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Fabrication and Characterization of HigGh-SQUID
Magnetometer With Damping Resistance

M. Matsuda, T. Otowa, T. Matsuura, S. Kuriki, Y. Kawaguchi, and K. Takahashi

Abstract—Effects of damping resistance on current versus I L/2 ?Ib L/2 I
voltage (I-V)) characteristics for high-T. superconducting ! 2
quantum interference devices (SQUIDs) were studied. In the
transverse-type SQUID with coplanar strip lines, parasitic capac-
itance originating from the large dielectric constant of SrTiOs
substrates can induce resonance structures of-V curves and
degrade the modulation voltage. In our simulations, it is shown
that the modulation voltage is much improved by using damping
resistance. However, the obtained experimental results for our
SQUIDs with Au damping do not agree well with those in the
simulations. The discrepancy is likely due to existence of the large

contact resistance between Au and YB&Cu; Oy _s films. Icsin 01
Index Terms—bamping resistance, modulation voltage, reso-
nance phenomena, SQUIDs. 1
I. INTRODUCTION Fig. 1. Anequivalent circuit of a transvers-type SQUID by lump components.

N fabricating grain boundary junctions, SrHQSTO) has \yhere,;n = 1,3, 5, . ... One of the solutions to avoid resonance
I beenwidely used as a substrate for ¥Ba;O7 s (YBCO)  and to improveAV is the use ofLaAlOs]o 5[SK{AI, Ta)Os]o.7
film deposition, though it has large dielectric constant,= (| _SAT) substrates with low permittivity [2]. However, it is cur-

1930 [1] at 77 K. This high permittivity was not thought torently very difficult to purchase LSAT bicrystal substrates.
bring about serious problems in superconducting quantum in-

f devi SOUIDS) wh he f ‘3 h We studied the effect of the damping resistance that exists
ter erence | ewce;( QUIDs) where the requency of JoSepnsAfialiel to the inductance of the SQUID in a distributed manner,
oscillation is relatively low. However, for the practical SQUI

o i . using both analytical and experimental methods. It has been al-
with inductance formed by a pair of coplanar lines, the resps dy reported that degradation¥” due to large SQUID in-

nfm%e. phe:flortnenon taI:_es place a;tﬁ_refﬁlt gfrt(;lebfot\rll\'lnatlot Qttances can be recovered when the damping resistance, which
standing electromagnetic waves within the etween eregarded as a lump component, is introduced [3]-[5]. In this

strips. The resonance can induce some changes in the curr Qb’er, first, we show results of numerical simulations for the
voltage (-V) characteristics of the SQUID such as the occu amping effect by a lump circuit model. Next, experimental re-

rencelo;tr(ll)e C:_?SSO\(/I)er _strtl;ctuf:e betwe?n th?rﬁurveg)aand ults for YBCO SQUIDs with the Au damping resistance are
(n + 1/2),. Here,®, is the flux quantum. The presence o hown. Finally, we discuss the effect of contact resistance be-

this structure can degrade the modulation voltae,, .Of the tween Au and YBCO by using results of analytical calculations
SQUID. Especially for the transverse-type SQUID with a Ionﬁg a distributed impedance circuit model

hole parallel to the bicrystal line and junctions at each end of t
hole, the resonance voltadé,, is calculated [1] in terms of,.,

- : . [I. LUMP MODEL SIMULATION
Dy, strip line length of, velocity of light of ¢, and the number

for flux quanta ofn, using the following two relations: In this model, inductance, capacitance, and resistance are re-
garded as the lump components in the equivalent circuit for the
=P fornd, transverse-type SQUID shown in Fig. 1. Hef&, represents
V. = 2 Ve (1) a parasitic capacitance component between strip linesRand

{01 for (7’L + %) {01

41/ tL is a damping resistancé,, are noise currents with Gaussian

random variables due to the thermal noise associated with the

Manuscript received August 6, 2002. resistances. We derived the set of equations describing time-de-
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Fig. 4. I-V characteristics of fabricated SQUIDs without and with damping

. . . resistance for different Au film thickness.
Forthe SQUID with resistanc&,;, parallel to the inductance,

L, the resonant current is damped depending on the vallig.of

It can be seen that a crossover point of the fsld curves shifts more than 80% is obtained [7]. Au films left only on the YBCO

to a higher voltage region with decreasingof values. Even strip lines by wet etching using Kl solution act as the damping
the relatively large damping resistand®;, of 24 Q, which is resistance. In this shape, a Au thickness of 10, 100, and 200 nm
two times larger than the junction resistandg,, is effective corresponds to the value of the damping resistaRgeof 27.1,

for the improvement oA V. 3.3, and 1.4, respectively.

Fig. 4 shows the-V characteristics of fabricated SQUIDs
without and with damping resistance for different Au film thick-
nesses. In the case of the SQUID without damping resistance,

The SQUID magnetometers are prepared freraxis the curves exhibit multiple steps clearly due to the formation of
oriented YBCO films. A 150 nm thick film of YBCO and higher modes standing electromagnetic waves. Observed volt-
a 10-200 nm thick film of Au were deposited sequentiallpges at the firstf = 1) steps fom®, and(n + 1/2)®, agree
without breaking vacuum by a pulsed laser deposition onveell with the calculated values fdr, of 172 and 86uV by
10 mmx 10 mm STO bicrystal substrate with a misorientatiofil). For the SQUID with damping resistance, contrary to re-
angle of 30. They show a transition temperature of 89 K and sults of the lump model simulation, a significant shift of the
critical current density at 77 K exceeding@0® A /cm? except  crossover point was not observed throughout this region of Au
at the grain boundaries. Measured resistivity of our Au film dhickness. Measured values Af” for each SQUID are listed
77 Kwas around 1.2 - cm. The films were patterned to formin Table I. For comparison, the expected values for SQUIDs
the magnetometer geometry illustrated in Fig. 3 by Ar ion beawithout damping resistance given by Enpual. in [8]:
etching and standard photolithography. The transverse-type
SQUID has two parallel strips of bm width and a long hole 4 I.R, ~3.51%kpTL
parallel to the bicrystal line. The hole length and width are AVear = T1+ 0L eXp( P32 )
58-70 and 1Qum, respectively. The 1.5-2/&m wide bridges
including grain boundary junctions are located at the both sidase also shown in this Table. The ratio &V to AV,
of the hole. Two separate pickup coils are connected to tl%0.4-0.7 and is independent of the value of the damping
right and left ends of the upper and lower strips in order to fornesistance. Hence we cannot confirm any suppression of the
the direct-coupled scheme. In this geometry, high coupling afsonance phenomenon.

Ill. EXPERIMENTAL RESULTS

®3)
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IV. DISTRIBUTED IMPEDANCE MODEL ANALYSIS (a) (b)

Obtained experimental results for the SQUIDs with AlI’—lig. 7. Calculated (a) and measured {b) characteristics of a SQUID with
damping do not agree well with those in the lump modebo nm thick Au damping resistance. Curves in (a) at low voltage region are
simulations. One of the possible reasons for the discrepancyikn by lump model simulations.
the existence of the inductance component for the Au damping
resistor, and contact resistance between Au and YBCO filmis; = 1.12 pH/um, C; = 11.26 fF/um, Lq4; = 0.43 pH/um,
Both of them were not taken into account in the simulation armhd T = 77 K. It is shown that multiple crossover structure
could exist in a distributed manner. In our previous study [9%n the /-V characteristics are expressed by the distributed
we showed that thé-V characteristics and their change witimpedance model. Especially for the SQUID without damping,
applied flux can be calculated analytically if the impedanagalculated curves can be well fitted to the experimental re-
function of the SQUID can be expressed with a four termingllts shown in Fig. 4 except for the very low voltage region.
network circuit. The main cause of the deviation in this region is the strong

Fig. 5 shows the equivalent circuit of the transverse-typ®nsinusoidal behavior of the Josephson oscillation at low
SQUID including the distributed impedance of coplanar strigoltages, which is neglected in the sinusoidal approximation
lines. Here L; andC; represent an inductance and a capacitangethe present analytical calculation. With the decrease of the
per unit length for the strip lines, respectivellyy; andL,; are a damping resistance values, we can also see considerable shifts
damping resistance including contact resistance for Au/YBC@& the crossover point to higher voltages as shown in Fig. 6.
and an inductance component for Au damping layer per unitlf we introduce an extremely larger value f&;; than the
length, respectively. We assumed the contact resistance betwirshassumption of 5 10~% Q-cn?, the calculated results of the
Au and YBCO films deposited by in-situ process to be aboanalysis will drastically change. The largBy; by two orders
5x1072 Q-cn? [10], [11]. The Josephson currents of junctionsf magnitude could weaken the damping effect and explain the
in the voltage states are simplified to a sinusoidally oscillatirexperimental results. Whereas the lafgg works in the sim-
rf currents, on which the dc supercurrent is superimposed. Tiker way, it is not likely that thd.4; value is larger by two orders
applied flux is expressed as a phase difference between the tionagnitude than that estimated from the geometry. Fig. 7(a)
rf currents. Time-dependent voltages across the junctions al®ws the calculatefi V' curves for a SQUID with contact re-
determined from the interaction of rf currents after modificasistance of 2.310 " Q - cm?. The other parameters are as fol-
tion by the complex impedance between two junctions. Fig.léws; strip line length of 58:m, Au film thickness of 200 nm,
shows the calculateftV' curves of SQUIDs without and with R,,/2 = 4 Q, 21, = 17.6 pA, L = 70 pH, L; = 1.12 pH/um,
damping resistance for different Au film thicknesses. Here, we; = 13.36 fF/um, Ly, = 0.43 pH/pm, andT = 77 K. At
assumed the strip line length of 58n. The other parameterslow voltage region near the supercurreft)’ curves are re-
are as followedR,,/2 = 6 Q, 2I. = 32 uA, L. = 73 pH, placed by the results given by a lump model simulation. The
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measured results for a SQUID with a 200 nm thick Au damping [2] M. Matsuda, S. Ono, K. Kato, K. Yokosawa, H. Oyama, and S. Kuriki,
resistance are also shown in Fig. 7(b) for comparison. Charac-

teristics obtained by the analytical calculation agree reasonab

ly

with the experimental results. The contact resistances betweels!
Au/YBCO films deposited by in-situ and ex-situ processes were

reported to be about 18 Q-cm? and 10°° Q-cn?, respectively
[10], [11]. Our assumption of 2.810°'Q - cn? lies between

(4]

two extremes. Up to now, we can only confirm that the contact

resistance in our Au/YBCO film interface is at least lower than
3x107° Q- cn?. It seems to be important to evaluate the con-
tact resistance value precisely and reduce it.

V. CONCLUSION

(3]

(6]

We studied the effect of the damping resistance existing par7]
allel to the inductance of the SQUID in a distributed manner,

analytically and experimentally. Characteristics obtained by the
analysis calculation agreed reasonably with the experimental re-

sults when we took account of the considerably large contact

resistance around I0 Q - cm? between Au and YBCO films.
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