Three-dimensional *T*-stresses for three-point-bend specimens with large thickness variation

Kai Lu^{1*}, Toshiyuki Meshii²

Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui, Japan
 Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui, Japan
 * Corresponding author: kai_lu@u-fukui.ac.jp FAX: +81-776-27-9764

Abstract

Three-point-bend (3PB) test specimens are useful for the systematic investigation of the influence of statistical and constraint loss size effects on the cleavage fracture toughness of a material in the ductile-to-brittle transition temperature range. Because the in- and out-of-plane elastic T-stresses (T_{11} and T_{33}) are a measure of the crack-tip constraint and even the in-plane T_{11} exhibits three-dimensional (3D) effects, the 3D T-stresses solutions were obtained by running finite element analyses (FEA) for 3PB specimens with wide ranges of the crack depth-to-width ratio (a/W = 0.2 to 0.8) and the specimen thickness-to-width ratio (B/W = 0.1 to 40). The results show that the 3D T_{11} at the specimen mid-plane tended to deviate from the 2D T_{11} as B/W increased, with the deviation saturating for $B/W \ge 2$. The mid-plane T_{33} increased with B/W and was close to the plane strain value T_{11} for $B/W \ge 2$.

Keywords: Elastic *T*-stress, Three-point-bend specimen, Finite element analysis, Fracture toughness, Constraint effect

Nomenclature

B Specimen thickness

E Young's modulus

F Unit magnitude (see Eq. (2))

I Interaction integral

 $K_{\rm I}$ Local mode I stress intensity factor (SIF)

 K_0 2D SIF for elastic analysis

 $R_{\rm s}$ Crack tube radius

S Support span for 3PB specimen

 T_{11} , T_{33} T-stresses

W	Specimen width
a	Crack length
r, θ	In-plane polar coordinates
X_j	Crack-tip local coordinates $(j = 1, 2, 3)$
∆ \	Singular element size
β_1, β_3	Normalized T-stresses
& 3	Out-of-plane strain
ν	Poisson's ratio
G	Stress components $(i, j = 1, 2, 3)$

1. Introduction

Three-point-bend (3PB) test specimens are useful for the systematic investigation of the statistical and constraint loss size effects on the cleavage fracture toughness of a material in the ductile-to-brittle transition temperature range [1, 2]. Because the in-plane and out-of-plane T-stresses (T_{11} and T_{33}) are a measure of the crack-tip constraint and even the in-plane T_{11} exhibits three-dimensional (3D) effects [2-4], the 3D T-stresses solutions were obtained by running finite element analyses (FEA) for 3PB specimens with wide ranges of the crack depth-to-width ratio (a/W = 0.2 to 0.8) and the specimen thickness-to-width ratio (B/W = 0.1 to 40). The 2D T_{11} solutions have been provided for 3PB specimen in many numerical studies [5-10].

The results show that the 3D T_{11} at the specimen mid-plane tended to deviate from the 2D T_{11} as B/W increased, with the deviation saturating for $B/W \ge 2$. The mid-plane 3D T_{11} for B/W = 0.1 to 40 was high as 54% when a/W = 0.2, suggesting that 3D effects should be properly considered for cases of short crack length, especially when T_{11} is negative. The mid-plane T_{33} increased with B/W and was close to the plane strain value T_{11} for $B/W \ge 2$.

2. T-stress

In an isotropic linear elastic body containing a crack subjected to symmetric (mode I) loading, the Williams series expansion [11] of the 3D stress components near the crack tip field can be written as [3]

$$\begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\tau_{12} \\
\tau_{23} \\
\tau_{31}
\end{bmatrix} = \frac{K_1}{\sqrt{2\pi r}} \begin{cases}
\cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) \\
\cos\frac{\theta}{2} \left(1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) \\
2\nu\cos\frac{\theta}{2} \\
\sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} \\
0 \\
0
\end{cases} + \begin{cases}
T_{11} \\
0 \\
T_{33} \\
0 \\
0 \\
0
\end{cases}$$
(1)

where r and θ are the in-plane polar coordinates of the plane normal to the crack front shown in Fig. 1, K_1 is the local mode I stress intensity factor (SIF) and v is Poisson's ratio. Here, x_1 is the direction formed by the intersection of the plane normal to the crack front and the plane tangential to the crack plane. T_{11} and T_{33} are the amplitudes of the second-order terms in the three-dimensional series expansions of the crack front stress field in the x_1 and x_3 directions, respectively.

Different methods have been applied to compute the elastic *T*-stress for test specimens, as summarized by Sherry et al. [10]. In this study, an efficient finite element method developed by Nakamura and Parks [11] based on an interaction integral was used to determine the elastic *T*-stresses.

The crack tip T_{11} -stress on the crack front is related to the interaction integral by

$$T_{11} = \frac{E}{1 - v^2} \left\{ \frac{I}{F} + v \varepsilon_{33} \right\}$$
 (2)

where E is Young's modulus, V is Poisson's ratio and E_3 identifies the out-of-plane strain at the crack tip in the direction tangential to the crack front. I represents the interaction integral, and F indicates the unit magnitude (F = 1).

Once the T_{11} -stress is obtained, the T_{33} -stress can be obtained using the following relationship:

$$T_{33} = E\varepsilon_{33} + \nu T_{11} \tag{3}$$

More details of this method can be found in Nakamura and Parks [11] and Qu and Wang [12].

3. Finite Element Analysis (FEA)

3.1 Description of the finite element model

In the present study, 3D elastic FEA was conducted to calculate the elastic T-stresses (T_{11} and T_{33}) for a 3PB test specimen with a straight crack. Fig. 2 shows a sketch of the loads and geometry. In this figure, a, B, W and S are the crack length and the specimen thickness, width and support span,

respectively. For all current calculations, the specimen width was set as W = 25 mm, with a support span of S = 4W.

To systematically quantify the out-of-plane crack-tip constraint effect of the 3PB specimen, the thickness-to-width ratios B/W = 0.1, 0.25, 0.5, 1, 1.5, 2 and 40 were considered to cover the B/W range studied experimentally by Rathbun et al. [1]. For each B/W, the crack depth-to-width ratios a/W = 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7 and 0.8 were considered to investigate the in-plane constraint.

The material is assumed to be linearly elastic (isotropic and homogeneous). Young's modulus E = 206 GPa and Poisson's ratio v = 0.3 were set based on ferritic steel, which is the most widely used material in engineering. 3D finite elements were used to build a one-quarter symmetric model of the 3PB specimen, as shown in Fig. 3(a). The finite element model used 20-noded isoparametric 3D solid elements with reduced (2×2×2) Gauss integration. Sixteen singular elements were used around the crack tip for all cases in this study. Twenty equivalent rows of meshes were spaced inside the crack tube with radius $R_s = 0.4$ mm (Fig. 3(b)). In the present FEA models, 365740 to 393194 nodes with 86912 to 93840 elements were used, and the details for the generated mesh are summarized in the Appendix.

WARP3D [13] was used as the FEA solver. The load set for the elastic FEA corresponded to the 2D SIF $K_0 = 1$ MPa m^{1/2} calculated from the following equation from the ASTM standard [14].

$$K = \frac{PS}{RW^{3/2}} f(a/W) \tag{4}$$

where f is a function of a/W and is defined in the standard.

3.2 T-stresses for 3PB specimens

 T_{11} was evaluated as the average of the values of T_{11} obtained from domain 2 to domain 20. Good independence of the T value on the choice of domain was obtained, as the differences in the T-stress results from domain 2 to domain 20 were within 1% of one another, except for the values in the vicinity of the free surface. The obtained mid-plane T_{11} and T_{33} stresses are summarized in Tables 1 and 2, respectively, in the normalized form of $\beta_k = T_{kk}(\mathbf{z}_0)^{1/2}/K_0$ (k = 1 or 3). The T-stresses at the specimen mid-plane received special attention because fracture initiation occurs at this location (e.g., [1, 2]).

First, the obtained mid-plane β_1 values were compared with the 2D β_1 solutions obtained by different authors [5-9] as a validity check. Sherry et al. reported that these 2D solutions varied significantly [10] and compiled them as a polynomial function of a/W. However, in this work, Kfouri's plane-strain solutions [6] were chosen for comparison with our 3D β_1 solutions based on the expectation that the 3D β_1 will approach the plane-strain values, as shown in Fig. 4(a). The midplane β_1 exhibited 3D effects and monotonously decreased with increasing B/W but saturated to

values very close to the plane-strain solutions, as shown in Fig. 4(b). This tendency was similar to that observed by Nakamura and Parks for a single edge-cracked plate under pure bending [3].

Another finding was that β_1 was a monotonously increasing function of a/W, regardless of B/W. The results showed that negative β_1 , and thus loss of the in-plane crack-tip constraint, was anticipated for cases of $a/W \le 0.3$.

Fig. 5 shows the mid-plane β_3 solutions for various thicknesses and crack depths. In Fig. 5(a), it is observed that β_3 is a monotonously increasing function of B/W, as expected. The bounding value of β_3 for each a/W was close to the plane strain value β_1 , and a relative thickness of B/W = 40 was sufficient for β_3 to saturate to the bounding value, as shown in Fig. 5(b).

 β_3 for the ASTM standard 3PB specimen [14], for which B/W = 0.5 and $0.45 \le a/W \le 0.55$, was negative. This finding seemed to support the fact that J_c was not bounded in the case of increasing B/W for 3PB specimens [1].

Interestingly, in Fig. 5(b), β_3 was not always a monotonously increasing function of a/W, as observed for the thin specimens of B/W = 0.1, 0.25 and 0.5. For example, β_3 for B/W = 0.1 was a monotonously decreasing function of a/W and thus might lead to the incorrect conclusion that deep cracks lose the out-of-plane crack-tip constraint. However, by normalizing T_{33} in terms of $T_{33}(M)^{1/2}/K_0$ (W was constant for all cases in this study) as shown in Fig. 6, it is clearly seen that T_{33} increased monotonously as a/W increased for all B/Ws, which means that the out-of-plane crack-tip constraint level was strengthened due to the increase in crack depth, although the increase rate was smaller than $a^{1/2}$.

4. Discussion

In addition to the mid-plane T-stresses, the variations of the β_1 and β_3 solutions in the thickness direction were also plotted for various thicknesses for a/W = 0.5 in Fig. 7 and 8, respectively. Note that the mid-side node values were omitted in this figure. As observed in the left part of Fig. 7, the in-plane β_1 distributions changed little overall compared with the mid-plane value in the range of $x_3/(B/2) = 0$ to 0.8. Specifically, these differences were in the range of 4.1 to 15.3%. The differences were less than 5% if $x_3/(B/2)$ was in the range of 0 to 0.5, regardless of B/W.

On the other hand, the out-of-plane β_3 distributions in Fig. 8 showed a visible decrease in the thickness direction, considering that the ordinate of this figure ranges from -14 to 2. However, the rate of decrease became small as B/W increased, as is clear for the case of B/W = 40. Note that both T_{11} and T_{33} diverged significantly in the vicinity of the free surface $(x_3/(B/2) = 0.8 \text{ to } 1.0)$ because ε_3 tends to be singular near the free surface and is not well calculated using FEA [3, 4]. Thus, the T-stresses near the free surface calculated by the present FEA method are known to be unreliable [12] and require further study.

5. Summary

In the present study, the T-stress solutions for 3PB specimens with a wide range of the crack depth-to-width ratio (a/W = 0.2 to 0.8) and the specimen thickness-to-width ratio (B/W = 0.1 to 40) were calculated using 3D elastic FEA. The results showed that 3D T_{11} at the specimen mid-plane tended to deviate from the 2D T_{11} as B/W increased, with the deviation saturating for $B/W \ge 2$. The mid-plane 3D T_{11} between cases of B/W = 0.1 and 40 was large as 54% for a/W = 0.2 and suggested that the 3D effects should be properly considered for cases of short crack length, especially when T_{11} is negative. The mid-plane T_{33} increased with B/W and was close to the plane strain value T_{11} for $B/W \ge 2$.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 24561038. Their support is greatly appreciated.

Appendix

List of figures

- Fig. 1 Three-dimensional coordinate system for the region along the crack front
- Fig. 2. Sketch of the loads and geometry of the 3PB specimens
- Fig. 3. Typical finite element model of a 3PB specimen (W = 25 mm, S/W = 4, a/W = 0.5, B/W = 0.5)
- Fig. 4 Normalized T_{11} solutions (β_1) at the specimen mid-plane for 3PB specimens (ν = 0.3)
- Fig. 5 Normalized T_{33} solutions (β_3) at the specimen mid-plane for 3PB specimens (ν = 0.3)
- Fig. 6 Normalized T_{33} solutions $(T_{33}(\pi V)^{1/2}/K_0)$ at the specimen mid-plane for 3PB specimens (v=0.3)
- Fig. 7 Variations of β_1 in the thickness direction along the crack front for various thicknesses when a/W = 0.5 (v = 0.3)
- Fig. 8 Variations of β_3 in the thickness direction along the crack front for various thicknesses when a/W = 0.5 (v = 0.3)

References

- [1] Rathbun HJ, Odette GR, Yamamoto T, Lucas GE. Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition-A single variable experiment and database. Engineering Fracture Mechanics. 2006;73:134-58.
- [2] Meshii T, Lu K, Takamura R. A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region. Engineering Fracture Mechanics. 2013;104: 184-
- [3] Nakamura T, Parks DM. Determination of elastic *T*-stress along three-dimensional crack fronts using an interaction integral. International Journal of Solids and Structures. 1992;29(13):1597-1611.
- [4] Fernández-Canteli A, Giner E, Fernández-Sáez J, Fernández- Zúñiga. A unified analysis of the inplane and out-of-plane constraints in 3-D linear elastic fracture toughness, Proceedings of the 19th European Conference on Fracture. Kazan, Russia. 2012; p.1-8.
- [5] Leevers PS, Radon JC. Inherent stress biaxiality in various fracture specimen geometries. International Journal of Fracture. 1982;19:311-325.
- [6] Kfouri AP. Some evaluations of the elastic *T*-term using Eshelby's method. International Journal of Fracture. 1986;30(4):301-315.

- [7] Cardew GE, Goldthorpe MR, Howard IC, Kfouri AP. On the Elastic *T*-term. In: Bibly BA, Miller KJ, Willis JR, editors. Fundamentals of Deformation and Fracture. Cambridge: Cambridge University Press; 1984. p. 465-476.
- [8] Fett T. *T*-stresses in rectangular plates and circular disks. Engineering Fracture Mechanics. 1998;60(5 6):631-652.
- [9] Yang B, Ravi-Chandar K. Evaluation of elastic *T*-stress by the stress difference method. Engineering Fracture Mechanics. 1999;64(5):589-605.
- [10] Sherry AH, Moran B, Nakamura T. Compendium of *T*-stress solutions for two and three dimensional cracked geometries. Fatigue and Fracture of Engineering Materials and Structures. 1995;18:141-155.
- [11] Williams ML. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics. 1957;24:111-114.
- [12] Qu J, Wang X. Solutions of *T*-stresses for quarter-elliptical corner cracks in finite thickness plates subject to tension and bending. International Journal of Pressure Vessels and Piping. 2006;83(8):593-606.
- [13] Gullerud A, Koppenhoefer K, Roy Y, RoyChowdhury S, Walters M, Bichon B, et al. WARP3D Release 15 Manual. Civil Engineering, Report No UIUCENG-95-2012, University of Illinois at Urbana-Champaign. 2004.
- [14] ASTM. E1921-10 Standard test method for determination of reference temperature, T_0 , for ferritic steels in the transition range. Annual Book of ASTM Standards. Philadelphia PA: American Society for Testing and Materials; 2010.

Tat	Table 1. Normalized T_{11} solutions (β_1) at the specimen mid-plane for 3PB specimens (ν = 0.3).														
a/ W															
<i>B</i> / <i>W</i>	0.2	0.3	0.4	5	0.4		0.5	5	0.5		0.6		0.7		0.8
0.1	0.158	0.022	0.11 5	5	0.18	8	0.25	4	0.33	5	0.41	5	0.60	6	0.87
5	0.182	0.055	9 0.07	9	0.14	1	0.22	7	0.29	9	0.37	6	0.57	6	0.86
0.5	0.188	0.059	0.07 3	3	0.14	6	0.21	4	0.29	9	0.37	4	0.57	0	0.82
1	0.220	0.078	0.06	3	0.13	4	0.20	5	0.27	8	0.34	8	0.50	2	0.72
1.5	0.236	- 0.107	0.02	5	0.09	3	0.16	1	0.23	2	0.30	4	0.46	6	0.69
2	0.240	0.122	0.00	0	0.07	6	0.13	5	0.20	7	0.27	7	0.44	8	0.68
40	0.244	0.125	0.00	5	0.06	3	0.13	4	0.20	7	0.26	0	0.44	4	0.68

Ta	ble 2 Norm	alized T_{33}	solutions (¿	\mathfrak{F}_3) at the sp	ecimen mi	d-plane for	3PB speci	mens ($v=0$	0.3)
a/ W								C [×]	
B/ W	0.2	0.3	0.4	0.4 5	0.5	0.5	0.6	0.7	0.8
0.1	0.861	1.041	1.184	1.245	1.301	1.351	1.395	- 1.461	1.458
0.2 5	0.530	0.617	0.682	0.708	0.728	0.742	0.749	0.725	0.587
0.5	0.353	0.388	0.404	0.405	0.399	0.386	0.362	0.262	0.041
1	0.246	0.206	0.168	0.144	0.115	0.079	0.036	0.07	0.20
1.5	0.216	0.142	0.072	0.038	0.003	0.03	0.07	0.14	0.23
2	0.197	- 0.118	0.040	0.004	0.03	0.065	0.09	0.15	0.23
40	0.059	0.024	0.01	0.03	0.04	0.06	0.11	0.16	0.23

Table A.1 Summary of the generated mesh (W = 25 mm, S/W = 4, $R_s = 0.4 \text{ mm}$)

	Table A.1 Su	iiiiiiai y Oi	the gener	ateu mesi	1 (W = 23)	111111, 57 77	$-+, R_S-$	J. + IIIII <i>)</i>		
B/W	a/W	0.2	0.3	0.4	0.4 5	0.5	0.5 5	0.6	0.7	0.8
0.1	∆Va	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0
	CD	12	16	20	26	30	34	40	48	56
	NR	61	53	45	41	37	33	29	21	13
	na (na_bias)	189 (2	2)					5		
0.25	∆Va	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0
	CD	12	16	20	26	30	34	40	48	56
	NR	61	53	45	41	37	33	29	21	13
	na (na_bias)	189 (2	2)							
0.5	Ма	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0
	CD	12	16	20	26	30	34	40	48	56
	NR	61	53	45	41	37	33	29	21	13
	na (na_bias)	18 9 (2)								
1	Ма	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0
	CD	12	16	20	26	30	34	40	48	56

NR	61	53	45		25	22	• •		
		33	45	41	37	33	29	21	13
na (na_bias)	189 ((2)							
∆Ыа	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0
CD	12	16	20	26	30	34	40	48	56
NR	61	53	45	41	37	33	29	21	13
na (na_bias)	189 ((2)							
∆Ыa	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0
CD	12	16	20	26	30	34	40	48	56
NR	61	53	45	41	37	33	29	21	13
na (na_bias)	189 ((2)							
∆Ыа	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0
CD	12	15	24	20	20	24	30	40	45
NR	50	50	36	36	36	32	28	20	12
na (na_bias)	18 9 (2)	24 3(1)							
	na_bias) Al/a CD NR na na_bias) Al/a CD NR na (na_bias) Al/a CD NR na (na_bias)	Ma 4.0 CD 12 NR 61 na 189 6 na_bias) Ma 4.0 CD 12 NR 61 na 189 6 na 189 6	Ma	Ma	Ma_bias) Ala	M/a	M/a	Ma	Ma

Highlights

- T-stress solutions 3PB specimens with various crack depths and thicknesses were obtained.
- Mid-plane T_{11} and T_{33} were reported for 3PB specimens with $a/W = 0.2 \sim 0.8$ and $B/W = 0.1 \sim 40$.
- T_{11} showed 3D effect, and approached 2D plane strain solutions for large thickness.
- T_{33} increased with thickness, and saturated to $\sqrt{T_1}$ for $B/W \ge 2$.

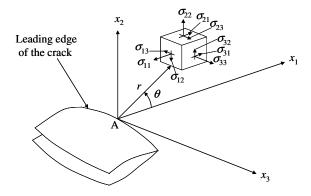


Fig. 1 Three-dimensional coordinate system for the region along the crack front

13

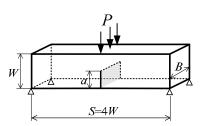


Fig. 2 Sketch of the loads and geometry of the 3PB specimens

2

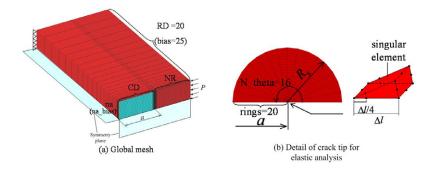
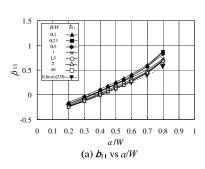



Fig. 3 Typical finite element model of a 3PB specimen (W = 25 mm, S/W = 4, a/W = 0.5, B/W = 0.5)

3

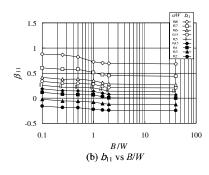
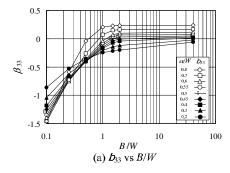



Fig. 4 Normalized T_{11} solutions (β_{11}) at the specimen mid-plane for 3PB specimens (ν = 0.3)

.

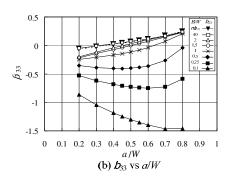


Fig. 5 Normalized T_{33} solutions (β_{33}) at the specimen mid-plane for 3PB specimens (ν = 0.3)

5

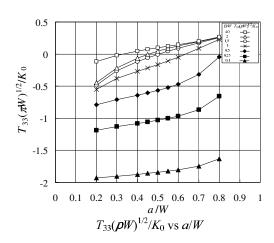


Fig. 6 Normalized T_{33} solutions $(T_{33}(\pi W)^{1/2}/K_0)$ at the specimen mid-plane for 3PB specimens (ν = 0.3)

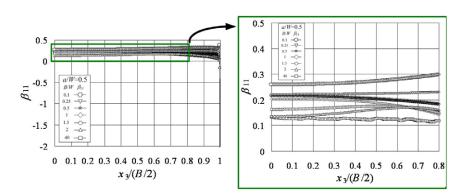


Fig. 7 Variations of β_{11} in the thickness direction along the crack front for various thicknesses when a/W=0.5 ($\nu=0.3$)

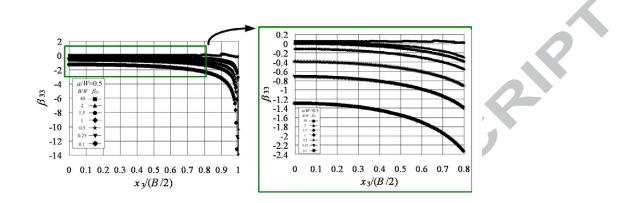


Fig. 8 Variations of β_{33} in the thickness direction along the crack front for

ection alot $\cdot a/W = 0.5$ (v = 0.5)