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Abstract— This paper proposes a novel Simultaneous Local-
ization and Mapping (SLAM) based on distributed particle
updates for landmark mapping and validates it with an HF-
band RFID-based mobile robot. Multiple RFID readers are
embedded at the bottom of an omni-directional vehicle and tags
are installed on the floor. The IC tags are used as landmarks
of the environment. FastSLAM[1] uses particles to estimate
the position and orientation of the robot and Kalman filter
to update the positions of IC tags. However, an update of the
detected IC tags with Kalman filter is not appropriate because
the probability of the IC tag detection cannot be modeled
with a Gaussian distribution. We use two separate particle
filters to estimate both the position and orientation of the
robot and positions of IC tags simultaneously. The proposed
method has been tested on the simulated and real environments.
Experimental results show the validity and computational
efficiency of the proposed method.

I. INTRODUCTION

Simultaneous localization and mapping, as known as
SLAM, is a technique for performing self-localization and
map building simultaneously. FastSLAM is one of the popu-
lar landmark-based SLAM algorithms[2].FastSLAM adopts
a particle filter to estimate the robot pose and positions of
a fixed number of predetermined landmarks and tracks the
position of the landmark using an extended Kalman filter
(EKF)[3].

RFID (Radio Frequency IDentification) system as an au-
tomatic identification device for a mobile robot has been
studied[4].Since RFID system uses an electric wave, unlike
the visual sensor used for conventional mobile robots, it is
robust against the influence of obstacles outside of RFID
communication area or lighting conditions. Therefore, it is
useful for landmark-based SLAM for a mobile robot.

Wang and Takahashi[5] use the FastSLAM method to
localize a robot and build a map of IC tags simultaneously in
an unknown environment. The RFID system can be used as
a good landmark detector with small measuring error so that
the error is about 25[mm]. However, a large number of RFID
readers are needed to cover a wide range to detect the IC tags
on the floor. As we designed 96 RFID readers on the bottom
of the vehicle, they are so expensive and consume a lot of
electric power. Mi and Takahashi[6] have proposed a RFID
configuration with 8 readers for the self-localization of a
mobile robot and showed the proposed system performs with
small localization error and it is less expensive than the one
of 96 readers. However, Kalman filter is not fit to estimate the
positions of IC tags because the tag detection area cannot be
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modeled with a Gaussian distribution. Therefore, we propose
to use particle filter to mapping IC tag.

Deyle et al.[7] presents a particle filter implementation for
estimating the pose of UHF RFID tags in the environment
with respect to an RFID-equipped robot. As they focus on
estimating the pose of UHF RFID tags, the estimation of
position and orientation of the robot is based on the odome-
try. The idea of using particle filter to estimate the positions
of tags gives us great enlightenment for our simultaneous
localization and mapping.

Eliazar and Parr[8] have tried a method of simultaneous
localization and mapping both by particle-filter-based on
a laser penetration model. In their research, each particle
corresponds to a distinct hypothesis about the map and
the robot position and orientation within the map. Their
algorithm is based purely on laser system and it is not for a
landmark-based SLAM.

This paper focuses on utilizing particle filters for both
the robot localization and building a map of landmarks
independently. Each detected IC tag is regarded as a land-
mark and updated by one particle set. Localization of the
robot is also estimated by one particle set. All particle
filters work independently so that the proposed method keep
computational resources and calculation cost as small as
possible. This paper also introduces the difference between
the proposed method with Kalman-filter-based FastSLAM
and compare these two methods in the same experimental
condition. Experimental results show the validity and com-
putational efficiency of the proposed method.

II. RFID SYSTEM IN THIS RESEARCH

RFID system uses radio-frequency electromagnetic fields
to transfer data from a tag attached to an object for automatic
object identification and/or tracking. Each tag has a unique
ID that can be utilized as a landmark ID.

HF-band RFID system[9] use electromagnetic induction.
In general, the communication distance is shorter and speed
is lower than radio waves methods [10], but the communica-
tion is robust against obstacles around the antennas or tags
and environmental changes. It is a good property for robot
self-localization because it can detect the tags reliably and
the position can be specified precisely.

Figure 1 shows the indoor mobile robot with the multiple
RFID readers and an IC tags textile carpet that we designed
and built.RFID readers are installed on the bottom of the
robot as Figs.1(b) and 1(c) shows. IC tags are installed on
the floor. Fig.1(d) shows one of the floor carpets that IC
tags are installed in. The robot reads the tags with the RFID
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Fig. 1. Indoor Mobile Robot Embedding Multiple RFID Readers and IC
Tags Textile Carpet

readers to localize itself by reading the IC tags installed on
the floor. Each IC tag has its own ID. The distribution of
these IC tags is unknown when they are installed on the
floor. These IC tags will be used as landmarks to execute
the SLAM work.

III. SLAM ON HF-BAND RFID SYSTEM

The conditional independence property of the SLAM prob-
lem implies that the posterior Equation (1) can be factored
as follows:

p(wxxxr(t),w xxxtag1;N | zzz(t),uuu(t),n(t))
= p(wxxxr(t) | zzz(t),uuu(t),n(t))
p(wxxxtag1;N |

w xxxr(t),zzz(t),uuu(t),n(t))
(1)

where wxxxr(t) = (wxr,
w yr,

w θr) is position and posture of
the robot in world coordinate system at time t, wxxxtag1;N is
positions of tags in world coordinate, zzz(t) is observation at
time t, uuu(t) is robot control at time t, and n(t) is index of
the landmark detected at time t.

A. FastSLAM on HF-band RFID System

We briefly review FastSLAM here. FastSLAM is mainly
based on a particle filter. One particle [m] consists of
information of the robot pose wxxx[m]

r (t) and the locations
of tags wxxx[m]

tag1;N
in the world coordinate system where N

is the number of the tags. The location of the tag n is
represented by a Gaussian distribution. µ

[m]
n (t) and Σ

[m]
n (t) are

the center vector and the covariance matrix of the Gaussian
distribution. FastSLAM exploits the factored representation
by maintaining the N +1 filters. Each FastSLAM particle is
of the form:

wxxx[m](t) =<w xxx[m]
r (t),ω [m]

n ,µ
[m]
1 (t),Σ[m]

1 (t), ...,µ [m]
N (t),

Σ
[m]
N (t)>

(2)

where ωm
n is the importance weight of particle [m]. ωm

n is
calculated with a measurement model. The measurement

(a) detection range of RFID
reader with large antenna (the
green part is the reader)

(b) likelihood model of tag
detection at the 20 [mm]
height

Fig. 2. The detection range of RFID reader using large antenna and
likelihood model of tag detection

model is a likelihood function p(zzz(t) |w xxxr(t)). A Gaussian
distribution is commonly used for the likelihood function.

The new particle set incorporates the control input uuut with
a robot motion model and measurement information zzzt to
update the robot pose wxxx[m](t) and the important weight ωm

n
accordingly. The filtering is based on the important weight
ωm

n . The parameters of tag location µ
[m]
n (t) and Σ

[m]
n (t), are

updated using EKF. Each EKF tracks a single tag position
and it assumes a Gaussian distribution for the measurement
of the tag. In total, there are N ·M EKFs where M is the
total number of particles in the particle filter.

B. SLAM based on Independent Particle Filters for Land-
mark Mapping and Localization for HF-band RFID System

We propose a new SLAM method that utilizes independent
particle filters for landmark mapping and localization. Using
particles to estimate both poses of the robot and IC tags’
positions, we make N + 1 particle sets each of which is
assigned by one particle filter. One robot particle set is for
estimating the position and orientation of the robot. Each
robot particle is of the form:

xxx[m]
r (t) =<w xxx[m]

r (t),ω [m]
r (t)> (3)

N tag particle sets are for estimating the positions of N
detected tags. Each tag particle is of the form:

xxx[l]n =<w xxx[l]n ,ω
[l]
n > (4)

where wxxx[l]n = (wxn,
w yn) is the position of tag n in world

coordinate system represented by particle l and ω
[l]
n is the

importance weight of the tag particle. The calculation of
importance weight of both robot particle and tag particle
are based on the tag detection model.

Fig.2(a) shows the tag detection model of RFID reader
with the large antenna. We choose the height of 20[mm] to
ensure the large range of tag detection and protect the reader
as well. At the height of 20[mm], the likelihood distribution
of tag detection can be modeled as Fig.2(b). The likelihood
function is defined as:

ω =

{
1, if e < σ

β exp
(
− 1

2σ2 e2
)
, else

(5)

σ = 30[mm] when the reader at the height of 20 [mm].
e =

√
(wxxxn−w xxxi)2. β is a constant to regulate the ω so that



ω = 1 when e = σ (β=1.618 for σ = 30[mm]). wxxxi is the
position of the RFID reader i which detected tag n in the
world coordinate system. wxxxi = (wxi,

w yi)
T can be calculated

by Eq.6.(wxi
wyi

)
=

(wxr
wyr

)
+

(
cosw θr −sin wθr
sinw

θr cos wθr

)(rxi
ryi

)
(6)

where (rxi,
r yi) is position of the RFID reader i in the robot

coordinate system.

Algorithm 1 SLAM based on Independent Particle Filters
for Landmark Mapping and Localization:

1: SSSr(t) = (xxx[1]r (t),xxx[2]r (t), · · · ,xxx[M]
r (t)), SSSn

2: for m = 1 to M do
3: Update particles with the motion model: wxxx[m]

r (t) =
MotionModel(wxxx[m]

r (t−1))
4: end for
5: if tag n is detected then
6: if tag n is never seen before then
7: Initialize tag particles SSSn = (xxx[1]n ,xxx[2]n , · · · ,xxx[L]n )
8: else
9: for l = 1 to L do

10: update ω
[l]
n based on the measurement model

11: end for
12: end if
13: wxxxn(t) =

ΣL
l=1

wxxx[l]n (t)ω [l]
n (t)

ΣL
l=1ω

[l]
n (t)

14: for l = 1 to L do
15: if (ω [l]

n (t) ≤ thresholdtag) then
16: reset wxxx[l]n with the one of another tag particle

with large importance weight
17: end if
18: end for
19: for m = 1 to M do
20: update ω

[m]
r based on the measurement model

21: end for
22: end if
23: wxxxr(t) =

ΣM
m=1

wxxx[m]
r (t)ω [m]

r (t)

ΣM
m=1ω

[m]
r (t)

24: for m = 1 to M do
25: if (ω [m]

r (t) ≤ thresholdr) then
26: reset wxxx[m]

r with the one of another robot particle
with large importance weight

27: end if
28: end for
29: return SSSr(t), SSSn

Algorithm 1 shows the algorithm of our proposed SLAM
based on independent particle filters for landmark mapping
and localization. First, it updates the particles of the position
and orientation of the robot by the motion model. The motion
model is given by Eq.(7).

wxr(t) = wxr(t−1)+ vx∆t + εx∆t, εx ∼ N(0,σx)
wyr(t) = wyr(t−1)+ vy∆t + εy∆t, εy ∼ N(0,σy)
w

θr(t) = w
θr(t−1)+ω∆t + εθ ∆t, εθ ∼ N(0,σθ )(7)

where V = (vx,,vy,ω) and ∆t indicate the velocity of the
robot and period between time t−1 to t, respectively. N(0,σ)
means the Gaussian distribution with standard deviation σ .
During the movement, if the robot detected one tag, the robot
should judge this tag whether it is the first time detected by
the ID of this tag. If it is the first detection of the tag, one
particle set is initialized with a certain importance weight
and these particles are distributed around the reader which
detected this tag. Otherwise, the likelihood function Eq.(5)
is used to calculate the importance weight for each particle
as shown in line 10 of Algorithm 1. Then, the position
of this detected tag is calculated based on the importance
weight of each tag particles. At the resampling step of
particle representing the tag position, the particle with small
importance weight will change to the state of one of the
particles with large importance weight. After the update of
the detected tag, the position and orientation of the robot
are estimated based on the estimation of the detected tag.
To estimate the pose of the robot, the importance weight of
each robot particle will be updated by the likelihood function
Eq.(5), again. The estimated position of the detected tag is
used as the observation data at line 20 in Algorithm 1.
The updated importance weights of these robot particles are
used for the estimation of the pose of the robot. At last, the
poses of the robot particles with small importance weight
are assigned to the poses of one of the particles with large
importance weight. It repeats this procedure.

C. Comparison between FastSLAM and SLAM with Inde-
pendent Particle Filters for Landmark Updating and Local-
ization

Figure.3 illustrates the estimation of landmarks in Fast-
SLAM. If the robot detects a new landmark for the first time,
this landmark requires an initialization of a new Kalman
filter based on the estimated pose of the robot. As shown
in Fig.3(a), the uncertainty of landmarks is very large. By
detecting the IC tag multiple times, Kalman filter recursively
updates to converge constantly the optimal position of the
detected IC tag. The uncertainty of positions of IC tags in
Fig.3(d) is much smaller than Fig.3(a). The convergence of
the estimated IC tag position is based on the assumption
that the tag detection follows a Gaussian distribution. As we
discussed in the last section, the tag detection of the HF-
band RFID system does not follow a Gaussian distribution
as shown in Fig.2. If the assumption is not guaranteed, the
estimated IC tag position does not converge.

Figure 4 illustrates the estimation of landmarks by SLAM
with particle-filter-based landmark updating. As shown in
Fig.4(a), if the robot detects a new landmark for the first time,
the particles are distributed randomly in the tag detection
area of the antenna. When the robot detects this IC tag
in another location, another detection area is defined as
shown in Fig.4(b). Integrating this detection area with the
last detection area in step 1, the smaller possible area of the
detected IC tag can be defined. So if the robot can detect
IC tags at more different locations to make the possible area
smaller, it will get more accurate positions of detected IC



(a) Step1 (b) Step2
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Fig. 3. Estimation of landmarks in FastSLAM:ellipse means the uncertainty
of the position of IC tag

tags as shown in Fig.4(d).
SLAM with independent particle filters for landmark up-

dating and localization is applicable not only to the case in
which landmark sensing can be modeled with a Gaussian
distribution but also to the case in which landmark detection
can not be modeled with a Gaussian distribution. The particle
in FastSLAM is defined as Eq.(2). The particle in the SLAM
with independent particle filters for landmark updating and
localization are defined as Eq.(3) and Eq.(4). Without using
the balanced binary tree, FastSLAM requires memory size
O(MN), our proposed method requires O(M + LN). We
set M = 1000 robot particles to estimate the position and
orientation of the robot both in FastSLAM and the proposed
method. The proposed method uses L = 150 particles for the
estimation of one detected tag position. With the increase of
detected IC tags, when N ≥ 2, O(MN)≥O(M+LN). From
the point of view of calculation cost, when the robot detects
one IC tag, FastSLAM has (3+1+2+3)∗M parameters (3
robot position parameters, 1 importance weight, 2 parameters
of µ

[m]
1 (t) and 3 parameters of Σ

[m]
1 (t) in each particle) to

be updated. The proposed method needs (3+1)∗M +(2+
1) ∗ L parameters (3 position parameters and 1 importance
weight in each robot particle and 2 position parameters and
importance weight in each tag particle) to be updated. So
FastSLAM has 9000 parameters need to be updated, on the
other hand, the proposed method just needs 4450 parameters
to update. This makes the proposed method faster than
FastSLAM especially when the particles for estimating the
position of the robot increase.

IV. EXPERIMENT

The proposed SLAM with independent particle filters
for landmark updating and localization is evaluated on 8
HF-band RFID readers with large antennas and RFID-tag
textile with 100 tags/m2 density in the simulation and a
real environment. We also verified the FastSLAM method
by the 96 readers with the small antennas in the same

(a) Step1 (b) Step2

(c) Step3 (d) Step4

Fig. 4. Estimation of landmarks by SLAM with particle-filter-based
landmark updating (rectangle means the possible area of detected IC tag)
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Fig. 5. The result in the simulation with 8 RFID readers: (a) IC tags (purple
points) set in simulation and the fixed trajectory (green lines); (b)detected
IC tags (small circles) and path of the robot (red lines) generated by the
proposed method.

experiment environment and compared the accuracy of these
two methods.

A. Simulation

The simulation result by our proposed method is shown in
Fig. 5. The robot moves along the fixed trajectory 3 times.
Figure 5(a) shows the fixed trajectory and positions of IC
tags set in the simulation. Figure 5(b) shows the path of the
robot and positions of detected IC tags that estimated by the
proposed method using the 8-RFID-reader system. Figure 6
shows the path of the robot and positions of detected IC tags
generated by FastSLAM using the 96-RFID-reader system.
Based on these figures, the path of the robot in Fig. 5(b) is
more accurate than Figure 6.



Fig. 6. Path of the robot and positions of the detected IC tags generated
by FastSLAM with 96 RFID readers in simulation

TABLE I
SELF-LOCALIZATION ERRORS ON THE FIXED TRAJECTORY IN

SIMULATION

error by Mean error by Max
x [mm] y [mm] θ [rad] x [mm] y [mm] θ [rad]

Proposed method (8 readers) 8.3 7.2 0.005 38.4 23.3 0.015
FastSLAM (96 readers) 42.3 10.3 0.018 76.3 45.8 0.051

Table I shows the position and orientation errors of robot
generated by our proposed method with 8 RFID readers
and FastSLAM with 96 RFID readers. Table II shows the
position errors of detected IC tags. Our proposed method
shows that the average position errors of the robot are about
8 [mm] in X direction and 7[mm] in Y direction. The average
position errors of detected IC tags are about 15.9 [mm] in
X direction and 9.8 [mm] in Y direction. FastSLAM shows
that the average position errors of the robot are about 42
[mm] in X direction and 10[mm] in Y direction. Average
position errors of detected IC tags are about 68 [mm] in X
direction and 35[mm] in Y direction. Comparing the results
of the proposed method with the ones of FastSLAM, the
proposed method is better than FastSLAM in our simulation
even though the proposed method uses much fewer RFID
readers than the FastSLAM.

As mentioned before, the robot needs to detect the tag
in more different directions to narrow the possible area of
detected tag while it builds the map by a particle filter.

TABLE II
TAG LOCALIZATION ERRORS ON THE FIXED TRAJECTORY IN

SIMULATION

error by Mean error by Max
x [mm] y [mm] x [mm] y [mm]

Proposed method (8 readers) 15.9 9.8 38.2 38.1
FastSLAM (96 readers) 36.3 11.8 68.0 35.1

TABLE III
TAG LOCALIZATION ERRORS ON THE RANDOM TRAJECTORY IN

SIMULATION

error by Mean error by Max
x [mm] y [mm] x [mm] y [mm]

Proposed method 9.4 9.2 34.2 33.6

Figure 7 shows the comparison between tags located by
the proposed method on the random trajectory with the
simulation map. Table III shows that the random trajectory
offers a better map than the fixed one.
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Fig. 7. Comparison between tags located by proposed method on the
random trajectory with the simulation map: green points are tags estimated
by the proposed method; purple points represent the real position of the
tags.

B. Experiment in real environment

Figure 8 shows the real experiment environment. We let
the robot moves along a fixed loop trajectory 3 times. Figure
9 shows the path of the robot in ideal state and positions of IC
tags set in the real environment. We chose 8 points to check
the accuracy of self-localization as Fig 9 shows. Figure 10
shows the path of the robot and the positions of detected IC
tags estimated by the proposed method. Figure 11 shows the
path of the robot and positions of detected IC tags generated
by FastSLAM. The results show that our proposed method
performs better than FastSLAM.

Table IV shows the statistics of self-localization errors
on the 8 points generated by our proposed method and
FastSLAM. Table V shows the errors of tag location. The
average position errors of the robot are about 11 [mm] in
X direction and 20[mm] in Y direction by our proposed
method. This result is better than the one using FastSLAM
with the 96-RFID-reader system. The average error of the tag
location by using our proposed method become smaller than
by using FastSLAM. Because some IC tags were not detected
a sufficient number of times, the possible tag location area
can not reduce. For a more accurate map of IC tags, the IC
tags need to be detected more frequently to make the possible
area be smaller.

TABLE IV
SELF-LOCALIZATION ERRORS ON THE FIXED TRAJECTORY IN REAL

ENVIRONMENT

Proposed method FastSLAM
x [mm] y [mm] θ [rad] x [mm] y [mm] θ [rad]

error by mean 11.5 20.7 0.043 23.4 52.5 0.027
error by max 27.3 56.7 0.074 58.2 92.8 0.076

So we let the robot run in the experiment area in a random
direction. The error data is shown in Table VI. The average



Fig. 8. Experiment environment: green lines are the fixed trajectory
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Fig. 9. The configuration of RFID-tag textile with 100 tags/m2 density set
under the floor, the 8 red points mean the chose 8 points to evaluate the
accuracy of the robot self-localization.

error doesn’t change too much but the largest error becomes
smaller.

Comparing our proposed method with FastSLAM in sim-
ulation and real environment, our proposed method shows
a better result. Besides, we use only 8 RFID readers which
could greatly cut down the production cost, compared to the
96 RFID readers system. Moreover, the proposed method
solved the problem in the situation of landmark sensing can
not be modeled with a Gaussian distribution.

V. CONCLUSIONS

This paper proposed a novel SLAM method in which
two particle filters are used for both self-localization and
landmark mapping independently and applied it to the mul-
tiple RFID readers and multiple tags system. Update of the

TABLE V
TAG LOCALIZATION ERRORS ON THE FIXED TRAJECTORY IN REAL

ENVIRONMENT

error by Mean error by Max
x [mm] y [mm] x [mm] y [mm]

Proposed method (8 readers) 37.6 27.9 128.3 156.9
FastSLAM (96 readers) 50.6 46.84 107.3 137.2

TABLE VI
TAG LOCALIZATION ERROR ON THE RANDOM TRAJECTORY IN REAL

ENVIRONMENT

error by Mean error by Max
x [mm] y [mm] x [mm] y [mm]

Proposed method 29.2 36.1 74.0 131.4

Fig. 10. Path of robot and positions of detected IC tags generated by the
proposed method with 8 RFID readers

Fig. 11. Path of robot and positions of detected IC tags generated by
FastSLAM with 96 RFID readers

detected IC tags with Kalman filter is not appropriate because
the tag detection range using the large antenna cannot be
modeled with a Gaussian distribution. We use particle filters
to estimate both the position and orientation of the robot and
positions of IC tags. We compared our proposed method with
the FastSLAM method and showed our proposed method
has much border applicability than FastSLAM. The proposed
method has been tested in the simulation and real environ-
ment. Whether in simulation or the real environment, the
proposed method outperforms FastSLAM.
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