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Kronecker Function Rings of Semigroups

Dedicated to Professor Masayoshi Nagata on his sixtieth birthday

Ryufiki MATSUDA* and  Kojiro SATO**

We review first [12, Theorem 7] for convenience. Let A be a commutative 

ring •¹ 1. We denote the total quotient ring of A by q(A). A non-zerodivisor of 

A is called a regular element of A. Let a be an ideal of A. We denote the set of 

regular elements of A contained in a by Reg (a). If Reg (a)•‚ƒ³, then a is called a 

regular ideal of A. Let  f  e A[X]. We denote the ideal of A generated by the 

coefficients  of  f by  c(f). If c(f) is a regular ideal for each regular element f of 

A[X], then A is said to have property (C). If each regular ideal a of A is generated 

by Reg (a), then A is called a Marot ring. A multiplicative system of A consisting 

of regular elements is called a regular multiplicative system of A. A quotient

ring of A by a regular multiplicative system is called a regular quotient ring of A. 

A subring of q(A) containing A is called an overring of A. Let P be a prime ideal 

of A. The set  {x •¸ q(A); ax •¸ A for some element a •¸ A-P} is denoted by  A[p]. 

An overring of A which is a valuation ring of q(A) is called a valuation overring of 

A. We are able to define  *-operation on a commutative ring A. Also we are able to 

define the Kronecker function ring  A* of A with respect to  *. We proved the 

fundamental properties of  A* on [10]. Let * be an e.a.b.  *-operation on A. We 

set U*={regular f•¸A[X]; c(f)*=A}. Then U* is a multiplicative system of 

A[X].

THEOREM 1 ([12, Theorem 7]). Let A be a  Marot ring with property (C). 

 If * is an e.a.b. *-operation on A, then the following conditions are equivalent: 

(1) A is a Prufer *-multiplication ring; 

(2) A[X]u*=A*;

(3) A[X]u. is a Prufer ring; 

(4) A* is a regular quotient ring of A[X]; 

(5) Each prime ideal of  A[X]u*. is the contraction of a prime ideal of A*; 

(5r) Each regular prime ideal of  A[X]u* is the contraction of a prime ideal 

of A*;
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(6r) Each regular prime ideal of  A[X]u*. is the extension of a prime ideal

of A;

(7) Each valuation overring of A* is of the form A[X][pA[x], where P is 

a prime ideal of A such that A[P] is a valuation ring of q(A);

(8) A* is a flat A[X]-module.

Moreover there exists a Prufer  Marot ring A with property (C) which satisfies 

the following condition: Let * be any e.a.b. *-operation on A. Then there exists 

a prime ideal of A[X]u* which is not the extension of a prime ideal of A.

Let * be a *-operation on a ring A. Also we set U*={regular f •¸ A[X]; 

c(f)*=A}.

LEMMA 2. Let * be a *-operation on a Marot ring A with property (C).

Then U* is a multiplicative system of A[X].

PROOF. Because the Dedekind-Mertens Lemma holds for A[X] (cf. [4, 

Corollary (28.3)]). 

LEMMA 3. Let * be a *-operation on a Marot ring A with property (C).

Assume that A is either a Prufer  *-multiplication ring or A[X]u* is a  Prufer ring.

Then we have (aa-1)*=A for each finitely generated regular ideal a of A.

PROOF. We have 

A [X]u*=(aA[X]u*)(aA[X]u*)-1=(aA[X]  u*)(a-1A[X]u*)=(aa-1)A[X]u*.

Therefore there exists an element u e U* contained in (aa-1)A[X]. It follows 

c(u)•¼aa-1, and hence (aa-1)* =A.

PROPOSITION 4. Let A be a Marot ring with property (C). Assume that 

either A is a Prufer v-multiplication ring or  A[X]uv, is a Prufer ring. Then the 

*-operation v is an a .b. *-operation, and hence the 9 conditions of Theorem 1

hold for A and the operation v.

PROOF. Let a be a finitely generated regular ideal of A. We have (aa-1)v=A 

by Lemma 3. It follows that the operation v is a.b. ([9, Lemma 4]).

PROPOSITION 5. Let * be a *-operation on an integral domain D. Assume 

that either D is a  Prufer  *-multiplication ring or D[X]u. is a  Prufer ring. Then 

the operation * is a.b., and hence the 9 conditions of Theorem 1 hold for D and *.

PROOF. By Lemma 3 we have (aa-1)*=D for each finitely generated nonzero 

ideal a of D. It follows that * is a.b.

REMARK 6. Let * be a  *-operation on a Marot ring A with property (C).

Assume that A is a Prufer  *-multiplication ring and that A[X]u. equals to its 

total quotient ring. Then * is not necessarily e.a.b.
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COUNTER EXAMPLE. Consider the ring A and the operation * on A of [9, 

Remark 7]. Let f be a regular element of A[X]. We have ((bo,...,bm,)c(f))*= A

for regular elements bo,...,bm of A. It follows that 1/f •¸ A[X]u*, and hence 

A[X]u*=q(A[X]u*).

The operation * of the above Counter Example differs from v by Proposition 

4. In fact we have (u)*=(u)_??_v•¸(u)v

Next let S be a torsion-free  cancellative commutative additive semigroup 

_??_{0}. We set G={s-s';s,s'•¸S}. Let H be the units of S, and let M be the 

non-units of S. On [13, Section 10] we defined *-operation on S. Let D be a 

domain. Also we defined the Kronecker function ring SD* of S with respect to an 

e.a.b. *-operation * on S. And we proved fundamental properties of SD*.

REMARK 7. (1) (cf. [7, p. 75]) If we replace D by a ring A in [13, Lemma 

10.2)], the statement is false.

(2) (A part of [13, Proposition (10.4), (2)]) Let * be an e.a.b. *-operation on 

S. Then we have SD*=Sq*(D) for each domain D. 

Let f •¸ D[X;S]. We have f=‡”n1aiXsi with ai•‚0 (1•…i•…n) and si•‚sj

(i•‚j). Then the set {s1,...,sn} is denoted by Supp (f).

The following assertion is stated in [13, Proposition (10.4), (3)] without proof. 

And it seems that the assertion can not be proved simply by analogous ways to 

rings. 

THEOREM 8. Let * be an e.a.b.  *-operation on S. Then SD* is a Bezout ring 

for each domain D.

PROOF. Set  k=q(D). We have=SD* by Remark 7, (2). If k is an infinite 

field, the assertion can be proved by an analogous way to rings (cf. [4, Theorem 

(32.7),(b)]). Let k be any field. Let  0•‚f•¸k[X;S]. Set Supp (f)={s1,...,  sn}.

Then we have fSk*=(Xs1,...,Xsn)St*. Now let ƒÄ and ƒÅbe nonzero elements of

St*. We set ƒÄ=f/g and ƒÅ= h/g (f,g,h•¸k[X;S]). We set Supp (f)={s,,...,sn}.

Supp (h)={t1,...,tm} and set Supp(f)_??_ Supp (h)={u1,...,ui} with  ui•‚uj (i•‚j).

We have

It follows that is a principal ideal of SK*.

Henceforth in this paper let k be any field, and we assume that S_??_G
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Let F(S) be the set of fractional ideals of S. We denote the set of finitely 

generated fractional ideals of S by F f(S). Let * be a *-operation on S. We set 

a*=div* a for each a •¸ F(S). We set  {div* a; a •¸ F(S)}=D*(S) and {div* a; 

a •¸Ff(S)}=D*f(S). These are semigroups under the addition: div* a+div*b= 

div*(a+b). We set D*(S)/{div* (a); a •¸ G}=C*(S) and D*f(S)/{div*(a); a •¸ G} = 

C*f(S). These are semigroups too. We set div (a)=div (a) for a •¸ F(S),  Du(S)= 

D(S), Dvf(S)= Df(S), Cv(S)=C(S) and  Cvf(s)=Cf(S). If D*f(S) is a group, S is 

called a Prufer *-multiplication semigroup. If Cf(S)=0, then S is called a pseudo-

Bezout semigroup. A pseudo-Bezout semigroup is also called GCD-semigroup 

([7]). G/H is denoted by GD(S), and is called the group of divisibility of S. If 

C(S)=0, then S is called a pseudo-principal semigroup.

Let a •¸ F(S). If a+b=S for some b •¸ F(S), then a is a principal fractional 

ideal of S. The proof is straightforward. 

LEMMA 9. There exists a valuation oversemigroup of S the center on S of 

which is M. 

PROOF. Mk[X;S] is a prime ideal of  k[X;S]. There exists a valuation 

overring W of k[X;S] the center of which on k[X;S] is Mk[X;S]. Then the 

restriction W •¿ G is a desired oversemigroup of S. 

LEMMA 10.  S is a valuation semigroup if and only if either a •¸ S or -a •¸S 

for each a •¸ G. 

PROOF. The sufficiency. By Lemma 9 there exists a valuation v of G with 

center M on S. Suppose that v(a)•†0 and ac _??_ S. We have -a •¸ S, and hence 

v(-a)•†0. It follows v(-a)=0, hence -a •¸ H; a contradiction.

LEMMA 11. Assume that S is integrally closed. Let s, t •¸ S. If (n-1)s+ 

t •¸ (ns,nt) for some n•„1, then (s,t) is a principal ideal of S.

PROOF. An analogy to rings (cf. [4, Proposition (24.2)]). 

LEMMA 12. Assume that S is integrally closed, and let s, t •¸ S. If (ns,  nt)b= 

(ns,nt)  for a natural number n, then (ns,nt)=n(s,t).

PROOF. Let {VƒÉ;ƒÉ•¸•È} be the set of valuation oversemigroups of S. Let 

i+j=n for natural numbers i and j. Then either is+jt •¸ ns+VƒÉ or is+jt •¸ nt+ VƒÉ

for each ƒÉ •¸ •È. It follows is+jt •¸  (ns, nt)VƒÉ. We have 

is+jt •¸_??_ƒÉ (ns,nt)VƒÉ=(ns,nt)b  =(ns,nt).

LEMMA 13. Assume that each element of  Ff(S) is principal. Then S is a 

valuation semigroup.

PROOF. There exists a valuation oversemigroup V of S with center M on S.
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Let 0•‚a •¸ V. We have a=s1-s2 with  Si•¸S. (s1,s2) is a principal ideal (so) of S 

for So•¸S. S1=So+t‚Pand s2=s0+t2 for  ti •¸ S. Either s0 •¸ si S or so •¸ s2 +S;

say S0 •¸ S1+S. Then S2=S1+t3 for t3 •¸ S, and a=-t3. It follows a •¸ H•¼S.

The case  so0 •¸ S2+S is similar.

LEMMA 14. Assume that S is integrally closed and (s,t)b=(s,t) for each 

s,t •¸ S. Then S is a valuation semigroup. 

PROOF. Let s, t •¸ S. We have (2s,  2t)=2(s,t) by Lemma 12. (s,t) is a 

principal ideal by Lemma 11. S is a valuation semigroup by Lemma 13.

LEMMA 15. Assume that * is e.a.b. and  Sk•‚=Skv for each *-operation * on S.

Then we have  av=a for each a •¸ Ff  (S).

PROOF. Let ƒÑ be the identity mapping of F(S). We have  Sk=Skv It follows 

a=av for each  a •¸ Ff(S).

LEMMA 16. Assume that S is integrally closed. If S is a  Priifer b-

multiplication semigroup, then each element a of  Ff(S) is princiapal. 

PROOF. We have (a+b)b=S for b •¸ Ff(S). Then a+b=S by Lemma 9.

Therefore a is principal.

PROPOSITION 17. The following conditions are equivalent: 

(1) Each finitely generated ideal of S is principal; 

(2) S is integrally closed semigroup and a  Prufer b-multiplication 

semigroup;

(3) S is a valuation semigroup;

(4) * is e.a.b. and  Sk*=Skv for each  *-operation * on S;

(5) S is integrally closed, and av=a for each a •¸ Ff(S);

(6) S is integrally closed, and (s,  t)b=(s,t)for each s, t •¸ S; 

(7) S is integrally closed, and  ab=a for each a •¸ Ff(S);

(8) S is integrally closed, and (s,  t)v=(s,t) for each s, t •¸ S;

(9) * is a.b. and  Sk*=St for each  *-operation * on S.

PROOF. (8)•Ë(6): Because a* •¼ av for each *-operation *. (1)•Ë(3): By 

Lemma 13. (6)•Ë(3): By Lemma 14. (4)•Ë (5): By Lemma 15.(2)•Ë(1): By Lemma 

16.(5)•Ë(8),(7)•Ë(6),(3)•Ë(1),(3)•Ë (7),(3)•Ë(5),(3)•Ë(2),(9)•Ë(4) and  (3)•Ë(9)are 

straightforward. 

Let * be a *-operation on S. We set  U*={f•¸k[X;S]; e(f)*=S}. 

LEMMA 18. U* is a multiplicative system of k[X;S]. 

PROOF. There exists a natural number m such that (m+1)e(f)+e(g)=me(f)+

e(fg)([7,Proposition 6.2] or [13, Lemma (10.2)]). It follows that U* is a multi-
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plicative system of k[X; S].

REMARK 19.(1) We have U*•¼Uv for each *-operation* .on S;

(2) Assume that S is integrally closed. Then we have Ub=k[X; S]-

Mk[X; S] and Ub•¼U* for each *-operation*.

PROOF. (2): By Lemma 9.

We define that the ideal of k[X; S] (or k[X; S]v. or S.) generated by the

empty set ƒÓ of S is zero.

Next we will see the semigroup version of Theorem 1.

LEMMA 20. Let*be an e.a.b. *-operation on S. Let _??_ be an ideal of Sk*,

and let a=_??_•¿S. Then we have _??_•¿k[X; S]=ak[X; S].

PROOF. Let 0•‚f•¸_??_•¿k[X; S]. We have fSh*=(sl,..., sn)Sh*, where {s1,....,

sn}= Supp(f). It follows that (sl,..., sn)•¼a, f•¸ak[X; S] and hence _??_•¿k[X; S]•¼

ak[X; S].

A valuation semigroup of the form Sp is called essential for S, where P is a

prime ideal of S. A valuation ring of the form Dp is called essential for D, where

P is a prime ideal of D.

LEMMA 21. Let * be an e.a.b. *-operation on S. If k[X; S]v. is a Priifer

ring, the condition (7) of the following Theorem 25 holds.

PROOF. Let W be a valuation overring of Sh* with center _??_ on Sk*. Set _??_•¿

k[X; S]=p and p•¿S=P. Then p=Pk[X; S] by Lemma 20. Since k[X; S] v. is

Prufer, we have W=k[X; S]p, and hence W=k[X; S]pk[x;s]. Set W•¿G=V.

Then V is a valuation oversemigroup of S. If a•¸V, we have Xa=f/g for f, g•¸

k[X; S] with g•¸Pk[X; S]. It follows a•¸Sp, and hence V•¼Sp.

LEMMA 22. If the condition (7) of Theorem 25 holds, then Sk* is a flat k[X; S]-

module.

PROOF. Let m be a maximal ideal of Sk*. (Sk*)m is a valuation overring of Sk*.

The center of (Sk*)m on k[X; S] is m•¿k[X; S]. By our hypothesis we have

(Sk*)m=k[X; S]pk[x;s] for a prime ideal P of S. Therefore the center of (Sk*)m on

k[X; s] is Pk[X; S], and hence m n k[X; S]= Pk[X; S]. It follows (Sk*)m=

k[X; S]k[x;s]•¿m. Then Sk* is a flat k[X; S]-module by [15, Theorem 2].

LEMMA 23. Let * be an e.a.b. *-operation on S. If Sk* is a flat k[X; S]-

module, then k[X; S]u*=Sk*.

PROOF. Let m be a maximal ideal of k[X; S]u*, and let p=m•¿k[X; S].

Suppose that mSk*=Sk*. We will derive a contradiction. We have (fl,..., fn)Sk*=

Sk•‚ for fi•¸p. If k is an infinite field, there exists nonzero elements a1,..., an of k



Kronecker Function Rings of Semigroups 37

such that Supp(f)=_??_n1 Supp (fi), where f=a1 f1+•c+anfn. f belongs to p and

(f1,..., fn)Sk•‚*=fSk*. It follows f•¸U*, and hence m=k[X; S]v*; a contradiction.

If k is a finite field, the characteristic p of k is a prime number. Set _??_n1 supp(fi)=

{ti,..., t1} with ti•‚tj for i•‚j, and set f=‡”l1Xti. The proof of Theorem 8 shows

that Sk* =fSk*, and hence f•¸U*. Since each fi is a nonunit of k[X; S]U*., we have

{t1,..., tl}•¼M. Set Supp(fi)={s(i, 1),..., s(i, li)} for each i. If a number m(1)

is large enough, there exist no i, j, k such that s(1, i)=s(2, j)+pm(1)tk. It follows

Supp(f1)•¿Supp(f2fexp(m(1)))=ƒÓ, where exp (m(1)) denotes pm(1). Similarly if

a number m(2) is large enough, we have Supp (f1+f2 f exp(m(1)))•¿Supp(f3fexp(m(2)))

=ƒÓ).•c. Thus we choose numbers m(3),..., m(n-11) similarly. We set f1+

f
2fexp(m(1))+•c+fnfexp(m(n-1))=g. g belongs to p. Since Supp(fifexp(m(i-1)))•¼

Supp(g), we have (f1, f2fexp(m(1)),..., fnfexp(m(n-1))Sk*=gSk*. Since f is a unit of

Sk*, we have (f1, f2,..., fn)Sk*=gSk*, and hence Sk*=gSk* It follows g•¸U*, and

hence m=k[X; S]uU*; a contradiction. We have proved mSk*_??_Sk*. Let m' be a

maximal ideal of Sk* containing mSk*, and let p=m'•¿k[X; S]. Since(Sk*)m'=

k[X; S]p, we have (Sk*)m'=(k[x; S]U*)m, and hence Sk*=k[X; S]U*.

LEMMA 24. Let * be an e.a.b. *-operation on S. If each prime ideal of

k[X; S]U* is the extension from S, then S is a Prufer *-multiplication semigroup.

PROOF. If (k[X; S]U*)S is not a field, there exists a nonzero prime ideal _??_

of k[X; S]U* such that _??_•¿S=ƒÓ). Then _??_ is not the extension from S; a con-

tradiction. Therefore (k[X; S]U*)S is a field. Let a be an ideal of S generated

by s1,..., sn. Set f=‡”n1Xsi. We have 1/f=h/Xt
g for h e k[X; S], t•¸S and g•¸

U*. fh=xtg. Then(a+e(h))*=(t)by [13, Lemma (10.3)]. Therefore div* a is an

invertible element of D*f(S), and hence S is a Prufer *-multiplication semigroup.

THEOREM 25 (The semigroup version of Theorem 1). Let k be a field and *

an e.a.b. *-operation on S. Then the following conditions are equivalent:

(1) S is a Prufer *-multiplication semigroup;

(2) k[X; S]U*=Sk*;

(3) k[X; S]U* is a Prufer ring;

(4) Sk* is a quotient ring of k[X; S];

(5) Each prime ideal of k[X; S]U* is the contraction of a prime ideal of Sk*;

(6) Each prime ideal of k[X; S]U* is the extension of a prime ideal of S;

(7) Each valuation overring of Sk* is of the form k[X; S]pk(X;s], where P

is a prime ideal of S such that Sp is a valuation oversemigroup of S;

(8) Sk* is a flat k[X; S]-module.

PROOF. (3)_??_(7): By lemma 21. (7)_??_(8): By Lemma 22. (8)_??_(2): By Lemma

23. (6)_??_(1): By Lemma 24. (4)_??_(2): Sk* is of the form k[X; S]T If f•¸T, then

1/f•¸Sk*, and hence f•¸U*. It follows k[X; S]T •¼k[X; S]v., and hence Sk*•¼
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k[X; S]u*. (1)•Ì(4): By [13, Theorem (10.9), (2)]. (5)_??_(6): Let p be a prime ideal

of k[X; S]u*. We have p=k[X; S]u*•¿_??_ for a prime ideal _??_ of Sk*. Set p •¿ S=

P. Then p=Pk[X; S]u* by Lemma 20. (2)_??_(3) and (2)_??_(5): straightforward.

On [14] we stated without proofs that conditions (1), (2), (3), (4), (7) and (8)

of Theorem 25 are equivalent. Moreover we had posed a question there that if 8

conditions of Theorem 25 are equivalent or not.

COROLLARY 26. Assume S is integrally closed. The following conditions

are equivalent:

(1) S is a valuation semigroup;(2) k[X; S]Mk[x;s]=Skb;

(3) k[X; S]Mk[x;sl is a valuation ring;

(4) Skb is a quotient ring of k[X; S];

(5) Each prime ideal of k[X; S]Mk[x;s] is the contraction of a prime ideal

of Skb;

(6) Each prime ideal of k[X; S]Mk[x;s] is the extension of a prime ideal of

S;

(7) Each valuation overring of Skb is of the form k[X; S]Pk[X;s), where P

is a prime ideal of S such that SP is a valuation semigroup;

(8) Skb is a valuation ring.

PROOF. S is a Prufer b-multiplication semigroup if and only if S is a valuation

semigroup by the equivalence of(2)and(3)of Proposition 17. We have

k[X; S]ub=k[X; S]Mk[X;s]by Remark 19, (2). The equivalence of (1), (2),..., (7)

follows by Theorem 25. (8)_??_(1): Because Skb•¿G=S.

PROPOSITION 27 (The semigroup version of Proposition 5). Let * be a *-

operation on S. Assume that either S is a Prufer *-multiplication semigroup or

k[X; S]u* is a Prufer ring. Then * is a.b., and hence 8 conditions of Theorem 25

hold.

PROOF. If a•¸Ff(S), we have (ak[X; S]u*)-1= a-1k[X; S] u*. Since

(ak[X; S]u*)(ak[X; S]u*)-1=k[X; S]U*, we have (a+a-1)k[X; S] u*=

k[X; S]u*. Therefore there exists u•¸U* contained in(a+a-1)k[X; S]. Then

(a+a-1)*=S.

If the operator v is a.b., then S is called regularly integrally closed. If v is

e.a.b., then v is a.b.

COROLLARY 28. If S is a pseudo-Bezout semigroup, the operation v satisfies

8 conditions of Theorem 25.

LEMMA 29. Assume that S is regularly integrally closed. If S admits a

family {VƒÉ; ƒÉ•¸A} of essential valuation semigroups such that _??_ƒÉVƒÉ=S, then we
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have _??_ƒÉV*ƒÉ=Skv, where V*ƒÉ denotes the natural extension of VƒÉ to q(k[X; S])z

PROOF. Let a be an ideal of S generated by al,..., an. Each Vi is of the form

Sp(i) for a prime ideal P(i) of S. We have a+ Vi=si+Vi with si•¸S. Then aj=

si+ei-ti for eij•¸S and ti•¸S-p(i). Since a•¼(si-ti), we have av•¼_??_i(si-ti)•¼

ni(si+Vi)=_??_i(a+Vi)=a*, where * is the w-operation on S induced by the repre-

sentation S=_??_ƒÉVƒÉ. It follows av=a*, and hence Skv=Sk*. By [13, Proposition

(10.6)] we have Skv=_??_A*ƒÉ.

THEOREM 30. Let * be an e.a.b. *-operation on a regularly integrally closed

semigroup S. If one of the 8 conditions of Theorem 25 holds, then Skv=Sk*.

PROOF. Let {WƒÉ; ƒÉ•¸A} be the set of valuation overrings of Sk*. _??_ƒÉWƒÉ=Sk*.

Set WƒÉ•¿G=VƒÉ.. Then WƒÉ is the natural extension V*ƒÉ of VƒÉ. Each VƒÉ is essettial

for S by our hypothesis. It follows _??_*ƒÉV*ƒÉ=SkƒÉ by Lemma 29, and hence Sk*=Skv.

Next we will see the semigroup version of [1, Theorem 5]. We call a discrete

valuation (resp. semigroup and ring) of rank one ([4, •˜17]) a discrete valuation

(resp. semigroup and ring). If Dp is a discrete valuation ring for each prime ideal

p of D, then the domain D is called an almost Dedekind ring.

LEMMA 31. Assume that S is integrally closed. If Skb is almost Dedekind,

then S is a discrete valuation semigroup.

PROOF. Set GD(S)=G and {m; m•¸M}•¾{0}=P, where m denotes m+H.

Then P is a positive set of G ([4, •˜15]). G is a torsion-free abelian group. By

[4, Theorem (15.6)] we see that G is a totally ordered group, and each element of

P is non-negative. Let v be the natural mapping of G to G. Then v is a valuation

of G which is non-negative on S. The natural extension v* of v is non-negative on

Skb. It follows v* is discrete, and hence G= Za for 0<a•¸G. Then G=H_??_Za.

It follows a•¸S. If v(ƒÀ)•†0, we have ƒÀ=na for n•†0, and hence ƒÀ•¸S. Thus S

is the valuation semigroup of the valuation v.

THEOREM 32 (The semigroup version of [1, Theorem 5, 6]). Assume that

S is integrally closed. The following conditions are equivalent:

(1) S is a discrete valuation semigroup;

(2) Each ideal of S is principal;

(3) k[X; S]Mk[x;s] is a discrete valuation ring;

(4) Skb is an almost Dedekind ring;

(5) Skb is a Dedekind ring;

(6) Skb is a Noetherian ring;

(7) Skb is a Krull ring;

(8) Skb is a discrete valuation ring.

PROOF. (1)_??_(3): Let v be the valuation associated with S. Then
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k[X; S]Mk[x;s] is the valuation ring associated with v*. (3) _??_ (8): Because Skb is an

overring of k[X; S]Mk[X;s]• (6) _??_ (7): Because Skb is integrally closed. (7) _??_ (5):

Because Skb is Prufer (cf.[4,Theorem (43.16)]).(4) _??_ (1): By Lemma 31.(2) _??_ (l):

S is a valuation semigroup by Proposition 17. Since M is principal, S is a discrete

valuation semigroup.(8) _??_ (6) and (5) _??_ (4) are straightforward.

The semigroup version of [1,Theorm 4] is contained in Corollary 26.

If there exists a set {VƒÉ; ƒÉ •¸ ƒÉ} of discrete valuation semigroups of G such that

_??_ ƒÉ VƒÉ=S and s is a unit of VƒÉ for almost all ƒÉ •¸ ƒ© for each s •¸ S, then S is

called a Krull semigroup.

LEMMA 33 ([2]). (1) S is a Krull semigroup if and only if S is completely

integrally closed and satisfies the ascending chain condition for divisorial ideals

cf S;

(2) If S is a Krull semigroup under a family {VƒÉ; ƒÉ •¸ ƒ©} of valuation over-

semigroups, then S is of the form H _??_ S1 with S1=q(S1) •¿ (ƒ°ƒÉ _??_ Z0), where

ƒ°ƒÉ _??_ Zo denotes the direct sum of copies of non-negative integers of the

cardinality •bƒ©•b. Conversely a semigroup S of the form is a Krull semigroup;

(3) Let {VƒÉ; ƒÉ •¸ ƒ©} be the family of discrete valuation oversemigroups which

are essential for a Krull semigroup S. Then S is a Krull semigroup under

{VƒÉ; ƒÉ •¸ ƒ©}.

THEOREM 34. Assume S is regularly integrally closed. Then the following

conditions are equivalent:

(1) S is a Krull semigroup;

(2) Skv is a principal idela domain;

(3) Skv is a Noetherian ring;

(4) Skv is a Krull ring.

PROOF. (1) _??_ (4); There exists a family {VƒÉ; ƒÉ •¸ ƒ©} of essential valuation

oversemigroups of S under which S is Krull. We have by Lemma 29.

Therefore Skv is a Krull ring. (4) _??_ (3); Since Skv is Prufer, it is a Dedekind ring.

(3) _??_ (2); Because Skv, is a Bezout ring. (4) _??_ (1); Assume that Skv is a Krull ring

under a family {WƒÉ; ƒÉ •¸ ƒ©} of valuation overrings of Skv. Set WƒÉ •¿ G=VƒÉ. Then

S is a Krull semigroup under {VƒÉ; ƒÉ •¸ ƒ©}. (2) _??_ (4); Straightforward.

If S is a Krull semigroup with C(S)=0, then S is called a factorial semigroup.

S is a factorial semigroup if and only if S is a UFS of [7]. (The proof is similar

to rings.) S is a factorial semigroup if and only if each element of S is uniquely

expressed as a finite sum of irreducible elements up to associates and order.

PROPOSITION 35. (1) ([2,p.1460]) D(S) is a group if and only if S is

completely integrally closed;

(2) S is regularly integrally closed if and only if diva is an invertible
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element of D(S) for each a •¸ Ff (S). 

PROOF. An analogy to rings (cf.[4,Theorems (34.3) and (34.6)]).

If follows that if S is completely integrally closed, then S is regularly integrally

closed. Especially if S is a Krull semigroup, then S is regularly integrally closed.

PROPOSITION 36 (The semigroup version of [3, Theorem (2.3)]). Assume that

S is pseudo-Bezout. Then the following conditions are equivalent:

(1) S is a factorial semigroup;

(2) Skv is a principal ideal domain.

PROOF. (2) _??_ (1); S is a Krull semigroup by Theorem 34. S satisfies the

ascending chain condition for principal ideals of S by Lemma 33,(1). Since S is

pseudo-Bezout, we see that S is a factorial semigroup. (1) _??_ (2): By Theorem 34.

PROPOSITION 37 (The semigroup version of [3, Theorem (2.4)]). Assume

that S is a Krull semigroup. Then each valuation overring of Skv is the natural

extension of a discrete valuation semigroup of G which is essential for S.

PROOF. We confer Theorem 34 and its Proof. There exists a family {VƒÉ;

ƒÉ •¸ ƒ©} of essential valuation oversemigroups of S under which S is Krull. Let W

be a valuation overring of Skv. Then W=(Skv)p, where p is the center of W on Skv.

Since Skv, is a principal ideal domain, p is a minimal prime ideal•‚(0) of Skv. Since

Skv is a Krull ring under {V*ƒÉ; ƒÉ •¸ ƒ©}, we have (Skv)p=V*ƒÉ for some ƒÉ. Thus W is

the natural extension of VƒÉ.

Assume that there exists a family {VƒÉ; ƒÉ •¸ ƒ©) of valuation semigroups of G

such that _??_ƒÉVƒÉ=S. If for each ƒÉ', the representation S=_??_ ƒÉVƒÉ is

called irredundant. We define irredundant representation for domains similarly.

PROPOSITION 38 (The semigroup version of [6, Proposition 2.1]). Assume

that S admits an irredundant representation S= _??_ƒÉVƒÉ Let * be the w-operation

induced by the representation. Then _??_ƒÉV*ƒÉ is an irredundant representation

for Sk*

PROOF. If for some ƒÊ, we have

PROPOSITION 39 (The semigroup version of [6, Proposition 2.3]). Assume

that S is regularly integrally closed. If Skv, admits an irredundant representation,

then S admits an irredundant representation.

PROOF, Let Skv=_??_ƒÉ WƒÉ be an irredundant representation for Skv. Set VƒÉ=

WA •¿ G. Then WƒÉ is the natural extension of VƒÉ. We have S=_??_ƒÉVƒÉ. Suppose

S=_??_ƒÉ•‚ƒÊSƒÉ for some ƒÊ. The representation S=_??_ ƒÉ•‚ƒÊSƒÉ induces a w-operation *

on S. Sk*=_??_ ƒÉ•‚ƒÊV*ƒÉ. Since Sk*, •¼ Skv, we see that _??_ƒÉ V*ƒÉ is not an irredundant

representation for Skv; a contradiction.
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PROPOSITION 40. Assume that S is integrally closed. Then the following

conditions are equivalent:

(1) S is a Noetherian semigroup;

(2) S is regularly integrally closed, and Skv is a principal integral domain

with only a finite number of prime ideals.

PROOF. (1) _??_ (2); S is a Krull semigroup by Lemma 33, (1). Skv is a principal

ideal domain by Theorem 34. We have M=(s1,..., sm) for si •¸ S, where we may

assume that each si is irreducible. S does not have other irreducible elements than

s1,..., sm up to associates. Therefore S is a Krull semigroup under a finite family

of valuation semigroups of G. Then Skv is a Krull ring under a finite family of

valuation rings by the proof of Theorem 34. It follows that Skv has only a finite

number of prime ideals. (2) _??_ (1); S is a Krull semigroup under a finite family of

valuation semigroups. We may assume that H={0} by Lemma 33, (2). There

exists a number n such that S=G •¿ (En1 _??_ Zo) where ƒ°n1 _??_ Zo is the direct sum of n

copies of non-negative integers. The following Lemma 41 shows that S is

Noetherian.

Lemma 41 is stated at [2, Remark 1] and is proved at [5, Theorem 15.11].

We will give an another proof.

LEMMA 41. Assume that S=G •¿ (ƒ°n1 _??_ Zo) for a natural number n. Then S

is Noetherian.

PROOF. For example, let n=5.  Let pi be the i-projection of elements of

ƒ°n1 _??_ Zo. Let a be an ideal of S. There exists an element Si •¸ a such that pi(si)=

min {pi(s); s •¸ a} for each i. Set max { pj(si); i, j} = H1. Let a number h•…H1.

If {s •¸ a; pi(s)=h} is not empty, there exists an elements si(h; i) •¸ a such that

pi(si (h; i))=min {p,(s); s •¸ a, pi(s)=h} for each i, i'. Set max {pj(si(h; i));

i,i', h, j}=H2. Let h1, h2•…H2. If {s •¸ a; pi,(s)=h1, pi2(s)=h2} is not empty,

there exists an element si(h1, h2; i1, i2) •¸ a such that pi(si(h1, h2; i1, i2))=min {p1(s);

s •¸ a, pi1(s)=h1, pi2(s)=h2} for each i1, i2, l. Set max {pj(sl(h1, h2; i1, i2));

i1, i2, h1, h2, l, j}=H3. Let numbers h1, h2, h3•…H3. If {s •¸ a; pi1(s)=h1,

pi2(s)=h2, pi3(s)=h3} is not empty, there exists an element sl{h1, h2, h3;

i1, i2, i3)•¸ a such that pl(sl(h1, h2, h3; i1, i2, i3))=min {pl(s); s •¸ a, pi1,(s)=h1,

pi2(s)=h2, pi,(s)=h3} for each i1, i2, i3, l. Set max {pj(sl(h1, h2, h3; i1, i2, i3));

i1, i2, i3, h1, h2, h3, l, j}=H4. Similarly we may consider elements sl(h1, h2,

h3, h4; i1, i2, i3, i4)•¸ a for each i1, i2, i3, i4, h1, h2, h3, h4, l. Similarly we may

determine a number H5. Set B={si1, sl(h1,i1), sl(h1, h2; i1,i2), s,(h1, h2, h3;il

, i2, i3), sl(h1, h2, h3, h4; i1, i2, i3, i4); i1, i2, i3, i4, h1, h2, h3, h4, l} •¾ {s •¸ a;

p1(s)<H5, p2(s)<H5, p3(s)<H5, p4(s)<H5, p5(s)<H5}. We will show that a is

generated by the finite set B. Let s •¸ a, and set pi(s)=ei. We may assume that
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e1•…e2•…e3•…e4•…e5. If e•† Hi, then s-s1 •¸ G •¿(ƒ° _??_ Zo), and hence s •¸(s1).

If e1<H1 and e2•†H2, then s-s2(e1; 1) •¸ (ƒ° _??_ Zo) •¿ G, and hence s •¸(s2(e1; 1)).

If e1<H1, e2<H2 and e3•†H3, then s-s3(e1, e2; 1, 2) •¸ G •¿ (ƒ° _??_ Zo), and hence

s •¸(s3(e1, e2; 1,2)).If e1<H1,e2<H2,e3<H3 and e4•†H4,then s-s4(e1,e2,e3;

1, 2, 3) •¸ G •¿ (ƒ° _??_ Zo), and hence s •¸ (s4(e1, e2, e3; 1, 2, 3)). If e1<H1, e2<H2,

e3<H3, e4<H4 and es•†H5, then s-s5(e1, e2, e3, e4; 1, 2, 3, 4) •¸ G •¿ (ƒ° _??_ Zo),

and hence s •¸ (s5(e1, e2, e3, e4; 1, 2, 3, 4)).

PROPOSITION 42. Assume that S is regularly integrally closed.

(1) Skv is a valuation ring if and only if S is a valuation semigroup;

(2) Skv is a discrete valuation ring if and only if S is a discrete valuation

semigroup.

PROOF. (1) If Skv is a valuation ring, then S is a valuation semigroup since

Skv •¿ G=S. If S is a valuation semigroup, Skb is a valuation ring by Corollary 26.

It follows that Skv is a valuation ring. (2) If S is a discrete valuation semigroup,

then Skb is a discrete valuation ring by Theorem 32.

THEOREM 43 (The semigroup version of [11, Theorem 2]).

(1) If S is a Krull semigroup, then k[X; S]Uv is a principal ideal domain;

(2) If k[X; S]Uv is a Krull ring, then S is a Krull semigroup.

PROOF. (1): Each valuation overring of Skv is the natural extension of an

essential valuation oversemigroup of S by Proposition 37. It follows k[X; S]Uv=

Skv by Theorem 25. Then k[X; S]Uv is a principal ideal domain by Theorem 34.

(2): Because k[X; S]Uv •¿ G=S.

The semigroup version of [11, Theorem 1] is contained in Proposition 27.

PROPOSITION 44. Assume that S is regularly integrally closed. Then the

following conditions are equivalent:

(1) Skv is a pseudo-principal ring;

(2) Each element of D(S) is the difference of two elements of Df(S).

PROOF. (1) _??_ (2); Let a be an ideal of S. Let ƒÌ be the greatest common

divisor of aSkv in Skv. We have ƒÌ=f/g for f, g •¸ k[X; S] with e(f)v •¼ e(g)v. We

have div e(g)+div b=0 for b •¸ F(S) by Proposition 35, (2). If s •¸ a, then Xs •¸ ƒÌSkv.

It follows s •¸(e(f)+b)v, and hence (e(f)+b)v a and (e(f)+b)v av. Next if

a •¼ (s) for s •¸ S, we have ƒÌSkv •¼ XsSkv. It follows e(f)v •¼ s+e(g)v and hence

(e(f)+b)v=a (2) _??_ (1); Let U be a non-zero ideal of Skv. Set U-{0}=

{ƒÌƒÉ;ƒÉ; ƒÉ •¸ ƒ©}, and let ƒÌƒÉ=fƒÉ/gƒÉ for fƒÉ, gƒÉ •¸ k[X ; S] with e(fƒÉ)v •¼ e(gƒÉ). We have

div e(gƒÉ)+div bƒÉ=0 for bƒÉ •¸ F(S) for each ƒÉ. Set _??_ ƒÉ (e(fƒÉ)+bƒÉ)=a. Then div a=

div e(f)-div e(g). Since a •¼ S, we have f/g •¸ Skv • f /g is the greatest common

divisor of U in Skv.
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PROPOSITION 45. The following conditions are equivalent:

(1) S is a pseudo-Bezout semigroup;

(2) S is regularly integrally closed, and GD(S)=GD(S_??_) canonically.

PROOF. (1)•¨(2); Let a •¸ G/H with a e G. We denote the element Xa of

GD(svk) by _??_(a). Let 0•‚f •¸ k[X;S]. We have e(f)v=(s) for s •¸ S. Then

ƒÓ(s)=f. It follows ƒÓ is an isomorphism of GD(S) to GD(S_??_). (2)_??_(1); Let a be

an ideal of S generated by sl,..., sn,. Set ‡”n1 Xsi=f. We have f=ƒÓ(s) for s •¸ G,

and hence e(f)ƒÒ=(s). It follows aƒÒ••(s).

REMARK 46 ([13, Theorem (10.9), (1)]). If S is a Prufer *-multiplication

semigroup, canonically.

PROPOSITION 47. The following conditions are equivalent:

(1) S is a pseudo-principal semigroup;

(2) S is regularly integrally closed and S_??_ is pseudo-principal, and GD(S)=

GD(S_??_) canonically.

PROOF. (1)_??_(2); We have GD(S)_??_GD(S_??_) canonically by Proposition 45.

St, is pseudo-principal by Proposition 44. (2)_??_(1); Let a be an ideal of S. We

have div a=div b•\div c for b, c •¸ F_??_ (S) by Proposition 44. Then div a is principal

by proposition 45.

PROPOSITION 48. Assume that S is integrally closed, and let W be a multi-

plicative system of k[X; S]. If each prime ideal of k[X; S]w is the extension of a

prime ideal of S, then k[X; S]w is a Bezout ring.

PROOF. Let {QƒÉ; ƒÉ •¸ _??_} be the set of prime ideals of k[X; S] which does not

intersect with W. Set QƒÉ •¿ S=PƒÉ for each ƒÉ. Then QƒÉ=Pxk[X ; S]. Let {VƒÐ;

ƒÐ •¸ ‡”} be the set of valuation oversemigroups of S centers on S of which are among

{PƒÉ; ƒÉ •¸ A}. Let vƒÐ be the valuation associated with VƒÐ. Set _??_ VƒÐ=S'. Then

S •¼ S'. Let Po be the center of vƒÐ on S' for each ƒÐ. Let W' be the complement of

_??_ƒÐ, PƒÐk[X ; S'] in k[X; S']. Let ƒÐ •¸ E. Then P'ƒÐ •¿ S=PƒÉ  and QƒÉ=PƒÉk[X ; S]=

(PƒÐk[X ; S']) •¿ k[X ; S] for some ƒÉ. If an element w •¸ W is contained in

PƒÐk[X ; S'], we have w •¸ QƒÉ; a contradiction. If follows W •¼ W', and hence 

k[X; S]w •¼ k[X ; S']w. Let U be a valuation ring the center on k[X; S] of which 

is Qz for some ƒÉ. U •¿ G is a valuation semigroup the center on S of which is PƒÉ.

It follows U •¿ G=VƒÐ for some a. We have VƒÐ•½ S' and U •½ S'. It follows k[X; S]w

•½S' and k[X; S]w •½ k[X ; S']. We have

(•”); k[X; S']w. is a quotient ring of k[X; S]w.

Each prime ideal of k[X; S]w is of the form QƒÉk[X; S]w for some A. We have

PƒÉ= PƒÐ •¿ S for some ƒÐ. We have both (PƒÐk[X ; S']) •¿ k[X ; S]=PƒÉk[X; S] and

k[X; S] •¿ ((PƒÐk[X; S']w.) •¿ k[X; S]w)=PƒÉk[X; S]. It follows (PƒÐk[X; S']w.)
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fl k[X; S]w=P,k[X; S]w. That is, each prime ideal of k[X; S]w is the

contraction of a prime ideal of k[x; S']w.. We see that k[X; S]w=k[X; S']w. by

(g). Let * be the w-operation on S' induced by the representation S'=_??_ƒÐ VƒÐ. Set

{f •¸ k[X; S']; e(f)*=S}=U*. If 0 •‚ f •¸ k[X; S], then f •¸ U* if and only if for

each a we have vƒÐ(t)=0 for some t •¸ Supp (f). It follows that W'=U*, and hence

k[X; S']w,=k[X ; S]u*. Therefore k[X ; S]w=k[X ; S']U*. It follows that

k[X; S]w=S* by Theorem 25, and hence k[X; S]w is a Bezout ring.

The above Proposition 48 is a semigroup version of [8, Lemma (3.0)].
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