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On A(co, M)-spaces

KOji NAKAMURA*

1. Introduction and Preliminary. In 1951, G. G. Lorentz [7] has 

introduced a class of function spaces called A-spaces. Let go(t) be a

positive integrable and almost everywhere equivalent to a non-in-

creasing function defined on (0, 1), l<•‡. For a measurable func-

tion f, we denote by f*, the decreasing (truely, non-increasing)

rearrangement of f [2 ; p. 260-299], [6 ; p. 60]. It is defined as

follows. Let ƒÊf(a) be the Lebesgue measure of the set {t : •bf(t)

>a} for any real number a. Then ƒÊ(a) is right-continuous, i. e.,

lim ƒÊf(a,) =ƒÊf(a). Now we define the function f*(x) as the right-
ua.a

inverse of ƒÊf(y), i. e.,

(1.1)

The space A(ƒÕ, p), p>i is the set of all measurable functions f.

We shall define the norm •a f •a , such that

(1.2)

Then, A(ƒÕ, p) equipped with the norm •a• •a defined by (1.2), is

a reflexive Banach space where 1<p<•‡[7].

Hence we can regard as the p-th power of function is a convex 

on the positive real line. Now let M(u), 0<u<•‡ be a N-function,

ƒÕ be as above, and for a measurable function f we put

(1.3) 

In this paper, we shall discuss with a class A(ƒÕ, M), which extends

that of the spaces A(ƒÕ, p), where the function M(u) is a N-function

in the sense [5 ; p. 6]. The set A(ƒÕ, M) of all f with ƒÏ(a f)<•‡

for some a>0 is a modular space and ƒÏ is a modular on A(ƒÕ, M)
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in the sense of Nakano [12], i. e.,

(1.4) A(ƒÕ, M)={f: p(a f)<•‡, for some a>0}.

In ƒÌ2, we shall show that A(ƒÕ, M) is a modular space and a

Banach space with the norm which is induced by the modular (1. 3).

In ƒÌ3, we shall treat with the dual space A*(ƒÕ, M) of A(ƒÕ, M) and

show that the spaces A(ƒÕ, M) are reflexive if M and N, the dual of

M, satisfy (•¢2) and (•¢2)-condition, generalizing the Theorem 4 in [7 ;

p. 417].

For two measurable functions f and g, if they are equimeasur-

able to each other, i. e., p,(a)=ƒÕg(a), then we write f•`g.

For two measurable functions f and g defined on (0, 1), f< g

means that f: f *dt < fog*dt for all x with 0<x<1.

Here we present several basic properties about f* and the pre-

order "<".

(1. 5)

In fact, the equivalence of left hand side is obvious from the defini-

tion. For the proof of right hand side, see [7; p. 414].

Furthermore if ƒÕ(t) is positive decreasing, then

(1. 6)

For the proof, see [7 ; p. 414]. Also we have

(1.7)

Because,  

 (ƒÕ : Lebesg

rue measure)

Also we have
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(1.8) f g<f *g*.

For the proof, see [2; p. 278] or [9; p. 102]. Since M is a convex

function, we obtain 

(1. 9) M[(af +ƒÀg)*] <aM[f*]+ƒÀM[g*], where a•„0,ƒÀ•„0,

a+ƒÀ=1, by (1.5) and (1.7).

2. The spaces .A(ƒÕ, M). Let M(u) be a N-function [5; p. 6],

that is, there exist a function p(t) which is right-continuous and

positive non-decreasing such that p(0)=0 and

THEOREM 1. A(ƒÕ, M) is a modular space with the modular p.

PROOF. First A(ƒÕ, M) is a linear space. For any f, g A(ƒÕ, M),

for a0=2max(a, ƒÀ). We can see that p(a0f), p(a0g)<oo for f and

g. Therefore A(ƒÕ, M) is linear.

The following properties are easily shown from the definition of

ƒÏ.(ƒÏ. 1) 0<p(f) <•‡(for any measurable function f), and p(•bf•b)=

p(f) and ƒÏ(0)=0;

(ƒÏ. 2) For any f F A(cp, M), and a positive real number a, ƒÏ(af )<

•‡; 

(ƒÏ. 3) ƒÏ(a f)=0, a•„0, then f=0 a. e.;

(ƒÏ. 4) If •bf •b < •b g •b , then p(f) < ƒÏ(g) (monotone) ;

(ƒÏ. 5) a>0, 3>0, a+ƒÀ=1, then ƒÏ(af+ƒÀg)<ap(f)+ƒÀp(g),

(convex);

(ƒÏ. 6) 0<fn ' f, then p(f)=sup p(fn) (upper semi-continuous).

To see (ƒÏ. 6) we used the fact that 0<fn, •ª f implies fn* •ª f*. Thus

we conclude our assertion.

Here, M is called to satisfy the (•¢2)-condition, if there exist a

constant ƒÁ and some u0>0, such that

(2. 1) M(2u)<ƒÁM(u) for all u>uo.
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Then we define a class A0 (ƒÕ, M) of all measurable functions f that

p(f)<•‡, i. e.,

(2.2)

THEOREM 2. If M satisfies (•¢2)-condition, then A0(ƒÕ, M)=

A(ƒÕ, M).

PROOF. We have always Ao(ƒÕ, M)•¼A((ƒÕ, M). Since, for any f

_??_ A(ƒÕ, M), then p(1/2 f)<•‡. Thus we have

Therefore we conclude our assertion.

Further p(f) satisfies some properties as follows. A modular ƒÏ on

A(ƒÕ, M) is said to be lower semi-additive,

(2.3)

In fact, since sup{f*, g*} <(f+g)* with the preorder <, then we

have our assertion.

Furthermore, by (ƒÏ.5), ƒÏ(a f) is a convex function of a for

each f, i. e.,

(2. 4)

Now we can define the norm of f(E A(ƒÕ, M)) which is called

Luxemburg norm, as follows:

(2. 5)

Then, it is known that (2. 5) satisfies the norm condition. This

norm (2. 5) obviously satisfies the following :

(2. 6)

(2. 7)
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We can see from the definition that is equivalent to

p(f)<1.

THEOREM 3. A(ƒÕ, M) is a Banach space with the induced

norm (2. 5) by the modular ƒÏ(f).

PROOF. We shall show the completeness. By (2.7), we obtain

the property that is called to be monotone complete (the weak

Fatou property) in the sense of Amemiya.

0<fn j f, sup III fn III <oo f E A0p, M),

and hence A(ƒÕ, M) is complete by the theorem in [4].

3. The reflexivity of the space A(ƒÕ, M). First we shall construct

the dual space of A(ƒÕ, M). Let N(v) be the N-function complemen-

tary to M(u) in the sense of Young [5 ; p. 11]. That is to say, the

function q(s) is the right inverse of p(t) which is defined by the

equality :

Then we have

 Next we shall give some definitions and propositions which will 

be needed in the sequel. Now, let, where g(t) is

integrable and positive on (0, 1), and ƒÓ(x)=_??_ƒÕ(t)dt, 0<x<•‡. The

function G(x) is said to be y-concave, if

Lorentz [6 ; ƒÌ3. 6, Theorem 3.6. 3] has shown the following proposi-

tion. 

PROPOSITION 1. The function G(x)=•ç0xg(t) dt is ƒÕ-concave if

and only if g(t)=ƒÕ(t)D(t) a. e., where D(t) is a positive decreas-

ing function.

We define for each measurable function g(t),

(3. 1)
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where the infimum is taken for all decreasing positive functions

D(t) for which g*<ƒÕD. 

The conjugate modular p [12 ; p. 92] of p, is defined by

(3.2)

for any measurable function g. We consider the dual space of

A(ƒÕ, M), denoted by A(ƒÕ, M), as follows :

(3. 3) A(ƒÕ, M)= {g: ƒÏ(ag) •ƒ•‡ for some a•ƒ0, and g is meas-

urable} .

Then A((ƒÕ, M) is also a modular space.

THEOREM 4. For each , we have p(g)<r(g).

PROOF. By Young's inequality and (1. 8), we have, for any de-

creasing positive function D with g*<ƒÕD,

and hence

Thus we have

Hence

Now we shall show that p(g)=r(g) on A(ƒÕ, M). To show the

result, we need some definitions. For a given g, g0 is the smallest

(in the sense of the relation <, see ƒÌ1) function among the functions

satisfying g<h=ƒÕD with a positive decreasing function D, and is

called the level function of g with respect to ƒÕ. Lorentz has shown

the following proposition [4 ; ƒÌ3.6, Theorem 3. 6. 4].
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PROPOSITION 2. Let g(t) be integrable and positive, and let

D0 be defined by g0=ƒÕD0. For any G(x)=•ç0xg(t)dt, the function

G0(x) is also of the form G0(x)=•ç0xg0(t)dt, g0•†0. Then G0(x)=

G(x) holds a. e. (consequently g(t)=g0(t) a. e.) except perhaps

for the maximal intervals (a, b) of constancy of D; on each

such interval (a, b), •ça0g0dt=fagdt.

Thus we obtain that for a given integrable function g the in-

fimum of (3.1) is attained for D=D0:

and hence 

(3. 4)

Now we shall define the condition of N-function N(v) which is

called (•¢2)-condition. There exist real number a, ƒÀ; 1<a<p and

some v0, such that

(3. 5)

If the N-function M(u) satisfies the (•¢2)-condition, then it's 

complementary N-function N(v) satisfies (•¢2)-condition. Moreover, 

we obtain that, if N-function satisfies (•¢2)-condition, then there

exists a constant 3(>1), 

(3. 6)

THEOREM 5. Suppose that the N-function M(u) satisfies the

(•¢2)-condition, then for g(_??_ A(ƒÕ, M)),

p(g)=-(g). 

PROOF. Since g0=ƒÕD0 for g*, in virtue of (3. 4), we have

(Because, for some function f*=q[D0(t)] as f(t), on each the

maximal interval (a, b) of constancy of D0, D0 is constant, then

q[D0(t)] is constant: otherwise, g*=g0=ƒÕD0 a. e., then f*g*=

f*ƒÕD0.) In the Young's inequality for such f, the equality sign holds.
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Therefore we have 

i. e.,

Now, we have from (3. 6) and Young's inequality, for any f(=

q[D]),

Therefore there exists a function f(=q[D0]) in A(cp, M), and we

obtain from Theorem 4, ƒÏ(g)=r(g).

(ƒÕN[D0] is integrable whenever is bounded. Then

g(=ƒÕD0) _??_ A(ƒÕ, M). For the proof, see [6 ; p. 73-74].)

We denote the Banach dual of A(ƒÕ, M), by A*(ƒÕ, M), consisting 

of all linear functionals Fg(f) =•çofgdt defined on A(ƒÕ, M). We 

introduce the norm II g II c>; of g, which is called Orlicz norm as

follows ;

Then we have [3 ; p. 80] 

Since the norm •aFg•a of the linear functional Fg is defined as

we obtain that the norm •a g •a s on A(ƒÕ, M) is equivalent to the norm 

•a Fs •a of the linear functional Fg on the Banach dual of A*(ƒÕ, M) 

(note that •a f •a . Therefore we have A(ƒÕ, M) is iso-

morphic to A*(ƒÕ, M). Then we obtain the following theorem. 

THEOREM 6. If both the N-functions M and N satisfy (d2)-

condition, then A(ƒÕ, M) is relexive as a Banach space.
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PROOF. From the definition of ƒÏ(g)

Here, for some

Hence we have  Since

we have

Thus we obtain our assertion.
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