Title	Kronecker Function Rings of Semigroups
Author（s）	MA TSUDA，Ryuki；SA TO，Kojiro
Citation	Bulletin of the Faculty of Science，Ibaraki University．Series A， Mathematics，19：31－46
Issue Date	1987
URL	http：／hdl．handle．net／10109／2987
Rights	

このリポジトリに収録されているコンテンツの著作権は，兰れぞれの著作権者に帰属 します。引用，転載，複製等される場合は，著作権法を遵守してください。

Kronecker Function Rings of Semigroups

Dedicated to Professor Masayoshi Nagata on his sixtieth birthday

Ryûki Matsuda* and Kôjirô Satô**

We review first [12, Theorem 7] for convenience. Let A be a commutative ring $\ni 1$. We denote the total quotient ring of A by $q(A)$. A non-zerodivisor of A is called a regular element of A. Let a be an ideal of A. We denote the set of regular elements of A contained in \mathfrak{a} by $\operatorname{Reg}(\mathfrak{a})$. If $\operatorname{Reg}(a) \neq \phi$, then \mathfrak{a} is called a regular ideal of A. Let $f \in A[X]$. We denote the ideal of A generated by the coefficients of f by $c(f)$. If $c(f)$ is a regular ideal for each regular element f of $A[X]$, then A is said to have property (C). If each regular ideal \mathfrak{a} of A is generated by $\operatorname{Reg}(\mathfrak{a})$, then A is called a Marot ring. A multiplicative system of A consisting of regular elements is called a regular multiplicative system of A. A quotient ring of A by a regular multiplicative system is called a regular quotient ring of A. A subring of $q(A)$ containing A is called an overring of A. Let P be a prime ideal of A. The set $\{x \in q(A) ; a x \in A$ for some element $a \in A-P\}$ is denoted by $A_{[P]}$. An overring of A which is a valuation ring of $q(A)$ is called a valuation overring of A. We are able to define ${ }^{*}$-operation on a commutative ring A. Also we are able to define the Kronecker function ring A_{*} of A with respect to ${ }^{*}$. We proved the fundamental properties of A_{*} on [10]. Let ${ }^{*}$ be an e.a.b. ${ }^{*}$-operation on A. We set $U^{*}=\left\{\right.$ regular $\left.f \in A[X] ; c(f)^{*}=A\right\}$. Then U^{*} is a multiplicative system of A $[X]$.

Theorem 1 ([12, Theorem 7]). Let A be a Marot ring with property (C). If * is an e.a.b. *-operation on A, then the following conditions are equivalent:
(1) A is a Prüfer ${ }^{*}$-multiplication ring;
(2) $A[X]_{U^{*}}=A_{*}$;
(3) $A[X]_{U^{*}}$ is a Prüfer ring;
(4) A_{*} is a regular quotient ring of $A[X]$;
(5) Each prime ideal of $A[X]_{U^{*}}$ is the contraction of a prime ideal of A_{*};
(5r) Each regular prime ideal of $A[X]_{U^{*}}$ is the contraction of a prime ideal of A_{*};

[^0](6r) Each regular prime ideal of $A[X]_{U^{*}}$ is the extension of a prime ideal of A;
(7) Each valuation overring of A_{*} is of the form $A[X]_{[P A[X]]}$, where P is a prime ideal of A such that $A_{[P]}$ is a valuation ring of $q(A)$;
(8) A_{*} is a flat $A[X]-m o d u l e$.

Moreover there exists a Prüfer Marot ring A with property (C) which satisfies the following condition: Let * be any e.a.b. *-operation on A. Then there exists a prime ideal of $A[X]_{U *}$ which is not the extension of a prime ideal of A.

Let * be a ${ }^{*}$-operation on a ring A. Also we set $U^{*}=\{$ regular $f \in A[X] ;$ $\left.c(f)^{*}=\boldsymbol{A}\right\}$.

Lemma 2. Let * be a *-operation on a Marot ring A with property (C). Then U^{*} is a multiplicative system of $A[X]$.

Proof. Because the Dedekind-Mertens Lemma holds for $A[X]$ (cf. [4, Corollary (28.3)]).

Lemma 3. Let ${ }^{*}$ be a^{*}-operation on a Marot ring A with property (C). Assume that A is either a Prüfer *-multiplication ring or $A[X]_{V^{*}}$ is a Prüfer ring. Then we have $\left(\mathfrak{a a}^{-1}\right)^{*}=A$ for each finitely generated regular ideal \mathfrak{a} of A.

Proof. We have
$A[X]_{U^{*}}=\left(\mathfrak{a} A[X]_{U^{*}}\right)\left(\mathfrak{a} A[X]_{U^{*}}\right)^{-1}=\left(\mathfrak{a} A[X]_{U^{*}}\right)\left(\mathfrak{a}^{-1} A[X]_{U^{*}}\right)=\left(\mathfrak{a} \mathfrak{a}^{-1}\right) A[X]_{U^{*}}$ Therefore there exists an element $u \in U^{*}$ contained in $\left(a^{-1}\right) A[X]$. It follows $c(u) \subset a a^{-1}$, and hence $\left(a a^{-1}\right)^{*}=A$.

Proposition 4. Let A be a Marot ring with property (C). Assume that either A is a Prüfer v-multiplication ring or $A[X]_{U_{v}}$ is a Prüfer ring. Then the *-operation v is an a.b. *-operation, and hence the 9 conditions of Theorem 1 hold for A and the operation v.

Proof. Let \mathfrak{a} be a finitely generated regular ideal of A. We have $\left(\mathfrak{a a}^{-1}\right)^{v}=A$ by Lemma 3. It follows that the operation v is a.b. ([9, Lemma 4]).

Proposition 5. Let * be a*-operation on an integral domain D. Assume that either D is a Prüfer *-multiplication ring or $D[X]_{v}$. is a Prüfer ring. Then the operation * is a.b., and hence the 9 conditions of Theorem 1 hold for D and *.

Proof. By Lemma 3 we have $\left(\mathrm{aa}^{-1}\right)^{*}=D$ for each finitely generated nonzero ideal a of D. It follows that * is a.b.

Remark 6. Let * be a *-operation on a Marot ring A with property (C). Assume that A is a Prüfer *-multiplication ring and that $A[X]_{U^{*}}$ equals to its total quotient ring. Then * is not necessarily e.a.b.

Counter Example. Consider the ring A and the operation * on A of [9, Remark 7]. Let f be a regular element of $A[X]$. We have $\left(\left(b_{0}, \ldots, b_{m}\right) c(f)\right)^{*}=A$ for regular elements b_{0}, \ldots, b_{m} of A. It follows that $1 / f \in A[X]_{U^{*}}$, and hence $A[X]_{U^{*}}=q\left(A[X]_{U^{*}}\right)$.

The operation * of the above Counter Example differs from v by Proposition 4. In fact we have $(u)^{*}=(u) \bar{\ni} v \in(u)^{v}$.

Next let S be a torsion-free cancellative commutative additive semigroup $\geq\{0\}$. We set $G=\left\{s-s^{\prime} ; s, s^{\prime} \in S\right\}$. Let H be the units of S, and let M be the non-units of S. On [13, Section 10] we defined *-operation on S. Let D be a domain. Also we defined the Kronecker function ring S_{*}^{D} of S with respect to an e.a.b. ${ }^{*}$-operation ${ }^{*}$ on S. And we proved fundamental properties of $\boldsymbol{S}_{\boldsymbol{*}}^{D}$.

Remark 7. (1) (cf. [7, p. 75]) If we replace D by a ring A in [13, Lemma 10.2)], the statement is false.
(2) (A part of [13, Proposition (10.4), (2)]) Let * be an e.a.b. *-operation on S. Then we have $S_{*}^{D}=S_{*}^{q(D)}$ for each domain D.

Let $f \in D[X ; S]$. We have $f=\sum_{1}^{n} a_{i} X^{s_{i}}$ with $a_{i} \neq 0(1 \leqq i \leqq n)$ and $s_{i} \neq s_{j}$ $(i \neq j)$. Then the set $\left\{s_{1}, \ldots, s_{n}\right\}$ is denoted by $\operatorname{Supp}(f)$.

The following assertion is stated in [13, Proposition (10.4), (3)] without proof. And it seems that the assertion can not be proved simply by analogous ways to rings.

Theorem 8. Let * be an e.a.b. *-operation on S. Then S_{*}^{D} is a Bezout ring for each domain D.

Proof. Set $k=q(D)$. We have $S_{*}^{D}=S_{*}^{k}$ by Remark 7, (2). If k is an infinite field, the assertion can be proved by an analogous way to rings (cf. [4, Theorem (32.7), (b)]). Let k be any field. Let $0 \neq f \in k[X ; S]$. Set $\operatorname{Supp}(f)=\left\{s_{1}, \ldots, s_{n}\right\}$. Then we have $f S_{\boldsymbol{*}}^{\boldsymbol{k}}=\left(X^{s_{1}}, \ldots, X^{s_{n}}\right) S_{*}^{k}$. Now let ξ and η be nonzero elements of $S_{\text {* }}^{k}$. We set $\xi=f / g$ and $\eta=h / g(f, g, h \in k[X ; S])$. We set $\operatorname{Supp}(f)=\left\{s_{1}, \ldots, s_{n}\right\}$, $\operatorname{Supp}(h)=\left\{t_{1}, \ldots, t_{m}\right\}$ and set $\operatorname{Supp}(f) \cup \operatorname{Supp}(h)=\left\{u_{1}, \ldots, u_{l}\right\}$ with $u_{i} \neq u_{j}(i \neq j)$. We have

$$
\begin{aligned}
(\xi, \eta) S_{*}^{k} & =\left(\frac{X^{s_{1}}}{g}, \ldots, \frac{X^{s_{n}}}{g}, \eta\right) S_{*}^{k} \\
& =\left(\frac{X^{s_{1}}}{g}, \ldots, \frac{X^{s_{n}}}{g}, \frac{X^{t_{1}}}{g}, \ldots, \frac{X^{t_{m}}}{g}\right) S_{*}^{k} \\
& =\left(\frac{X^{u_{1}}}{g}, \ldots, \frac{X^{u_{i}}}{g}\right) S_{*}^{k}=\left(\left(\sum_{1}^{l} X^{u_{1}}\right) / g\right) S_{*}^{k} .
\end{aligned}
$$

It follows that $(\xi, \eta) S_{\boldsymbol{k}}^{k}$ is a principal ideal of $S_{\mathbf{k}}^{k}$.
Henceforth in this paper let k be any field, and we assume that $S \subsetneq G$.

Let $F(S)$ be the set of fractional ideals of S. We denote the set of finitely generated fractional ideals of S by $F_{f}(S)$. Let * be a *-operation on S. We set $\mathfrak{a}^{*}=\operatorname{div}^{*} \mathfrak{a}$ for each $\mathfrak{a} \in F(S)$. We set $\left\{\operatorname{div}^{*} \mathfrak{a} ; \mathfrak{a} \in F(S)\right\}=D^{*}(S)$ and $\left\{\operatorname{div}^{*} \mathfrak{a}\right.$; $\left.\mathfrak{a} \in F_{f}(S)\right\}=D_{f}^{*}(S)$. These are semigroups under the addition: $\operatorname{div}^{*} \mathfrak{a}+\operatorname{div}^{*} \mathfrak{b}=$ $\operatorname{div}^{*}(\mathfrak{a}+\mathfrak{b})$. We set $D^{*}(S) /\left\{\operatorname{div}^{*}(\alpha) ; \alpha \in G\right\}=C^{*}(S)$ and $D_{f}^{*}(S) /\left\{\operatorname{div}^{*}(\alpha) ; \alpha \in G\right\}=$ $C_{f}^{*}(S)$. These are semigroups too. We set $\operatorname{div}^{v}(\mathfrak{a})=\operatorname{div}(\mathfrak{a})$ for $\mathfrak{a} \in F(S), D^{v}(S)=$ $D(S), D_{f}^{v}(S)=D_{f}(S), C^{v}(S)=C(S)$ and $C_{f}^{v}(S)=C_{f}(S)$. If $D_{f}^{*}(S)$ is a group, S is called a Prüfer *-multiplication semigroup. If $C_{f}(S)=0$, then S is called a pseudoBezout semigroup. A pseudo-Bezout semigroup is also called GCD-semigroup ([7]). G / H is denoted by $G D(S)$, and is called the group of divisibility of S. If $C(S)=0$, then S is called a pseudo-principal semigroup.

Let $\mathfrak{a} \in F(S)$. If $\mathfrak{a}+\mathfrak{b}=S$ for some $\mathfrak{b} \in F(S)$, then \mathfrak{a} is a principal fractional ideal of S. The proof is straightforward.

Lemma 9. There exists a valuation oversemigroup of S the center on S of which is M.

Proof. $\operatorname{Mk} k[X ; S]$ is a prime ideal of $k[X ; S]$. There exists a valuation overring W of $k[X ; S]$ the center of which on $k[X ; S]$ is $M k[X ; S]$. Then the restriction $W \cap G$ is a desired oversemigroup of S.

Lemma 10. S is a valuation semigroup if and only if either $\alpha \in S$ or $-\alpha \in S$ for each $\alpha \in G$.

Proof. The sufficiency. By Lemma 9 there exists a valuation v of G with center M on S. Suppose that $v(\alpha) \geqq 0$ and $\alpha \bar{\in} S$. We have $-\alpha \in S$, and hence $v(-\alpha) \geqq 0$. It follows $v(-\alpha)=0$, hence $-\alpha \in H$; a contradiction.

Lemma 11. Assume that S is integrally closed. Let $s, t \in S$. If $(n-1) s+$ $t \in(n s, n t)$ for some $n>1$, then (s, t) is a principal ideal of S.

Proof. An analogy to rings (cf. [4, Proposition (24.2)]).
Lemma 12. Assume that S is integrally closed, and let $s, t \in S . \quad I f(n s, n t)^{b}=$ $(n s, n t)$ for a natural number n, then $(n s, n t)=n(s, t)$.

Proof. Let $\left\{V_{\lambda} ; \lambda \in \Lambda\right\}$ be the set of valuation oversemigroups of S. Let $i+j=n$ for natural numbers i and j. Then either $i s+j t \in n s+V_{\lambda}$ or $i s+j t \in n t+V_{\lambda}$ for each $\lambda \in \Lambda$. It follows is $+j t \in(n s, n t) V_{\lambda}$. We have

$$
i s+j t \in \underset{\lambda}{\cap}(n s, n t) V_{\lambda}=(n s, n t)^{b}=(n s, n t) .
$$

Lemma 13. Assume that each element of $F_{f}(S)$ is principal. Then S is a valuation semigroup.

Proof. There exists a valuation oversemigroup V of S with center M on S.

Let $0 \neq \alpha \in V$. We have $\alpha=s_{1}-s_{2}$ with $s_{i} \in S$. (s_{1}, s_{2}) is a principal ideal (s_{0}) of S for $s_{0} \in S$. $s_{1}=s_{0}+t_{1}$ and $s_{2}=s_{0}+t_{2}$ for $t_{i} \in S$. Either $s_{0} \in s_{1}+S$ or $s_{0} \in s_{2}+S$; say $s_{0} \in s_{1}+S$. Then $S_{2}=s_{1}+t_{3}$ for $t_{3} \in S$, and $\alpha=-t_{3}$. It follows $\alpha \in H \subset S$. The case $s_{0} \in s_{2}+S$ is similar.

Lemma 14. Assume that S is integrally closed and $(s, t)^{b}=(s, t)$ for each $s, t \in S$. Then S is a valuation semigroup.

Proof. Let $s, t \in S$. We have $(2 s, 2 t)=2(s, t)$ by Lemma 12. (s, t) is a principal ideal by Lemma 11. S is a valuation semigroup by Lemma 13.

Lemma 15. Assume that ${ }^{*}$ is e.a.b. and $S_{*}^{k}=S_{v}^{k}$ for each ${ }^{*}$-operation ${ }^{*}$ on S. Then we have $\mathfrak{a}^{v}=\mathfrak{a}$ for each $\mathfrak{a} \in F_{f}(S)$.

Proof. Let ς be the identity mapping of $F(S)$. We have $S_{\iota}^{k}=S_{v}^{k}$. It follows $\mathfrak{a}=\mathfrak{a}^{\boldsymbol{v}}$ for each $\mathfrak{a} \in F_{f}(S)$.

Lemma 16. Assume that S is integrally closed. If S is a Prüfer b multiplication semigroup, then each element a of $F_{f}(S)$ is princiapal.

Proof. We have $(\mathfrak{a}+\mathfrak{b})^{b}=S$ for $\mathfrak{b} \in F_{f}(S)$. Then $\mathfrak{a}+\mathfrak{b}=S$ by Lemma 9 . Therefore \mathfrak{a} is principal.

Proposition 17. The following conditions are equivalent:
(1) Each finitely generated ideal of S is principal;
(2) S is integrally closed semigroup and a Prüfer b-multiplication semigroup;
(3) S is a valuation semigroup;
(4) * is e.a.b. and $S_{*}^{k}=S_{v}^{k}$ for each *-operation * on S;
(5) S is integrally closed, and $\mathfrak{a}^{v}=\mathfrak{a}$ for each $\mathfrak{a} \in F_{f}(S)$;
(6) S is integrally closed, and $(s, t)^{b}=(s, t)$ for each $s, t \in S$;
(7) S is integrally closed, and $\mathfrak{a}^{b}=\mathfrak{a}$ for each $a \in F_{f}(S)$;
(8) S is integrally closed, and $(s, t)^{v}=(s, t)$ for each $s, t \in S$;
(9) * is a.b. and $S_{*}^{k}=S_{v}^{k}$ for each ${ }^{*}$-operation * on S.

Proof. (8) $\Rightarrow(6)$: Because $\mathfrak{a}^{*} \subset \mathfrak{a}^{\nu}$ for each ${ }^{*}$-operation *. (1) $\Rightarrow(3)$: By Lemma 13. (6) \Rightarrow (3): By Lemma 14. (4) \Rightarrow (5): By Lemma 15. (2) $\Rightarrow(1)$: By Lemma 16. (5) $\Rightarrow(8),(7) \Rightarrow(6),(3) \Rightarrow(1),(3) \Rightarrow(7),(3) \Rightarrow(5),(3) \Rightarrow(2),(9) \Rightarrow(4)$ and (3) $\Rightarrow(9)$ are straightforward.

Let * be a *-operation on S. We set $U^{*}=\left\{f \in k[X ; S] ; e(f)^{*}=S\right\}$.
Lemma 18. U^{*} is a multiplicative system of $k[X ; S]$.
Proof. There exists a natural number m such that $(m+1) e(f)+e(g)=m e(f)+$ $\mathrm{e}(f g)\left(\left[7\right.\right.$, Proposition 6.2] or [13, Lemma (10.2)]). It follows that U^{*} is a multi-
plicative system of $k[X ; S]$.
Remark 19. (1) We have $U^{*} \subset U^{v}$ for each *-operation *.on S;
(2) Assume that S is integrally closed. Then we have $U^{b}=k[X ; S]-$ $M k[X ; S]$ and $U^{b} \subset U^{*}$ for each *-operation *.

Proof. (2): By Lemma 9.
We define that the ideal of $k[X ; S]$ (or $k[X ; S]_{U^{*}}$ or S_{*}^{k}) generated by the empty set ϕ of S is zero.

Next we will see the semigroup version of Theorem 1.
Lemma 20. Let * be an e.a.b. *-operation on S. Let \mathfrak{A} be an ideal of S_{*}^{k}, and let $\mathfrak{a}=\mathfrak{A} \cap S$. Then we have $\mathfrak{A} \cap k[X ; S]=a k[X ; S]$.

Proof. Let $0 \neq f \in \mathfrak{H} \cap k[X ; S]$. We have $f S_{*}^{k}=\left(s_{1}, \ldots, s_{n}\right) S_{*}^{k}$, where $\left\{s_{1}, \ldots\right.$, $\left.s_{n}\right\}=\operatorname{Supp}(f) . \quad$ It follows that $\left(s_{1}, \ldots, s_{n}\right) \subset \mathfrak{a}, f \in \mathfrak{a} k[X ; S]$ and hence $\mathfrak{A} \cap k[X ; S] \subset$ $\mathfrak{a} k[X ; S]$.

A valuation semigroup of the form S_{p} is called essential for S, where P is a prime ideal of S. A valuation ring of the form D_{p} is called essential for D, where P is a prime ideal of D.

Lemma 21. Let ${ }^{*}$ be an e.a.b. ${ }^{*}$-operation on S. If $k[X ; S]_{U^{*}}$ is a Prüfer ring, the condition (7) of the following Theorem 25 holds.

Proof. Let W be a valuation overring of S_{*}^{k} with center \mathfrak{P} on $S_{\boldsymbol{*}}^{\boldsymbol{k}}$. Set $\mathfrak{P} \cap$ $k[X ; S]=p$ and $\mathfrak{p} \cap S=P$. Then $\mathfrak{p}=P k[X ; S]$ by Lemma 20. Since $k[X ; S]_{U^{*}}$ is Prüfer, we have $W=k[X ; S]_{p}$, and hence $W=k[X ; S]_{\left.P_{k[X} ; S\right]}$. Set $W \cap G=V$. Then V is a valuation oversemigroup of S. If $\alpha \in V$, we have $X^{\alpha}=f / g$ for $f, g \in$ $k[X ; S]$ with $g \in P k[X ; S]$. It follows $\alpha \in S_{p}$, and hence $V \subset S_{p}$.

Lemma 22. If the condition (7) of Theorem 25 holds, then S_{*}^{k} is a flat $k[X ; S]-$ module.

Proof. Let \mathfrak{m} be a maximal ideal of S_{k}^{k}. $\quad\left(S_{\boldsymbol{*}}^{k}\right)_{m}$ is a valuation overring of $S_{\boldsymbol{*}}^{k}$. The center of $\left(S_{*}^{k}\right)_{m}$ on $k[X ; S]$ is $m \cap k[X ; S]$. By our hypothesis we have $\left(S_{*}^{k}\right)_{\mathrm{m}}=k[X ; S]_{P k[X ; S]}$ for a prime ideal P of S. Therefore the center of $\left(S_{*}^{k}\right)_{m}$ on $k[X ; s]$ is $P k[X ; S]$, and hence $\mathfrak{m} \cap k[X ; S]=P k[X ; S]$. It follows $\left(S_{*}^{k}\right)_{m}=$ $k[X ; S]_{k[X ; S] \mathrm{n}_{\mathrm{m}}}$. Then S_{*}^{k} is a flat $k[X ; S]$-module by $[15$, Theorem 2].

Lemma 23. Let ${ }^{*}$ be an e.a.b. *-operation on S. If S_{*}^{k} is a flat $k[X ; S]-$ module, then $k[X ; S]_{U^{*}}=S_{\boldsymbol{*}}^{k}$.

Proof. Let \mathfrak{m} be a maximal ideal of $k[X ; S]_{U}$, and let $\mathfrak{p}=\mathfrak{m} \cap k[X ; S]$. Suppose that $\mathfrak{m} S_{*}^{k}=S_{k}^{k}$. We will derive a contradiction. We have $\left(f_{1}, \ldots, f_{n}\right) S_{*}^{k}=$ $S_{\boldsymbol{*}}^{k}$ for $f_{i} \in \mathfrak{p}$. If k is an infinite field, there exists nonzero elements a_{1}, \ldots, a_{n} of k
such that $\operatorname{Supp}(f)=\cup_{1}^{n} \operatorname{Supp}\left(f_{i}\right)$, where $f=a_{1} f_{1}+\cdots+a_{n} f_{n} . f$ belongs to p and $\left(f_{1}, \ldots, f_{n}\right) S_{*}^{k}=f S_{*}^{k}$. It follows $f \in U^{*}$, and hence $\mathfrak{m}=k[X ; S]_{U^{*}}$; a contradiction. If k is a finite field, the characteristic p of k is a prime number. Set $\cup_{1}^{n} \operatorname{supp}\left(f_{i}\right)=$ $\left\{t_{1}, \ldots, t_{l}\right\}$ with $t_{i} \neq t_{j}$ for $i \neq j$, and set $f=\sum_{1}^{l} X^{t_{i}}$. The proof of Theorem 8 shows that $S_{\boldsymbol{*}}^{k}=f S_{\underset{*}{k}}^{k}$, and hence $f \in U^{*}$. Since each f_{i} is a nonunit of $k[X ; S]_{U^{*}}$, we have $\left\{t_{1}, \ldots, t_{l}\right\} \subset M$. Set $\operatorname{Supp}\left(f_{i}\right)=\left\{s(i, 1), \ldots, s\left(i, l_{i}\right)\right\}$ for each i. If a number $m(1)$ is large enough, there exist no i, j, k such that $s(1, i)=s(2, j)+p^{m(1)} t_{k}$. It follows $\operatorname{Supp}\left(f_{1}\right) \cap \operatorname{Supp}\left(f_{2} f^{\exp (m(1))}\right)=\phi$, where $\exp (m(1))$ denotes $p^{m(1)}$. Similarly if a number $m(2)$ is large enough, we have $\operatorname{Supp}\left(f_{1}+f_{2} f^{\exp (m(1) 川)} \cap \operatorname{Supp}\left(f_{3} f^{\exp (m(2))}\right)\right.$ $=\phi . \cdots$. Thus we choose numbers $m(3), \ldots, m(n-1)$ similarly. We set $f_{1}+$ $f_{2} f^{\exp (m(1))}+\cdots+f_{n} f^{\exp (m(n-1))}=g . g$ belongs to p. Since $\operatorname{Supp}\left(f_{i} f^{\exp (m(i-1))}\right) \subset$ Supp (g), we have ($\left.f_{1}, f_{2} f^{\exp (m(1))}, \ldots, f_{n} f^{\exp (m(n-1)}\right) S_{*}^{k}=g S_{*}^{k}$. Since f is a unit of $\boldsymbol{S}_{\boldsymbol{*}}^{k}$, we have $\left(f_{1}, f_{2}, \ldots, f_{n}\right) S_{\boldsymbol{*}}^{\boldsymbol{k}}=g S_{\boldsymbol{*}}^{k}$, and hence $S_{\boldsymbol{*}}^{k}=g S_{\boldsymbol{*}}^{k}$. It follows $g \in U^{*}$, and hence $m=k[X ; S]_{U^{*}} ;$ a contradiction. We have proved $m S_{*}^{k} \subsetneq S_{\boldsymbol{*}}^{k}$. Let m^{\prime} be a maximal ideal of S_{*}^{k} containing $\mathfrak{m} S_{*}^{k}$, and let $\mathfrak{p}=\mathfrak{m}^{\prime} \cap k[X ; S]$. Since $\left(S_{*}^{k}\right)_{m^{\prime}}=$ $k[X ; S]_{p}$, we have $\left(S_{*}^{k}\right)_{m^{\prime}}=\left(k[x ; S]_{U^{*}}\right)_{m}$, and hence $S_{*}^{k}=k[X ; S]_{U^{*}}$.

Lemma 24. Let * be an e.a.b. ${ }^{*}$-operation on S. If each prime ideal of $k[X ; S]_{V^{*}}$ is the extension from S, then S is a Prüfer ${ }^{*}$-multiplication semigroup.

Proof. If $\left(k[X ; S]_{U^{*}}\right)_{s}$ is not a field, there exists a nonzero prime ideal \mathfrak{P} of $k[X ; S]_{V^{*}}$ such that $\mathfrak{P} \cap S=\phi$. Then \mathfrak{P} is not the extension from S; a contradiction. Therefore ($\left.k[X ; S]_{U^{*}}\right)_{s}$ is a field. Let \mathfrak{a} be an ideal of S generated by s_{1}, \ldots, s_{n}. Set $f=\sum_{1}^{n} X^{s_{i}}$. We have $1 / f=\frac{h}{X^{t} g}$ for $h \in k[X ; S], t \in S$ and $g \in$ $U^{*} . f h=x^{t} g$. Then $(a+e(h))^{*}=(t)$ by [13, Lemma (10.3)]. Therefore div* a is an invertible element of $D_{f}^{*}(S)$, and hence S is a Prüfer *-multiplication semigroup.

Theorem 25 (The semigroup version of Theorem 1). Let k be a field and * an e.a.b. *-operation on S. Then the following co ${ }^{\circ}$ ditions are equivalent:
(1) S is a Prüfer ${ }^{*}$-multiplication semigroup;
(2) $k[X ; S]_{U^{*}}=S_{*}^{k}$;
(3) $k[X ; S]_{U}$ is a Prüfer ring;
(4) S_{*}^{k} is a quotient ring of $k[X ; S]$;
(5) Each prime ideal of $k[X ; S]_{U^{*}}$ is the contraction of a prime ideal of S_{*}^{*};
(6) Each prime ideal of $k[X ; S]_{U}$. is the extension of a prime ideal of S;
(7) Each valuation overring of S_{*}^{k} is of the form $k[X ; S]_{P k[X ; S]}$, where P is a prime ideal of S such that S_{p} is a valuation oversemigroup of S;
(8) S_{*}^{k} is a flat $k[X ; S]-m o d u l e$.

Proof. (3) \Rightarrow (7): By lemma 21. (7) \Rightarrow (8): By Lemma 22. (8) \Rightarrow (2): By Lemma 23. (6) $\Rightarrow(1)$: By Lemma 24. (4) $\Rightarrow(2)$: S_{*}^{k} is of the form $k[X ; S]_{T}$ If $f \in T$, then $1 / f \in S_{k}^{k}$, and hence $f \in U^{*}$. It follows $k[X ; S]_{T} \subset k[X ; S]_{V^{\bullet}}$, and hence $S_{*}^{k} \subset$
$k[X ; S]_{u^{*}} \quad$ (1) $\Leftrightarrow(4):$ By $[13$, Theorem (10.9), (2)]. (5) $\Rightarrow(6)$: Let p be a prime ideal of $k[X ; S]_{l^{* *}} \quad$ We have $\mathfrak{p}=k[X ; S]_{U^{*}} \cap \mathfrak{P}$ for a prime ideal \mathfrak{P} of S_{*}^{k}. Set $\mathfrak{p} \cap S=$ P. Then $\mathfrak{p}=P k[X ; S]_{U^{*}}$ by Lemma 20. (2) \Rightarrow (3) and (2) $\Rightarrow(5)$: straightforward.

On [14] we stated without proofs that conditions (1), (2), (3), (4), (7) and (8) of Theorem 25 are equivalent. Moreover we had posed a question there that if 8 conditions of Theorem 25 are equivalent or not.

Corollary 26. Assume S is integrally closed. The following conditions are equivalent:
(1) S is a valuation semigroup;
(2) $k[X ; S]_{M k[X ; S]}=S_{b}^{k}$;
(3) $k[X ; S]_{M k[X ; S]}$ is a valuation ring;
(4) S_{b}^{k} is a quotient ring of $k[X ; S]$;
(5) Each prime ideal of $k[X ; S]_{M k[X ; S]}$ is the contraction of a prime ideal of S_{b}^{k};
(6) Each prime ideal of $k[X ; S]_{M k[X ; S]}$ is the extension of a prime ideal of S;
(7) Each valuation overring of S_{b}^{k} is of the form $k[X ; S]_{P k[X ; S]}$, where P is a prime ideal of S such that S_{P} is a valuation semigroup;
(8) S_{b}^{k} is a valuation ring.

Proof. $\quad S$ is a Prüfer b-multiplication semigroup if and only if S is a valuation semigroup by the equivalence of (2) and (3) of Proposition 17. We have $k[X ; S]_{U^{D}}=k[X ; S]_{M k[X ; S]}$ by Remark 19, (2). The equivalence of (1), (2), \ldots, (7) follows by Theorem 25. (8) $\Rightarrow(1)$: Because $S_{b}^{k} \cap G=S$.

Proposition 27 (The semigroup version of Proposition 5). Let * be a*operation on S. Assume that either S is a Prüfer *-multiplication semigroup or $k[X ; S]_{U^{*}}$ is a Prüfer ring. Then * is a.b., and hence 8 conditions of Theorem 25 hold.

Proof. If $a \in F_{f}(S)$, we have $\left(a k[X ; S]_{U^{*}}\right)^{-1}=a^{-1} k[X ; S]_{U^{*}}$ Since $\left(a k[X ; S]_{U^{\bullet}}\right)\left(a k[X ; S]_{U^{\bullet}}\right)^{-1}=k[X ; S]_{U^{\bullet}}, \quad$ we have $\quad\left(\mathfrak{a}+\mathfrak{a}^{-1}\right) k[X ; S]_{U^{\bullet}}=$ $k[X ; S]_{U^{*} .}$ Therefore there exists $u \in U^{*}$ contained in $\left(a+a^{-1}\right) k[X ; S]$. Then $\left(a+a^{-1}\right)^{*}=S$.

If the operator v is a.b., then S is called regularly integrally closed. If v is e.a.b., then v is a.b.

Corollary 28. If S is a pseudo-Bezout semigroup, the operation v satisfies 8 conditions of Theorem 25.

Lemma 29. Assume that S is regularly integrally closed. If S admits a family $\left\{V_{\lambda} ; \lambda \in \Lambda\right\}$ of essential valuation semigroups such that $\cap_{\lambda} V_{\lambda}=S$, then we
have $\cap_{\lambda} V_{\lambda}^{*}=S_{v}^{k}$, where V_{λ}^{*} denotes the natural extension of V_{λ} to $q(k[X ; S])$)
Proof. Let a be an ideal of S generated by a_{1}, \ldots, a_{n}. Each V_{i} is of the form $S_{P(i)}$ for a prime ideal $P(i)$ of S. We have $a+V_{i}=s_{i}+V_{i}$ with $s_{i} \in S$. Then $a_{j}=$ $s_{i}+e_{i j}-t_{i}$ for $e_{i j} \in S$ and $t_{i} \in S-P(i)$. Since $a \subset\left(s_{i}-t_{i}\right)$, we have $a^{\nu} \subset \cap_{i}\left(s_{i}-t_{i}\right) \subset$ $\cap_{i}\left(s_{i}+V_{i}\right)=\cap_{i}\left(\mathrm{a}+V_{i}\right)=\mathbf{a}^{*}$, where * is the w-operation on S induced by the representation $S=\cap_{\lambda} V_{\lambda}$. It follows $\mathfrak{a}^{\nu}=\mathfrak{a}^{*}$, and hence $S_{v}^{k}=S_{*}^{k}$. By [13, Proposition (10.6)] we have $S_{v}^{k}=\cap_{\lambda} V_{\lambda}^{*}$.

Theorem 30. Let * be an e.a.b. *-operation on a regularly integrally closed semigroup S. If one of the 8 conditions of Theorem 25 holds, then $S_{v}^{k}=\boldsymbol{S}_{\boldsymbol{*}}^{k}$.

Proof. Let $\left\{W_{\lambda} ; \lambda \in \Lambda\right\}$ be the set of valuation overrings of $S_{*}^{k} . \quad \cap_{\lambda} W_{\lambda}=S_{*}^{k}$. Set $W_{\lambda} \cap G=V_{\lambda}$. Then W_{λ} is the natural extension V_{λ}^{*} of V_{λ}. Each V_{λ} is essettial for S by our hypothesis. It follows $\cap_{\lambda} V_{\lambda}^{*}=S_{v}^{k}$ by Lemma 29, and hence $S_{k}^{k}=S_{v}^{k}$.

Next we will see the semigroup version of [1, Theorem 5]. We call a discrete valuation (resp. semigroup and ring) of rank one ($[4, ~ \$ 17]$) a discrete valuation (resp. semigroup and ring). If D_{p} is a discrete valuation ring for each prime ideal \mathfrak{p} of D, then the domain D is called an almost Dedekind ring.

Lemma 31. Assume that S is integrally closed. If S_{b}^{k} is almost Dedekind, then S is a discrete valuation semigroup.

Proof. Set $\operatorname{GD}(S)=\bar{G}$ and $\{\bar{m} ; m \in M\} \cup\{\overline{0}\}=\bar{P}$, where \bar{m} denotes $m+H$. Then \bar{P} is a positive set of $\bar{G}([4, \S 15])$. \bar{G} is a torsion-free abelian group. By [4, Theorem (15.6)] we see that \bar{G} is a totally ordered group, and each element of \bar{P} is non-negative. Let v be the natural mapping of G to \bar{G}. Then v is a valuation of G which is non-negative on S. The natural extension v^{*} of v is non-negative on S_{b}^{k}. It follows v^{*} is discrete, and hence $\bar{G}=Z \bar{\alpha}$ for $\overline{0}<\bar{\alpha} \in \bar{G}$. Then $G=H \oplus Z \alpha$. It follows $\alpha \in S$. If $v(\beta) \geqq \overline{0}$, we have $\bar{\beta}=n \bar{\alpha}$ for $n \geqq 0$, and hence $\beta \in S$. Thus S is the valuation semigroup of the valuation v.

Theorem 32 (The semigroup version of [1, Theorem 5, 6]). Assume that S is integrally closed. The following conditions are equivalent:
(1) S is a discrete valuation semigroup;
(2) Each ideal of S is principal;
(3) $k[X ; S]_{M k[X ; S]}$ is a discrete valuation ring;
(4) S_{b}^{k} is an almost Dedekind ring;
(5) S_{b}^{k} is a Dedekind ring;
(6) S_{b}^{k} is a Noetherian ring;
(7) S_{b}^{k} is a Krull ring;
(8) S_{b}^{k} is a discrete valuation ring.

Proof. (1) \Rightarrow (3): Let v be the valuation associated with S. Then
$k[X ; S]_{M k[X ; S]}$ is the valuation ring associated with v^{*}. (3) $\Rightarrow(8)$: Because S_{b}^{k} is an overring of $k[X ; S]_{M k[X ; S]}$. (6) $\Rightarrow(7)$: Because S_{b}^{k} is integrally closed. (7) $\Rightarrow(5)$: Because S_{b}^{k} is Prüfer (cf. [4, Theorem (43.16)]). (4) $\Rightarrow(1)$: By Lemma 31. (2) $\Rightarrow(1):$ S is a valuation semigroup by Proposition 17. Since M is principal, S is a discrete valuation semigroup. (8) $\Rightarrow(6)$ and (5) \Rightarrow (4) are straightforward.

The semigroup version of [1, Theorm 4] is contained in Corollary 26.
If there exists a set $\left\{V_{\lambda} ; \lambda \in \Lambda\right\}$ of discrete valuation semigroups of G such that $\cap_{\lambda} V_{\lambda}=S$ and s is a unit of V_{λ} for almost all $\lambda \in \Lambda$ for each $s \in S$, then S is called a Krull semigroup.

Lemma 33 ([2]). (1) S is a Krull semigroup if and only if S is completely integrally closed and satisfies the ascending chain condition for divisorial ideals cf S;
(2) If S is a Krull semigroup under a family $\left\{V_{\lambda} ; \lambda \in \Lambda\right\}$ of valuation oversemigroups, then S is of the form $H \oplus S_{1}$ with $S_{1}=q\left(S_{1}\right) \cap\left(\Sigma_{\lambda} \oplus Z_{0}\right)$, where $\Sigma_{\lambda} \oplus \boldsymbol{Z}_{0}$ denotes the direct sum of copies of non-negative integers of the cardinality $|\Lambda|$. Conversely a semigroup S of the form is a Krull semigroup;
(3) Let $\left\{V_{\lambda} ; \lambda \in \Lambda\right\}$ be the family of discrete valuation oversemigroups which are essential for a Krull semigroup S. Then S is a Krull semigroup under $\left\{V_{\lambda} ; \lambda \in \Lambda\right\}$.

Theorem 34. Assume S is regularly integrally closed. Then the following conditions are equivalent:
(1) S is a Krull semigroup;
(2) S_{v}^{k} is a principal idela domain;
(3) S_{v}^{k} is a Noetherian ring;
(4) S_{v}^{k} is a Krull ring.

Proof. (1) \Rightarrow (4); There exists a family $\left\{V_{\lambda} ; \lambda \in \Lambda\right\}$ of essential valuation oversemigroups of S under which S is Krull. 'We have $S_{v}^{k}=\cap_{\lambda} V_{\lambda}^{*}$ by Lemma 29. Therefore S_{v}^{k} is a Krull ring. (4) \Rightarrow (3); Since S_{v}^{k} is Prüfer, it is a Dedekind ring. (3) $\Rightarrow(2)$; Because S_{v}^{k} is a Bezout ring. (4) $\Rightarrow(1)$; Assume that S_{v}^{k} is a Krull ring under a family $\left\{W_{\lambda} ; \lambda \in \Lambda\right\}$ of valuation overrings of S_{v}^{k}. Set $W_{\lambda} \cap G=V_{\lambda}$. Then S is a Krull semigroup under $\left\{V_{\lambda} ; \lambda \in \Lambda\right\}$. (2) $\Rightarrow(4)$; Straightforward.

If S is a Krull semigroup with $C(S)=0$, then S is called a factorial semigroup. S is a factorial semigroup if and only if S is a UFS of [7]. (The proof is similar to rings.) S is a factorial semigroup if and only if each element of S is uniquely expressed as a finite sum of irreducible elements up to associates and order.

Proposition 35. (1) ([2, p. 1460]) $D(S)$ is a group if and only if S is completely integrally closed;
(2) S is regularly integrally closed if and only if diva is an invertible
element of $D(S)$ for each $a \in F_{f}(S)$.
Proof. An analogy to rings (cf. [4, Theorems (34.3) and (34.6)]).
If follows that if S is completely integrally closed, then S is regularly integrally closed. Especially if S is a Krull semigroup, then S is regularly integrally closed.

Proposition 36 (The semigroup version of [3, Theorem (2.3)]). Assume that S is pseudo-Bezout. Then the following conditions are equivalent:
(1) S is a factorial semigroup;
(2) S_{v}^{k} is a principal ideal domain.

Proof. (2) \Rightarrow (1); S is a Krull semigroup by Theorem 34. S satisfies the ascending chain condition for principal ideals of S by Lemma 33, (1). Since S is pseudo-Bezout, we see that S is a factorial semigroup. (1) $\Rightarrow(2)$: By Theorem 34.

Proposition 37 (The semigroup version of [3, Theorem (2.4)]). Assume that S is a Krull semigroup. Then each valuation overring of S_{v}^{k} is the natural extension of a discrete valuation semigroup of G which is essential for S.

Proof. We confer Theorem 34 and its Proof. There exists a family $\left\{V_{\lambda}\right.$; $\lambda \in \Lambda\}$ of essential valuation oversemigroups of S under which S is Krull. Let W be a valuation overring of S_{v}^{k}. Then $W=\left(S_{v}^{k}\right)_{p}$, where \mathfrak{p} is the center of W on S_{v}^{k}. Since S_{v}^{k} is a principal ideal domain, p is a minimal prime ideal $\neq(0)$ of S_{v}^{k}. Since S_{v}^{k} is a Krull ring under $\left\{V_{\lambda}^{*} ; \lambda \in \Lambda\right\}$, we have $\left(S_{v}^{k}\right)_{\mathrm{p}}=V_{\lambda}^{*}$ for some λ. Thus W is the natural extension of V_{λ}.

Assume that there exists a family $\left\{V_{\lambda} ; \lambda \in \Lambda\right\}$ of valuation semigroups of G such that $\cap_{\lambda} V_{\lambda}=S$. If $\cap_{\lambda+\lambda^{\prime}} V_{\lambda} \equiv S$ for each λ^{\prime}, the representation $S=\cap_{\lambda} V_{\lambda}$ is called irredundant. We define irredundant representation for domains similarly.

Proposition 38 (The semigroup version of [6, Proposition 2.1]). Assume that S admits an irredundant representation $S=\cap_{\lambda} V_{\lambda}$. Let * be the w-operation induced by the representation. Then $\cap_{\lambda} V_{\lambda}^{*}$ is an irredundant representation

Proof. If $V_{\mu}^{*} \supset \cap_{\lambda \neq \mu} V_{\lambda}^{*}$ for some μ, we have $V_{\mu} \supset \cap_{\lambda \neq \mu} V_{\lambda}$.
Proposition 39 (The semigroup version of [6, Proposition 2.3]). Assume that S is regularly integrally closed. If S_{v}^{k} admits an irredundant representation, then S admits an irredundant representation.

Proof, Let $S_{v}^{k}=\cap_{\lambda} W_{\lambda}$ be an irredundant representation for S_{v}^{k}. Set $V_{\lambda}=$ $W_{\lambda} \cap G$. Then W_{λ} is the natural extension of V_{λ}. We have $S=\cap_{\lambda} V_{\lambda}$. Suppose $S=\cap_{\lambda \neq \mu} S_{\lambda}$ for some μ. The representation $S=\cap_{\lambda \neq \mu} S_{\lambda}$ induces a w-operation * on S. $\quad S_{*}^{k}=\cap_{\lambda \neq \mu} V_{\lambda}^{*}$. Since $S_{*}^{k} \subset S_{v}^{k}$, we see that $\cap_{\lambda} V_{\lambda}^{*}$ is not an irredundant representation for S_{v}^{k}; a contradiction.

Proposition 40. Assume that S is integrally closed. Then the following conditions are equivalent:
(1) S is a Noetherian semigroup;
(2) S is regularly integrally closed, and S_{v}^{k} is a principal integral domain with only a finite number of prime ideals.

Proof. (1) $\Rightarrow(2) ; \quad S$ is a Krull semigroup by Lemma 33, (1). $\quad S_{v}^{k}$ is a principal ideal domain by Theorem 34. We have $M=\left(s_{1}, \ldots, s_{m}\right)$ for $s_{i} \in S$, where we may assume that each s_{i} is irreducible. S does not have other irreducible elements than s_{1}, \ldots, s_{m} up to associates. Therefore S is a Krull semigroup under a finite family of valuation semigroups of G. Then S_{v}^{k} is a Krull ring under a finite family of valuation rings by the proof of Theorem 34. It follows that S_{v}^{k} has only a finite number of prime ideals. (2) $\Rightarrow(1)$; S is a Krull semigroup under a finite family of valuation semigroups. We may assume that $H=\{0\}$ by Lemma 33, (2). There exists a number n such that $S=G \cap\left(\sum_{1}^{n} \oplus Z_{0}\right)$ where $\sum_{1}^{n} \oplus Z_{0}$ is the direct sum of n copies of non-negative integers. The following Lemma 41 shows that S is Noetherian.

Lemma 41 is stated at [2, Remark 1] and is proved at [5, Theorem 15.11]. We will give an another proof.

Lemma 41. Assume that $S=G \cap\left(\sum_{1}^{n} \oplus Z_{0}\right)$ for a natural number n. Then S is Noetherian.

Proof. For example, let $n=5$. Let p_{i} be the i-projection of elements of $\sum_{1}^{n} \oplus Z_{0}$. Let a be an ideal of S. There exists an element $s_{i} \in \mathfrak{a}$ such that $p_{i}\left(s_{i}\right)=$ $\min \left\{p_{i}(s) ; s \in \mathfrak{a}\right\}$ for each i. Set $\max \left\{p_{j}\left(s_{i}\right) ; i, j\right\}=H_{1}$. Let a number $h \leqq H_{1}$. If $\left\{s \in \mathfrak{a} ; p_{i}(s)=h\right\}$ is not empty, there exists an elements $s_{i}(h ; i) \in \mathfrak{a}$ such that $p_{i}\left(s_{i}(h ; i)\right)=\min \left\{p_{i}(s) ; s \in \mathfrak{a}, p_{i}(s)=h\right\}$ for each i, i^{\prime}. Set $\max \left\{p_{j}\left(s_{i}(h ; i)\right)\right.$; $\left.i, i^{\prime}, h, j\right\}=H_{2}$. Let $h_{1}, h_{2} \leqq H_{2} . \quad$ If $\left\{s \in \mathbf{a} ; p_{i_{1}}(s)=h_{1}, p_{i_{2}}(s)=h_{2}\right\}$ is not empty, there exists an element $s_{l}\left(h_{1}, h_{2} ; i_{1}, i_{2}\right) \in \mathfrak{a}$ such that $p_{l}\left(s_{l}\left(h_{1}, h_{2} ; i_{1}, i_{2}\right)\right)=\min \left\{p_{l}(s)\right.$; $\left.s \in \mathfrak{a}, p_{i_{1}}(s)=h_{1}, p_{i_{2}}(s)=h_{2}\right\}$ for each i_{1}, i_{2}, l. Set $\max \left\{p_{j}\left(s_{l}\left(h_{1}, h_{2} ; i_{1}, i_{2}\right)\right)\right.$; $\left.i_{1}, i_{2}, h_{1}, h_{2}, l, j\right\}=H_{3}$. Let numbers $h_{1}, h_{2}, h_{3} \leqq H_{3}$. If $\left\{s \in \mathfrak{a} ; p_{i_{1}}(s)=h_{1}\right.$, $\left.p_{i_{2}}(s)=h_{2}, p_{i_{3}}(s)=h_{3}\right\}$ is not empty, there exists an element $s_{l}\left\{h_{1}, h_{2}, h_{3}\right.$; $\left.i_{1}, i_{2}, i_{3}\right) \in \mathfrak{a}$ such that $p_{l}\left(s_{l}\left(h_{1}, h_{2}, h_{3} ; i_{1}, i_{2}, i_{3}\right)\right)=\min \left\{p_{l}(s) ; s \in \mathfrak{a}, \quad p_{i_{1}}(s)=h_{1}\right.$, $\left.p_{i_{2}}(s)=h_{2}, p_{i_{3}}(s)=h_{3}\right\}$ for each $i_{1}, i_{2}, i_{3}, l . \quad$ Set $\max \left\{p_{j}\left(s_{l}\left(h_{1}, h_{2}, h_{3} ; i_{1}, i_{2}, i_{3}\right)\right)\right.$; $\left.i_{1}, i_{2}, i_{3}, h_{1}, h_{2}, h_{3}, l, j\right\}=H_{4}$. Similarly we may consider elements $s_{l}\left(h_{1}, h_{2}\right.$, $\left.h_{3}, h_{4} ; i_{1}, i_{2}, i_{3}, i_{4}\right) \in \mathfrak{a}$ for each $i_{1}, i_{2}, i_{3}, i_{4}, h_{1}, h_{2}, h_{3}, h_{4}, l$. Similarly we may determine a number H_{5}. Set $B=\left\{s_{i_{1}}, s_{l}\left(h_{1}, i_{1}\right), s_{l}\left(h_{1}, h_{2} ; i_{1}, i_{2}\right), s_{l}\left(h_{1}, h_{2}, h_{3}\right.\right.$; $\left.\left.i_{1}, i_{2}, i_{3}\right), \quad s_{1}\left(h_{1}, h_{2}, h_{3}, h_{4} ; i_{1}, i_{2}, i_{3}, i_{4}\right) ; \quad i_{1}, i_{2}, i_{3}, i_{4}, h_{1}, h_{2}, h_{3}, h_{4}, l\right\} \cup\{s \in \mathfrak{a} ;$ $\left.p_{1}(s)<H_{5}, p_{2}(s)<H_{5}, p_{3}(s)<H_{5}, p_{4}(s)<H_{5}, p_{5}(s)<H_{5}\right\}$. We will show that a is generated by the finite set B. Let $s \in \mathfrak{a}$, and set $p_{i}(s)=e_{i}$. We may assume that
$e_{1} \leq e_{2} \leq e_{3} \leq e_{4} \leq e_{5}$. If $e_{1} \geq H_{1}$, then $s-s_{1} \in G \cap\left(\Sigma \oplus Z_{0}\right)$, and hence $s \in\left(s_{1}\right)$. If $e_{1}<H_{1}$ and $e_{2} \geq H_{2}$, then $s-s_{2}\left(e_{1} ; 1\right) \in\left(\sum \oplus Z_{0}\right) \cap G$, and hence $s \in\left(s_{2}\left(e_{1} ; 1\right)\right)$. If $e_{1}<H_{1}, e_{2}<H_{2}$ and $e_{3} \geq H_{3}$, then $s-s_{3}\left(e_{1}, e_{2} ; 1,2\right) \in G \cap\left(\sum \oplus Z_{0}\right)$, and hence $s \in\left(s_{3}\left(e_{1}, e_{2} ; 1,2\right)\right)$. If $e_{1}<H_{1}, e_{2}<H_{2}, e_{3}<H_{3}$ and $e_{4} \geq H_{4}$, then $s-s_{4}\left(e_{1}, e_{2}, e_{3}\right.$; $1,2,3) \in G \cap\left(\Sigma \oplus Z_{0}\right)$, and hence $s \in\left(s_{4}\left(e_{1}, e_{2}, e_{3} ; 1,2,3\right)\right)$. If $e_{1}<H_{1}, e_{2}<H_{2}$, $e_{3}<H_{3}, e_{4}<H_{4}$ and $e_{5} \geq H_{5}$, then $s-s_{5}\left(e_{1}, e_{2}, e_{3}, e_{4} ; 1,2,3,4\right) \in G \cap\left(\Sigma \oplus Z_{0}\right)$, and hence $s \in\left(s_{5}\left(e_{1}, e_{2}, e_{3}, e_{4} ; 1,2,3,4\right)\right.$).

Proposition 42. Assume that S is regularly integrally closed.
(1) S_{v}^{k} is a valuation ring if and only if S is a valuation semigroup;
(2) S_{v}^{k} is a discrete valuation ring if and only if S is a discrete valuation semigroup.

Proof. (1) If S_{v}^{k} is a valuation ring, then S is a valuation semigroup since $S_{v}^{k} \cap G=S$. If S is a valuation semigroup, S_{b}^{k} is a valuation ring by Corollary 26. It follows that S_{v}^{k} is a valuation ring. (2) If S is a discrete valuation semigroup, then S_{b}^{k} is a discrete valuation ring by Theorem 32.

Theorem 43 (The semigroup version of [11, Theorem 2]).
(1) If S is a Krull semigroup, then $k[X ; S]_{U^{v}}$ is a principal ideal domain;
(2) If $k[X ; S]_{V^{v}}$ is a Krull ring, then S is a Krull semigroup.

Proof. (1): Each valuation overring of S_{v}^{k} is the natural extension of an essential valuation oversemigroup of S by Proposition 37. It follows $k[X ; S]_{U^{v}}=$ S_{v}^{k} by Theorem 25 . Then $k[X ; S]_{U^{v}}$ is a principal ideal domain by Theorem 34. (2): Because $k[X ; S]_{U \cup} \cap G=S$.

The semigroup version of [11, Theorem 1] is contained in Proposition 27.
Proposition 44. Assume that S is regularly integrally closed. Then the following conditions are equivalent:
(1) S_{v}^{k} is a pseudo-principal ring;
(2) Each element of $D(S)$ is the difference of two elements of $D_{f}(S)$.

Proof. (1) $\Rightarrow(2)$; Let a be an ideal of S. Let ξ be the greatest common divisor of $\mathfrak{a} S_{v}^{k}$ in S_{v}^{k}. We have $\xi=f / g$ for $f, g \in k[X ; S]$ with $e(f)^{v} \subset e(g)^{v}$. We have $\operatorname{div} e(g)+\operatorname{div} \mathfrak{b}=0$ for $\mathfrak{b} \in F(S)$ by Proposition 35, (2). If $s \in \mathfrak{a}$, then $X^{s} \in \xi S_{v}^{k}$. It follows $s \in(e(f)+\mathfrak{b})^{v}$, and hence $(e(f)+\mathfrak{b})^{v} \supset \mathfrak{a}$ and $(e(f)+\mathfrak{b})^{v} \supset \mathfrak{a}^{v}$. Next if $a \subset(s)$ for $s \in S$, we have $\xi S_{v}^{k} \subset X^{s} S_{v}^{k}$. It follows $e(f)^{v} \subset s+e(g)^{v}$, and hence $(e(f)+\mathfrak{b})^{v}=\mathfrak{a}^{0}$. (2) $\Rightarrow(1)$; Let \mathfrak{u} be a non-zero ideal of S_{v}^{k}. Set $\mathfrak{u}-\{0\}=$ $\left\{\xi_{\lambda} ; \lambda \in \lambda\right\}$, and let $\xi_{\lambda}=f_{\lambda} / g_{\lambda}$ for $f_{\lambda}, g_{\lambda} \in k[X ; S]$ with $e\left(f_{\lambda}\right)^{v} \subset e\left(g_{\lambda}\right)^{\text {e }}$. We have $\operatorname{div} e\left(g_{\lambda}\right)+\operatorname{div} b_{\lambda}=0$ for $b_{\lambda} \in F(S)$ for each λ. Set $\cup_{\lambda}\left(e\left(f_{\lambda}\right)+b_{\lambda}\right)=\mathfrak{a}$. Then $\operatorname{div} a=$ $\operatorname{div} e(f)-\operatorname{div} e(g)$. Since $a \subset S$, we have $f / g \in S_{v}^{k} \cdot f / g$ is the greatest common divisor of \mathfrak{u} in \boldsymbol{S}_{v}^{k}.

Proposition 45. The following conditions are equivalent:
(1) S is a pseudo-Bezout semigroup;
(2) S is regularly integrally closed, and $\mathrm{GD}(S) \cong \mathrm{GD}\left(S_{v}^{k}\right)$ canonically.

Proof. (1) $\Rightarrow(2)$; Let $\bar{\alpha} \in G / H$ with $\alpha \in G$. We denote the element $\overline{X^{\alpha}}$ of $\mathrm{GD}\left(S_{v}^{k}\right)$ by $\phi(\bar{\alpha})$. Let $0 \neq f \in k[X ; S]$. We have $e(f)^{v}=(s)$ for $s \in S$. Then $\phi(\bar{s})=\vec{f}$. It follows ϕ is an isomorphism of $\operatorname{GD}(S)$ to $\operatorname{GD}\left(S_{v}^{k}\right)$. (2) $\Rightarrow(1)$; Let \mathfrak{a} be an ideal of S generated by s_{1}, \ldots, s_{n}. Set $\sum_{1}^{n} X^{s_{i}}=f$. We have $\bar{f}=\phi(\bar{s})$ for $s \in G$, and hence $e(f)^{v}=(s)$. It follows $\mathfrak{a}^{v}=(s)$.

Remark 46 ([13, Theorem (10.9), (1)]). If S is a Prüfer *-multiplication semigroup, then $\mathrm{GD}\left(S_{*}^{k}\right) \cong \mathrm{D}_{f}^{*}(S)$ canonically.

Proposition 47. The following conditions are equivalent:
(1) S is a pseudo-principal semigroup;
(2) S is regularly integrally closed and S_{v}^{k} is pseudo-principal, and $\mathrm{GD}(S) \cong$ GD(S_{v}^{k}) canonically.

Proof. (1) $\Rightarrow(2)$; We have $\mathrm{GD}(S) \cong \mathrm{GD}\left(S_{v}^{k}\right)$ canonically by Proposition 45. S_{v}^{k} is pseudo-principal by Proposition 44. (2) $\Rightarrow(1)$; Let a be an ideal of S. We have $\operatorname{div} \mathfrak{a}=\operatorname{div} \mathfrak{b}-\operatorname{div} \mathfrak{c}$ for $\mathfrak{b}, \mathfrak{c} \in F_{f}(S)$ by Proposition 44. Then $\operatorname{div} \mathfrak{a}$ is principal by proposition 45 .

Proposition 48. Assume that S is integrally closed, and let W be a multiplicative system of $k[X ; S]$. If each prime ideal of $k[X ; S]_{W}$ is the extension of a prime ideal of S, then $k[X ; S]_{W}$ is a Bezout ring.

Proof. Let $\left\{Q_{\lambda} ; \lambda \in \Lambda\right\}$ be the set of prime ideals of $k[X ; S]$ which does not intersect with W. Set $Q_{\lambda} \cap S=P_{\lambda}$ for each λ. Then $Q_{\lambda}=P_{\lambda} k[X ; S]$. Let $\left\{V_{\sigma}\right.$; $\sigma \in \Sigma\}$ be the set of valuation oversemigroups of S centers on S of which are among $\left\{P_{\lambda} ; \lambda \in \Lambda\right\}$. Let v_{σ} be the valuation associated with V_{σ}. Set $\cap_{\sigma} V_{\sigma}=S^{\prime}$. Then $S \subset S^{\prime}$. Let P_{σ}^{\prime} be the center of v_{σ} on S^{\prime} for each σ. Let W^{\prime} be the complement of $\cup_{\sigma} P_{\sigma}^{\prime} k\left[X ; S^{\prime}\right]$ in $k\left[X ; S^{\prime}\right]$. Let $\sigma \in \Sigma$. Then $P_{\sigma}^{\prime} \cap S=P_{\lambda}$ and $Q_{\lambda}=P_{\lambda} k[X ; S]=$ $\left(P_{\sigma}^{\prime} k\left[X ; S^{\prime}\right]\right) \cap k[X ; S]$ for some λ. If an element $w \in W$ is contained in $P_{\sigma}^{\prime} k\left[X ; S^{\prime}\right]$, we have $w \in Q_{i}$; a contradiction. If follows $W \subset W^{\prime}$, and hence $k[X ; S]_{W} \subset k\left[X ; S^{\prime}\right]_{W^{\prime}} . \quad$ Let U be a valuation ring the center on $k[X ; S]$ of which is Q_{λ} for some $\lambda . \quad U \cap G$ is a valuation semigroup the center on S of which is P_{λ}. It follows $U \cap G=V_{\sigma}$ for some σ. We have $V_{\sigma} \supset S^{\prime}$ and $U \supset S^{\prime}$. It follows $k[X ; S]_{W}$ $\supset S^{\prime}$ and $k[X ; S]_{w} \supset k\left[X ; S^{\prime}\right]$. We have
(\#); $k\left[X ; S^{\prime}\right]_{W}$, is a quotient ring of $k[X ; S]_{W}$.
Each prime ideal of $k[X ; S]_{W}$ is of the form $Q_{\lambda} k[X ; S]_{W}$ for some λ. We have $P_{\lambda}=P_{\sigma}^{\prime} \cap S$ for some σ. We have both $\left(P_{\sigma}^{\prime} k\left[X ; S^{\prime}\right]\right) \cap k[X ; S]=P_{\lambda} k[X ; S]$ and $k[X ; S] \cap\left(\left(P_{\sigma}^{\prime} k\left[X ; S^{\prime}\right]_{W^{\prime}}\right) \cap k[X ; S]_{W}\right)=P_{\lambda} k[X ; S] . \quad$ It follows $\left(P_{\sigma}^{\prime} k\left[X ; S^{\prime}\right]_{W^{\prime}}\right)$
$\cap k[X ; S]_{W}=P_{\lambda} k[X ; S]_{W}$. That is, each prime ideal of $k[X ; S]_{W}$ is the contraction of a prime ideal of $k\left[x ; S^{\prime}\right]_{W^{\prime}}$. We see that $k[X ; S]_{W}=k\left[X ; S^{\prime}\right]_{W^{\prime}}$ by (\#). Let * be the w-operation on S^{\prime} induced by the representation $S^{\prime}=\cap_{\sigma} V_{\sigma}$. Set $\left\{f \in k\left[X ; S^{\prime}\right] ; e(f)^{*}=S^{\prime}\right\}=U^{*}$. If $0 \neq f \in k[X ; S]$, then $f \in U^{*}$ if and only if for each σ we have $v_{\sigma}(t)=0$ for some $t \in \operatorname{Supp}(f)$. It follows that $W^{\prime}=U^{*}$, and hence $k\left[X ; S^{\prime}\right]_{W^{\prime}}=k[X ; S]_{U^{*}} \quad$ Therefore $k[X ; S]_{W}=k\left[X ; S^{\prime}\right]_{U^{*}} \quad$ It follows that $k[X ; S]_{W}=S_{*}^{k}$ by Theorem 25, and hence $k[X ; S]_{W}$ is a Bezout ring.

The above Proposition 48 is a semigroup version of [8, Lemma (3.0)].

References

[1] J. Arnold, On the ideal theory of the Kronecker function ring and the domain $D(X)$, Canad. J. Math. 21 (1969), 558-563.
[2] L. Chouinard, Krull semigroups and divisor class groups, Canad. J. Math. 33 (1981), 1459-1468.
[3] R. Gilmer, An embedding theorem for HCF-rings, Proc. Camb. Phil. Soc. 68 (1970), 583-587.
[4] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, 1972.
[5] R. Gilmer, Commutative Semigroup Rings, The Univ. Chicago Press, 1984.
[6] R. Gilmer and W. Heinzer, Irredundant intersections of valuation rings, Math. Zeit. 103 (1968), 306-317.
[7] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86.
[8] J. Huckaba and I. Papick, A localization of $R[x]$, Canad. J. Math. 33 (1981), 103-115.
[9] R. Matsuda, Notes on Prüfer v-multiplication rings, Bull. Fac. Sci., Ibaraki Univ. 12 (1980), 9-15.
[10] R. Matsuda, Kronecker function rings, Bull. Fac. Sci., Ibaraki Univ. 13 (1981), 13-24.
[11] R. Matsuda, On a question posed by Huckaba-Papick, Proc. Japan Acad. 59 (1983), 21-23.
[12] R. Matsuda, On some open questions and related results in ideal theory, Proc. 7-th Sympos. on Commutative Ring Theory, 1985, 34-41.
[13] R. Matsuda, Torsion-free abelian semigroup rings V1, Bull. Fac. Sci., Ibaraki Univ. 18 (1986), 23-43.
[14] R. Matsuda and K. Satô, Topics of commutative semigroup rings; *operations on semigroups and M-semigroup rings, Proc. 8-th Sympos. on Commutative Ring Theory, 1986.
[15] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799.

[^0]: Received March 12, 1987.

 * Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.
 ** Tohoku Institute of Technology, Sendai, Miyagi 982, Japan.

