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Solvable Irregular Dynamics in One-Dimensional Quantum Graph

Pavel Hejč́ık and Taksu Cheon
Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502, Japan

(Dated: February 10, 2005)

We show that the solvable quantum motion of a particle on a one-dimensional line with Fülöp-
Tsutsui point interactions exhibits characteristics usually associated with nonintegrable systems
both in bound state level statistics and scattering amplitudes. We argue that this is a genuine sign
of the existence of stochastic dynamics which persists in classical domain.

PACS numbers: 03.65.-w, 73.21.Hb, 05.45.Mt
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The advancement in nano-engineering in the last
decade has brought novel incentives to the study of
low-dimensional quantum systems with geometrically de-
signed forms that have no counterpart in nature. The
quantum graph, which is a generic one-dimensional
model of nano-device composed of quantum wires, repre-
sents one of such systems [1]. The interest to the quan-
tum graph is enhanced with its possibility to emulate the
two-dimensional system of quantum billiard [2], whose
solution has required rather extensive numerical treat-
ments. It is therefore quite appropriate, at this point, to
investigate generic aspects and general features of quan-
tum graphs ahead of detailed studies of specific models
of nano-devices.

In a parallel development, quantum graphs have been
used as a tractable model for the study of quantum chaos,
or the irregular aspects of quantum dynamics occurring
as quantum manifestations of classically chaotic systems
[3, 4]. Naturally, it is expected that random quantum
graphs, which are complex networks of quantum lines,
would result in the universal quantum fluctuation that
has been associated to the quantum chaotic dynamics
[5, 6]. It has been revealed, however, that no real complex
network is required for the irregular quantum dynamics
to present itself. A very simple version of the quantum
graph, the star graph, which is a quantum graph with
many lines connected at a single node, has been shown
to display the characteristics of quantum chaos in an an-
alytical semiclassical study [7]. A natural question to be
asked is whether we can further simplify the model of
quantum chaos to the point of solvability.

In this article, we consider one of the simplest possible
quantum graph which is made up solely of nodes with two
connected lines with the special property for the nodes
called scale invariance. The resulting system amounts
to a single one-dimensional line with number of scale in-
variant point interactions. We show that the system has
elementary analytical scattering matrices and also ele-
mentary analytical eigenvalue equation, yet displays full
characteristics of irregular quantum dynamics, both in
scattering amplitudes and in bound state level statistics.

We discuss the implication of the results, and look into
the apparent contradiction of the appearance of the quan-
tum chaos in a seemingly integrable, solvable conserva-
tive one-dimensional system.
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FIG. 1: A schematic depiction of our model system. A free
quantum particle moves along the line on which point interac-
tions described by (3), (4) and (6) are located at s1, · · · , sN .
This example shows the case of N = 5.

We consider a quantum particle, constrained to move
on a one-dimensional line with N point-like defects [8]
whose locations are given by x = si with i = 1, 2, ..N
(FIG. 1). The Hamiltonian of the system is given, in
appropriately rescaled unit, by

H = −1
2
d2

dx2
on (1)

x ∈ (−∞, s1) ∪ (s1, s2) ∪ ...(sN−1, sN ) ∪ (sN ,∞).

The dynamics of the system is described by the
Schrödinger equation

Hψ(x) = Eψ(x), (2)

supplemented by the U(2) connection conditions at the
defects [9], which is conveniently specified [10] by

(Ui − I)Φ(si) + iL0(Ui + I)Φ′(si) = 0, (3)

where i runs as i = 1, 2, ..., N , and Ui is a unitary matrix
belonging to U(2) group. The boundary vectors Φ(x)
and Φ′(x) are given by

Φ(si) =
(
ψ+(si)
ψ−(si)

)
, Φ′(si) =

(
ψ′+(si)
−ψ′−(si)

)
, (4)

where ψ±(si) and ψ′±(si) denote the limit value of ψ(x)
and its derivative from the upper and lower regions of the
defects si, x→ si ± 0. The constant L0 is a length scale
introduced to account for the scale anomaly [11] inherent
in one-dimensional point interaction. For technical sim-
plicity, we assume all Ui to be identical, U = Ui. Among
all possible U , we consider scale invariant subfamily, dis-
covered by Fülöp and Tsutsui [10] whose U has property

det[U ± I] = 0. (5)
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This condition guarantees the equation (3) without any
involvement of the scale parameter L0. The standard
parametrization for this class of U is

U =
(

cos θ eiφ sin θ
eiφ sin θ − cos θ

)
. (6)

This gives the connection condition which reads

eiφ

α
ψ−(si) = ψ+(si),

eiφαψ′−(si) = ψ′+(si), (7)

where the “strength” α is defined by

α = − cot
θ

2
. (8)

The Fülöp-Tsutsui point interaction (6) is a less known
subclass of one-dimensional point interaction compared
to the standard δ potential and δ′ (or ε) potential, but its
property of scale invariance comes in handy in our follow-
ing treatment. We stress that this seemingly exotic in-
teraction is nevertheless realizable as a short-range limit
of certain local potential [12]. We first consider the scat-
tering by a single defect. Let us, for a moment, suppose
that there is only a single defect located at x = s. Con-
sidering the incoming wave from x < s1 side, we assume
the wave function to be in the form

ψ(x) = eikx −R1(si)e−ikx (x < si),
= T1(si)eikx (x > si). (9)

We obtain the transmission and reflection amplitudes as

T1(si) =
2α

1 + α2
eiφ, R1(si) =

1− α2

1 + α2
e2iksi . (10)

For the scattering from x > sN side, we write

ψ(x) = T ′1(si)e−ikx (x > si).
= e−ikx −R′1(si)eikx (x < si), (11)

and obtain

T ′1(si) = T ∗1 (si), R′1(si) = −R∗1(si). (12)

The absence of the scale parameter L0 results in the en-
ergy independence of scattering amplitude.

With elementary algebra, we can write the scattering
amplitudes for N defects in the recursive forms; For the
left-right amplitudes TN and RN , we have

TN (s1, ..., sN ) =
T1(s1)TN−1(s2, ..., sN )

1 +R∗1(s1)RN−1(s2, ..., sN )
,

(13)

RN (s1, ..., sN ) =
R1(s1) +RN−1(s2, ..., sN )
1 +R∗1(s1)RN−1(s2, ..., sN )

.

The right-left amplitude T ′ R′ are obtained from

T ′N (s1, ..., sN ) = T ∗N (sN , ..., s1),
R′N (s1, ..., sN ) = −R∗N (sN , ..., s1). (14)

Note the reversed ordering of si in right and left hand
sides of the equations. With repeated iteration, we obtain
explicit expressions for scattering matricesin the form

TN (k) =
γN

DN (k)
, RN (k) =

BN (k)
DN (k)

, (15)

where BN (k) and DN (k) are defined by

BN (k) = β

N∑

i

e2iksi + β3
N∑

i>j>m

e2ik(si−sj+sm) + β5
N∑

i>j>m>n>p

e2ik(si−sj+sm−sn+sp) + · · ·, (16)

DN (k) = 1 + β2
N∑

i>j

e2ik(si−sj) + β4
N∑

i>j>m>n

e2ik(si−sj+sm−sn) + β6
N∑

i>j>m>n>p>q

e2ik(si−sj+sm−sn+sp−sq) + · · ·, (17)

and the abreviations

β =
1− α2

1 + α2
, γ =

2α
1 + α2

eiφ (18)

are used. The sum runs over all indices in the range
between 1 and N with the specified constraint, and the
numerator contains terms up to the order of β[N/2] where
the exponent signifies the integer part of N/2. For given
N , there are NCl terms with order βl, and the scattering
matrices are the multi-periodic oscillatory functions with
2N−1 frequencies.

Along with scattering, we can also consider the bound
spectra by limiting the system to finite line of size L ≥
sN . One of the easiest way is to impose Dirichlet bound-
ary conditions at x = −L and x = L, ψ(L) = ψ(−L) = 0.
This leads, for the case of φ = 0, to the eigenvalue equa-
tion

(
RN (k)−e−2ikL

) (
R′N (k)−e−2ikL

)
= TN (k)T ′N (k).(19)

Explicite calculation again yields the form
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sin 2kL+ β
N∑

i

sin 2ksi + β2
N∑

i>j

sin 2k(sj−si+L) + β3
N∑

i>j>m

sin 2k(sm−sj +si)

+β4
N∑

i>j>m>n

sin 2k(sn−sm+sj−si+L) + β5
N∑

i>j>m>n>p

sin 2k(sp−sn+sm−sj +si) + · · · = 0, (20)
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FIG. 2: Transmission probability as the function of incident
momentum. A common strengths parameter α = 3/2 is
adopted. The location of the points are chosen to be s1 = 1,
s2 = s1 +

√
2, s3 = s2 +

√
3, s4 = s3 +

√
5 and s5 = s4 +

√
7,

s6 = s5 +
√

11 and s7 = s6 +
√

13.

which is a bound state counterpart of (15).
In order to reveal the physical content of the scat-

tering matrices (13) and the spectral function (19), we
plot |TN |2 as the function of incident momentum k for
value of α = 3/2 in FIG.2. The number of point de-
fects is set to be N = 3, N = 7 and N = 7. The an-
gle φ is set to be zero for all cases. The locations si

are set to be the sum of square root of primes; s1 = 1,
s2 = 1 +

√
2, s3 = 1 +

√
2 +

√
3, s4 = 1 +

√
2 +

√
3 +

√
5,

s5 = 1 +
√

2 +
√

3 +
√

5 +
√

7, etc.. These values are
selected to guarantee the incommensurability of si. This
also models a generic case of random sequencing of suc-
cessive si. We have checked that different choice of si,
different ordering of relative size si+1 − si does not alter
the essential characteristics of the results.

Despite the very simple analytic expression (15) of the
scattering amplitude, as we increase N , the scattering
quickly acquires “quantum chaotic” features [13], which
is characterized by Ericson fluctuation [14], or the wild
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FIG. 3: Nearest neighbor spacing distribution P (s) ob-
tained from the scaled energy levels of one-dimensional sys-
tem with periodic boundary with scale invariant point in-
teractions. Location parameters si are same, apart from
the re-scaling, as in FIG. 2, with sN identified with the
length L. The solid line represent the Wigner distribution
P (s) = π/2 · s exp(−π/4 · s2), and the dashed line the Pois-
son distribution P (s) = exp(−s).

oscillation in scattering amplitudes caused by the over-
lapping resonances. Because of the scale invariance of
the each point interactions, the fluctuation appears in
arbitrary energy scale. Clearly, this fluctuation is the
result of interferences among multi-periodic oscillations
with incommensurate frequencies, whose number of pe-
riods 2N−1 proliferates very fast with increasing N .

We next examine the statistical properties of energy
level sequence calculated from our system with periodic
boundary condition. In FIG. 3, level spacing distribution
P (s) for the system with several α are shown for N = 3,
N = 5, and N = 7 cases from top to bottom as FIG3(a),
FIG3(b) and FIG3(c). The distances si are chosen to be
s1 : s2 − s1 : s3 − s2 : s4 − s3 : s5 − s4 : s6 − s5 : s7 − s6
= 1 :

√
2 :

√
3 :

√
5 :

√
7 :

√
11 :

√
13. The total length
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L is set to be s1 : 2L = 1 : 1 +
√

2 +
√

3 +
√

5 +
√

7 +√
11 +

√
13 +

√
17. We have chosen α = 27 to approxi-

mate disconnected large coupling limit, and α = 2 as the
strong coupling limit, while, as an intermediate coupling,
we chose the value α = 5. These graphs clearly show the
approach of P (s) to the Wigner distribution (also known
as GOE distribution), which is regarded as the quan-
tum signature of classically chaotic dynamics [15], at the
strong coupling value as we increase the number of points
N . The convergence appears to be fast as the Wigner-like
level statistics already takes shape even with N = 3.

We now discuss the implication of our findings in a
broader context. The central result of this article is the
generation of the “random” or irregular’ properties in
quantum dynamics out of fully analytic quantum spectral
functions obtained from a one-dimensional system. This
type of properties are usually associated to the noninte-
grable system. Since the classical counterpart of conser-
vative one-dimensional system necessarily is integrable,
the well-established correspondence between the chaotic
classical dynamics and the random quantum dynamics
seems to fail for our model.

The clue to understand this seeming contradiction
might be found in the singular nature of the high-energy
limit of our system. Because of the special property of
scale invariance present in Fülöp-Tsutsui point interac-
tion, high energy limit, k → ∞ does not bring the sys-
tem to classical limit. Instead of either perfect bounc-

ing wall or free pass, two legitimate deterministic clas-
sical limits of a point interaction, we are presented with
semi-transparent wall with finite penetration probability.
Therefore, if we were to identify the high energy limit as
a classical limit, we are forced to consider stochastic dy-
namics whose randomness originates directly from the
probabilistic nature of quantum mechanics itself.

Irrespective to the problem of classical limit and corre-
spondence, our analytical expressions shed light on how
irregular quantum dynamics emerge as the infinite-period
limit of multi-periodic scattering matrices, just as chaotic
classical dynamics emerge as the infinite-period limit of
multi-periodic motion. In this connection, it should be
useful to consider a complementary approach of trace-
formula based analysis to our model. With appropriate
modifications, existing semiclassical treatments of quan-
tum graphs [16] appear capable of handling the problem,
and the comparison to the current approach should yield
further insight into the singular and irregular dynamics
in quantum mechanics.

We acknowledge our gratitude to Dr. I. Tsutsui, Dr.
T. Fülöp, Dr. P. Seba, Dr. K. Takayanagi and Dr. T.
Yukawa for the enlightening discussions. One of the au-
thor (TC) thanks the members of the Theory Group at
High Energy Accelerator Research Organization (KEK)
for their hospitality offered to him during his sabbatical
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