ROSEリポジトリいばらき (茨城大学学術情報リポジトリ)

Title	Kronecker Function Rings of Semigroups
Author(s)	MATSUDA, Ryuki; SATO, Kojiro
Citation	Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 19: 31-46
Issue Date	1987
URL	http://hdl.handle.net/10109/2987
Rights	

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属 します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先

茨城大学学術企画部学術情報課(図書館) 情報支援係 http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html

Kronecker Function Rings of Semigroups

Dedicated to Professor Masayoshi Nagata on his sixtieth birthday

Ryûki MATSUDA* and Kôjirô SATÔ**

We review first [12, Theorem 7] for convenience. Let A be a commutative ring \ni 1. We denote the total quotient ring of A by q(A). A non-zerodivisor of A is called a regular element of A. Let a be an ideal of A. We denote the set of regular elements of A contained in a by Reg(a). If Reg(a) $\neq \phi$, then a is called a regular ideal of A. Let $f \in A[X]$. We denote the ideal of A generated by the coefficients of f by c(f). If c(f) is a regular ideal for each regular element f of A[X], then A is said to have property (C). If each regular ideal a of A is generated by $\operatorname{Reg}(\mathfrak{a})$, then A is called a Marot ring. A multiplicative system of A consisting of regular elements is called a regular multiplicative system of A. A quotient ring of A by a regular multiplicative system is called a regular quotient ring of A. A subring of q(A) containing A is called an overring of A. Let P be a prime ideal of A. The set $\{x \in q(A); ax \in A \text{ for some element } a \in A - P\}$ is denoted by $A_{(P)}$. An overring of A which is a valuation ring of q(A) is called a valuation overring of A. We are able to define *-operation on a commutative ring A. Also we are able to define the Kronecker function ring A_* of A with respect to *. We proved the fundamental properties of A_* on [10]. Let * be an e.a.b. *-operation on A. We set $U^* = \{ \text{regular } f \in A[X]; c(f)^* = A \}$. Then U^* is a multiplicative system of A[X].

THEOREM 1 ([12, Theorem 7]). Let A be a Marot ring with property (C). If * is an e.a.b. *-operation on A, then the following conditions are equivalent:

- (1) A is a Prüfer *-multiplication ring;
- (2) $A[X]_{U^*} = A_*;$
- (3) $A[X]_{U^*}$ is a Prüfer ring;
- (4) A_* is a regular quotient ring of A[X];
- (5) Each prime ideal of $A[X]_{U^*}$ is the contraction of a prime ideal of A_* ;
- (5r) Each regular prime ideal of $A[X]_{U^*}$ is the contraction of a prime ideal

of A_* ;

Received March 12, 1987.

^{*} Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.

^{**} Tohoku Institute of Technology, Sendai, Miyagi 982, Japan.

(6r) Each regular prime ideal of $A[X]_{U^*}$ is the extension of a prime ideal of A;

(7) Each valuation overring of A_* is of the form $A[X]_{[PA[X]]}$, where P is a prime ideal of A such that $A_{[P]}$ is a valuation ring of q(A);

(8) A_* is a flat A[X]-module.

Moreover there exists a Prüfer Marot ring A with property (C) which satisfies the following condition: Let * be any e.a.b. *-operation on A. Then there exists a prime ideal of $A[X]_{U}$, which is not the extension of a prime ideal of A.

Let * be a *-operation on a ring A. Also we set $U^* = \{\text{regular } f \in A[X]; c(f)^* = A\}$.

LEMMA 2. Let * be a *-operation on a Marot ring A with property (C). Then U* is a multiplicative system of A[X].

PROOF. Because the Dedekind-Mertens Lemma holds for A[X] (cf. [4, Corollary (28.3)]).

LEMMA 3. Let * be a *-operation on a Marot ring A with property (C). Assume that A is either a Prüfer *-multiplication ring or $A[X]_{U^*}$ is a Prüfer ring. Then we have $(aa^{-1})^* = A$ for each finitely generated regular ideal a of A.

PROOF. We have

 $A[X]_{U^*} = (\mathfrak{a}A[X]_{U^*})(\mathfrak{a}A[X]_{U^*})^{-1} = (\mathfrak{a}A[X]_{U^*})(\mathfrak{a}^{-1}A[X]_{U^*}) = (\mathfrak{a}\mathfrak{a}^{-1})A[X]_{U^*}.$ Therefore there exists an element $u \in U^*$ contained in $(\mathfrak{a}\mathfrak{a}^{-1})A[X]$. It follows $c(u) \subset \mathfrak{a}\mathfrak{a}^{-1}$, and hence $(\mathfrak{a}\mathfrak{a}^{-1})^* = A$.

PROPOSITION 4. Let A be a Marot ring with property (C). Assume that either A is a Prüfer v-multiplication ring or $A[X]_{Uv}$ is a Prüfer ring. Then the *-operation v is an a.b. *-operation, and hence the 9 conditions of Theorem 1 hold for A and the operation v.

PROOF. Let a be a finitely generated regular ideal of A. We have $(aa^{-1})^v = A$ by Lemma 3. It follows that the operation v is a.b. ([9, Lemma 4]).

PROPOSITION 5. Let * be a *-operation on an integral domain D. Assume that either D is a Prüfer *-multiplication ring or $D[X]_{U^*}$ is a Prüfer ring. Then the operation * is a.b., and hence the 9 conditions of Theorem 1 hold for D and *.

PROOF. By Lemma 3 we have $(aa^{-1})^* = D$ for each finitely generated nonzero ideal a of D. It follows that * is a.b.

REMARK 6. Let * be a *-operation on a Marot ring A with property (C). Assume that A is a Prüfer *-multiplication ring and that $A[X]_{U^*}$ equals to its total quotient ring. Then * is not necessarily e.a.b. COUNTER EXAMPLE. Consider the ring A and the operation * on A of [9, Remark 7]. Let f be a regular element of A[X]. We have $((b_0,..., b_m)c(f))^* = A$ for regular elements $b_0,..., b_m$ of A. It follows that $1/f \in A[X]_{U^*}$, and hence $A[X]_{U^*} = q(A[X]_{U^*})$.

The operation * of the above Counter Example differs from v by Proposition 4. In fact we have $(u)^* = (u) \exists v \in (u)^v$.

Next let S be a torsion-free cancellative commutative additive semigroup $\cong \{0\}$. We set $G = \{s - s'; s, s' \in S\}$. Let H be the units of S, and let M be the non-units of S. On [13, Section 10] we defined *-operation on S. Let D be a domain. Also we defined the Kronecker function ring S_*^p of S with respect to an e.a.b. *-operation * on S. And we proved fundamental properties of S_*^p .

REMARK 7. (1) (cf. [7, p. 75]) If we replace D by a ring A in [13, Lemma 10.2)], the statement is false.

(2) (A part of [13, Proposition (10.4), (2)]) Let * be an e.a.b. *-operation on S. Then we have $S_*^p = S_*^{q(D)}$ for each domain D.

Let $f \in D[X; S]$. We have $f = \sum_{i=1}^{n} a_i X^{s_i}$ with $a_i \neq 0$ $(1 \leq i \leq n)$ and $s_i \neq s_j$ $(i \neq j)$. Then the set $\{s_1, ..., s_n\}$ is denoted by Supp (f).

The following assertion is stated in [13, Proposition (10.4), (3)] without proof. And it seems that the assertion can not be proved simply by analogous ways to rings.

THEOREM 8. Let * be an e.a.b. *-operation on S. Then S^{D}_{*} is a Bezout ring for each domain D.

PROOF. Set k = q(D). We have $S_{\Phi}^{k} = S_{\Phi}^{k}$ by Remark 7, (2). If k is an infinite field, the assertion can be proved by an analogous way to rings (cf. [4, Theorem (32.7), (b)]). Let k be any field. Let $0 \neq f \in k[X; S]$. Set $\text{Supp}(f) = \{s_1, \ldots, s_n\}$. Then we have $fS_{\Phi}^{k} = (X^{s_1}, \ldots, X^{s_n})S_{\Phi}^{k}$. Now let ξ and η be nonzero elements of S_{Φ}^{k} . We set $\xi = f/g$ and $\eta = h/g$ $(f, g, h \in k[X; S])$. We set $\text{Supp}(f) = \{s_1, \ldots, s_n\}$, $\text{Supp}(h) = \{t_1, \ldots, t_m\}$ and set $\text{Supp}(f) \cup \text{Supp}(h) = \{u_1, \ldots, u_l\}$ with $u_i \neq u_j$ $(i \neq j)$. We have

$$(\xi, \eta)S_*^k = \left(\frac{X^{s_1}}{g}, \dots, \frac{X^{s_n}}{g}, \eta\right)S_*^k$$
$$= \left(\frac{X^{s_1}}{g}, \dots, \frac{X^{s_n}}{g}, \frac{X^{t_1}}{g}, \dots, \frac{X^{t_m}}{g}\right)S_*^k$$
$$= \left(\frac{X^{u_1}}{g}, \dots, \frac{X^{u_l}}{g}\right)S_*^k = \left(\left(\sum_{1}^l X^{u_l}\right)/g\right)S_*^k.$$

It follows that $(\xi, \eta)S_{\pm}^{k}$ is a principal ideal of S_{\pm}^{k} .

Henceforth in this paper let k be any field, and we assume that $S \subseteq G$.

Let F(S) be the set of fractional ideals of S. We denote the set of finitely generated fractional ideals of S by $F_f(S)$. Let * be a *-operation on S. We set $a^* = \operatorname{div}^* a$ for each $a \in F(S)$. We set $\{\operatorname{div}^* a; a \in F(S)\} = D^*(S)$ and $\{\operatorname{div}^* a; a \in F_f(S)\} = D_f^*(S)$. These are semigroups under the addition: $\operatorname{div}^* a + \operatorname{div}^* b =$ $\operatorname{div}^* (a + b)$. We set $D^*(S)/\{\operatorname{div}^* (\alpha); \alpha \in G\} = C^*(S)$ and $D_f^*(S)/\{\operatorname{div}^* (\alpha); \alpha \in G\} =$ $C_f^*(S)$. These are semigroups too. We set $\operatorname{div}^v (a) = \operatorname{div}(a)$ for $a \in F(S)$, $D^v(S) =$ D(S), $D_f^v(S) = D_f(S)$, $C^v(S) = C(S)$ and $C_f^v(S) = C_f(S)$. If $D_f^*(S)$ is a group, S is called a Prüfer *-multiplication semigroup. If $C_f(S) = 0$, then S is called a pseudo-Bezout semigroup. A pseudo-Bezout semigroup is also called GCD-semigroup ([7]). G/H is denoted by GD(S), and is called the group of divisibility of S. If C(S) = 0, then S is called a pseudo-principal semigroup.

Let $a \in F(S)$. If a+b=S for some $b \in F(S)$, then a is a principal fractional ideal of S. The proof is straightforward.

LEMMA 9. There exists a valuation oversemigroup of S the center on S of which is M.

PROOF. Mk[X; S] is a prime ideal of k[X; S]. There exists a valuation overring W of k[X; S] the center of which on k[X; S] is Mk[X; S]. Then the restriction $W \cap G$ is a desired oversemigroup of S.

LEMMA 10. S is a valuation semigroup if and only if either $\alpha \in S$ or $-\alpha \in S$ for each $\alpha \in G$.

PROOF. The sufficiency. By Lemma 9 there exists a valuation v of G with center M on S. Suppose that $v(\alpha) \ge 0$ and $\alpha \in S$. We have $-\alpha \in S$, and hence $v(-\alpha) \ge 0$. It follows $v(-\alpha) = 0$, hence $-\alpha \in H$; a contradiction.

LEMMA 11. Assume that S is integrally closed. Let s, $t \in S$. If $(n-1)s + t \in (ns, nt)$ for some n > 1, then (s, t) is a principal ideal of S.

PROOF. An analogy to rings (cf. [4, Proposition (24.2)]).

LEMMA 12. Assume that S is integrally closed, and let s, $t \in S$. If $(ns, nt)^b = (ns, nt)$ for a natural number n, then (ns, nt) = n(s, t).

PROOF. Let $\{V_{\lambda}; \lambda \in \Lambda\}$ be the set of valuation oversemigroups of S. Let i+j=n for natural numbers *i* and *j*. Then either $is+jt \in ns+V_{\lambda}$ or $is+jt \in nt+V_{\lambda}$ for each $\lambda \in \Lambda$. It follows $is+jt \in (ns, nt)V_{\lambda}$. We have

$$is+jt \in \bigcap_{\lambda} (ns, nt)V_{\lambda} = (ns, nt)^{b} = (ns, nt).$$

LEMMA 13. Assume that each element of $F_f(S)$ is principal. Then S is a valuation semigroup.

PROOF. There exists a valuation oversemigroup V of S with center M on S.

Let $0 \neq \alpha \in V$. We have $\alpha = s_1 - s_2$ with $s_i \in S$. (s_1, s_2) is a principal ideal (s_0) of S for $s_0 \in S$. $s_1 = s_0 + t_1$ and $s_2 = s_0 + t_2$ for $t_i \in S$. Either $s_0 \in s_1 + S$ or $s_0 \in s_2 + S$; say $s_0 \in s_1 + S$. Then $S_2 = s_1 + t_3$ for $t_3 \in S$, and $\alpha = -t_3$. It follows $\alpha \in H \subset S$. The case $s_0 \in s_2 + S$ is similar.

LEMMA 14. Assume that S is integrally closed and $(s, t)^b = (s, t)$ for each s, $t \in S$. Then S is a valuation semigroup.

PROOF. Let $s, t \in S$. We have (2s, 2t)=2(s, t) by Lemma 12. (s, t) is a principal ideal by Lemma 11. S is a valuation semigroup by Lemma 13.

LEMMA 15. Assume that * is e.a.b. and $S_*^k = S_v^k$ for each *-operation * on S. Then we have $a^v = a$ for each $a \in F_f(S)$.

PROOF. Let c be the identity mapping of F(S). We have $S_{c}^{k} = S_{v}^{k}$. It follows $a = a^{v}$ for each $a \in F_{f}(S)$.

LEMMA 16. Assume that S is integrally closed. If S is a Prüfer bmultiplication semigroup, then each element a of $F_f(S)$ is princiapal.

PROOF. We have $(a+b)^b = S$ for $b \in F_f(S)$. Then a+b=S by Lemma 9. Therefore a is principal.

PROPOSITION 17. The following conditions are equivalent:

(1) Each finitely generated ideal of S is principal;

(2) S is integrally closed semigroup and a Prüfer b-multiplication semigroup;

- (3) S is a valuation semigroup;
- (4) * is e.a.b. and $S_*^k = S_v^k$ for each *-operation * on S;
- (5) S is integrally closed, and $a^v = a$ for each $a \in F_f(S)$;

(6) S is integrally closed, and $(s, t)^b = (s, t)$ for each s, $t \in S$;

- (7) S is integrally closed, and $a^b = a$ for each $a \in F_f(S)$;
- (8) S is integrally closed, and $(s, t)^v = (s, t)$ for each $s, t \in S$;
- (9) * is a.b. and $S_*^k = S_v^k$ for each *-operation * on S.

PROOF. (8) \Rightarrow (6): Because $a^* \subset a^v$ for each *-operation *. (1) \Rightarrow (3): By Lemma 13. (6) \Rightarrow (3): By Lemma 14. (4) \Rightarrow (5): By Lemma 15. (2) \Rightarrow (1): By Lemma 16. (5) \Rightarrow (8), (7) \Rightarrow (6), (3) \Rightarrow (1), (3) \Rightarrow (7), (3) \Rightarrow (5), (3) \Rightarrow (2), (9) \Rightarrow (4) and (3) \Rightarrow (9) are straightforward.

Let * be a *-operation on S. We set $U^* = \{f \in k[X; S]; e(f)^* = S\}$.

LEMMA 18. U^* is a multiplicative system of k[X; S].

PROOF. There exists a natural number m such that (m+1)e(f) + e(g) = me(f) + e(fg) ([7, Proposition 6.2] or [13, Lemma (10.2)]). It follows that U^* is a multi-

plicative system of k[X; S].

REMARK 19. (1) We have $U^* \subset U^v$ for each *-operation *.on S;

(2) Assume that S is integrally closed. Then we have $U^b = k[X; S] - Mk[X; S]$ and $U^b \subset U^*$ for each *-operation *.

PROOF. (2): By Lemma 9.

We define that the ideal of k[X; S] (or $k[X; S]_{U^*}$ or S^k_*) generated by the empty set ϕ of S is zero.

Next we will see the semigroup version of Theorem 1.

LEMMA 20. Let * be an e.a.b. *-operation on S. Let \mathfrak{A} be an ideal of S_*^k , and let $\mathfrak{a} = \mathfrak{A} \cap S$. Then we have $\mathfrak{A} \cap k[X; S] = \mathfrak{a}k[X; S]$.

PROOF. Let $0 \neq f \in \mathfrak{A} \cap k[X; S]$. We have $fS_*^k = (s_1, ..., s_n)S_*^k$, where $\{s_1, ..., s_n\} = \operatorname{Supp}(f)$. It follows that $(s_1, ..., s_n) \subset \mathfrak{a}, f \in \mathfrak{ak}[X; S]$ and hence $\mathfrak{A} \cap k[X; S] \subset \mathfrak{ak}[X; S]$.

A valuation semigroup of the form S_p is called essential for S, where P is a prime ideal of S. A valuation ring of the form D_p is called essential for D, where P is a prime ideal of D.

LEMMA 21. Let * be an e.a.b. *-operation on S. If $k[X; S]_{U^*}$ is a Prüfer ring, the condition (7) of the following Theorem 25 holds.

PROOF. Let W be a valuation overring of S_{k}^{*} with center \mathfrak{P} on S_{k}^{*} . Set $\mathfrak{P} \cap k[X; S] = \mathfrak{p}$ and $\mathfrak{p} \cap S = P$. Then $\mathfrak{p} = Pk[X; S]$ by Lemma 20. Since $k[X; S]_{U^{*}}$ is Prüfer, we have $W = k[X; S]_{\mathfrak{p}}$, and hence $W = k[X; S]_{Pk[X;S]}$. Set $W \cap G = V$. Then V is a valuation oversemigroup of S. If $\alpha \in V$, we have $X^{\alpha} = f/g$ for $f, g \in k[X; S]$ with $g \in Pk[X; S]$. It follows $\alpha \in S_{p}$, and hence $V \subset S_{p}$.

LEMMA 22. If the condition (7) of Theorem 25 holds, then S_*^k is a flat k[X; S]-module.

PROOF. Let m be a maximal ideal of S_{*}^{k} . $(S_{*}^{k})_{m}$ is a valuation overring of S_{*}^{k} . The center of $(S_{*}^{k})_{m}$ on k[X; S] is $m \cap k[X; S]$. By our hypothesis we have $(S_{*}^{k})_{m} = k[X; S]_{Pk[X;S]}$ for a prime ideal P of S. Therefore the center of $(S_{*}^{k})_{m}$ on k[X; s] is Pk[X; S], and hence $m \cap k[X; S] = Pk[X; S]$. It follows $(S_{*}^{k})_{m} = k[X; S]_{k[X;S] \cap m}$. Then S_{*}^{k} is a flat k[X; S]-module by [15, Theorem 2].

LEMMA 23. Let * be an e.a.b. *-operation on S. If S_*^k is a flat k[X; S]-module, then $k[X; S]_{U^*} = S_*^k$.

PROOF. Let m be a maximal ideal of $k[X; S]_{U^*}$, and let $\mathfrak{p} = \mathfrak{m} \cap k[X; S]$. Suppose that $\mathfrak{m}S_*^k = S_*^k$. We will derive a contradiction. We have $(f_1, \ldots, f_n)S_*^k = S_*^k$ for $f_i \in \mathfrak{p}$. If k is an infinite field, there exists nonzero elements a_1, \ldots, a_n of k

such that $\operatorname{Supp}(f) = \bigcup_{i=1}^{n} \operatorname{Supp}(f_{i})$, where $f = a_{1}f_{1} + \cdots + a_{n}f_{n}$. f belongs to p and $(f_1,\ldots,f_n)S_*^k = fS_*^k$. It follows $f \in U^*$, and hence $m = k[X; S]_{U^*}$; a contradiction. If k is a finite field, the characteristic p of k is a prime number. Set $\bigcup_{i=1}^{n} \operatorname{supp}(f_i) =$ $\{t_1, \dots, t_i\}$ with $t_i \neq t_j$ for $i \neq j$, and set $f = \sum_{i=1}^{l} X^{t_i}$. The proof of Theorem 8 shows that $S_*^k = fS_*^k$, and hence $f \in U^*$. Since each f_i is a nonunit of $k[X; S]_{U^*}$, we have $\{t_1,\ldots,t_i\} \subset M$. Set Supp $(f_i) = \{s(i, 1),\ldots,s(i, l_i)\}$ for each *i*. If a number m(1)is large enough, there exist no i, j, k such that $s(1, i) = s(2, j) + p^{m(1)}t_k$. It follows Supp $(f_1) \cap$ Supp $(f_2 f^{exp(m(1))}) = \phi$, where exp(m(1)) denotes $p^{m(1)}$. Similarly if a number m(2) is large enough, we have Supp $(f_1 + f_2 f^{exp(m(1))}) \cap \text{Supp}(f_3 f^{exp(m(2))})$ $=\phi$ Thus we choose numbers m(3),...,m(n-1) similarly. We set $f_1 +$ $f_2 f^{\exp(m(1))} + \dots + f_n f^{\exp(m(n-1))} = g$. g belongs to p. Since $\operatorname{Supp}(f_i f^{\exp(m(i-1))}) \subset$ Supp (g), we have $(f_1, f_2 f^{exp(m(1))}, \dots, f_n f^{exp(m(n-1))}) S_*^k = g S_*^k$. Since f is a unit of S_*^k , we have $(f_1, f_2, \dots, f_n)S_*^k = gS_*^k$, and hence $S_*^k = gS_*^k$. It follows $g \in U^*$, and hence $m = k[X; S]_{U^*}$; a contradiction. We have proved $mS_*^k \subseteq S_*^k$. Let m' be a maximal ideal of S_*^k containing $\mathfrak{m}S_*^k$, and let $\mathfrak{p} = \mathfrak{m}' \cap k[X; S]$. Since $(S_*^k)_{\mathfrak{m}'} =$ $k[X; S]_{v}$, we have $(S_{*}^{k})_{m'} = (k[x; S]_{U^{*}})_{m}$, and hence $S_{*}^{k} = k[X; S]_{U^{*}}$.

LEMMA 24. Let * be an e.a.b. *-operation on S. If each prime ideal of $k[X; S]_{U^*}$ is the extension from S, then S is a Prüfer *-multiplication semigroup.

PROOF. If $(k[X; S]_{U^*})_S$ is not a field, there exists a nonzero prime ideal \mathfrak{P} of $k[X; S]_{U^*}$ such that $\mathfrak{P} \cap S = \phi$. Then \mathfrak{P} is not the extension from S; a contradiction. Therefore $(k[X; S]_{U^*})_S$ is a field. Let a be an ideal of S generated by s_1, \ldots, s_n . Set $f = \sum_{i=1}^{n} X^{s_i}$. We have $1/f = \frac{h}{X'g}$ for $h \in k[X; S]$, $t \in S$ and $g \in U^*$. $fh = x^t g$. Then $(a + e(h))^* = (t)$ by [13, Lemma (10.3)]. Therefore div* a is an invertible element of $D_f^*(S)$, and hence S is a Prüfer *-multiplication semigroup.

THEOREM 25 (The semigroup version of Theorem 1). Let k be a field and * an e.a.b. *-operation on S. Then the following conditions are equivalent:

- (1) S is a Prüfer *-multiplication semigroup;
- (2) $k[X; S]_{U^*} = S^k_*;$
- (3) $k[X; S]_{U^*}$ is a Prüfer ring;
- (4) S_*^k is a quotient ring of k[X; S];
- (5) Each prime ideal of $k[X; S]_{U^*}$ is the contraction of a prime ideal of S^k_* ;
- (6) Each prime ideal of $k[X; S]_{U^*}$ is the extension of a prime ideal of S;

(7) Each valuation overring of S_*^k is of the form $k[X; S]_{Pk[X;S]}$, where P is a prime ideal of S such that S_p is a valuation oversemigroup of S;

(8) S_*^k is a flat k[X; S]-module.

PROOF. (3) \Rightarrow (7): By lemma 21. (7) \Rightarrow (8): By Lemma 22. (8) \Rightarrow (2): By Lemma 23. (6) \Rightarrow (1): By Lemma 24. (4) \Rightarrow (2): S_{*}^{k} is of the form $k[X; S]_{T}$ If $f \in T$, then $1/f \in S_{*}^{k}$, and hence $f \in U^{*}$. It follows $k[X; S]_{T} \subset k[X; S]_{U^{*}}$, and hence $S_{*}^{k} \subset$

 $k[X; S]_{U^*}$. (1) \Leftrightarrow (4): By [13, Theorem (10.9), (2)]. (5) \Leftrightarrow (6): Let \mathfrak{p} be a prime ideal of $k[X; S]_{U^*}$. We have $\mathfrak{p} = k[X; S]_{U^*} \cap \mathfrak{P}$ for a prime ideal \mathfrak{P} of S_{\bullet}^k . Set $\mathfrak{p} \cap S = P$. Then $\mathfrak{p} = Pk[X; S]_{U^*}$ by Lemma 20. (2) \Leftrightarrow (3) and (2) \Leftrightarrow (5): straightforward.

On [14] we stated without proofs that conditions (1), (2), (3), (4), (7) and (8) of Theorem 25 are equivalent. Moreover we had posed a question there that if 8 conditions of Theorem 25 are equivalent or not.

COROLLARY 26. Assume S is integrally closed. The following conditions are equivalent:

- (1) S is a valuation semigroup;
- (2) $k[X; S]_{Mk[X;S]} = S_b^k;$

(3) $k[X; S]_{Mk[X;S]}$ is a valuation ring;

(4) S_b^k is a quotient ring of k[X; S];

(5) Each prime ideal of $k[X; S]_{Mk[X;S]}$ is the contraction of a prime ideal of S_b^k ;

(6) Each prime ideal of $k[X; S]_{Mk[X;S]}$ is the extension of a prime ideal of S;

(7) Each valuation overring of S_b^k is of the form $k[X; S]_{Pk[X;S]}$, where P is a prime ideal of S such that S_P is a valuation semigroup;

(8) S_b^k is a valuation ring.

PROOF. S is a Prüfer b-multiplication semigroup if and only if S is a valuation semigroup by the equivalence of (2) and (3) of Proposition 17. We have $k[X; S]_{U^b} = k[X; S]_{Mk[X;S]}$ by Remark 19, (2). The equivalence of (1), (2),..., (7) follows by Theorem 25. (8) \Rightarrow (1): Because $S_b^k \cap G = S$.

PROPOSITION 27 (The semigroup version of Proposition 5). Let * be a *operation on S. Assume that either S is a Prüfer *-multiplication semigroup or $k[X; S]_{U^*}$ is a Prüfer ring. Then * is a.b., and hence 8 conditions of Theorem 25 hold.

PROOF. If $a \in F_f(S)$, we have $(ak[X; S]_{U^*})^{-1} = a^{-1}k[X; S]_{U^*}$. Since $(ak[X; S]_{U^*})(ak[X; S]_{U^*})^{-1} = k[X; S]_{U^*}$, we have $(a + a^{-1})k[X; S]_{U^*} = k[X; S]_{U^*}$. Therefore there exists $u \in U^*$ contained in $(a + a^{-1})k[X; S]$. Then $(a + a^{-1})^* = S$.

If the operator v is a.b., then S is called regularly integrally closed. If v is e.a.b., then v is a.b.

COROLLARY 28. If S is a pseudo-Bezout semigroup, the operation v satisfies 8 conditions of Theorem 25.

LEMMA 29. Assume that S is regularly integrally closed. If S admits a family $\{V_{\lambda}; \lambda \in A\}$ of essential valuation semigroups such that $\bigcap_{\lambda} V_{\lambda} = S$, then we

have $\bigcap_{\lambda} V_{\lambda}^{*} = S_{v}^{k}$, where V_{λ}^{*} denotes the natural extension of V_{λ} to $q(k[X; S])_{i}$.

PROOF. Let a be an ideal of S generated by $a_1, ..., a_n$. Each V_i is of the form $S_{P(i)}$ for a prime ideal P(i) of S. We have $a + V_i = s_i + V_i$ with $s_i \in S$. Then $a_j = s_i + e_{ij} - t_i$ for $e_{ij} \in S$ and $t_i \in S - P(i)$. Since $a \subset (s_i - t_i)$, we have $a^v \subset \bigcap_i (s_i - t_i) \subset \bigcap_i (s_i + V_i) = \bigcap_i (a + V_i) = a^*$, where * is the w-operation on S induced by the representation $S = \bigcap_{\lambda} V_{\lambda}$. It follows $a^v = a^*$, and hence $S_v^k = S_*^k$. By [13, Proposition (10.6)] we have $S_v^k = \bigcap_{\lambda} V_{\lambda}^k$.

THEOREM 30. Let * be an e.a.b. *-operation on a regularly integrally closed semigroup S. If one of the 8 conditions of Theorem 25 holds, then $S_v^k = S_*^k$.

PROOF. Let $\{W_{\lambda}; \lambda \in \Lambda\}$ be the set of valuation overrings of S_{\star}^{k} . $\bigcap_{\lambda} W_{\lambda} = S_{\star}^{k}$. Set $W_{\lambda} \cap G = V_{\lambda}$. Then W_{λ} is the natural extension V_{λ}^{*} of V_{λ} . Each V_{λ} is essettial for S by our hypothesis. It follows $\bigcap_{\lambda} V_{\lambda}^{*} = S_{\nu}^{k}$ by Lemma 29, and hence $S_{\star}^{*} = S_{\nu}^{k}$.

Next we will see the semigroup version of [1, Theorem 5]. We call a discrete valuation (resp. semigroup and ring) of rank one ([4, §17]) a discrete valuation (resp. semigroup and ring). If D_p is a discrete valuation ring for each prime ideal p of D, then the domain D is called an almost Dedekind ring.

LEMMA 31. Assume that S is integrally closed. If S_b^k is almost Dedekind, then S is a discrete valuation semigroup.

PROOF. Set $GD(S) = \overline{G}$ and $\{\overline{m}; m \in M\} \cup \{\overline{0}\} = \overline{P}$, where \overline{m} denotes m + H. Then \overline{P} is a positive set of \overline{G} ([4, §15]). \overline{G} is a torsion-free abelian group. By [4, Theorem (15.6)] we see that \overline{G} is a totally ordered group, and each element of \overline{P} is non-negative. Let v be the natural mapping of G to \overline{G} . Then v is a valuation of G which is non-negative on S. The natural extension v^* of v is non-negative on S_b^k . It follows v^* is discrete, and hence $\overline{G} = Z\overline{\alpha}$ for $\overline{0} < \overline{\alpha} \in \overline{G}$. Then $G = H \oplus Z\alpha$. It follows $\alpha \in S$. If $v(\beta) \ge \overline{0}$, we have $\overline{\beta} = n\overline{\alpha}$ for $n \ge 0$, and hence $\beta \in S$. Thus Sis the valuation semigroup of the valuation v.

THEOREM 32 (The semigroup version of [1, Theorem 5, 6]). Assume that S is integrally closed. The following conditions are equivalent:

- (1) S is a discrete valuation semigroup;
- (2) Each ideal of S is principal;
- (3) k[X; S]_{Mk[X:S]} is a discrete valuation ring;
- (4) S_b^k is an almost Dedekind ring;
- (5) S_b^k is a Dedekind ring;
- (6) S_b^k is a Noetherian ring;
- (7) S_b^k is a Krull ring;
- (8) S_b^k is a discrete valuation ring.

PROOF. (1) \Rightarrow (3): Let v be the valuation associated with S. Then

 $k[X; S]_{Mk[X;S]}$ is the valuation ring associated with v^* . (3) \Rightarrow (8): Because S_b^k is an overring of $k[X; S]_{Mk[X;S]}$. (6) \Rightarrow (7): Because S_b^k is integrally closed. (7) \Rightarrow (5): Because S_b^k is Prüfer (cf. [4, Theorem (43.16)]). (4) \Rightarrow (1): By Lemma 31. (2) \Rightarrow (1): S is a valuation semigroup by Proposition 17. Since M is principal, S is a discrete valuation semigroup. (8) \Rightarrow (6) and (5) \Rightarrow (4) are straightforward.

The semigroup version of [1, Theorm 4] is contained in Corollary 26.

If there exists a set $\{V_{\lambda}; \lambda \in \Lambda\}$ of discrete valuation semigroups of G such that $\bigcap_{\lambda} V_{\lambda} = S$ and s is a unit of V_{λ} for almost all $\lambda \in \Lambda$ for each $s \in S$, then S is called a Krull semigroup.

LEMMA 33 ([2]). (1) S is a Krull semigroup if and only if S is completely integrally closed and satisfies the ascending chain condition for divisorial ideals cf S;

(2) If S is a Krull semigroup under a family $\{V_{\lambda}; \lambda \in \Lambda\}$ of valuation oversemigroups, then S is of the form $H \oplus S_1$ with $S_1 = q(S_1) \cap (\sum_{\lambda} \oplus Z_0)$, where $\sum_{\lambda} \oplus Z_0$ denotes the direct sum of copies of non-negative integers of the cardinality $|\Lambda|$. Conversely a semigroup S of the form is a Krull semigroup;

(3) Let $\{V_{\lambda}; \lambda \in \Lambda\}$ be the family of discrete valuation oversemigroups which are essential for a Krull semigroup S. Then S is a Krull semigroup under $\{V_{\lambda}; \lambda \in \Lambda\}$.

THEOREM 34. Assume S is regularly integrally closed. Then the following conditions are equivalent:

- (1) S is a Krull semigroup;
- (2) S_v^k is a principal idela domain;
- (3) S_v^k is a Noetherian ring;
- (4) S_v^k is a Krull ring.

PROOF. (1) \Rightarrow (4); There exists a family $\{V_{\lambda}; \lambda \in \Lambda\}$ of essential valuation oversemigroups of S under which S is Krull. 'We have $S_v^k = \bigcap_{\lambda} V_{\lambda}^*$ by Lemma 29. Therefore S_v^k is a Krull ring. (4) \Rightarrow (3); Since S_v^k is Prüfer, it is a Dedekind ring. (3) \Rightarrow (2); Because S_v^k is a Bezout ring. (4) \Rightarrow (1); Assume that S_v^k is a Krull ring under a family $\{W_{\lambda}; \lambda \in \Lambda\}$ of valuation overrings of S_v^k . Set $W_{\lambda} \cap G = V_{\lambda}$. Then S is a Krull semigroup under $\{V_{\lambda}; \lambda \in \Lambda\}$. (2) \Rightarrow (4); Straightforward.

If S is a Krull semigroup with C(S)=0, then S is called a factorial semigroup. S is a factorial semigroup if and only if S is a UFS of [7]. (The proof is similar to rings.) S is a factorial semigroup if and only if each element of S is uniquely expressed as a finite sum of irreducible elements up to associates and order.

PROPOSITION 35. (1) ([2, p. 1460]) D(S) is a group if and only if S is completely integrally closed;

(2) S is regularly integrally closed if and only if div a is an invertible

element of D(S) for each $a \in F_f(S)$.

PROOF. An analogy to rings (cf. [4, Theorems (34.3) and (34.6)]).

If follows that if S is completely integrally closed, then S is regularly integrally closed. Especially if S is a Krull semigroup, then S is regularly integrally closed.

PROPOSITION 36 (The semigroup version of [3, Theorem (2.3)]). Assume that S is pseudo-Bezout. Then the following conditions are equivalent:

- (1) S is a factorial semigroup;
- (2) S_v^k is a principal ideal domain.

PROOF. (2) \Rightarrow (1); S is a Krull semigroup by Theorem 34. S satisfies the ascending chain condition for principal ideals of S by Lemma 33, (1). Since S is pseudo-Bezout, we see that S is a factorial semigroup. (1) \Rightarrow (2): By Theorem 34.

PROPOSITION 37 (The semigroup version of [3, Theorem (2.4)]). Assume that S is a Krull semigroup. Then each valuation overring of S_v^k is the natural extension of a discrete valuation semigroup of G which is essential for S.

PROOF. We confer Theorem 34 and its Proof. There exists a family $\{V_{\lambda}; \lambda \in \Lambda\}$ of essential valuation oversemigroups of S under which S is Krull. Let W be a valuation overring of S_v^k . Then $W = (S_v^k)_p$, where p is the center of W on S_v^k . Since S_v^k is a principal ideal domain, p is a minimal prime ideal $\neq (0)$ of S_v^k . Since S_v^k is a Krull ring under $\{V_{\lambda}^*; \lambda \in \Lambda\}$, we have $(S_v^k)_p = V_{\lambda}^*$ for some λ . Thus W is the natural extension of V_{λ} .

Assume that there exists a family $\{V_{\lambda}; \lambda \in \Lambda\}$ of valuation semigroups of G such that $\bigcap_{\lambda} V_{\lambda} = S$. If $\bigcap_{\lambda \neq \lambda'} V_{\lambda} \supseteq S$ for each λ' , the representation $S = \bigcap_{\lambda} V_{\lambda}$ is called irredundant. We define irredundant representation for domains similarly.

PROPOSITION 38 (The semigroup version of [6, Proposition 2.1]). Assume that S admits an irredundant representation $S = \bigcap_{\lambda} V_{\lambda}$. Let * be the w-operation induced by the representation. Then $\bigcap_{\lambda} V_{\lambda}^*$ is an irredundant representation for S_{λ}^* .

PROOF. If $V^*_{\mu} \supset \bigcap_{\lambda \neq \mu} V^*_{\lambda}$ for some μ , we have $V_{\mu} \supset \bigcap_{\lambda \neq \mu} V_{\lambda}$.

PROPOSITION 39 (The semigroup version of [6, Proposition 2.3]). Assume that S is regularly integrally closed. If S_{ν}^{k} admits an irredundant representation, then S admits an irredundant representation.

PROOF/ Let $S_v^k = \bigcap_{\lambda} W_{\lambda}$ be an irredundant representation for S_v^k . Set $V_{\lambda} = W_{\lambda} \cap G$. Then W_{λ} is the natural extension of V_{λ} . We have $S = \bigcap_{\lambda \neq \mu} V_{\lambda}$. Suppose $S = \bigcap_{\lambda \neq \mu} S_{\lambda}$ for some μ . The representation $S = \bigcap_{\lambda \neq \mu} S_{\lambda}$ induces a w-operation * on S. $S_{*}^k = \bigcap_{\lambda \neq \mu} V_{\lambda}^*$. Since $S_{*}^k \subset S_v^k$, we see that $\bigcap_{\lambda} V_{\lambda}^*$ is not an irredundant representation for S_v^k ; a contradiction.

PROPOSITION 40. Assume that S is integrally closed. Then the following conditions are equivalent:

(1) S is a Noetherian semigroup;

(2) S is regularly integrally closed, and S_v^k is a principal integral domain with only a finite number of prime ideals.

PROOF. (1) \Rightarrow (2); S is a Krull semigroup by Lemma 33, (1). S_v^k is a principal ideal domain by Theorem 34. We have $M = (s_1, \ldots, s_m)$ for $s_i \in S$, where we may assume that each s_i is irreducible. S does not have other irreducible elements than s_1, \ldots, s_m up to associates. Therefore S is a Krull semigroup under a finite family of valuation semigroups of G. Then S_v^k is a Krull ring under a finite family of valuation rings by the proof of Theorem 34. It follows that S_v^k has only a finite number of prime ideals. (2) \Rightarrow (1); S is a Krull semigroup under a finite family of valuation semigroups. We may assume that $H = \{0\}$ by Lemma 33, (2). There exists a number *n* such that $S = G \cap (\sum_{i=1}^{n} \oplus Z_0)$ where $\sum_{i=1}^{n} \oplus Z_0$ is the direct sum of *n* copies of non-negative integers. The following Lemma 41 shows that S is Noetherian.

Lemma 41 is stated at [2, Remark 1] and is proved at [5, Theorem 15.11]. We will give an another proof.

LEMMA 41. Assume that $S = G \cap (\sum_{i=1}^{n} \bigoplus \mathbb{Z}_{0})$ for a natural number n. Then S is Noetherian.

PROOF. For example, let n=5. Let p_i be the *i*-projection of elements of $\sum_{i=1}^{n} \bigoplus Z_0$. Let a be an ideal of S. There exists an element $s_i \in a$ such that $p_i(s_i) = b_i$ min $\{p_i(s); s \in \mathfrak{a}\}$ for each *i*. Set max $\{p_i(s_i); i, j\} = H_1$. Let a number $h \leq H_1$. If $\{s \in a; p_i(s) = h\}$ is not empty, there exists an elements $s_i(h; i) \in a$ such that $p_{i'}(s_{i'}(h; i)) = \min \{p_{i'}(s); s \in a, p_{i}(s) = h\}$ for each i, i'. Set $\max \{p_{i}(s_{i'}(h; i)); n_{i'}(h; i)\}$ *i*, *i'*, *h*, *j*}= H_2 . Let h_1 , $h_2 \leq H_2$. If { $s \in a$; $p_{i_1}(s) = h_1$, $p_{i_2}(s) = h_2$ } is not empty, there exists an element $s_i(h_1, h_2; i_1, i_2) \in a$ such that $p_i(s_i(h_1, h_2; i_1, i_2)) = \min \{p_i(s); \}$ $s \in a, p_{i_1}(s) = h_1, p_{i_2}(s) = h_2$ for each i_1, i_2, l . Set max $\{p_j(s_l(h_1, h_2; i_1, i_2));$ $i_1, i_2, h_1, h_2, l, j = H_3$. Let numbers $h_1, h_2, h_3 \leq H_3$. If $\{s \in a; p_{i_1}(s) = h_1, i_2 \leq h_3\}$. $p_{i,s}(s) = h_2$, $p_{i,s}(s) = h_3$ is not empty, there exists an element $s_i \{h_1, h_2, h_3;$ $i_1, i_2, i_3 \in \mathfrak{a}$ such that $p_i(s_i(h_1, h_2, h_3; i_1, i_2, i_3)) = \min \{p_i(s); s \in \mathfrak{a}, p_{i_1}(s) = h_1, \dots, h_{i_1}(s) = h_{i_1}(s)\}$ $p_{i_2}(s) = h_2, p_{i_3}(s) = h_3$ for each i_1, i_2, i_3, l . Set max $\{p_j(s_l(h_1, h_2, h_3; i_1, i_2, i_3));$ $h_3, h_4; i_1, i_2, i_3, i_4) \in a$ for each $i_1, i_2, i_3, i_4, h_1, h_2, h_3, h_4, l$. Similarly we may determine a number H_5 . Set $B = \{s_{i_1}, s_i(h_1, i_1), s_i(h_1, h_2; i_1, i_2), s_i(h_1, h_2, h_3;$ $i_1, i_2, i_3), \quad s_l(h_1, h_2, h_3, h_4; i_1, i_2, i_3, i_4); \quad i_1, i_2, i_3, i_4, h_1, h_2, h_3, h_4, l\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1, s_2, s_3, s_4, s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4, s_1\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4\} \cup \{s \in \mathfrak{a}; s_1, s_2, s_3, s_4\} \cup \{s \in \mathfrak{a}; s_1, s_2\} \cup \{s \in$ $p_1(s) < H_5$, $p_2(s) < H_5$, $p_3(s) < H_5$, $p_4(s) < H_5$, $p_5(s) < H_5$. We will show that a is generated by the finite set B. Let $s \in a$, and set $p_i(s) = e_i$. We may assume that $e_1 \le e_2 \le e_3 \le e_4 \le e_5$. If $e_1 \ge H_1$, then $s - s_1 \in G \cap (\Sigma \oplus Z_0)$, and hence $s \in (s_1)$. If $e_1 < H_1$ and $e_2 \ge H_2$, then $s - s_2(e_1; 1) \in (\Sigma \oplus Z_0) \cap G$, and hence $s \in (s_2(e_1; 1))$. If $e_1 < H_1$, $e_2 < H_2$ and $e_3 \ge H_3$, then $s - s_3(e_1, e_2; 1, 2) \in G \cap (\Sigma \oplus Z_0)$, and hence $s \in (s_3(e_1, e_2; 1, 2))$. If $e_1 < H_1$, $e_2 < H_2$, $e_3 < H_3$ and $e_4 \ge H_4$, then $s - s_4(e_1, e_2, e_3; 1, 2, 3) \in G \cap (\Sigma \oplus Z_0)$, and hence $s \in (s_4(e_1, e_2, e_3; 1, 2, 3))$. If $e_1 < H_1$, $e_2 < H_2$, $e_3 < H_3$, $e_4 < H_4$ and $e_5 \ge H_5$, then $s - s_5(e_1, e_2, e_3, e_4; 1, 2, 3, 4) \in G \cap (\Sigma \oplus Z_0)$, and hence $s \in (s_5(e_1, e_2, e_3, e_4; 1, 2, 3, 4))$.

PROPOSITION 42. Assume that S is regularly integrally closed.

(1) S_{v}^{k} is a valuation ring if and only if S is a valuation semigroup;

(2) S_v^k is a discrete valuation ring if and only if S is a discrete valuation semigroup.

PROOF. (1) If S_v^k is a valuation ring, then S is a valuation semigroup since $S_v^k \cap G = S$. If S is a valuation semigroup, S_b^k is a valuation ring by Corollary 26. It follows that S_v^k is a valuation ring. (2) If S is a discrete valuation semigroup, then S_b^k is a discrete valuation ring by Theorem 32.

THEOREM 43 (The semigroup version of [11, Theorem 2]).

- (1) If S is a Krull semigroup, then $k[X; S]_{U^{\nu}}$ is a principal ideal domain;
- (2) If $k[X; S]_{U^{\nu}}$ is a Krull ring, then S is a Krull semigroup.

PROOF. (1): Each valuation overring of S_v^k is the natural extension of an essential valuation oversemigroup of S by Proposition 37. It follows $k[X; S]_{U^v} = S_v^k$ by Theorem 25. Then $k[X; S]_{U^v}$ is a principal ideal domain by Theorem 34. (2): Because $k[X; S]_{U^v} \cap G = S$.

The semigroup version of [11, Theorem 1] is contained in Proposition 27.

PROPOSITION 44. Assume that S is regularly integrally closed. Then the following conditions are equivalent:

- (1) S_v^k is a pseudo-principal ring;
- (2) Each element of D(S) is the difference of two elements of $D_f(S)$.

PROOF. (1) \Rightarrow (2); Let a be an ideal of S. Let ξ be the greatest common divisor of aS_v^k in S_v^k . We have $\xi = f/g$ for $f, g \in k[X; S]$ with $e(f)^v \subset e(g)^v$. We have div e(g) + div b = 0 for b $\in F(S)$ by Proposition 35, (2). If $s \in a$, then $X^s \in \xi S_v^k$. It follows $s \in (e(f) + b)^v$, and hence $(e(f) + b)^v \supset a$ and $(e(f) + b)^v \supset a^v$. Next if $a \subset (s)$ for $s \in S$, we have $\xi S_v^k \subset X^s S_v^k$. It follows $e(f)^v \subset s + e(g)^v$, and hence $(e(f) + b)^v = a^v$. (2) \Rightarrow (1); Let U be a non-zero ideal of S_v^k . Set $U - \{0\} =$ $\{\xi_{\lambda}; \lambda \in A\}$, and let $\xi_{\lambda} = f_{\lambda}/g_{\lambda}$ for $f_{\lambda}, g_{\lambda} \in k[X; S]$ with $e(f_{\lambda})^v \subset e(g_{\lambda})^q$. We have div $e(g_{\lambda})$ + div $b_{\lambda} = 0$ for $b_{\lambda} \in F(S)$ for each λ . Set $\bigcup_{\lambda} (e(f_{\lambda}) + b_{\lambda}) = a$. Then div a =div e(f) - div e(g). Since $a \subset S$, we have $f/g \in S_v^k \cdot f/g$ is the greatest common divisor of U in S_v^k . **PROPOSITION 45.** The following conditions are equivalent:

- (1) S is a pseudo-Bezout semigroup;
- (2) S is regularly integrally closed, and $GD(S) \cong GD(S_v^k)$ canonically.

PROOF. (1) \Rightarrow (2); Let $\bar{\alpha} \in G/H$ with $\alpha \in G$. We denote the element \overline{X}^{α} of $GD(S_{v}^{k})$ by $\phi(\bar{\alpha})$. Let $0 \neq f \in k[X; S]$. We have $e(f)^{v} = (s)$ for $s \in S$. Then $\phi(\bar{s}) = \bar{f}$. It follows ϕ is an isomorphism of GD(S) to $GD(S_{v}^{k})$. (2) \Rightarrow (1); Let a be an ideal of S generated by s_{1}, \ldots, s_{n} . Set $\sum_{i=1}^{n} X^{s_{i}} = f$. We have $\bar{f} = \phi(\bar{s})$ for $s \in G$, and hence $e(f)^{v} = (s)$. It follows $a^{v} = (s)$.

REMARK 46 ([13, Theorem (10.9), (1)]). If S is a Prüfer *-multiplication semigroup, then $GD(S_*^k) \cong D_I^*(S)$ canonically.

PROPOSITION 47. The following conditions are equivalent:

(1) S is a pseudo-principal semigroup;

(2) S is regularly integrally closed and S_v^k is pseudo-principal, and $GD(S) \cong GD(S_v^k)$ canonically.

PROOF. (1) \Rightarrow (2); We have $GD(S) \cong GD(S_v^k)$ canonically by Proposition 45. S_v^k is pseudo-principal by Proposition 44. (2) \Rightarrow (1); Let a be an ideal of S. We have div $a = \operatorname{div} b - \operatorname{div} c$ for b, $c \in F_f(S)$ by Proposition 44. Then div a is principal by proposition 45.

PROPOSITION 48. Assume that S is integrally closed, and let W be a multiplicative system of k[X; S]. If each prime ideal of $k[X; S]_W$ is the extension of a prime ideal of S, then $k[X; S]_W$ is a Bezout ring.

PROOF. Let $\{Q_{\lambda}; \lambda \in A\}$ be the set of prime ideals of k[X; S] which does not intersect with W. Set $Q_{\lambda} \cap S = P_{\lambda}$ for each λ . Then $Q_{\lambda} = P_{\lambda}k[X; S]$. Let $\{V_{\sigma}; \sigma \in \Sigma\}$ be the set of valuation oversemigroups of S centers on S of which are among $\{P_{\lambda}; \lambda \in A\}$. Let v_{σ} be the valuation associated with V_{σ} . Set $\bigcap_{\sigma} V_{\sigma} = S'$. Then $S \subset S'$. Let P'_{σ} be the center of v_{σ} on S' for each σ . Let W' be the complement of $\bigcup_{\sigma} P'_{\sigma}k[X; S']$ in k[X; S']. Let $\sigma \in \Sigma$. Then $P'_{\sigma} \cap S = P_{\lambda}$ and $Q_{\lambda} = P_{\lambda}k[X; S] =$ $(P'_{\sigma}k[X; S']) \cap k[X; S]$ for some λ . If an element $w \in W$ is contained in $P'_{\sigma}k[X; S']$, we have $w \in Q_{\lambda}$; a contradiction. If follows $W \subset W'$, and hence $k[X; S]_{W} \subset k[X; S']_{W'}$. Let U be a valuation ring the center on k[X; S] of which is Q_{λ} for some λ . $U \cap G$ is a valuation semigroup the center on S of which is P_{λ} . It follows $U \cap G = V_{\sigma}$ for some σ . We have $V_{\sigma} \supset S'$ and $U \supset S'$. It follows $k[X; S]_{W}$ $\supset S'$ and $k[X; S]_{W} \supset k[X; S']$. We have

(#); $k[X; S']_{W'}$ is a quotient ring of $k[X; S]_W$. Each prime ideal of $k[X; S]_W$ is of the form $Q_{\lambda}k[X; S]_W$ for some λ . We have $P_{\lambda} = P'_{\sigma} \cap S$ for some σ . We have both $(P'_{\sigma}k[X; S']) \cap k[X; S] = P_{\lambda}k[X; S]$ and $k[X; S] \cap ((P'_{\sigma}k[X; S']_{W'}) \cap k[X; S]_W) = P_{\lambda}k[X; S]$. It follows $(P'_{\sigma}k[X; S']_{W'})$ $\cap k[X; S]_W = P_\lambda k[X; S]_W$. That is, each prime ideal of $k[X; S]_W$ is the contraction of a prime ideal of $k[x; S']_{W'}$. We see that $k[X; S]_W = k[X; S']_{W'}$ by (#). Let * be the w-operation on S' induced by the representation $S' = \bigcap_{\sigma} V_{\sigma}$. Set $\{f \in k[X; S']; e(f)^* = S'\} = U^*$. If $0 \neq f \in k[X; S]$, then $f \in U^*$ if and only if for each σ we have $v_{\sigma}(t) = 0$ for some $t \in \text{Supp}(f)$. It follows that $W' = U^*$, and hence $k[X; S']_{W'} = k[X; S]_{U^*}$. Therefore $k[X; S]_W = k[X; S']_{U^*}$. It follows that $k[X; S]_W = S^*_*$ by Theorem 25, and hence $k[X; S]_W$ is a Bezout ring.

The above Proposition 48 is a semigroup version of [8, Lemma (3.0)].

References

- J. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math. 21 (1969), 558-563.
- [2] L. Chouinard, Krull semigroups and divisor class groups, Canad. J. Math. 33 (1981), 1459-1468.
- [3] R. Gilmer, An embedding theorem for HCF-rings, Proc. Camb. Phil. Soc. 68 (1970), 583-587.
- [4] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, 1972.
- [5] R. Gilmer, Commutative Semigroup Rings, The Univ. Chicago Press, 1984.
- [6] R. Gilmer and W. Heinzer, Irredundant intersections of valuation rings, Math. Zeit. 103 (1968), 306-317.
- [7] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86.
- [8] J. Huckaba and I. Papick, A localization of R[x], Canad. J. Math. 33 (1981), 103-115.

Ryûki MATSUDA and Kôjirô SATÔ

- [9] R. Matsuda, Notes on Prüfer v-multiplication rings, Bull. Fac. Sci., Ibaraki Univ. 12 (1980), 9–15.
- [10] R. Matsuda, Kronecker function rings, Bull. Fac. Sci., Ibaraki Univ. 13 (1981), 13-24.
- [11] R. Matsuda, On a question posed by Huckaba-Papick, Proc. Japan Acad. 59 (1983), 21-23.
- [12] R. Matsuda, On some open questions and related results in ideal theory, Proc. 7-th Sympos. on Commutative Ring Theory, 1985, 34–41.
- [13] R. Matsuda, Torsion-free abelian semigroup rings V1, Bull. Fac. Sci., Ibaraki Univ. 18 (1986), 23–43.
- [14] R. Matsuda and K. Satô, Topics of commutative semigroup rings; *operations on semigroups and M-semigroup rings, Proc. 8-th Sympos. on Commutative Ring Theory, 1986.
- [15] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799.