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Some Oscillation and Asymptotic Properties

for Linear Differential Equations

V. A. STAIKOS* and Ch. G. PHILOS*

In this paper we consider the n-th order (n> 1) general ordinary differential

equation

(E)

where the functions ri (i=0, 1,...,n-1) are positive at least on the interval [to,

•‡). The continuity of the functions a, b and ri(i=0, 1, 2,...,n-1) as well as

sufficient smoothness to guarantee the existence of solutions of (E) on an infinite

subinterval of [to, •‡) will be assumed without mention. In what follows the term

"solution" is always used only for such solutions x(t) of (E) which are defined for

all large t. The oscillatory character is considered in the usual sense, i.e. a con-

tinuous real-valued function which is defined on an interval of the form [T, •‡) is

called oscillatory if it has no last zero, and otherwise it is called nonoscillatory.

We give here some conditions to ensure that

for all oscillatory solutions of the equation (E). However for b =0, the same con-

ditions guarantee that all eventually nontrivial solutions of the differential equation

(E)

are nonoscillatory. The technique used is an adaptation of that of Singh [3]

which concerns the particular case ro=1, ri=r and r2=•c=rn-1=1.

THEOREM 1. Consider the differential equation (E) subject to the condi-

tions:

(R0)

(A)
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and

(B)

Then for every oscillatory solution x of the differential equation (E),

PROOF. Let x be an oscillatory solution of the differential equation (E).

Without loss of generality we suppose that x is a solution of (E) on the whole interval

[to, •‡).

Consider the functions D(k)rx (k=0, 1,..., n-1) which are defined on the inter-

val [to, •‡) as follows:

and

Now, we assume that

(1)

for some d>0. Moreover, because of condition (R0), there exists a constant c>

with

(2) for every t•†to.

Thus, by conditions (A) and (B), we have that for some T•†to,

(3)

and

(4)

Since the solution x is oscillatory, the same holds for the functions D(k)rx

(k=0, 1,..., n-1) and consequently we can choose ƒÑi>ƒÑ2 >•c>ƒÑn-1>t1>T
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with

and

Furthermore, we consider, by (1), a To>ƒÑ1, with

(5)

and next a t2>To with

Now, on repeated integration from equation (E) we have

we get

This immediately gives
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where

Thus, by virtue of (3) and (4), we obtain

But, by (5) and (2), we have

and consequently the contradiction

We have just proved that (1) fails and hence

which, by condition (R0), gives

THEOREM 2. Consider the differential equation (E)0 subject to the condi-

tions (R0) and (A).

Then every eventually nontrivial solution of the differential equation (E)0

is nonoscillatory.

PROOF. Let x be an eventually nontrivial oscillatory solution of (E)0 on the

whole interval [to, •‡). As in the proof of Theorem 1, we can consider c and T

satisfying (2) and (3). Similarly, we can choose again ƒÑ1>ƒÑ2>•c>ƒÑn-1>ƒÑi>T

in exactly the same way. Next, since x is eventually nontrivial and oscillatory,

To and t2 can be chosen so that t2>To>ƒÑ1 and

As in the proof of Theorem 1, we obtain

for every t •¸ •mt1, t2] and hence



Some Oscillation and Asymptotic Properties for Linear Differential Equations 29

where

Therefore, by (2) and (3), we have

and consequently  M*=0, which is a contradiction since by the definition of To,

We shall now clarify the importance of Theorems 1 and 2 by applying them

in the particular case where for some integer m, 1•…m•…n-1, we have

rj=1 for j•‚n-m and rn-m=r.

More precisely, we give two corollaries concerning the differential equation

(Em)

COROLLARY 1. Consider the differential equation (Em) subject to the condi-
tions:

(Am)

and

(Bm)

Then for every oscillatory solution x of the differential equation (Em),

PROOF. We have the formula

where p is a continuous nonnegative function on [u, •‡) and k a nonnegative integer.

By this formula, it is a matter of elementary calculus to see that in the considered

case the conditions (A) and (B) follow from (Am) and (Bm) respectively.

COROLLARY 2. Consider thedifferential equation (Em)o.

(Em)o

subject to the condition (Am).

Then every eventually nontrivial solution of the differential equation (Em)o

is nonoscillatory.
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REMARK. The above corollaries 1 and 2 are generalizations of the results in

[3] still in the particular case m=n-1. ([1], [2])
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