\alpha]}} = \sqrt{\tilde{J}_{[\alpha]}}$ by Lemma 5. Let p be a prime ideal in $\operatorname{Spec}(R)$. Then we see that the following :

$$\begin{split} \tilde{J}_{[\alpha]} \not\subseteq p \Leftrightarrow R_p[\alpha] & \text{is a faithfully flat over } R_p \\ \Leftrightarrow R_p[\beta] & \text{is a faithfully flat over } R_p \\ & \tilde{J}_{[\beta]} \not\subseteq p. \end{split}$$

Hence $\sqrt{\tilde{J}_{[\alpha]}} = \sqrt{\tilde{J}_{[\beta]}}$. \Box

Definition 7. Set

 $\Gamma := \{ \alpha \in L \mid \alpha \text{ is an anti-integral element over } R \}.$

Two elements α and β in Γ are called to be *connected by a segment* if either of the following conditions hold :

(1) β is in $R[\alpha]$ and $R[\alpha]$ is integral over $R[\beta]$,

(2) α is in $R[\beta]$ and $R[\beta]$ is integral over $R[\alpha]$.

If α and β are connected by a segment, we write $\alpha - \beta$.

Let Γ_{α} denote the connected component containing α , that is,

 $\Gamma_{\alpha} := \{ \gamma \in \Gamma \mid \text{ there exist some elements } \beta_1, \ldots, \beta_n \in \Gamma \text{ such that } \}$

 $\alpha - \beta_1, \ \beta_1 - \beta_2, \ \ldots, \ \beta_n - \gamma \}.$

Remark 8. (1) Note that the relation " — " is not necessarily an equivalence relation.

(2) For $\alpha, \beta \in \Gamma$, if $\alpha - \beta$ then $\beta - \alpha$.

(3) If $\beta, \gamma \in \Gamma_{\alpha}$, then $\Gamma_{\beta} = \Gamma_{\gamma} = \Gamma_{\alpha}$.

Theorem 9. Assume that $\beta, \gamma \in \Gamma_{\alpha}$. Then the following four statements hold : (1) $R[\gamma]$ is flat over R if and only if $R[\beta]$ is flat over R,

- (2) $R[\gamma]$ is faithfully flat over R if and only if $R[\beta]$ is faithfully flat over R,
- (3) $\sqrt{J_{[\gamma]}} = \sqrt{J_{[\beta]}}$,

(4)
$$\sqrt{\tilde{J}_{[\gamma]}} = \sqrt{\tilde{J}_{[\beta]}}.$$

Proof. Noting that $\Gamma_{\alpha} = \Gamma_{\gamma} = \Gamma_{\beta}$ by Remark 8(3), our proof follows from Propositions 3 and 6 and the definition of Γ_{α}

2. Simple SubExtension of $R[\alpha, \alpha^{-1}]$.

Lemma 10. Assume that α is an anti-integral element of degree d over R. Let β be an element in $R[\alpha, \alpha^{-1}]$ such that $R[\alpha, \alpha^{-1}]$ is integral over $R[\beta]$. Then $\sqrt{J_{[\alpha]}} \supseteq \sqrt{J_{[\beta]}}$.

Proof. Put $A := R[\alpha, 1/\alpha] \supseteq R[\beta] := B$. Take $p \in \operatorname{Spec}(R)$ with $p \supseteq J_{[\alpha]}$. Then P := pA is a prime ideal of A and $A/P \cong R_p[T, T^{-1}]$, where T denotes an indeterminate over R/p. Put $Q := P \cap B$. Then A is integral over B by the assumption. Hence A/P is algebraic over B/Q. Thus $\operatorname{Tr.deg}_{k(p)}k(Q) > 0$. So it does not hold that $J_{[\beta]} \not\subseteq p$. Therefore $J_{[\alpha]} \subseteq p$. \Box **Lemma 11.** Let β be an element in $R[\alpha, \alpha^{-1}]$. Assume that β is anti-integral over R and that $R[\alpha, \alpha^{-1}]$ is integral over $R[\beta]$. Then $\sqrt{J_{[\alpha]}} \subseteq \sqrt{J_{[\beta]}}$.

Proof. Put $A := R[\alpha, 1/\alpha] \supseteq R[\beta] := B$. Take $p \in \operatorname{Spec}(R)$ with $p \supseteq J_{[\beta]}$. Then Q := pB is a prime ideal of B and $B/Q \cong R/p[T]$, where T denotes an indeterminate over R/p. Since A is integral over B, there exists $P \in \operatorname{Spec}(A)$ with $P \cap B = Q$. Since $k(p) \subseteq k(Q) \subseteq k(P)$ and $\operatorname{Tr.deg}_{k(p)}k(Q) > 0$, we have $\operatorname{Tr.deg}_{k(p)}k(P) > 0$. Put $C := R[\alpha]$ and $P' := P \cap C$. Then $\operatorname{Tr.deg}_{k(p)}k(P') > 0$. Note that $P' \cap R = p$. So C has a blowing-up at p. Thus $J_{[\alpha]} \subseteq p$ by Lemma 2. \Box

Theorem 12. Assume that α is an element of degree d over R. Let β be an element in $R[\alpha, \alpha^{-1}]$ such that β is anti-integral over R and that $R[\alpha, \alpha^{-1}]$ is integral over $R[\beta]$. Then $\sqrt{J_{[\alpha]}} = \sqrt{J_{[\beta]}}$.

Proof. Our conclusion follows from Lemmas 10 and 11. \Box

Recall the following result.

Lemma 13(cf.[SOY,Cor.5]). Assume that α is an anti-integral element over R. Then the following statements are equivalent :

(1) $R[\alpha]$ is flat over R,

(2) $R[\alpha, \alpha^{-1}]$ is flat over R.

Theorem 14. Assume that α is an element of degree d over R. Let β be an element in $R[\alpha, \alpha^{-1}]$ such that β is anti-integral over R and that $R[\alpha, \alpha^{-1}]$ is integral over $R[\beta]$. Then the following statements are equivalent :

- (1) $R[\alpha]$ is flat over R,
- (2) $R[\alpha, \alpha^{-1}]$ is flat over R,
- (3) $R[\beta]$ is flat over R,
- (4) $R[\beta, \beta^{-1}]$ is flat over R.

Proof. The inplications $(1) \Leftrightarrow (2)$ and $(3) \Leftrightarrow (4)$ follow Lemma 13. $(1) \Leftrightarrow (3)$ follows from Lemma 2 and Theorem 12. \Box

References

- [M1] H.Matsumura, Commutaive Algebra (2nd ed.), Benjamin, New York, 1980.
- [M2] H.Matsumura, Commutaive Ring Theory, Cambridge Univ. Press, Cambridge, 1986.
- [SOY] J.Sato, S.Oda and K.Yoshida, On excellent elements of anti-integral extensions, Math. J. Toyama Univ. 18 (1995), 163–168.
- [OSY] S.Oda, J.Sato and K.Yoshida, High degree anti-integral extensions of Noetherian domains, Osaka J. Math. 30 (1993), 119–135.

67