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On A(¢, M)-spaces
Ko6ji NAKAMURA*

1. Introduction and Prelimlnary. In 1951, G. G. Lorentz [7] has
introduced a class of function spaces called A-spaces. Let ¢(#) be a
positive integrable and almost everywhere equivalent to a non-in-
creasing function defined on (0, /), /[<o:. For a measurable func-
tion f, we denote by f*, the decreasing (truely, non-increasing)
rearrangement of f [2; p. 260-299], [6; p. 60]. It is defined as
follows. Let p,(a) be the Lebesgue measure of the set {f:| fF(&) |
>a} for any real number a. Then g/(a) is right-continuous, . e.,
lairPa p(a)=p(a). Now we define the function f*(x) as the right-

inverse of p(y), i. e,
an fF)=inf{y: p () <x}.

The space A(y, p), p>1 is the set of all measurable functions f.
We shall define the norm || f I, such that

1.2) nfin={ S:¢(t>f*(t>”dt};<oo.

Then, A(¢, p) equipped with the norm ||« defined by (1.2), is
a reflexive_ Banach space where 1< p<oo[T7].
Hence we can regard as the p-th power of function is a convex

on the positive real line. Now let M(#), 0<u<oc be a N-function,
¢ be as above, and for a measurable function f we put

(1.3 o= [ eoMirwiar.

In this paper, we shall discuss with a class A(¢, M), which extends
that of the spaces A(¢, p), where the function M(«#) is a N-function

in the sense [5; p. 6]. The set A(p, M) of all f with p(a f)<co
for some a>0 is a modular space and p is a modular on A(p, M)
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in the sense of Nakano [12], i. e.,
1.9 ACp, MD)={f: p(a f)< oo, for some a>0}.

In §2, we shall show that A(e, M) is a modular space and a
Banach space with the norm which is induced by the modular (1.3).
In §3, we shall treat with the dual space A*(p, M) of Ay, M) and
show that the spaces A(p, M) are reflexive if M and N, the dual of
M, satisfy (4,) and (4,)-condition, generalizing the Theorem 4 in [7;
p. 417].

For two measurable functions f and g, if they are equimeasur-
able to each other, i. e, p(a)=pg,(a), then we write f~g.

For two measurable functions f and g defined on (0, 1), f<g

means that [, f*d¢< [, g*dt for all x with 0<x<l.

Here we present several basic properties about f* and the pre-
order “<<”,
1.5 Lge=r*<g*—=M[ f*] <M[g*].

In fact, the equivalence of left hand side is obvious from the defini-
tion. For the proof of right hand side, see [7; p. 414].
Furthermore if ¢(#) is positive decreasing, then

1.6) [*<g*==eM[ f*]<oM[g*].
For the proof, see [7; p. 414]. Also we have
1.7 (f+e)*<f*+g*

Because,

S:(f+g>*dt=sgp S | ftg ) (Ddt

ple)=x

(# : Lebesgue measure)

<sup S( L f@ 1L+ 1 g) |1 )dt
<sup S P ()| dt+51¢1p Sg | g(t) | dt

< S”f*dt+ Szg*dt.
0 0

Also we have
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(1.8 f e<rrg*.
For the proof, see [2; p. 278] or [9; p. 102]. Since M is a convex
function, we obtain
1.9 M[(a f+B g)*]<aM[f*]+5 M[g*], where a -0, 5.0,
a+3=1, by (1.5) and (1.7). ’

2. The spaces A(¢, M). Let M(u) be a N- function [5; p. 6],

that is, there exist a function p(¢) which is right-continuous and
positive non-decreasing such that p(0)=0 and

M(u)= S:p(t)dt, 0<u- oco.

THEOREM 1. \(¢, M) is a modular space with the modular p.

Proor. First \A(¢, M) is a linear space. For any f, g< \A(p, M),

oaf+3g)<o( 5 alf +8))

<5 (otas) +o@e) )

for a,=2max(a, ). We can see that p(a,f), p(a,g)<oo for f and
g. Therefore A(¢, M) is linear.

The foliowing properties are easily shown from the definition of
p- ‘
(p. 1) 0<p(f)<oo(for any measurable function f), and p( | f | )=
p(f) and p(0)=0; g
(p. 2) For any f € A(e, M), and a positive real number a, p(a f)<
oo
(0. 3) plaf)=0, a_0, then f=0 a. e.;
(p. ) If 1 f1<1g]l, then p(f)<p(g) (monotone);
(p. 5) a=0, 3>0, a+;5=1, then o(af+3g)<ap(f)+pBp(g),
(convex) ;

(p. 6) 0<f,.* f, then po(f)=sup o(f,) (upper semi-continuous).

To see (p. 6) we used the fact that 0<f, 1 f implies f,** f*. Thus
we conclude our assertion.

Here, M is called to satisfy the (4,)-condition, if there exist a
constant y and some #,>0, such that

@.n MQu)<yM(u) for all u>u,.
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Then we define a class A, (¢, M) of all measurable functions f that
e(fI<oo, i. e,

2.2) AyCp, MD={f: p(f)<oo}.

THEOREM 2. If M satisfies (4,)-condition, then A (o, M)=
Ay, M).

Proor. We have always A,(¢, M) A(p, M). Since, for any f

€ A(p, M), then p<é~ f> <oo. Thus we have
o< {oMLr*lat
oo

=rp<%f><°°,

A, M).
Therefore we conclude our assertion.

Further p(f) satisfies some properties as follows. A modular p on
A(p, M) is said to be lower semi-additive,

.3 e(fU<p()+p(g) for 0K f, g€ Alp, M).

In fact, since sup{f*, g*} <(f+g)* with the preorder <, then we
have our assertion.

Furthermore, by (p.5), p(a f) is a convex function of a for
each f, i. e,

2.4 o(“5E f) < (otar+ocee)),

Now we can define the norm of f(€ A(p, M)) which is called
Luxemburg norm, as follows:

2.5) il £l =inf{e: p(»f—) <1, £>0}.

Then, it is known that (2.5) satisfies the norm condition. This
norm (2.5) obviously satisfies the following :

2.6) [ fI<igl=mfmsmgl;

2.7 OLZful fMLN T L.
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We can see from the definition that III fll <1 is equivalent to
e(HHLL

TaeoreEM 3. A(e, M) is a Banach space with the induced
norm (2.5) by the modular p(f).

Proor. We shall show the completeness. By (2.7), we obtain
the property that is called to be monotone complete (the weak
Fatou property) in the sense of Amemiya.

0<fa 1 f, suplll folll <co=>f € A, M),
and hence A(p, M) is complete by the theorem in [4].

3. The reflexivity of the space A(¢, M). First we shall construct
the dual space of A(p, M). Let N(v) be the N-function complemen-
tary to M(x#) in the sense of Young [5; p. 11]. That is to say, the
function ¢(s) is the right inverse of p(#) which is defined by the
equality :

q(s):sgp t 0<s< 0.
p(t <s

Then we have
N()= S:q(s)ds, 0< v 0.
Next we shall give some definitions and propositions which will
be needed in the sequel. Now, let G(x)=J  g(#)dt, where g(t) is
integrable and positive on (0, [), and @(x) =, ¢($)dt, 0<x<oo. The

function G(x) is said to be ¢-concave, if

Gx)—G(a) L. GB)—G(a)
B —0(a) = O(B)—0(a) ' ¢ F<P

Lorentz [6; §3.6, Theorem 3.6.3] has shown the following proposi-
tion.

PropoSITION 1. The function G(x):f:g(t)dt is p-concave if

and only if g(X)=p(@)D() a. e., where D(t) is a positive decreas-
ing function.

We define for each measurable function g(?),

@D “@)=int{ | oNTDYa1),

35
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where the infimum is taken for all decreasing positive functions
D(t) for which g*< ¢D.
The conjugate modular p [12; p. 92] of p, is defined by

3.2) s=sup | |  reat| -l

TEate, A
for any measurable function g. We consider the dual space of
A(¢, M), denoted by A(¢, M), as follows:

3.3 Ale, MD={g: p(&g) “oo for some a- 0, and g is meas-
urable}.

Then A(y, M) is also a modular space.

Proor. By Young’s inequality and (1.8), we have, for any de-
creasing positive function D with g*<eD,

{ 11
| ngdt | < Sf*g*dt
0 o

IA

Sl FroDdt
L]

< {omrraat+ (oniorar,
and hence
| S:fgdt | —ocr)< [ oNrDrat

Thus we have

sup {1 { 7eat1 —ocpl< int (onrpyar

fea(o, M)
Hence

p(&)<7(g).

Now we shall show that p(g)=r(g) on Ay, M). To show the
result, we need some definitions. For a given g, g° is the smallest
(in the sense of the relation <, see §1) function among the functions
satisfying g<h=¢D with a positive decreasing function D, and is
called the level function of g with respect to ¢. Lorentz has shown
the following proposition [4; §3.6, Theorem 3. 6. 4].
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ProrosiTIiON 2. Let g(t) be integrable and positive, and let
D° be defined by g'=¢D". For any G(x)={, g(t)dt, the function
G*(x) is also of the form G(x)=f g'()dt, g'>0. Then G(x)=
G(x) holds a. e. (consequently g(#)=g°(t) a. e.) except perhaps

for the maximal intervals (a, b) of constancy of D; on each
such interval (a, b), ng°dt:J‘:gdt.

Thus we obtain that for a given integrable function g the in-
fimum of (3.1) is attained for D=D";

inf SL<pN[D]dt: S'¢N[D°]dt,
1] 0

c*i9h

and hence
3. 4) (@)= S:¢N[D°]dt.

Now we shall define the condition of N-function N(») which is
called (4,)-condition. There exist real number a, B; 1<a<B and
some v,, such that

@3.5) N(a v)<BN(v) for all v>v,.

If the N-function M(u) satisfies the (4,)-condition, then it’s
complementary N-function N(v) satisfies (4,)-condition. Moreover,
we obtain that, if N-function satisfies (4,)-condition, then there
exists a constant (1),

3.6) vq(v) <iN(v) for all v>v,.
THEOREM 5. Suppose that the N-function M(u) satisfies the
(d,)-condition, then for g(€ \(¢, M)),
(@) =:(g.
Proor. Since g°=¢D° for g*, in virtue of (3.4), we have

13
Sf *g*dt— S' FD dt.
(1] 0

(Because, for some function f*=¢q[D°(¢)] as f(¢), on each the
maximal interval (e, b) of constancy of D° D°is constant, then

q[D°(#)] is constant: otherwise, g*=g°=¢D° a. e., then f*g*=

f*¢D’.) In the Young’s inequality for such £, the equality sign holds.
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Therefore we have

([ rrerar=ocrr+ ontprar;

 (reati —ocn=co,

o(f)=1(g).
Now, we have from (3.6) and Young’s inequality, for any f(=

q(DD,

S;SDM[f]df: S;¢D°q[D°]dt_ S;'PN[D"]dt

<G-1) S;wN[D"]dt.

Therefore there exists a function f(=¢[D]) in A(e, M), and we
obtain from Theorem 4, p(g)=1(g).

(pN[D"] is integrable whenever [ fgdt—p(f) is bounded. Then
g(=¢eD") € A(p, M). For the proof, see [6; p. 73-74].)

We denote the Banach dual of A(e, M), by A*(p, M), consisting
of all linear functionals F.(f)=/, fgdt defined on A(p, M). We
introduce the norm |l gl &;0f g, which is called Orlicz norm as
follows;

!
Il g Il o,=sup | S fegdti.
(N 0
Then we have [3; p. 80]

Mghs<Nghe<2itgs .

Since the norm |l F,|| of the linear functional F, is defined as

13
| Fell =sup | Sofgdt [

lirita<t

we obtain that the normlil g Il on Ay, M) is equivalent to the norm
I| Foll of the linear functional F; on the Banach dual of A*(y, M)
(note that Il fIl.<12p(f)<1). Therefore we have ACp, M) is iso-
morphic to A*(e¢, M). Then we obtain the following theorem.

THEOREM 6. If both the N-functions M and N satisfy (4,)-
condition, then A(p, M) is relexive as a Banach space.
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Proor. From the definition of p(g)

Sup{ | S:fgdt | —;(g)}SO(f).

gfa(v, M)

Here, for some f(=p[D]) [12; Theorem 2.5],

supl 1 (' reat 1 —orf=o0n.

g€ale. M)
Hence we have A(p, M)=A(¢, M). Since
Ay, M)=M\*(p, M),

we have

A**(p, M)=A(g, MY =A(¢c, M)=A(p, M).

Thus we obtain our assertion.
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