ROSEリポジトリいばらき (茨城大学学術情報リポジトリ)

Title	On (, M)-spaces
Author(s)	NAKAMURA, Koji
Citation	Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics, 2(2): 31-39
Issue Date	1970
URL	http://hdl.handle.net/10109/2832
Rights	

このリポジトリに収録されているコンテンツの著作権は、それぞれの著作権者に帰属 します。引用、転載、複製等される場合は、著作権法を遵守してください。

お問合せ先

茨城大学学術企画部学術情報課(図書館) 情報支援係 http://www.lib.ibaraki.ac.jp/toiawase/toiawase.html

On $\Lambda(\varphi, M)$ -spaces

Kôji Nakamura*

1. Introduction and PrelimInary. In 1951, G. G. Lorentz [7] has introduced a class of function spaces called A-spaces. Let $\varphi(t)$ be a positive integrable and almost everywhere equivalent to a non-increasing function defined on $(0, l), l < \infty$. For a measurable function f, we denote by f^* , the decreasing (truely, non-increasing) rearrangement of f [2; p. 260-299], [6; p. 60]. It is defined as follows. Let $\mu_f(\alpha)$ be the Lebesgue measure of the set $\{t: | f(t) |$ $>\alpha\}$ for any real number α . Then $\mu_f(\alpha)$ is right-continuous, *i. e.*, $\lim_{\alpha_n+\alpha} \mu_f(\alpha_n) = \mu_f(\alpha)$. Now we define the function $f^*(x)$ as the rightinverse of $\mu_f(y)$, *i. e.*,

(1.1)
$$f^*(x) = \inf\{y: \mu_f(y) \le x\}.$$

The space $\Lambda(\varphi, p)$, p > 1 is the set of all measurable functions f. We shall define the norm || f ||, such that

(1.2)
$$\|f\| = \left\{ \int_0^t \varphi(t) f^*(t)^p dt \right\}^{\frac{1}{p}} < \infty.$$

Then, $\Lambda(\varphi, p)$ equipped with the norm $\|\cdot\|$ defined by (1.2), is a reflexive Banach space where 1 [7].

Hence we can regard as the *p*-th power of function is a convex on the positive real line. Now let M(u), $0 \le u \le \infty$ be a N-function, φ be as above, and for a measurable function f we put

(1.3)
$$\rho(f) = \int_0^t \varphi(t) M[f^*(t)] dt.$$

In this paper, we shall discuss with a class $\Lambda(\varphi, M)$, which extends that of the spaces $\Lambda(\varphi, p)$, where the function M(u) is a N-function in the sense [5; p. 6]. The set $\Lambda(\varphi, M)$ of all f with $\rho(\alpha f) < \infty$ for some $\alpha > 0$ is a modular space and ρ is a modular on $\Lambda(\varphi, M)$

Received Feburuary 19, 1970.

^{*}Department of Mathematics, Faculty of Science, Ibaraki University, Mito, Ibaraki, Japan.

in the sense of Nakano [12], i. e.,

(1.4)
$$\Lambda(\varphi, M) = \{f: \rho(\alpha f) < \infty, \text{ for some } \alpha > 0\}.$$

In §2, we shall show that $\Lambda(\varphi, M)$ is a modular space and a Banach space with the norm which is induced by the modular (1.3). In §3, we shall treat with the dual space $\Lambda^*(\varphi, M)$ of $\Lambda(\varphi, M)$ and show that the spaces $\Lambda(\varphi, M)$ are reflexive if M and N, the dual of M, satisfy (\mathcal{A}_2) and $(\overline{\mathcal{A}_2})$ -condition, generalizing the Theorem 4 in [7; p. 417].

For two measurable functions f and g, if they are equimeasurable to each other, *i. e.*, $\mu_f(\alpha) = \mu_g(\alpha)$, then we write $f \sim g$.

For two measurable functions f and g defined on (0, l), f < g means that $\int_{0}^{x} f^{*} dt \leq \int_{0}^{x} g^{*} dt$ for all x with 0 < x < l.

Here we present several basic properties about f^* and the *preorder* " \prec ".

$$(1.5) f < g \Longleftrightarrow f^* < g^* \Longrightarrow M[f^*] < M[g^*].$$

In fact, the equivalence of left hand side is obvious from the definition. For the proof of right hand side, see [7; p. 414].

Furthermore if $\varphi(t)$ is positive decreasing, then

(1.6)
$$f^* \langle g^* \Longrightarrow \varphi M[f^*] \langle \varphi M[g^*]$$

For the proof, see [7; p. 414]. Also we have

(1.7)
$$(f+g)^* < f^* + g^*.$$

Because,

$$\int_{0}^{x} (f+g)^{*} dt = \sup_{e} \int_{e} |f+g|(t)dt$$
$$\mu(e) = x$$

 $(\mu: Lebesgue measure)$

$$\leq \sup_{e} \int_{e} (|f(t)| + |g(t)|) dt$$

$$\leq \sup_{e} \int_{e} |f(t)| dt + \sup_{e} \int_{e} |g(t)| dt$$

$$\leq \int_{0}^{x} f^{*} dt + \int_{0}^{x} g^{*} dt.$$

Also we have

(1.8) $f g < f^*g^*$.

For the proof, see [2; p. 278] or [9; p. 102]. Since M is a convex function, we obtain

(1.9) $M[(\alpha f + \beta g)^*] < \alpha M[f^*] + \beta M[g^*], \text{ where } \alpha > 0, \beta > 0,$ $\alpha + \beta = 1, \text{ by } (1.5) \text{ and } (1.7).$

2. The spaces $\Lambda(\varphi, M)$. Let M(u) be a N-function [5; p. 6], that is, there exist a function p(t) which is right-continuous and positive non-decreasing such that p(0)=0 and

$$M(u) = \int_0^u p(t) dt, \qquad 0 \le u < \infty.$$

THEOREM 1. $\Lambda(\varphi, M)$ is a modular space with the modular ρ . PROOF. First $\Lambda(\varphi, M)$ is a linear space. For any $f, g \in \Lambda(\varphi, M)$,

$$\rho(\alpha f + \beta g) \leq \rho\left(\frac{1}{2}\alpha_0(f+g)\right)$$
$$\leq \frac{1}{2}\left(\rho(\alpha_0 f) + \rho(\alpha_0 g)\right)$$

for $\alpha_0 = 2\max(\alpha, \beta)$. We can see that $\rho(\alpha_0 f)$, $\rho(\alpha_0 g) < \infty$ for f and g. Therefore $\Lambda(\varphi, M)$ is linear.

The following properties are easily shown from the definition of ρ .

(ρ . 1) $0 \le \rho(f) \le \infty$ (for any measurable function f), and $\rho(+f+) = \rho(f)$ and $\rho(0)=0$;

(ρ . 2) For any $f \in \Lambda(\varphi, M)$, and a positive real number α , $\rho(\alpha f) < \infty$;

(*p*. 3) $\rho(\alpha f) = 0, \alpha > 0$, then f = 0 a. e.;

(ρ . 4) If $|f| \leq |g|$, then $\rho(f) \leq \rho(g)$ (monotone);

(ρ . 5) $\alpha \ge 0$, $\beta \ge 0$, $\alpha + \beta = 1$, then $\rho(\alpha f + \beta g) \le \alpha \rho(f) + \beta \rho(g)$,

(convex);

(ρ . 6) $0 \le f_n \cdot f$, then $\rho(f) = \sup \rho(f_n)$ (upper semi-continuous).

To see (ρ . 6) we used the fact that $0 \le f_n \uparrow f$ implies $f_n^* \uparrow f^*$. Thus we conclude our assertion.

Here, M is called to satisfy the (Δ_2) -condition, if there exist a constant γ and some $u_0 \ge 0$, such that

(2.1)
$$M(2u) \leq \gamma M(u)$$
 for all $u \geq u_0$.

Then we define a class $\Lambda_0(\varphi, M)$ of all measurable functions f that $\rho(f) < \infty$, *i. e.*,

(2.2) $\Lambda_0(\varphi, M) = \{f: \rho(f) < \infty\}.$

THEOREM 2. If M satisfies (\mathcal{A}_2) -condition, then $\Lambda_0(\varphi, M) = \Lambda(\varphi, M)$.

PROOF. We have always $\Lambda_0(\varphi, M) \subset \Lambda(\varphi, M)$. Since, for any $f \in \Lambda(\varphi, M)$, then $\rho(\frac{1}{2}f) < \infty$. Thus we have $\rho(f) \leq \int_0^t \varphi M[f^*] dt$ $\leq \gamma \int_0^t \varphi M[\frac{1}{2}f^*] dt$ $= \gamma \rho(\frac{1}{2}f) < \infty$,

i. e.,

 $f^{-}\Lambda_{0}(\varphi, M).$

Therefore we conclude our assertion.

Further $\rho(f)$ satisfies some properties as follows. A modular ρ on $\Lambda(\varphi, M)$ is said to be *lower semi-additive*,

(2.3)
$$\rho(f \cup g) \leq \rho(f) + \rho(g) \text{ for } 0 \leq f, g \in \Lambda(\varphi, M).$$

In fact, since $\sup\{f^*, g^*\} < (f+g)^*$ with the preorder <, then we have our assertion.

Furthermore, by $(\rho, 5)$, $\rho(\alpha f)$ is a convex function of α for each f, i. e.,

(2.4)
$$\rho\left(\frac{\alpha+\beta}{2}f\right) \leq \frac{1}{2}\left(\rho(\alpha f) + \rho(\beta g)\right).$$

Now we can define the norm of $f(\in \Lambda(\varphi, M))$ which is called *Luxemburg norm*, as follows:

(2.5)
$$\| f \| = \inf \{ \xi : \rho \left(\frac{f}{\xi} \right) \le 1, \xi > 0 \}.$$

Then, it is known that (2.5) satisfies the norm condition. This norm (2.5) obviously satisfies the following:

- $(2.6) |f| \le |g| \Longrightarrow ||f|| \le ||g||;$
- $(2.7) \qquad 0 \leq f_n \uparrow f \Longrightarrow ||| f_n ||| \uparrow ||| f |||.$

We can see from the definition that $||| f ||| \le 1$ is equivalent to $\rho(f) \le 1$.

THEOREM 3. $\Lambda(\varphi, M)$ is a Banach space with the induced norm (2.5) by the modular $\rho(f)$.

PROOF. We shall show the completeness. By (2.7), we obtain the property that is called to be *monotone complete* (the weak Fatou property) in the sense of Amemiya.

$$0 \leq f_n \uparrow f, \sup ||| f_n ||| < \infty \Longrightarrow f \in \Lambda(\varphi, M),$$

and hence $\Lambda(\varphi, M)$ is complete by the theorem in [4].

3. The reflexivity of the space $\Lambda(\varphi, M)$. First we shall construct the dual space of $\Lambda(\varphi, M)$. Let N(v) be the N-function complementary to M(u) in the sense of Young [5; p. 11]. That is to say, the function q(s) is the right inverse of p(t) which is defined by the equality:

$$q(s) = \sup_{p(t) \leq s} t, \qquad 0 < s < \infty.$$

Then we have

$$N(v) = \int_0^v q(s) ds, \qquad 0 < v < \infty.$$

Next we shall give some definitions and propositions which will be needed in the sequel. Now, let $G(x) = \int_0^x g(t)dt$, where g(t) is integrable and positive on (0, l), and $\Phi(x) = \int_0^x \varphi(t)dt$, $0 < x < \infty$. The function G(x) is said to be φ -concave, if

$$\frac{G(x)-G(a)}{\varPhi(x)-\varPhi(a)} \geq \frac{G(b)-G(a)}{\varPhi(b)-\varPhi(a)}, \ a < x < b.$$

Lorentz [6; §3.6, Theorem 3.6.3] has shown the following proposition.

PROPOSITION 1. The function $G(x) = \int_0^x g(t) dt$ is φ -concave if and only if $g(t) = \varphi(t)D(t)$ a. e., where D(t) is a positive decreasing function.

We define for each measurable function g(t),

(3.1)
$$\tau(g) = \inf_{g^* \prec \varphi D} \{ \int_0^t \varphi N[D] dt \},$$

where the infimum is taken for all decreasing positive functions D(t) for which $g^* < \varphi D$.

The conjugate modular ρ [12; p. 92] of ρ , is defined by

(3.2)
$$\overline{\rho}(g) = \sup_{f \in \Lambda(\varphi, M)} \left\{ \left| \int_0^t f g dt \right| - \rho(f) \right\}$$

for any measurable function g. We consider the dual space of $\Lambda(\varphi, M)$, denoted by $\Lambda(\varphi, M)$, as follows:

(3.3) $\Lambda(\varphi, M) = \{g : \rho(\alpha g) \in \infty \text{ for some } \alpha < 0, \text{ and } g \text{ is measurable}\}.$

Then $\Lambda(\varphi, \tilde{M})$ is also a modular space.

THEOREM 4. For each $g \in \overline{\Lambda(\varphi, M)}$, we have $\overline{\rho(g)} \leq \tau(g)$.

PROOF. By Young's inequality and (1.8), we have, for any decreasing positive function D with $g^* \prec \varphi D$,

$$| \int_{0}^{t} fgdt | \leq \int_{0}^{t} f^{*}g^{*}dt$$
$$\leq \int_{0}^{t} f^{*}\varphi Ddt$$
$$\leq \int_{0}^{t} \varphi M[f^{*}]dt + \int_{0}^{t} \varphi N[D]dt,$$

and hence

$$| \int_0^t fgdt | -\rho(f) \leq \int_0^t \varphi N[D]dt.$$

Thus we have

$$\sup_{f\in \Lambda(\varphi,\boldsymbol{u})}\left\{ + \int_0^t fgdt + -\rho(f)\right\} \leq \inf_{g^* \neq \varphi D} \int_0^t \varphi N[D]dt.$$

Hence

 $\overline{\rho}(g) \leq \tau(g).$

Now we shall show that $\overline{\rho}(g) = \tau(g)$ on $\overline{\Lambda(\varphi, M)}$. To show the result, we need some definitions. For a given g, g° is the smallest (in the sense of the relation \prec , see §1) function among the functions satisfying $g \prec h = \varphi D$ with a positive decreasing function D, and is called the *level function of g* with respect to φ . Lorentz has shown the following proposition [4; §3.6, Theorem 3.6.4].

PROPOSITION 2. Let g(t) be integrable and positive, and let D° be defined by $g^{\circ} = \varphi D^{\circ}$. For any $G(x) = \int_{0}^{x} g(t) dt$, the function $G^{\circ}(x)$ is also of the form $G^{\circ}(x) = \int_{0}^{x} g^{\circ}(t) dt$, $g^{\circ} \ge 0$. Then $G^{\circ}(x) = G(x)$ holds a. e. (consequently $g(t) = g^{\circ}(t)$ a. e.) except perhaps for the maximal intervals (a, b) of constancy of D; on each such interval $(a, b), \int_{a}^{b} g^{\circ} dt = \int_{a}^{b} g dt$.

Thus we obtain that for a given integrable function g the infimum of (3.1) is attained for $D=D^{\circ}$:

$$\inf_{\mathfrak{g}^*\prec\varphi D} \int_0^t \varphi N[D] dt = \int_0^t \varphi N[D^0] dt,$$

and hence

(3.4)
$$\tau(g) = \int_0^t \varphi N[D^0] dt.$$

Now we shall define the condition of N-function N(v) which is called (\overline{A}_{2}) -condition. There exist real number α , β ; $1 < \alpha < \beta$ and some v_{0} , such that

$$(3.5) N(\alpha v) \leq \beta N(v) for all v \geq v_0.$$

If the N-function M(u) satisfies the (\mathcal{A}_2) -condition, then it's complementary N-function N(v) satisfies $(\overline{\mathcal{A}_2})$ -condition. Moreover, we obtain that, if N-function satisfies $(\overline{\mathcal{A}_2})$ -condition, then there exists a constant $\hat{\sigma}(>1)$,

$$(3.6) vq(v) \le \delta N(v) for all v \ge v_0$$

THEOREM 5. Suppose that the N-function M(u) satisfies the (\mathcal{A}_2) -condition, then for $g(\in \Lambda(\varphi, \overline{M}))$,

 $\overline{\rho}(g) = \overline{c}(g).$

PROOF. Since $g^0 = \varphi D^0$ for g^* , in virtue of (3.4), we have

$$\int_0^t f^*g^*dt = \int_0^t f^*\varphi D dt.$$

(Because, for some function $f^* = q[D^0(t)]$ as f(t), on each the maximal interval (a, b) of constancy of D^0 , D^0 is constant, then $q[D^0(t)]$ is constant: otherwise, $g^* = g^0 = \varphi D^0$ a. e., then $f^*g^* = f^*\varphi D^0$.) In the Young's inequality for such f, the equality sign holds.

Therefore we have

$$\int_0^t f^*g^*dt = \rho(f) + \int_0^t \varphi N[D^0]dt;$$
$$+ \int_0^t fgdt + -\rho(f) = \tau(g),$$

i. e.,

$$\overline{\rho}(f) \geq \tau(g).$$

Now, we have from (3.6) and Young's inequality, for any f(=q[D]),

$$egin{aligned} &\int_{0}^{t} arphi M[f]dt = \int_{0}^{t} arphi D^{0}q[D^{0}]dt - \int_{0}^{t} arphi N[D^{0}]dt \ &\leq (\delta\!-\!1) \int_{0}^{t} arphi N[D^{0}]dt. \end{aligned}$$

Therefore there exists a function $f(=q[D^0])$ in $\Lambda(\varphi, M)$, and we obtain from Theorem 4, $\overline{\rho}(g) = \tau(g)$.

 $(\varphi N[D^{\circ}]$ is integrable whenever $\int_{0}^{t} f g dt - \rho(f)$ is bounded. Then $g(=\varphi D^{\circ}) \in \Lambda(\varphi, M)$. For the proof, see [6; p. 73-74].)

We denote the Banach dual of $\Lambda(\varphi, M)$, by $\Lambda^*(\varphi, M)$, consisting of all linear functionals $F_g(f) = \int_0^l f g dt$ defined on $\Lambda(\varphi, M)$. We introduce the norm $||g||_{(\bar{a})}$ of g, which is called *Orlicz norm* as follows;

$$\|g\|_{(\Delta)} = \sup_{\mu(f) \leq 1} |\int_0^t fg dt|.$$

Then we have [3; p. 80]

$$|||g|||_{\bar{A}} \leq ||g||_{\bar{A}} \leq 2 |||g|||_{\bar{A}}$$

Since the norm $||F_g||$ of the linear functional F_g is defined as

$$||F_{g}|| = \sup_{\|\|f\|_{\Delta} \leq 1} |\int_{0}^{t} fgdt |,$$

we obtain that the norm $|||g|||_{\overline{x}}$ on $\overline{\Lambda(\varphi, M)}$ is equivalent to the norm $||F_g||$ of the linear functional F_g on the Banach dual of $\Lambda^*(\varphi, M)$ (note that $|||f|||_{\lambda} \leq 1$, $\rho(f) \leq 1$). Therefore we have $\overline{\Lambda(\varphi, M)}$ is isomorphic to $\Lambda^*(\varphi, M)$. Then we obtain the following theorem.

THEOREM 6. If both the N-functions M and N satisfy (\mathcal{A}_2) condition, then $\Lambda(\varphi, M)$ is relexive as a Banach space.

38

PROOF. From the definition of $\rho(g)$

$$\sup_{\mathbf{g}\in \overline{\mathbf{A}}(\sigma,\mathbf{d})}\left\{ \mid \int_{0}^{t} fgdt \mid -\overline{\rho}(g) \right\} \leq \rho(f).$$

Here, for some f(=p[D]) [12; Theorem 2.5],

$$\sup_{\mathbf{g}\in \overline{\Lambda(\varphi,\mathbf{M})}}\left\{ + \int_{0}^{t} f g dt + -\overline{\rho(g)}\right\} = \rho(f).$$

Hence we have $\overline{\Lambda(\varphi, M)} = \Lambda(\varphi, M)$. Since

$$\Lambda(\varphi, M) = \Lambda^*(\varphi, M),$$

we have

$$\Lambda^{**}(\varphi, M) = \overline{\Lambda(\varphi, M)}^* = \Lambda(\varphi, M) = \Lambda(\varphi, M).$$

Thus we obtain our assertion.

References

- 1. I. Amemiya, A generalization of Riesz-Fischer's theorem, J. Math. Soc. Japan 5 (1953), pp. 353-354.
- 2. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambrige (1934).
- 3. I. Halperin, Function space, Proc. Interrant Sympos. Linear Space. Jerusalem (1960), pp. 273-288.
- 4. I. Halperin and W A. J. Luxemburg, The Riesz-Fischer completeness theorem for function spaces and vector lattices, Trans. Royal Soc. of Canada 50 (1956), pp. 33-39.
- 5. M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Russian scientific books, Gronigen (1961).
- 6. G. G. Lorentz, Bernstein polynomials, Tronto (1953).
- 7. —, On the theory of space A, Pacific J. Math. 1 (1951), pp. 411-429.
- 8. ----, Some new functional spaces. Ann. of Math. 2-51 (1951), pp. 37-55.
- 9. W. A. J. Luxemburg, Rearrangement-invariant Banach function spaces, Queen's papers in pure and applide mathematics 10 (1967), pp. 83-144.
- M. Miyakawa and H. Nakano, Modulars on semi-orderd linear space I, J. Fac. Hokkaido Univ. 13 (1956), pp. 41-53.
- 11. H. Nakano, Generalized modular space, Studia Math. 31 (1963), pp. 439-449.
- 12. ----, Modulard linear spaces, J. Fac. Sci. Univ. Tokyo 6 (1951), pp. 85-131.
- 13. A. C. Zaanen, Integration, Amsterdam (1967).