
 

Abstract. In order to generate or tune fuzzy rules, 

Neuro-Fuzzy learning algorithms with Gaussian type 

membership functions based on gradient-descent 

method are well known. In this paper, we propose a 

new learning approach, the Complex-valued 

Neuro-Fuzzy learning algorithm. This method is an 

extension of the conventional method to complex 

domain by using a complex-valued neural network 

that maps complex values to real values. Input, ante-

cedent membership functions and consequent single-

ton are complex, and output is real. Two-dimensional 

input can be better represented by complex numbers 

than by real values. We compared it with the con-

ventional method by several function identification 

problems, and revealed that the proposed method 

outperformed the counterpart, and that it is a useful 

tool for learning a fuzzy system model. 
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1. INTRODUCTION 

In the field of fuzzy control, the practical applications of 

fuzzy inference have increased, and generations of fuzzy 

rules have become important. These include tuning of 

membership functions and rules. However, when a fuzzy 

system model is designed, it is sometimes too hard or 

impossible for human beings to give the desired fuzzy 

rules, due to the ambiguity, uncertainty or complexity of 

the identifying system. Many methods have been con-

structed by combining fuzzy systems and neural net-

works to generate or tune fuzzy rules of fuzzy system 

models [1-6]. These methods, called Neuro-Fuzzy 

learning algorithms (NFs), recently have been success-

fully applied to, e.g. control system and system identifi-

cation [7 - 12]. Further, a variety of system structures 

and learning algorithms are available for NFs [13 - 15]. 

In this paper, we use a method of tuning fuzzy rules and 

its parameters by back propagation learning algorithm 

[16] of neural networks [1, 2]. Such NFs, whose ante-

cedent membership function is fixed for each fuzzy in-

ference rule under the simplified fuzzy inference method, 

can generate fuzzy rules by automatic tuning of its pa-

rameters and the consequent singleton values based on a 

gradient-descent method. However, if we use multi input 

for this method, a number of parameter of antecedent 

membership function increase rapidly with increasing a 

number of fuzzy inference rules. For this reason, it takes 

a long period of time for learning and the learning accu-

racy may deteriorate [3]. 

As a solution of these problems (the learning time and 

the learning accuracy), we focused on Complex Back 

Propagation (CBP) [17 - 19] of Complex-valued Neural 

Networks (CVNNs). CVNN is shown to be powerful in 

applications such as adaptive radar image processing, 

and optical image processing [20]. Further extension to 

multidimensional values has been attempted as well [21]. 

In addition, in our previous studies, we applied CVNN 

on real-valued classification problems and showed an 

efficient and good conversion [22, 23]. 

In this paper, we propose the Complex-valued 

Neuro-Fuzzy learning algorithm (CVNF). It extends the 

antecedent membership function and the consequent 

singleton of the conventional method to complex do-

main and generates real-valued output for com-

plex-valued inputs. Further, we compared it with the 

conventional method by several function identification 

problems, and show the superiority. 

2.  NF AND CVNF 

2.1. Conventional NF 

In the conventional NF, if the inputs are Xi (i = 1, 2, …, 

n) and the output is Y, then fuzzy inference rules of the 

simplified fuzzy inference are shown below: 

 

Rule 1: If X1 is M11 and X2 is M12 … Xn is M1n 

Then Y is W1 

Rule 2: If X1 is M21 and X2 is M22 … Xn is M2n 

Then Y is W2 

… 

Rule m: If X1 is Mm1 and X2 is Mm2 … Xn is Mmn 

Then Y is Wm 

   (1) 

where Wj (j=1, 2, …, m) are real value of the consequent 

singleton. 
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The antecedent membership functions Mji (j = 1, 2, …, 

m; i = 1, 2, …, n) are given by Gaussian function as, 

                        
 
                 (2) 

The inference result Y is as follows. First, the grade of 

the antecedent is given by 

           
 
    (j=1, 2, …, m)               (3) 

Then, the inference result Y is calculated by the follow-

ing gravity method. 
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The error function to be minimized during the training is 

given by 
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where T is the desired output. During the training, each 

parameter            is updated by, 
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where           are the learning rate. 

We can perform the learning process by giving the ini-

tial value to each parameter and by using equations Eq. 

(6) – (8). 

2.2. The CBP 

Before describing the CVNF, we should mention the 

CBP. 

The CBP extends back propagation (RBP) to complex 

domain for learning a complex pattern. Previous study 

[17] showed properties of CBP as follows: 

1) The CBP has a structure based on two dimensional 

motions. 

2) The CBP promote the learning process as one unit 

complex signal through the network. 

3) Tuning a real and an imaginary part of learning pa-

rameters, which are based on both of a real and an im-

aginary part of signal through the network, are per-

formed while depend on each other (Fig. 1). 

 

Fig. 1. Factors to determine the amount of correction for 

learning parameters 

By such a complementary structure, occurrence of 

learning plateau is prevented. As a result, compared to 

the RBP, the CBP’s learning speed for complex patterns 

can be several times faster. 

For these reasons, we can say the CBP is an algorithm 

that is suitable for learning complex patterns. In function 

identifications that we use for our experiment, we use 

two dimensional patterns (two nonlinear functions). 

Compared with a real number, a complex number can 

naturally describe two dimensional patterns. Therefore, 

our experiment is reasonable on to confirm the perfor-

mance of CVNF which is Neuro-Fuzzy using the CBP. 

2.3. The CVNF 

In the learning algorithm we propose that each parame-

ter is extended to a complex number, and is given by the 

following flow. 

The Inference rules are the same as the conventional 

method. Each parameter is extended to a complex num-

ber as follows: 

𝑋𝑖 =  𝑖
 + 𝑖 𝑖

𝐼  

 𝑗𝑖 =  𝑗𝑖
 + 𝑖 𝑗𝑖

𝐼   

 𝑗 =  𝑗
 + 𝑖 𝑗

𝐼  

 𝑗 =  𝑗
 + 𝑖 𝑗

𝐼  

                       (9) 

The antecedent membership functions are given by 
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The inference result Y is calculated as follows. First, the 

grade of the antecedent is given by 
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Second, the complex-valued inference result      
𝑖   is calculated by the gravity method. 
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Finally, the real-valued inference result Y is calculated 

as follows: 



 

                                        (15) 

                                                                     (16) 

                                        (17) 

where Eq. (16) and (17) are the activation functions 1 

and 2 based on our previous work [22, 23]. By these 

activation functions, we are able to get the real-valued 

inference result Y.  

The error function is the same as Eq. (5). During the 

training, each parameter is updated by, 
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where           are the learning rate. Since Eq. (18) 

– (20) are not available directly, we need to expand each 

equation as follows. 
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Then, each partial differential of Eq. (18) – (20) is de-

termined as follows. 
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where 
  

    and 
  

    depends on the activation functions 

(Eq. (16) and (17)), and correspond to the parameters in 

Table 1. 

Table 1. 

 
activation 

function 1 

activation 

function 2 

                         

                         

 

As same as the conventional method, we can perform 

the learning process by giving the initial value to each 

parameter and using Eq. (18) – (20). 

3. SIMULATION RESULTS 

In the previous section, we proposed the CVNF to get 

fuzzy rules, and presented its learning algorithm under 

Gaussian type membership functions. In this section, we 

compare it with the conventional method by several 

function identification problems, and show that the pro-

posed method is a useful tool for learning a fuzzy sys-

tem model. 

3.1. Function Identifications 

We take the following four nonlinear functions with two 

inputs and one output. Eq. (42) is a function that we 

prepared, and Eq. (43) – (45) is quoted from the litera-

tures on the conventional method [1, 2] for comparison. 

Function 1: 

       
     

                          (42) 



 

Function 2: 

          
                             (43) 

Function 3: 

     𝑖                                (44) 

Function 4: 

                          
    

                   (45) 

Where,              are the input variables, and 

        is the output variable.  

Then, using these four functions, we compare the new 

method with the conventional method about the epoch 

and the estimation error when the number of rules is the 

same. 

In four functions, for initialization, we divided each an-

tecedent input space in five by Gaussian type member-

ship functions Mji (We represent it as          . Then, i 

= 1, 2；j = 1, …, 5). Accordingly, the number of fuzzy 

rules is five. Table 2 and 3 are the initial values of each 

parameter of the conventional method and the new 

method. In the new method, we give x1 and x2 to real and 

imaginary parts of the inputs. Note that, in terms of the 

number of the antecedent membership functions, the 

new method (five membership functions) is smaller than 

the conventional method (twenty five membership func-

tions). 

In Eq. (46), Eall is the fuzzy inference error for the train-

ing set. Then, we applied both methods to Functions 1, 2, 

3 and 4, and tuned the fuzzy rules until Eall becomes 

smaller than the threshold δ. The results are shown in 

Table 4, 5, 6 and 7. Results shown are the average of 20 

trials. In these Tables, act 1 and act 2 shows the activa-

tion function 1 and 2, respectively. 

     
 

 
        

  
                         (46) 

where Yd is the fuzzy inference, Td is the desired output, 

and N is the number of training set. 

In Table 4, 5, 6 and 7, the training set is given by 

Equivalent-25 

                                          (47) 

Equivalent-81 

                                               

(48)

Table 2. Initial values of each parameter of the NF    Table 3. Initial values of each parameter of the CVNF 

      

Table 4. NF vs. CVNF for Function 1 

 

Table 5. NF vs. CVNF for Function 2 

 

Table 6. NF vs. CVNF for Function 3 

 

 (-1,6) (-0.5,6) (0,6) (0.5,6) (1,6)

(-1,6) 0.5 0.5 0.5 0.5 0.5

(-0.5,6) 0.5 0.5 0.5 0.5 0.5

(0,6) 0.5 0.5 0.5 0.5 0.5

(0.5,6) 0.5 0.5 0.5 0.5 0.5

(1,6) 0.5 0.5 0.5 0.5 0.5

Mj1

Mj2

(-1,6) (0.6,0.5)

(-0.5,6) (0.6,0.5)

(0,6) (0.6,0.5)

(0.5,6) (0.6,0.5)

(1,6) (0.6,0.5)

R

jM 1

I

jM 1

Function 1

Number of data δ No.

NF NF NF NF

act 1 act 2 act 1 act 2 act 1 act 2 act 1 act 2

① 163 159 88 0.0058 0.0020 0.0021 0.00017 0.00018 0.00026 0.4911 0.2530 0.2440

② 144 125 117 0.0070 0.0035 0.0047 0.00026 0.00047 0.00049 0.4496 0.3290 0.3633

Equivalent-25 0.001 ③ 175 148 139 0.0008 0.0007 0.0008 0.00016 0.00013 0.00010 0.1181 0.1336 0.1355

④ 213 104 120 0.0015 0.0011 0.0012 0.00012 0.00010 0.00011 0.2509 0.1866 0.1899

⑤ 253 163 111 0.0011 0.0011 0.0009 0.00006 0.00011 0.00012 0.2980 0.1724 0.1669

Equivalent-81 0.001 ⑥ 252 216 205 0.0005 0.0005 0.0005 0.00008 0.00006 0.00004 0.1450 0.1249 0.1239

NF: α=0.5, β=0.01, γ=0.03,    CVNF: α=0.2, β=0.01, γ=0.03

Epoch Evaluation Standard deviation Max. absolute error

0.001

CVNF CVNF CVNF CVNF

Random-81 0.001

Random-25

Function 2

Number of data δ No.

NF NF NF NF

act 1 act 2 act 1 act 2 act 1 act 2 act 1 act 2

① 168 290 211 0.0054 0.0029 0.0029 0.00037 0.00014 0.00031 0.5653 0.3796 0.3452

② 161 406 229 0.0050 0.0046 0.0034 0.00019 0.00025 0.00056 0.5492 0.4838 0.4320

Equivalent-25 0.001 ③ 219 175 160 0.0020 0.0020 0.0018 0.00029 0.00034 0.00041 0.1660 0.1601 0.1468

④ 214 532 359 0.0040 0.0027 0.0020 0.00020 0.00030 0.00042 0.5662 0.5160 0.3472

⑤ 393 305 211 0.0014 0.0014 0.0017 0.00007 0.00007 0.00018 0.3793 0.2583 0.2729

Equivalent-81 0.001 ⑥ 533 260 247 0.0007 0.0008 0.0008 0.00008 0.00014 0.00012 0.1401 0.1221 0.1254

Random-81 0.001

CVNF CVNF CVNF CVNF

Random-25 0.001

NF: α=0.5, β=0.01, γ=0.03,   CVNF: α=0.2, β=0.01, γ=0.03

Epoch Evaluation Standard deviation Max. absolute error

Function 3

Number of data δ No.

NF NF NF NF

act 1 act 2 act 1 act 2 act 1 act 2 act 1 act 2

① 216 134 136 0.0060 0.0012 0.0015 0.00035 0.00010 0.00018 0.3693 0.1306 0.1517

② 186 220 96 0.0028 0.0017 0.0014 0.00020 0.00024 0.00030 0.2267 0.1886 0.1631

Equivalent-25 0.001 ③ 226 108 86 0.0012 0.0011 0.0011 0.00014 0.00016 0.00017 0.1053 0.1221 0.1219

④ 244 173 131 0.0018 0.0012 0.0011 0.00009 0.00010 0.00012 0.2353 0.1563 0.1428

⑤ 245 179 116 0.0013 0.0009 0.0009 0.00008 0.00008 0.00008 0.2067 0.1439 0.1253

Equivalent-81 0.001 ⑥ 277 154 102 0.0006 0.0008 0.0008 0.00006 0.00006 0.00007 0.1121 0.1083 0.1095

NF: α=0.5, β=0.01, γ=0.03,   CVNF: α=0.2, β=0.01, γ=0.03

Epoch Evaluation Standard deviation Max. absolute error

Random-25 0.001

CVNF CVNF CVNF CVNF

Random-81 0.001



 

Table 7. NF vs. CVNF for Function 4 

 
 

 
Fig. 2. Desired output and fuzzy inference for Function 3: (a) 

NF. (b) CVNF using the activation function 1. (c) CVNF using 

the activation function 2. (d) Desired output for Function 3. 

   

 
Fig. 3. Absolute error between desired output and fuzzy infer-

ence for Function 1: (a) NF. (b) CVNF using the activation 

function 1. (c) CVNF using the activation function 2. 
 

The estimation error is given as follows. First, we per-

form learning each fuzzy rule by the conventional 

method and the new method. Second, we input 2601 

estimation data         (where both ranges of x1 and x2 

are increments of 0.04 from -1 to 1) for Functions 1 and 

2 to each learned fuzzy rule. Finally, we get the mean 

squared error between its output and the desired output 

for Functions 1, 2, 3 and 4. This is the estimation error. 

As an example, using the random data 1 (shown in Table 

8) in Table 6, we generated each fuzzy rule for the con-

ventional method and the new method. Fig. 2 (a), (b) 

and (c) are each result of the fuzzy inference for 2601 

estimation data. Fig. 2 (d) is the desired output of Func-

tion 3. Further, Fig. 3 (a), (b) and (c) shows the absolute 

error between each result of the fuzzy inference and the 

desired output. 

Table 8. Random data 1 in Table 6 

 

From Fig. 2 and 3, compared with the new method, the 

conventional method could not interpolate around the 

range             in Fig. 3 (a). Further, the new 

method could fit to such random training sets. 

4. DISCUSSION 

By the analysis of the results shown in Tables 4, 5, 6 and 

7, we can describe as follows. 

(1) In terms of the estimation error, we found that the 

new method is much better than the conventional meth-

od for four functions. In particular, the estimation error 

for random training sets showed good result for all func-

tions. Thus, we can say that although the freedom of 

parameters is limited, the new method could fit for 

training sets well. 

(2) In terms of the absolute error, for Function 1, 2 and 3, 

the new method showed better results than the conven-

tional method. For Function 4, the conventional method 

is better than the new method that uses the activation 

function 1, while it is worse than the new method using 

the activation function 2. Thus, the new method may or 

may not be better depending on form of the activation 

function. For this reason, if we use this method for a 

model that generates real-valued output for com-

plex-valued inputs, we need to change the activation 

functions depending on the problem to apply. 

From the above results of the simulation, we can con-

clude that the new method has equivalent to or better 

accuracy than the conventional method. Furthermore, 

the new method has a feature that while the parameters 

have less flexibility, it can fit for training sets well. 

Therefore, we can say that the new method is a useful 

tool for learning the fuzzy system model. 

Function 4

Number of data δ No.

NF NF NF NF

act 1 act 2 act 1 act 2 act 1 act 2 act 1 act 2

① 116 140 145 0.0046 0.0031 0.0032 0.00024 0.00021 0.00032 0.3996 0.5556 0.4005

② 123 97 101 0.0062 0.0041 0.0042 0.00030 0.00015 0.00048 0.4459 0.6016 0.3554

Equivalent-25 0.002 ③ 123 321 303 0.0010 0.0015 0.0015 0.00029 0.00011 0.00011 0.1873 0.1310 0.1320

④ 125 156 156 0.0035 0.0026 0.0030 0.00037 0.00015 0.00027 0.3656 0.3950 0.3376

⑤ 127 156 135 0.0036 0.0048 0.0034 0.00027 0.00052 0.00046 0.4609 0.7072 0.4186

Equivalent-81 0.002 ⑥ 129 222 225 0.0012 0.0016 0.0015 0.00014 0.00006 0.00009 0.2381 0.1891 0.1939

Random-81 0.002

Random-25 0.002

CVNF CVNF CVNF CVNF

NF: α=0.5, β=0.01, γ=0.03,   CVNF: α=0.2, β=0.01, γ=0.03

Epoch Evaluation Standard deviation Max. absolute error

No. x 1 x 2 No. x 1 x 2 No. x 1 x 2 No. x 1 x 2

1 0.32 0.92 8 0.4 0 15 -0.04 -0.44 22 0.04 -0.32

2 0.84 0 9 0.32 -0.52 16 -0.96 -0.48 23 -0.08 -0.36

3 0.44 0.4 10 0.36 -0.52 17 0.28 0.44 24 0.64 0.48

4 -0.64 0.52 11 0.84 0.84 18 0.84 -0.4 25 -0.36 -0.16

5 -0.48 0.76 12 -1 -0.36 19 -0.52 0.92

6 -0.88 -1 13 -0.88 -0.12 20 0.96 -0.04

7 -0.04 0.04 14 -1 -1 21 -0.76 0.04



 

5. SUMMARY 

In this paper, we proposed the new method extending 

the conventional method to the complex domain for 

tuning fuzzy rules. Then, we gave the general formulas 

for this algorithm under Gaussian type membership 

functions. Finally, in several function identification 

problems, we showed that the new method outperforms 

the conventional approach for learning a fuzzy system 

model. 

In the future, we want to show the effectiveness of the 

proposed method in the subject that can be represented 

by complex numbers such as image and audio data. The 

proposed method, by changing a part of it, can also use 

complex-valued outputs. Further, recently, Neuro-Fuzzy 

system that has inputs and outputs of complex-number 

has been proposed [24 - 27]. These methods were pro-

posed in different approach from ours. Thus, when we 

apply our method to the problem of complex numbers, 

we want to compare with these methods. 
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