Title	A NOTE ON THE HOMOMORPHIC IMAGES OF THE CENTER OF C*-ALGEBRAS
Author(s)	TAKAHASHI, Sin-ei
Citation	Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 6: 29-32
Issue Date	1974
URL	http://hdl.handle.net/10109/2862
Rights	

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属 します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先

茨城大学学術企画部学術情報課(図書館) 情報支援係 http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html Bull. Fac. Sci. Ibaraki Univ. Ser. A, No. 6 (1974), 29-32

A NOTE ON THE HOMOMORPHIC IMAGES OF THE CENTER OF C*-ALGEBRAS

Sin-ei Takahasi

The purpose of this note is to extend the result of J. Vesterstrøm concerning the homomorphic images of the center of C*-algebras [1].

Let A be a C*-algebra and Prim A its structure space with the Jacobson topology. Let C^b(Prim A) be the commutative C*-algebra of all bounded continuous complex functions on Prim A and let $C_{\cap}(Prim A)$ be the set of all elements of C^b(Prim A) vanishing at infinity. Let B be the enveloping von Neumann algebra of A and Z_{p} the center of B. For every $f \in P(A)$ (the set of all pure states of A) and $z \in Z_B$, the operator $\pi_f(z)$ is scalar, so that there is a complex function ϕ_z^0 defined on P(A) with $\pi_f(z) = \phi_z^0(f)I$ where I is the identity operator on H_f . Let λ^1 and λ^2 be the canonical map $P(A) \rightarrow \hat{A}$ and $\hat{A} \rightarrow Prim A$, respectively, where \hat{A} is the spectrum of A. Then, there exist two complex functions ϕ_z^1 and ϕ_z^2 on \hat{A} and Prim A, respectively, such that $\phi_z^0 = \phi_z^1 \lambda^1$ and $\phi_z^1 = \phi_z^2 \lambda^2$. Let Z' be the set of all $z \in Z_B$ such that $zA \subset A$. In [2], Dixmier proved that the mapping $z \neq \phi_z$ (= ϕ_z^2) is a *-isomorphism of the C*-algebra Z' onto the C*-algebra C^b(Prim A).

THEOREM 1. Let A be a C*-algebra which satisfies the following condition:

$$\pi(z) \neq 0$$
 for every $\pi \in \hat{A}$. (*)

<u>Then we have</u> $\phi(Z) = C_0(Prim A)$.

<u>PROOF</u>. Let $z \in Z$. Then, for any $\varepsilon > 0$, the set

 $\{\pi \in \hat{A}: \ ||\pi(z)|| \ge \epsilon \} \text{ is compact (Prop. 3.3.7 in [3])}.$ Since the topology of \hat{A} is the inverse image of topology of Prim A by λ^2 , the set $\{J \in \text{Prim A}: |\phi_z(J)| \ge \epsilon\}$ is compact. Thus, we have $\phi(Z) < C_0(\text{Prim A})$.

Conversely, let $z \in Z'$ with $\phi_z \in C_0(\operatorname{Prim} A)$. Suppose that $z \notin A$. We can assume that $z \ge 0$. Set A' = A + Z'. A' is a C*-algebra and A is a closed two-sided ideal of A' (Th. 8 in [2]). Then, there exists $f_0 \in P(A')$ such that $f_0|A = 0$ and $f_0(z) = \varepsilon_0 > 0$. By Theorem 10 in [2], there exists a unique extension $\phi'_z \in C^b(\operatorname{Prim} A)$ with $\phi_z|\operatorname{Prim} A =$ ϕ'_z . Set $J_0 = \operatorname{Ker} \pi_{f_0}$. Then $J_0 \in \operatorname{Prim} A'$. Since $\operatorname{Prim} A$ is dense in $\operatorname{Prim} A'$ (Th. 10 in [2]), for any $\varepsilon > 0$, there exists $J_\varepsilon \in \operatorname{Prim} A$ with $|\phi_z(J_\varepsilon) - \phi'_z(J_0)| < \varepsilon$. Note that $\phi'_z(J_0) = \varepsilon_0$. Since ϕ_z vanishes at infinity, the family $\{J_\varepsilon: 0 < \varepsilon < \varepsilon_0/2\}$ has limit points in $\operatorname{Prim} A$ if $\{J_\varepsilon: 0 < \varepsilon < \varepsilon_0/2\}$ has infinite elements (c. f. [4]). Set $K = \{J \in \operatorname{Prim} A: \phi_z(J) = \phi'_z(J_0)\}$. Then we have

 $K \cap \overline{U_{\lambda}(J_0)} \neq \phi \quad \text{for any neighborhood } U_{\lambda}(J_0) \quad \text{of } J_0 \quad (1)$ where $\{\lambda\}$ is a direct set. Note that if $\{J_{\epsilon}: 0 < \epsilon < \epsilon_0/2\}$ has only finite elements, (1) also holds. Let $J_{\lambda} \in \overline{U_{\lambda}(J_0)} \cap K \quad \text{for each } \lambda$. Since ϕ_z vanishes at infinity on Prim A, K is the compact set, so that $\{J_{\lambda}\}$ has a limit point J' in K. Let f' ϵ P(A) with Ker $\pi_{f'}$, = J'. Let z' ϵ Z and ϕ'_z , be the extension of ϕ_z , on Prim A'. Then ϕ'_z , $(J_0) = 0$ since $f_0 | A = 0$. For any $\epsilon > 0$, there exists λ_0 such that $|\phi_z, (J_{\lambda})| < \epsilon$ for $\lambda_0 \leq \lambda$. Therefore, we have ϕ_z , (J') = 0, so that f'(z') = 0. This is a contradiction to $\pi_{f'} | Z \neq 0$. Then, we have $z \in A \cap Z' = Z$ and the result follows.

Let A be a C*-algebra satisfying the condition (*), and let Z be its center. We define $\eta_A(J) = J \cap Z$ for each J ε Prim A. Then η_A is a continuous map of Prim A onto Prim Z. Let η_A^* be the map of $C_0(Prim Z)$ into $C_0(Prim A)$ induced by η_A .

LEMMA 2. n_A^* is the *-isomorphism of $C_0(Prim Z)$ onto $C_0(Prim A)$.

<u>PROOF</u>. Let μ be the canonical map of Z onto C₀(Prim Z). Let ϕ be the *-isomorphism of Z onto C₀(Prim A) defined in Theorem 1. We show that $\phi = \eta_A^* \mu$. Let $z \in Z$ and $J \in Prim A$. There is $\pi \in \hat{A}$ with $J = Ker \pi$. Set $\rho = \pi | Z$. Then, we have

 $\phi_{\pi}(J)I = \rho(z) = \mu(z)(\operatorname{Ker} \rho)I = \eta_{A}^{*}(\mu(z))(J)I,$

where i I is the identity operator on H_{ρ} . Thus, we have $\phi = \eta_A^* \mu$ and so η_A^* is the *-isomorphism of $C_0(\text{Prim Z})$ onto $C_0(\text{Prim A})$.

<u>THEOREM 3.</u> Let A and A' be C*-algebras with centers Z and Z'. Let ψ be a *-homomorphism of A onto A'. <u>Then, if A satisfies the condition (*), then the following</u> three statements are equivalent:

- (i) $\psi(Z) = Z'$.
- (ii) $(\psi|Z)^{\vee}$: Prim Z' \rightarrow Prim Z <u>is injective</u>, where $(\psi|Z)^{\vee}(J') = (\psi|Z)^{-1}(J')$ (J' ε Prim Z').
- (iii) If J_1' and J_2' are primitive ideals of A', which can be separated by functions of $C_0(\text{Prim A'})$, then $\check{\Psi}(J_1')$ and $\check{\Psi}(J_2')$ can be separated by functions of $C_0(\text{Prim A})$, where $\check{\Psi}$ is the map of Prim A' into Prim A such that $\check{\Psi}(J') = \psi^{-1}(J')$ (J' ε Prim A').

<u>PROOF</u>. By Lemma 2, J_1' and J_2' are separated by functions of $C_0(\operatorname{Prim} A')$ if and only if they are separated by η_A . Similarly, $\check{\psi}(J_1')$ and $\check{\psi}(J_2')$ are separated by functions of $C_0(\operatorname{Prim} A)$ if and only if they are separated by η_A . Note that $(\psi|Z)' \eta_A$, = $\eta_A \check{\psi}$. Therefore, the equivalence (ii) \Leftrightarrow (iii) follows. The equivalence (ii) \Leftrightarrow (i) is well known.

References

- [1] J. Vesterstrøm, On the homomorphic image of the center of a C*-algebra, Math. Scand. 29 (1971), 134-136.
- [2] J. Dixmier, Ideal center of a C*-algebra, Duke Math. J. 35 (1968), 375-382.
- [3] J. Dixmier, Les C[#]-algèbres et leur représentations, Gauthier-Villas, Paris, 1964.

[4] G. Bachman and L. Narici, Functional Analysis, New York and London, 1966.

Sin-ei Takahasi Department of Mathematics, Faculty of Sience, Ibaraki University, Mito.

(Received November 15, 1973)

32