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Abstract 

Recently, the near field communication, abbreviated NFC, which is a form of 

contactless communication between devices like smartphones or tablets, is emerging 

quickly. Contactless communication allows a user to wave the smartphone over a 

NFC compatible device to send information without needing to touch the devices 

together or go through multiple steps setting up a connection. Fast and convenient, 

NFC technology is popular in parts of Europe and Asia, and is quickly spreading 

throughout the whole world. Over the past decade, we have witnessed the rapid 

evolution of Multiple-Input Multiple-Output (MIMO) systems which promise to 

break the frontiers of conventional architectures and deliver high throughput by 

employing more than one element at the transmitter (Tx) and receiver (Rx) in order to 

exploit the spatial domain. This is achieved by transmitting simultaneous data streams 

from different elements which impinge on the Rx with ideally unique spatial 

signatures as a result of the propagation paths‘ interactions with the surrounding 

environment.  

For exchanging massive information, for instance the videos or photos, 

between two devices, the future NFC systems will require higher channel capacity 

than current systems. Therefore, the MIMO system, which has a wider bandwidth, 

multi-value modulation system, and spatial multiplexing scheme, is the appropriate 

candidate to be employed in the high-speed NFC systems. Contrary to conventional 

MIMO systems, near-field MIMO communication systems transfer data in a very 
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short range, the transmission lines are formed in parallel without multipath, and the 

LOS (line-of-sight) paths are the major components.  The conventional MIMO 

works in a multipath-rich propagation environment, and is expected to achieve a high 

channel capacity by utilizing multipath components. The near-field MIMO, however, 

transfers data directly from the transmitter to the receiver, without any fading caused 

by multipath components.  

In the near-field MIMO system, a higher channel capacity results from a 

higher SNR and lower spatial correlation characteristics. Considering the short 

distance, the LOS components from each of the Tx elements arrive at the Rx array 

with a spherical wavefront. Therefore the beamwidth of the antenna element radiation 

pattern affects not only the receiving gain but also the spatial correlation 

characteristics. Usually, the conventional dipole antennas are used to investigate the 

MIMO channel capacity. However, the conventional dipoles are omni-directional in 

the horizontal plane. In this paper, a bi-directional element named dual-dipole element 

is utilized to improve the channel capacity. In the dual-dipole array, two half 

wave-length dipole antennas are settled parallel as only one element. By changing the 

internal distance between the two dipoles in one Tx element, the HPBW (half power 

beam width) of the element can be adjusted. Therefore, the shape of the radiation 

pattern can be determined by the internal distance between the two dipoles in one 

element.  

The effect of the HPBW on the channel capacity is investigated in detail. The 

narrower beam width of the Tx element can result for a higher SNR in the facing Rx 

element, however, at the meantime the power in the other sub channels will decrease. 

Hence, it is expected that there would be an optimum HPBW when the system could 

obtain the maximum channel capacity.  And we find out the optimum HPBW for the 

near-field MIMO system with dual-dipole arrays. In addition, the improvement in the 

channel capacity from the conventional dipole array is considerable. 

Basically two factors determine the capacity of a MIMO system—the path 

loss and the multipath richness. The dual-dipole arrays lead to much lower path loss 

than the conventional dipole arrays, hence, the channel capacity improves 
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significantly. However, the multipath richness rarely exists in the near-field MIMO. 

So far, all the researches on the near-field MIMO are in the free space without any 

obstacle. However, due to the short transfer distance of the near-field MIMO, a tiny 

variation of the channel will lead to a significant difference on the channel capacity. 

Therefore, we employ metal wire in the near-field MIMO system to increase the 

multipath richness and clarify the effect of obstacles in the system.  

The characteristics of the single metal wire are detailed investigated. And the 

most significant aspect is the location of the metal wire placed in the system. 

Generally, an object placed between two transmission antennas will decrease the 

channel capacity of the system. Here, we try to determine the optimal location of the 

object between the opposing antennas. We expect that the optimal location will 

alleviate the deterioration in the capacity caused by the object. However, the 

simulation results indicate that if the metal wire is placed in an appropriate location, a 

higher channel capacity can be obtained. In addition, we can set multiple metal wires 

in the optimum locations to achieve higher channel capacity. The different types of 

objects in the different types of arrays are also researched. 

Finally, this paper clarifies the frequency dependency of channel capacity in 

near-field MIMO system with metal wire. As the frequency increases, the absolute 

value of the channel capacity decreases. The improvement on channel capacity of 

using a metal wire also changes with frequency. In addition, when the frequency is 

very large, the effect of the metal wire is negligible. The proper location for the metal 

wire is found related with the corresponding wavelength of each specific frequency.  

Confidently, the research of the effect of the element HPBW and the objects 

between Tx and Rx introduced in this study can be beneficially applied in actual 

network preparation of future near-field MIMO wireless communications in which the 

improvement in the channel capacity are required. 
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Chapter 1 Introduction 

1.1 Motivation and Scope of Dissertation 

The past couple decades has been signified by two parallel trends that 

radically changed the way people work and live—the advent of the Internet and the 

widespread introduction of personal mobile communications. As it was widely 

anticipated, these two digital industries have converged in the last years by the smart 

phones. Seamless interoperation of the available communication 

infrastructure—wireless as well as cable based—will provide users with the desired 

information anywhere at any time. As the development of bandwidth of Internet, the 

applications are not limited to the access to email, website or flash game, but also 

including the video games, HD videos and the distribution of other multimedia 

contents. Such applications require an air interface which offers high peak data rates, 

makes the best possible use of the available spectrum, and still enables low cost 

terminals. Therefore, we are motivated to improve the information exchanging 

capability between two mobile devices or two networks. This dissertation will 

combine the MIMO (multiple-input multiple-output) antenna to the NFC (near field 

communication) system to enhance the speed of data transmitting rate.  

Recently, the near field communication [1-8], abbreviated NFC, which is a 

form of contactless communication between devices like smart phones or tablets, is 

emerging quickly. Contactless communication allows a user to wave the smart phone 

over a NFC compatible device to send information without needing to touch the 

devices together or go through multiple steps setting up a connection. Fast and 

convenient, NFC technology is popular in parts of Europe and Asia, and is quickly 

spreading throughout the whole world.  

Over the past decade, we have witnessed the rapid evolution of Multiple-Input 

Multiple-Output systems [9-16] which promise to break the frontiers of conventional 
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architectures and deliver high throughput by employing more than one element at the 

transmitter (Tx) and receiver (Rx) in order to exploit the spatial domain. This is 

achieved by transmitting simultaneous data streams from different elements which 

impinge on the Rx with ideally unique spatial signatures as a result of the propagation 

paths‘ interactions with the surrounding environment.  

For exchanging massive information, for instance the videos or photos, 

between two devices, the future NFC systems will require higher channel capacity 

than current systems [17, 18]. Therefore, the MIMO system [19, 20], which has a 

wider bandwidth, multi-value modulation system, and spatial multiplexing scheme, is 

the appropriate candidate to be employed in the high-speed NFC systems [21]. 

Contrary to conventional MIMO systems, near-field MIMO communication systems 

transfer data in a very short range [22], the transmission lines are formed in parallel 

without multipath, and the LOS (line-of-sight) paths are the major components [23, 

24].  The conventional MIMO works in a multipath-rich propagation environment, 

and is expected to achieve a high channel capacity by utilizing multipath components. 

The near-field MIMO, however, transfers data directly from the transmitter to the 

receiver, without any fading caused by multipath components.  

In the near-field MIMO system, a higher channel capacity results from a 

higher SNR and lower spatial correlation characteristics [21]. Considering the short 

distance, the LOS components from each of the Tx elements arrive at the Rx array 

with a spherical wavefront [24]. Therefore the beamwidth of the antenna element 

radiation pattern affects not only the receiving gain but also the spatial correlation 

characteristics. Usually, the conventional dipole antennas are used to investigate the 

MIMO channel capacity. However, the conventional dipoles are omni-directional in 

the horizontal plane. In this paper, a bi-directional element named dual-dipole element 

is utilized to improve the channel capacity. In the dual-dipole array, two half 

wave-length dipole antennas are settled parallel as only one element. By changing the 

internal distance between the two dipoles in one Tx element, the HPBW (half power 

beam width) of the element can be adjusted. Therefore, the shape of the radiation 
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pattern can be determined by the internal distance between the two dipoles in one 

element.  

The effect of the HPBW on the channel capacity is investigated in detail. The 

narrower beam width of the Tx element can result for a higher SNR in the facing Rx 

element, however, at the meantime the power in the other sub channels will decrease. 

Hence, it is expected that there would be an optimum HPBW when the system could 

obtain the maximum channel capacity.  And we find out the optimum HPBW for the 

near-field MIMO system with dual-dipole arrays. In addition, the improvement in the 

channel capacity from the conventional dipole array is considerable. 

Basically two factors determine the capacity of a MIMO system—the path 

loss and the multipath richness [25]. The dual-dipole arrays lead to much lower path 

loss than the conventional dipole arrays, hence, the channel capacity improves 

significantly. However, the multipath richness rarely exists in the near-field MIMO. 

So far, all the researches on the near-field MIMO are in the free space without any 

obstacle. However, due to the short transfer distance of the near-field MIMO, a tiny 

variation of the channel will lead to a significant difference on the channel capacity. 

Therefore, we employ metal wire in the near-field MIMO system to increase the 

multipath richness and clarify the effect of obstacles in the system.  

The characteristics of the single metal wire are detailed investigated. And the 

most significant aspect is the location of the metal wire placed in the system. 

Generally, an object placed between two transmission antennas will decrease the 

channel capacity of the system. Here, we try to determine the optimal location of the 

object between the opposing antennas. We expect that the optimal location will 

alleviate the deterioration in the capacity caused by the object. However, the 

simulation results indicate that if the metal wire is placed in an appropriate location, a 

higher channel capacity can be obtained. In addition, we can set multiple metal wires 

in the optimum locations to achieve higher channel capacity. The different types of 

objects in the different types of arrays are also researched. 
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Confidently, the research of the effect of the element HPBW and the objects 

between Tx and Rx introduced in this study can be beneficially applied in actual 

network preparation of future near-field MIMO wireless communications in which the 

improvement in the channel capacity are required. 

1.2 Contributions and Outline of Dissertation 

Figure 1.1 shows the structure of this dissertation. The rest of this dissertation 

which represent the contribution and outline of this study is constructed as follows. 

In Chapter 2, the overview of near field wireless communications and MIMO 

antenna systems will be introduced. The existing theories, applications and problems 

in the near-field MIMO system will be mentioned in this chapter. The background of 

near field communication technology and application scenario will be explained as 

well as the future expending application image is also described. Basic knowledge of 

MIMO wireless communications including the benefits of MIMO system will be 

introduced. The theory about the capacity of MIMO systems will be represented along 

with those of various kinds of static and fading channels.  

In Chapter 3, all the analysis models, including the dual-dipole array model 

and the near-field MIMO with metal wires will be introduced. The variation of the 

HPBW in the dual-dipole element will be state. Besides the analysis models, the 

evaluation methods concerning all parameters which are considered throughout this 

study will be introduced in this chapter. Such as the definition of the eigen value and 

the effect of spatial correlation in the system are explained in detail. In addition, the 

main evaluation index—channel capacity is also explicated at great length. 

In Chapter 4, the performance of the channel capacity in the near-field MIMO 

system with dual-dipole arrays will be investigated. The dual-dipole arrays are 

utilized to investigate the effect of HPBW on channel capacity. The HPBW can be 

changed by varying the internal distance between two dipoles in one element. With a 

proper HPBW of the antenna element, the channel capacity of a dual-dipole array is 

improved obviously from a conventional dipole array. The generality of the channel 

capacity improvement by the optimum HPBW is also clarified. In addition, 
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considering the usage error in the practical application, we also address the 

deterioration in the channel capacity caused by antenna location errors in this chapter. 

The offset errors and rotational errors are discussed respectively.  

In Chapter 5, the performance of the objects in near-field MIMO systems will 

be evaluated. The metal wires are chosen as the objects between the transmitting 

antennas and the receiving antennas for the fundamental research. First of all, one 

single metal wire is investigated to confirm the effects of metal wire‘s length, radius 

and polarization. Especially, the effect of the metal wire‘s location is verified clearly, 

the proper locations in the system for the metal wire are pointed out. In addition, the 

effect of multiple metal wires placed at the proper locations in the system is also 

described in detail.  

In Chapter6, it clarifies the frequency dependency of channel capacity in 

near-field MIMO system with metal wire. As the frequency increases, the absolute 

value of the channel capacity decreases. The improvement on channel capacity of 

using a metal wire also changes with frequency. In addition, when the frequency is 

very large, the effect of the metal wire is negligible. The proper location for the metal 

wire is found related with the corresponding wavelength of each specific frequency. 

Finally, the contributions of this dissertation will be concluded in Chapter 7. It 

will be summarized how the HPBW affect channel capacity in the near-field MIMO 

systems, and how the metal wire improve the channel capacity. The metal wire that 

was supposed as the obstacle in the system but with the proper location will improve 

the channel capacity. 
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Chapter 2 Overview of Near Field 

Communication and 

MIMO Systems 

In this chapter, the intention is to give basic overview of NFC technology and 

MIMO wireless communications. This part describes NFC functional operating 

modes, application scenario and expending future application image. The theory about 

the capacity of MIMO systems is represented along with those of various kinds of 

static and fading channels. It is clarifies to understand the function of the MIMO 

system utilized in the near field communication. 

2.1 Brief Introduction of Near Field Communication 

Within the last couple of years an expansive process has begun to emerge 

integrating computational logic into various kinds of objects of our everyday life and 

allowing us to persistently interact with those objects. The idea is to thoroughly 

connect virtual information to objects of the physical world and thus providing 

ubiquitous computing. Related to the concept of network ubiquity is the term ‘Internet 

of Things‘ referring to objects of daily use being identifiable, trackable, and even 

virtually connected via an internet-like structure [26].An essential enabler for this 

vision is the technology of Near Field Communication (NFC) that provides the 

possibility of linking virtual information between physical devices through proximity.  

2.1.1  NFC Technology Background  

In March 2004, a new interconnection technology, Near Field Communication, 

was launched by Sony, Philips and Nokia with the establishment of the NFC Forum 

[27-31]. The NFC Forum is a non-profit industry association for advancing the use of 

NFC short-range wireless interaction in consumer electronics, mobile devices and 
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PCs. NFC is a short range (max. 20 cm), standards based wireless connectivity 

solution, based on RFID sensor technology that enables active and/or passive 

communication between electronic devices in close proximity. NFC allows people to 

use the simple act of touching or placing their device close to something, another 

device or an RFID tag to initiate the desired service. This is making to use any form 

of electronic ―service‖ and other interactions easier accessible to people, whatever 

their age or ability. NFC secures, while the initiation of ―service‖ handshake is always 

under user controlled. It removing the user need to perform complex manual 

operations. Once the connection is established – within milliseconds – information 

can be exchanged between the two devices using either NFC directly or via another 

wireless technology. 

2.1.2  Operating Modes 

The technology has three operating modes, namely 1) Reader – when the NFC 

enabled device reads a passive RFID tag, 2) Card emulation – when an external reader 

reads the content of the NFC chip and 3) P2P which means that both communicating 

devices are in active mode, sending and receiving messages to each other. In this 

mode, NFC is comparable to other short-range communication technologies such as 

Bluetooth, Wibree and IrDA, although the physical data transfer mechanism is 

different. (VTT 2007, 13.) In this respect, NFC can be seen as a rival of these 

technologies, even though it can also complement them. NFC can open a connection 

between two devices that are brought close to each other, and the actual 

communication will then occur by Bluetooth or WLAN [27].  

The legacy of earlier standards gives NFC compatibility benefits with existing 

RFID applications, such as access control or public transport ticketing. It is often 

possible to operate with old infrastructure, even if the RFID card or reader is replaced 

with an NFC-enabled mobile phone, for example. This is possible because of NFC.s 

capability to emulate both RFID readers (reader/writer mode) and RFID tags (card 

emulation mode). NFC hardware can include a secure element for improved security 

in critical applications such as payments. For example, a credit card could be 
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integrated into a mobile phone and used by contactless credit card readers over NFC. 

(VTT 2007, 13.) 

NFC has even greater potential when it is combined  with mobile 

communication. Integrating NFC chip into a mobile handset the combination of 

proximity and remote communication is achieved opening further new perspectives. 

NFC is a standard technology that has recently achieved commercial availability via 

NFC chips, modules, mobile phones and PDAs. NFC is also backed by the leading 

mobile phone manufacturers and its deployment and chip development will be 

strongly driven via its integration into cellular handsets [32-35]. For example, 

standardised interfaces to SIM cards and to dedicated security chips, as well as chip 

level integration of NFC with Bluetooth can be expected in the near future.  

2.1.3  Application Scenario 

Almost every object or place can be equipped with a NFC tag and thus provide 

proximate identification and useful related information to a nearby user of a smart 

device, like a tablet computer or a smartphone. A poster advertising a music concert, 

as shown in Fig. 2.1, could for example not only offer information about the event 

itself to a user who taps the poster with his device, but also allow him to buy a concert 

ticket dispensed directly to his phone. The interaction technology behind remains 

invisible to the user, being unobtrusively stuck to the object, i.e. the concert poster, 

whilst being available anytime [36-39]. When entering the concert hall, the validity of 

the ticket can be approved by simply waving the smartphone across a NFC reader 

device at the entrance control. After having enjoyed the performance, the visitor could 

share photos he‘s taken during the concert with another visitor by simply holding their 

tow phones together. And - just to follow this scenario - when taking the bus home 

afterwards, the user is not required to tediously gather coins the get a bus ticket at the 

vendor machine. Instead, when entering and leaving the bus, he touches his phone to a 

reader device and the cheapest ticket price is automatically debited from his account. 
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Fig. 2.1. A typical NFC application scenario: A user spots a smart poster advertising 

an upcoming concert and taps the poster with his NFC phone (1). A dedicated 

pre-installed application opens on his phone displaying details of the concert. As 

the user has already registered an account and is signed in, he is able to directly 

buy a ticket (2). The ticket is securely stored on his phone. Later, on site of the 

concert, the access control gates are equipped with a NFC reader and provide 

immediate access to the user (3). 

 

2.1.4  Future NFC Expending Application Image 

 As mentioned above, the secure and convenient short range wireless 

communication technology, NFC, is emerging very quickly. However, the NFC is 

used by transfer very simple information, so where else can NFC be used, outside of 

simple data transfers and mobile payments? We can expect that in the future, we can 

exchange our videos or photos in our cell phone with our friends by approaching each 

other without the process of pair them as a Bluetooth. Or we can share the videos to a 

big screen TV, just take the tablet or phone, tap it to the TV and the video will begin 

to stream. Even when we want to connect the networks of two rooms, we can just set 

the antennas on the both sides of the wall, and we don‘t need to dig a hole through the 

wall with a cable, as shown in Fig. 2.2. 
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(a) Exchange massive data between phones. 

 

(b) Transfer massive data to a TV. 

 

(c) Connect networks through a wall. 

Fig. 2.2. Future NFC Expending Application Image. 
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 The future image of the NFC is so attracting to us. However, the massive 

data transmission requires a higher speed or a higher channel capacity than current 

systems. Therefore, the MIMO system [19, 20], which has a wider bandwidth, 

multi-value modulation system, and spatial multiplexing scheme, is the appropriate 

candidate to be employed in the high-speed NFC systems [21]. 

2.2 Fundamentals of MIMO Technology  

MIMO technology is well-known as the use of multiple antennas at the 

transmitter and receiver in wireless communication systems. It has rapidly gained in 

popularity over the past decade due to its powerful performance-enhancing 

capabilities. Communication in wireless channels is mainly deteriorated by the 

multipath fading. Multipath is the arrival of the transmitted signal at an intended 

receiver through differing angles, differing time delays, and differing frequency shifts 

due to the scattering of electromagnetic waves in the propagation environment. In 

consequence, the received signal power fluctuates in space, frequency, and time 

divisions through the random multi-path components. This random fluctuation in 

signal level is known as fading. It can severely affect the quality and reliability of 

wireless communication [41]. 

2.2.1  Background of MIMO systems 

Presently in the natural world radio waves are radiated onto the surface of the 

earth from the sun and the other stars, and electromagnetic waves (radio waves) also 

arise from movement of the earth's crust and from lightening and so on. 

The potential of employing multiple antennas at both ends of a radio link in 

order to improve the channel throughput was sparked by the pioneering work of 

Winters in 1987 [41]. Surprisingly, it was not until mid-90s that two breakthrough 

papers by Foschini [42] and Telatar [43] separately investigated this promising 

technology in detail. Both authors showed that MIMO systems have the unique ability 

to turn multipath propagation, usually regarded as a serious hindrance in wireless 

communications, into an advantage for increasing the spectral efficiency. Under 

independent Rayleigh fading conditions, MIMO systems offer a linear capacity 
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increase that is proportional to the minimum number of receive M and transmit N 

antenna elements, i.e. min {M,N}. 

The boost in spectral efficiency offered by an ideal MIMO system was firstly 

demonstrated in [41], where an architecture called BLAST (Bell Labs Layered Space 

Time) along with a reconstruction algorithm and a coding/decoding scheme were 

devised. The most attractive feature of MIMO systems is their ability to 

simultaneously transmit individual (orthogonal) data streams from each antenna 

element; in the literature, this feature is widely known as spatial multiplexing (SM) 

[44]. The number of orthogonal multiplexed streams depends on the spatial properties 

of the surrounding environment and is upper limited by min {M,N}. 

Another feature of MIMO systems is spatial diversity which is a means to 

combat fading by exploiting multiple uncorrelated replicas of the transmitted signal. 

Diversity occurs when the antenna spacing is high enough so that independent signal 

paths are created, resulting in a reduced variation of the received signal‘s power. 

Diversity reduces the probability that all branches are in a deep fade simultaneously 

and thus it enhances the error rate performance (channel hardening). MIMO 

techniques permit the spatial diversity to be exploited at both sides of the radio link 

with the maximal diversity gain being MN. 

However, there is an inherent trade-off between SM and spatial diversity. This 

means that increasing the diversity advantage comes at the expense of decreasing the 

SM gain, and vice versa. In fact, the authors in [45] showed that the 

diversity-multiplexing trade-off achievable by a system is a more fundamental 

measure of its performance than just its maximal diversity gain or its maximal 

multiplexing gain alone. Generally, the optimal trade-off is determined by system 

requirements such as the desired data rate and reliability of transmission. High data 

rates can be achieved by employing multiplexing to full extent while high reliability 

benefits from diversity [46]. 

Smart antenna systems, which use an antenna array at a single end, make use 

of beamforming in order to increase the average SNR and suppress interference from 
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other users by steering energy into desired directions. Likewise, for MIMO systems 

beamforming may be applied at the Tx and/or the Rx side. The more directive a 

channel is the higher its beamforming gain. For pure LoS conditions with only one 

path present, the maximal beamforming gain MN is obtained, albeit at the expense of 

an increased spatial correlation that diminishes the beneficial effects of spatial 

diversity. Finally, it should be underlined that full beamforming excludes full 

diversity or multiplexing and the same is true for full diversity and 

beamforming/multiplexing; however, full multiplexing excludes beamforming 

whereas it only reduces diversity. 

MIMO technology promises a breakthrough in wireless communication 

system by offering a number of benefits that help meet the challenges posed by both 

the deteriorations in the wireless channel as well as limited bandwidth. In addition to 

the time and frequency dimensions that are utilized in conventional single-antenna 

wireless systems (Single-Input Single-Output, SISO), MIMO is considered by 

utilizing the spatial dimension which is provided by the multiple antennas at the 

transmitter and the receiver. The performance gains that are expected from the use of 

MIMO technology is shown in Fig. 2.3 [50] . The relationship between data rate and 

receive Signal-to-Noise Ratio (SNR) for an M×M (i.e., M receiving and M 

transmitting antennas) fading link with M = 1, 2, 4. Assuming a target receive SNR of 

25 decibels (dB), a conventional SISO (i.e., M = 1) system can deliver a data rate of 

0.7 Mbps, as with M = 2 and 4 we can realize data rates of 1.4 Mbps and 2.8 Mbps, 

respectively. This increase in data rate is realized for no additional power or 

bandwidth expenditure compared to the SISO system. 
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Fig. 2.3. Average data rate versus SNR for different antenna configurations. 

Figure 2.4 [50] shows the basic block diagram that comprises a MIMO system, 

where x and y stand for the transmitted and received signal vectors respectively. The 

information bits to be transmitted are encoded and interleaved. The interleaved 

codeword is mapped to data symbols by the symbol mapper. These data symbols are 

input to a space-time encoder that outputs one or more spatial data streams. The 

spatial data streams are mapped to the transmit antennas by the space-time pre-coding 

block. The signals launched from the transmit antennas propagate through the channel 

and arrive at the receive antenna array. The receiver collects the signals at the output 

of each receive antenna element and reverses the transmitter operations in order to 

decode the data: receive space-time processing, followed by space-time decoding, 

symbol de-mapping, de-interleaving and decoding. Each of the blocks offers the 

opportunity for significant design challenges and complexity-performance trade-offs. 
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Fig. 2.4. Block diagram of a MIMO communication system. 

 

2.2.2  Benefits of MIMO systems 

The benefits of MIMO technology that help achieve such significant 

performance gains are described in brief below. 

A. Array Gain 

Array gain is the increase in receive SNR that results from a coherent 

combining effect of the wireless signals at a receiver, which is realized through spatial 

processing at the receiver array and spatial pre-processing at the transmitter array. 

Array gain improves resistance to noise, thereby improving the coverage and the 

range of a wireless network [16, 51]. 

B. Spatial Diversity Gain 

Spatial diversity gain reduces fading and is realized by providing the receiver 

with multiple copies of the transmitted signal in space, frequency or time. With an 

increasing number of independent copies, the probability in which at least one of the 
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copies is not going into a deep fade increases, thereby improving the quality and 

reliability of reception [52]. 

C. Spatial Multiplexing Gain 

MIMO systems offer a linear increase in data rate through spatial multiplexing 

[53-55], i.e., transmitting multiple, independent data streams within the operating 

bandwidth. Under suitable channel conditions, such as rich scattering in the 

environment, the receiver can separate the data streams. Furthermore, each data 

stream experiences at least the same channel quality that would be experienced by a 

SISO system, effectively enhancing the capacity. It can be said that the spatial 

multiplexing gain increases the capacity of a wireless network [56, 57]. 

D. Interference Reduction 

Interference in wireless networks occurs from multiple users sharing time and 

frequency resources. Interference may be reduced in MIMO systems by utilizing the 

spatial dimension to increase the separation between users. For instance, in the 

presence of interference, array gain increases the tolerance to noise as well as the 

interference power, hence improving the Signal-to-Interference-plus-Noise Ratio 

(SINR). Additionally, the spatial dimension may avoid the interference by directing 

signal energy towards the intended user and minimizing interference to other users. 

Interference reduction and avoidance improve the coverage and range of a wireless 

network [19]. 

Generally, it may not be possible to utilize all above benefits at the same. 

However, using some combination of the benefits across a wireless network will 

result in improved capacity, coverage and reliability. 

2.3  Channel Capacity of MIMO Systems 

In Section 2.2, it is clearly described that MIMO systems provide tremendous 

capacity gains, which has lead significant activity to develop transmitter and receiver 

techniques that realize these capacity benefits and utilize diversity-multiplexing 

trade-offs. In this section, more detail about the Shannon capacity limits of SU and 
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MU-MIMO systems will be explored. These fundamental limits indicate the 

maximum data rates that can be transmitted over the MIMO channel to one or more 

users, assuming no constraints on the delay or the complexity of the encoder and 

decoder. Many studies by Foschini [54] and Telatar [55] predict remarkable capacity 

growth for wireless systems with multiple antennas when the channel represents rich. 

However, these predictions are based on somewhat unrealistic assumptions about the 

underlying time-varying channel model and how well it can be tracked at the receiver 

as well as at the transmitter. More realistic assumptions can dramatically impact the 

potential capacity gains of MIMO techniques.  

2.3.1  Mutual information and Shannon capacity 

In the late 1940s, Claude Shannon has introduced the channel capacity using a 

mathematical theory of communication [58-60]. The channel capacity (C) is denoted 

as the maximum rate at which reliable communication can be performed, without any 

constraints on transmitter and receiver complexity. He showed that for any rate R < C, 

there exist rate R channel codes with arbitrarily small block error probabilities. 

However, such a code may have a very long block length, and the encoding and 

decoding complexity may also be extremely large. In fact, the required block length 

may increase as the desired probability of error (Pe) is decreased and the rate R is 

increased towards C. In addition, Shannon showed that codes operating at rates R > C 

cannot achieve an arbitrarily small error rate. Therefore, the channel capacity is truly 

the fundamental limit to communication. 

Theoretically, even if it is possible to communicate at any rate below capacity, 

it is actually a very difficult problem to design practical channel codes with 

reasonable block length and encoding/decoding complexity at rates close to capacity. 

Tremendous progress has been made in code design over the past few decades, and 

practical codes at rates very close to capacity do exist for certain channels, such as 

single antenna Gaussian channels. However, these codes generally cannot be directly 

used for MIMO channels, as codes for MIMO channels must also utilize the spatial 

dimension. Practical space-time coding and decoding techniques for MIMO channels 

have been shown to achieve near-capacity limits in some scenarios [50]. The capacity 
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limits of MIMO channels provide a benchmark against which performance of 

space-time codes and general MIMO transmission and reception strategies can be 

compared. 

It has been shown in Shannon‘s study that the channel capacity, defined as the 

maximum rate at which reliable communication is possible, can be simply 

characterized in terms of the mutual information between the input and the output of 

the channel. The basic channel model consists of a random input X, a random output Y, 

and a probabilistic relationship between X and Y which is generally characterized by 

the conditional distribution of Y given X, or f(y|x). The mutual information of a SU 

channel is then defined as [50] 
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where the integral is taken over the supports Sx, Sy of the random variables X and Y, 

respectively, and f(x), f(y), and f(x,y) denote the probability distribution functions of 

the random variables. The units of mutual information are bits per channel use. 

Furthermore, he proved that the channel capacity of most channels is equal to 

the mutual information of the channel maximized over all possible input distributions 

[50]: 
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For a time-invariant additive temporally white complex Gaussian noise 

(AWGN) channel with bandwidth B and received SNR , the maximizing input 

distribution is Gaussian, which results in the channel capacity in the units of bit per 

second (bps) [50] 
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Referring back to Fig. 2.4, the channel input is the vector x sent from the 

transmit antennas and the channel output is the vector y obtained at the receive 

antennas. Thus, the Shannon capacity of the MIMO AWGN channel is based on the 

maximum mutual information between its input and output vectors. 

The capacity of a channel has multiple definitions when the channel is 

time-varying, depending on what is known about the channel state or its distribution 

at the transmitter or receiver. These definitions have different operational meanings. 

Specifically, when the instantaneous channel gains, also called the channel state 

information (CSI), are known perfectly at both the transmitter and the receiver, the 

transmitter can adapt its transmission rate and power relative to the instantaneous 

channel state. In this case the Shannon (ergodic) capacity is the maximum mutual 

information averaged over all channel states. Essentially, ergodic means that a 

reasonably long time fading realizations has a distribution similar to the statistical 

distribution of the channel. Hence, ergodic capacity is an appropriate capacity metric 

for channels that vary quickly. 

An alternate capacity definition for time-varying channels with perfect 

transmitter and receiver CSI is outage capacity. Outage capacity requires a fixed data 

rate in all non-outage channel states, which is needed for applications with 

delay-constrained data where the data rate cannot depend on channel variations. The 

average rate associated with outage capacity is typically smaller than the ergodic 

capacity due to the additional constraint associated with this definition. Outage 

capacity is the appropriate capacity metric in slowly varying channels, where the 

channel coherence time exceeds the duration of a codeword. In this case each 

codeword experiences only one channel state: if the channel state is not good enough 

to support the desired rate then an outage is declared and no data are transmitted, 

since the transmitter knows that the channel is in outage. Outage capacity under 

perfect CSI at the transmitter and the receiver (CSIR) has been studied for 

single-antenna channels [61-63], but this work has yet to be extended to MIMO 

channels. A more common assumption for studying capacity of time-varying MIMO 
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channels is perfect CSIR but no CSIT. In such a case, the transmission (reception) 

strategy is based on the channel distribution instead of the instantaneous channel state. 

2.3.2  MIMO Channel Model 

In order to understand the performance limits in MIMO systems and to design 

efficient communication algorithms, it is important to understand the nature of the 

MIMO channel. For a system with M transmit antennas and N receive antennas in Fig. 

2.5 [41], the MIMO channel at a given time instant may be represented as an M×N 

matrix [41] 
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where hmn is the channel gain between the m-th receive and n-th transmit antenna pair. 

The n-th column of H is often referred to as the spatial signature of the n-th transmit 

antenna across the receive antenna array. This is particularly important when 

independent data streams are launched from the transmit antennas, as is done in the 

case of spatial multiplexing. As for the case of SISO channels, the individual channel 

gains comprising the MIMO channel are commonly modeled as zero-mean circularly 

symmetric complex Gaussian random variables. Consequently, the amplitudes |hmn| 

are Rayleigh-distributed random variables and the corresponding powers |hmn|
2
 are 

exponentially distributed. 
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Fig. 2.5. M×N MIMO system. 

The degree of correlation between the individual MN channel gains 

comprising the MIMO channel is a complicated function of the scattering in the 

environment and antenna spacing at the transmitter and the receiver. Consider an 

extreme condition where all antenna elements at the transmitter and are co-located 

and likewise at the receiver. In this case, all the elements of H will be fully correlated 

and the spatial diversity order of the channel is one. De-correlation between the 

channel elements will increase with antenna spacing. However, antenna spacing alone 

is not sufficient to ensure de-correlation. Rich scattering in the environment in 

combination with adequate antenna spacing ensures de-correlation of the MIMO 

channel elements. With rich scattering, the typical antenna spacing required for 

de-correlation is approximately a half-wavelength (/2). Under ideal conditions, when 

the channel elements are perfectly de-correlated, the channel becomes the classical 

independent, identically distributed (iid) Rayleigh fading MIMO channel with the 

spatial diversity order of MN. 

In practice, the behavior of H can significantly deviate from the de-correlated 

matrix due to a combination of inadequate antenna spacing and inadequate scattering 

leading to spatial fading correlation. Furthermore, the presence of a fixed (possibly 

Line-of-Sight, LOS) component in the channel will result in Ricean fading. In the 

presence of an LOS component between the transmitter and the receiver, the MIMO 
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channel may be modeled as the sum of a fixed (LOS) component and a fading 

component, assuming uncorrelated fading, as [41] 

 

1

1 1
 

 
w

K

K K
H H H . (2.5) 

K  0 is the Ricean K-factor of the channel and is defined as the ratio of the power in 

the LOS component of the channel to the power in the fading component. Ricean 

K-factor which provides an indication of link quality is generally used as the 

propagation parameter in mobile communication. When K = 0, the channel becomes 

pure Rayleigh fading, as at K =  corresponds to a non-fading channel. 

In general, real-world MIMO channels will represent some combination of 

Ricean fading and spatial fading correlation. Furthermore, the use of polarized 

antennas will necessitate additional modifications to the channel model. These factors 

will affect the performance of a given MIMO signaling scheme. With appropriate 

knowledge of the MIMO channel at the transmitter, the signaling strategy can be 

appropriately adapted to meet performance requirements. The CSI which provides the 

precise channel realization could be completely or partially known. 

Referring back to Figure 2-8, a narrowband point-to-point communication 

system of M transmit and N receive antennas can be represented by the discrete time 

model [41] 
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or simply as 
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where x represents the M-dimensional transmitted symbol, n is the N-dimensional 

AWGN vector with E[nn
H
] = 

2
IN. We assume a channel bandwidth of B, where 

typically 
2
 = N0B. For simplicity, given a transmit power constraint P, we will 

assume an equivalent model with a noise power of unity and transmit power P/
2
 = , 

where  can be interpreted as the average SNR per receive antenna and is simply 

referred to as SNR henceforth. This power constraint implies that the input symbols 

satisfy [41] 
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Different assumptions can be made about the knowledge of the channel gain 

matrix H at the transmitter and receiver, referred to as CSIT and CSIR, respectively. 

For a static channel CSIR is typically assumed, since the channel gains can be 

obtained by sending a pilot sequence for channel estimation. More details on 

estimation techniques for MIMO channels can be found in [44]. If a feedback path is 

available, then CSIR from the receiver can be sent back to the transmitter to provide 

CSIT. CSIT may also be available in time-division duplexing systems without a 

feedback path by utilizing reciprocal properties of propagation. When the channel is 

not known at either the transmitter or receiver then some distribution on the channel 

gain matrix must be assumed. The most common model for this distribution is a 

zero-mean spatially white (ZMSW) model, where the entries of H are assumed to be 

iid zero mean, unit variance, complex circularly symmetric Gaussian random 

variables. In general, different assumptions about CSI and about the distribution of the 

H entries lead to different channel capacities and different approaches to space-time 

signaling. 

2.3.3  MIMO Channel Capacity 

The Shannon capacity of a MIMO channel, which equals the maximum data 

rate that can be transmitted over the channel with arbitrarily small error probability, is 

focused in this section. The maximum rate that can be transmitted over the channel 

with some nonzero outage probability is defined by the capacity versus outage. 
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Channel capacity depends on what is known about the channel gain matrix or its 

distribution at the transmitter and/or receiver. It is assumed throughout this section 

that the receiver has knowledge of the channel matrix H, since for static channels a 

good estimate of H can be obtained easily. 

A. Static Channels 

The static channel capacity forms the basis for the capacity of fading channels. 

The capacity of a MIMO channel is an extension of the mutual information formula 

(Shannon) for a SISO channel given by (2.2) to a matrix channel. Specifically, the 

capacity is given in terms of the mutual information between the channel input vector 

x and output vector y as [41, 65] 
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where H(Y) and H(Y|X) are the entropy in y and y|x, respectively. The definition of 

entropy yields that H(Y|X) = H(N), which is the entropy in the noise. Since this noise 

n has fixed entropy independent of the channel input, maximizing mutual information 

is equivalent to maximizing the entropy in y. 

The mutual information of y depends on its covariance matrix, which for the 

narrowband MIMO model is given by [41] 
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where Rx is the covariance of the MIMO channel input. It turns out that for all 

random vectors with a given covariance matrix Ry, the entropy of y is maximized 

when y is a zero-mean circularly-symmetric complex Gaussian (ZMCSCG) random 

vector [54]. But y is ZMCSCG if only the input x is ZMCSCG, and therefore this is 

the optimal distribution on x. This results in the mutual information [41] 
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where det[A] and A
H
 denotes the determinant and the Hermitian of a matrix A, 

respectively. This formula was derived in [49, 55] for the mutual information of a 

multi antenna system, and also appeared in earlier works on MIMO systems [45, 46]. 

The MIMO capacity is achieved by maximizing the mutual information (2.11) 

over all input covariance matrices Rx satisfying the power constraint [41] 
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The optimization relative to Rx will clearly depend on whether or not H is known at 

the transmitter. We now consider this maximizing under different assumptions about 

CSIT. 

Channel Known at Transmitter: Water-Filling 

The MIMO parallel decomposition in Fig. 2.6 [41] allows a simple 

characterization of the MIMO channel capacity for a fixed channel matrix H known at 

the transmitter and receiver. Specifically, the capacity equals the sum of capacities on 

each of the independent parallel channels with the transmit power optimally allocated 

between these channels [66, 67]. 

 

Fig. 2.6. Parallel Decomposition of the MIMO Channel. 

This optimization of transmit power across the independent channels results 

from optimizing the input covariance matrix to maximize the capacity in (2.12). Using 
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properties of unitary matrices, we get the MIMO capacity with CSIT and CSIR as 

[41] 
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Since  = P/
2

N, the capacity (2.13) can also be expressed in terms of the power 

allocation Pn to the n-th parallel channel as [40] 
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where n = Pn/
2

N and n = 
2

n P/
2

N is the SNR associated with the n-th channel at 

full power. This capacity formula can also be used in the case of flat fading or in 

frequency-selective fading. Solving the optimization leads to a water-filling power 

allocation for the MIMO channel [41]:  
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for some cutoff value 0. The resulting capacity is then [40] 
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The channel capacity under perfect CSIT and CSIR can also be defined on 

Single-Input Multiple-Output (SIMO) or Multiple-Input Single-Output (MISO) 

channels. These channels can only obtain diversity gain from the multiple antennas. 

When both transmitter and receiver know the channel the capacity equals that of a 

SISO channel with the signal transmitted or received over the multiple antennas 

coherently combined to maximize the channel SNR, as in MRC. This results in 

capacity C = B log2(1+hc), with the channel matrix H reduced to a vector h of 

channel gains, the optimal weight vector c = h∗/||h||, and  = P/
2

N. 
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Channel Unknown at Transmitter: Uniform Power Allocation 

In this part, assume that the receiver knows the channel but the transmitter 

does not. Without channel information, the transmitter cannot optimize its power 

allocation or input covariance structure across antennas. If the distribution of H 

follows the ZMSW channel gain model, there is no bias in terms of the mean or 

covariance of H. Thus, the best strategy should be to allocate equal power to each 

transmit antenna, resulting in an input covariance matrix equal to the scaled identity 

matrix: Rx = (/M) IM. It is shown in [55] that under these assumptions this input 

covariance matrix indeed maximizes the mutual information of the channel. For an 

M-transmit, N-receive antenna system, this yields mutual information given by using 

the SVD of H, we can express this as [41] 
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where   n = 
2

n  = 
2

nP/
2

N and RH is the number of nonzero singular values of H. 

The mutual information of the MIMO channel depends on the specific 

realization of the matrix H. The average mutual information of a random matrix H, 

averaged over the matrix distribution, depends on the probability distribution of the 

singular values of H [55, 64]. In fading channels, the transmitter can transmit at a rate 

equal to this average mutual information and insure correct reception of the data, as 

discussed in the next section. But for a static channel, if the transmitter does not know 

the channel realization or the average mutual information then it does not know at 

what rate to transmit such that the data will be received correctly. In this case, the 

appropriate capacity definition is capacity with outage. In capacity with outage, the 

transmitter fixes a transmission rate C, and the outage probability associated with C is 

the probability that the transmitted data will not be received correctly, i.e., the 

probability that the channel H has mutual information less than C. This probability is 

given by [41] 
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As the number of transmit and receive antennas grows large, random matrix 

theory provides a central limit theorem for the distribution of the singular values of H 

[68], resulting in a constant mutual information for all channel realizations. As an 

example of this limiting distribution, note that for fixed N, under the ZMSW model 

the law of large numbers implies that [40] 
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Substituting this into (2.17) yields that the mutual information in the asymptotic limit 

of large M becomes a constant equal to C = N B log2(1+). Defining L = min(M, N), 

this implies that as L grows large, the MIMO channel capacity in the absence of CSIT 

approaches C = L B log2(1+), and hence grows linearly in L. Moreover, this linear 

growth of capacity with L in the asymptotic limit of large L is observed even for a 

small number of antennas [69]. Similarly, as SNR grows large, capacity also grows 

linearly with L = min(M, N), for any M and N [54]. 

Although the channel realization is not known at the transmitter, the capacity 

of MIMO channels still grows linearly with the minimum number of transmit and 

receive antennas, as long as the channel can be accurately estimated at the receiver. 

Thus, MIMO channels can provide very high data rates without requiring increased 

signal power or bandwidth. These results are the main reason for the widespread 

appeal of MIMO techniques. However, at very low SNR, the capacity only scales 

with the number of receive antennas. The reason is that the MIMO system is just 

trying to collect energy rather than utilize all available dimensions, so all energy is 

concentrated into one of the available transmit antenna to achieve capacity [55]. 
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B. Fading Channels 

In this section, assume that the channel gain matrix experiences flat-fading, so 

the gains hmn vary with time. As in the case of the static channel, the capacity depends 

on what is known about the channel matrix at the transmitter and receiver. With 

perfect CSIR and CSIT the transmitter can adapt to the channel fading and its capacity 

equals the average over all channel matrix realizations with optimal power allocation. 

With CSIR and no CSIT, the outage capacity is used to characterize the outage 

probability associated with any given channel rate. 

Channel Known at Transmitter: Water-Filling 

With CSIT and CSIR, the transmitter optimizes its transmission strategy for 

each fading channel realization as in the case of a static channel. The capacity is then 

just the average of capacities associated with each channel realization, given by (2.12), 

with power optimally allocated. This average capacity is called the ergodic capacity 

of the channel, as mentioned in Section 2.4.1. There are two possibilities for 

allocating power under ergodic capacity. A short-term power constraint assumes that 

the power associated with each channel realization must equal the average power 

constraint P. In this case, the ergodic capacity becomes [41] 
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A less restrictive constraint is a long-term power constraint, where we can use 

different powers for different channel realizations subject to the average power 

constraint over all channel realizations. The ergodic capacity under this assumption is 

given by [41] 
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The short-term power constraint gives rise to a water-filling in space across the 

antennas, whereas the long-term power constraint allows for a two-dimensional 

water-filling across both space and time, similar to the frequency-time water-filling 

associated with the capacity of a time-varying frequency-selective fading channel. 

Channel Unknown at Transmitter: Ergodic Capacity and Capacity with Outage 

Consider a time-varying channel with random matrix H known at the receiver but not 

the transmitter. The transmitter assumes a ZMSW distribution for H. The two relevant 

capacity definitions in this case are ergodic capacity and capacity with outage. 

Ergodic capacity defines the maximum rate, averaged over all channel realizations 

that can be transmitted over the channel for a transmission strategy based only on the 

distribution of H. This leads to the transmitter optimization problem, i.e., finding the 

optimum input covariance matrix to maximize ergodic capacity subject to the transmit 

power constraint. The problem is to characterize the optimum Rx to maximize [41] 

 
2

:Tr( )
max E log det



     
H

NC B
x x

H x
R R

I HR H , (2.22) 

where the expectation is with respect to the distribution on the channel matrix H, 

which for the ZMSW model is iid zero-mean circularly symmetric unit variance. 

As in the case of scalar channels, the optimum input covariance matrix that 

maximizes ergodic capacity for the ZMSW model is the scaled identity matrix Rx = 

(/M) IM, i.e., the transmit power is divided equally among all the transmit antennas 

and independent symbols are sent over the different antennas. Thus, the ergodic 

capacity is given by [41] 
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Since the capacity of the static channel grows as L = min(M, N), for L large, this will 

also be true of the ergodic capacity since it just averages the static channel capacity. 

When the channel is not ZMSW, capacity depends on the distribution of the singular 
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values for the random channel matrix: these distributions and the resulting ergodic 

capacity in this more general setting are studied in [64]. Fig. 2.7 [41] shows the 

ergodic capacity of a 4×4 MIMO system with iid complex Gaussian channel gains. 

This figure shows capacity with both transmitter and receiver CSI and with receiver 

CSI only. There is little difference between the two, and this difference decreases with 

SNR. 

 

Fig. 2.7.  Ergodic Capacity of 4×4 MIMO Channel. 

When the channel gain matrix is unknown at the transmitter and the entries are 

complex Gaussian but not iid, then the channel mean or covariance matrix can be 

used at the transmitter to increase capacity. The basic idea is to allocate power 

according to the mean or covariance. This channel model is sometimes referred to as 

mean or covariance feedback. This model assumes perfect CSIR, and the impact of 

correlated fading depends on what is known at the transmitter. Although capacity with 

outage applies to a slowly-varying channel where the channel matrix H is constant 

over a relatively long transmission time, then changes to a new value, it is defined 

similar to the definition for static channels. As in the static channel case, the channel 

realization and corresponding channel capacity is not known at the transmitter, yet the 

transmitter must still fix a transmission rate to send data over the channel. For any 
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choice of this rate C, there will be an outage probability associated with C, which 

defines the probability that the transmitted data will not be received correctly. The 

outage capacity can sometimes be improved by not allocating power to one or more of 

the transmit antennas, especially when the outage probability is high [49]. This is 

because outage capacity depends on the tail of the probability distribution. With fewer 

antennas, less averaging takes place and the spread of the tail increases. 

2.4  Equalization 

Generally, delay spread causes intersymbol interference (ISI). ISI can cause an 

irreducible error floor when the modulation symbol time is on the same order as the 

channel delay spread. Signal processing provides a powerful mechanism to counteract 

ISI. In a broad sense, equalization defines any signal processing technique used at the 

receiver to mitigate the ISI problem caused by delay spread. Signal processing can 

also be used at the transmitter to make the signal less susceptible to delay spread. In 

the cases where the delay spread is small such as cordless phones typically operate 

indoors, since voice is also a relatively low date rate application, equalization is 

generally not needed. However, the IS-54 digital cellular standard is designed for 

outdoor use, where the delay spread is large, so equalization is part of this standard 

[41]. Higher data rate applications are more sensitive to delay spread, and generally 

require high-performance equalizers or other ISI mitigation techniques. In fact, 

mitigating the impact of delay spread is one of the most challenging hurdles for 

high-speed wireless data systems. 

Equalizer design must typically balance ISI mitigation with noise 

enhancement, since both the signal and the noise pass through the equalizer, which 

can increase the noise power. Nonlinear equalizers suffer less from noise 

enhancement than linear equalizers, but typically entail higher complexity, as 

discussed in more detail below. Moreover, equalizers must typically have an estimate 

of the channel impulse or frequency response to mitigate the resulting ISI. In this 

section, the examples associated with linear and nonlinear equalizers are briefly 

described. 



34 

Equalization techniques fall into two broad categories: linear and nonlinear. 

The linear techniques are generally the simplest to implement and to understand 

conceptually. However, linear equalization techniques typically suffer from more 

noise enhancement than nonlinear equalizers, and are therefore not used in most 

wireless applications. Among nonlinear equalization techniques, the optimal 

equalization technique is maximum likelihood sequence estimation (MLSE). 

Unfortunately, the complexity of this technique grows exponentially with the length 

of the delay spread, and is therefore impractical on most channels of interest. 

However, the performance of the MLSE is often used as an upper bound on 

performance for other equalization techniques.  

2.4.1  Minimum Mean Square Error (MMSE) Linear Equalizer 

Generally, the performance metric in wireless systems is probability of error 

(or outage probability), so for a given channel, the optimal choice of equalizer 

coefficients would be the coefficients that minimize probability of error. Since desired 

performance metric is extremely difficult to be directly optimized, an indirect 

optimization that balances ISI mitigation with the prevention of noise enhancement 

must be used instead. Hence, linear equalizers, such as the Zero Forcing (ZF) 

equalizer [70, 71] and the Minimum Mean Square Error (MMSE) equalizer, are 

considered. The former equalizer cancels all ISI, but can lead to considerable noise 

enhancement. The latter technique minimizes the expected mean squared error 

between the transmitted symbol and the symbol detected at the equalizer output, 

thereby providing a better balance between ISI mitigation and noise enhancement. 

Because of this more favorable balance and MMSE equalizers tend to have better 

BER performance than equalizers using the ZF algorithm, MMSE is considered in 

this study as the example of linear equalizer. 

In MMSE equalization as shown in Fig. 2.8 [41], the goal of the equalizer 

design is to minimize the average mean square error (MSE) between the transmitted 

symbol dk and its estimate ˆkd  at the output of the equalizer, In other words, the filter 

coefficients {wi} are chosen to minimize 
2ˆE[ ]k kd d . 
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Fig. 2.8.  MMSE equalizer with noise whitening filter. 

The purpose of the noise whitening filter, as indicated by the name, is to 

whiten the noise such that the noise component output from this filter has a constant 

power spectrum. It might seem odd at first to introduce the matched filter at the 

receiver front end only to cancel its effect in the equalizer. However, that the matched 

filter is meant to maximize the SNR prior to sampling. By removing the effect of this 

matched filter through noise whitening after sampling, we merely simplify the design 

ˆ ( )eqH z  to minimize MSE. Hence, the ideal infinite length MMSE equalizer cancels 

out the noise whitening filter and it is identical to the ZF filter in the absence of noise. 

This ideal equalizer can also show a balance between inverting the channel and noise 

enhancement. 

2.4.2  Maximum Likelihood Sequence Estimation (MLSE) 

Nonlinear Equalizer 

Maximum-likelihood sequence estimation (MLSE) avoids the problem of 

noise enhancement since it does not use an equalizing filter. Instead, it estimates the 

sequence of transmitted symbols. The structure of the MLSE is the same as in Fig. 2.8 

except that the equalizer Heq(z) is replaced by the MLSE algorithm. Given the channel 

response h(t), the MLSE algorithm chooses the input sequence {dk} that maximizes 

the likelihood of the received signal w(t). In the other words, since w(t) depends on d0, 

…, dL , the MLSE decodes this as the symbol sequence d
L
 that maximizes the 

likelihood function or the log of this function. 

dk
+

v[n] ˆ
kdMatched 

Filter

Noise 

whitener

ISI channel 

c(t)

Pulse shape 

g(t)

ˆ ( )eqH z

Equivalent channel h(t)

Equalizer Heq(z)

y[n]y(t)w(t)

n(t)

TS



36 

Furthermore, since the derivation of the MLSE is based on the channel output 

w(t) only (prior to matched filtering), derivation in [41] implies that the receiver 

matched filter in Fig. 2.8 is optimal for MLSE detection (typically the matched filter 

is optimal for detecting signals in AWGN, but this derivation shows that it is also 

optimal for detecting signals in the presence of ISI if MLSE is used). However, it is 

noted that the complexity of this equalization technique grows exponentially with the 

channel delay spread. 

Although MLSE is the optimal form of equalization, its complexity precludes 

its widespread use. There has been much work on reducing the complexity of the 

MLSE [72]. Most of these techniques reduce the number of symbols spanned by the 

ISI through preprocessing or decision-feedback in the detector. These reduced 

complexity equalizers have better performance versus complexity tradeoffs than the 

other equalization techniques, and achieve performance close to that of the optimal 

MLSE with significantly less complexity. 

If the channel is known at the transmitter, then the transmitter can pre-equalize 

the transmitted signal by passing it through a filter that effectively inverts the channel 

frequency response. Since the channel inversion occurs in the transmitter rather than 

the receiver, there is no noise enhancement. It is difficult to pre-equalize in a 

time-varying channel since the transmitter must have an accurate estimate of the 

channel, but this approach is practical to implement in relatively static wireline 

channels. A problem with this approach is that the channel inversion can increase the 

dynamic range of the transmitted signal, which can result in distortion or inefficiency 

from the amplifier [73]. 
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Chapter 3 System Models and 

Analysis Methods 

In this chapter, all the analysis models, including the different arranged 

dual-dipole arrays‘ models and the arrays with different objects in the system are 

introduced. The evaluation methods concerning all parameters which are considered 

throughout this study such as the eigenvalue, spatial correlation, and channel capacity 

in near-field MIMO, are respectively described.  

3.1  Array Elements 

Contrary to conventional MIMO systems, near-field MIMO communication 

systems transfer data in a very short range [74], and the LOS (line-of-sight) paths are 

the major components [75, 76]. Considering the short distance, the LOS components 

from each of the Tx elements arrive at the Rx array with a spherical wavefront [21]. 

Therefore the beamwidth of the antenna element radiation pattern affects not only the 

receiving gain but also the spatial correlation characteristics. Consequently, the 

impact of the radiation pattern of each antenna element can‘t be neglected. Usually, 

the conventional dipole antennas are used to investigate the MIMO channel capacity. 

However, the conventional dipoles are omni-directional in the horizontal plane. 

Therefore, it is very necessary to discuss the effect of the array‘s elements in the 

near-field MIMO system. 

3.1.1  Conventional Elements of Near-Field MIMO 

Before introducing the utilized array element, dual-dipole element, we will 

make a glance at the conventional array elements used before. 
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A.  Conventional Single Dipole Element 

In the existing researches, the most widely used array element is the 

conventional single dipole element. A dipole antenna is a straight electrical conductor 

measuring 1/2 wavelength from end to end and connected at the center to a 

radio-frequency (RF) feed line. As we know, the dipole antenna is one of the simplest 

types of antenna, and constitutes the main RF radiating and receiving element in 

various sophisticated types of antennas. The dipole is inherently a balanced antenna, 

because it is bilaterally symmetrical [78].  

Dipoles have a radiation pattern, shaped like a toroid (doughnut) symmetrical 

about the axis of the dipole, as shown in Fig. 3.1. The radiation is maximum at right 

angles to the dipole, dropping off to zero on the antenna's axis. 

 

Fig. 3.1. The conventional single dipole and its 3-D radiation pattern. 

Obviously, the conventional dipoles are omni-directional in the horizontal 

plane. Hence, the conventional dipole can be used in the conventional far-field MIMO 

with confident. However, in the near-field MIMO, the distance between the 

transmitting antenna and the receiving antenna is very short, then this 

omni-directional pattern antenna will leak most power on the other directions. 

http://searchnetworking.techtarget.com/definition/wavelength
http://searchmobilecomputing.techtarget.com/definition/feed-line
http://searchmobilecomputing.techtarget.com/definition/antenna
http://en.wikipedia.org/wiki/Radiation_pattern
http://en.wikipedia.org/wiki/Toroid
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Therefore, the conventional single dipole element is not the proper choice for 

the near-field MIMO system. 

B.  Patch Antenna Element 

Besides the conventional single dipole antenna, the patch antenna is also very 

popular to be used in the near-field MIMO system. A patch antenna (also known as 

a rectangular microstrip antenna) [78, 79] is a type of radio antenna with a low 

profile, which can be mounted on a flat surface. It consists of a flat rectangular sheet 

or "patch" of metal, mounted over a larger sheet of metal called a ground plane. The 

assembly is usually contained inside a plastic radome, which protects the antenna 

structure from damage. Patch antennas are simple to fabricate and easy to modify and 

customize. They are the original type of microstrip antenna, the two metal sheets 

together form a resonant piece of microstrip transmission line with a length of 

approximately one-half wavelength of the radio waves. The radiation mechanism 

arises from discontinuities at each truncated edge of the microstrip transmission line. 

The radiation at the edges causes the antenna to act slightly larger electrically than its 

physical dimensions, so in order for the antenna to be resonant, a length of microstrip 

transmission line slightly shorter than one-half a wavelength at the frequency is used. 

A patch antenna is usually constructed on a dielectric substrate, using the same 

materials and lithography processes used to make printed circuit boards.  

Comparing with the conventional single dipole antenna, the radiation pattern 

of a patch antenna element constrains the gain of the pattern in one side, as shown in 

Fig. 3.2. Hence, the channel capacity of the near-field MIMO with the patch antenna 

elements will enhance. However, once the patch antenna is chosen, the beamwidth of 

the radiation pattern is settled. The purpose of this research is to investigate the effect 

of the radiation pattern of the array element, therefore, the patch antenna element is 

also not the appropriate array element.    

http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Ground_plane
http://en.wikipedia.org/wiki/Radome
http://en.wikipedia.org/wiki/Microstrip_antenna
http://en.wikipedia.org/wiki/Microstrip
http://en.wikipedia.org/wiki/Transmission_line
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Resonant
http://en.wikipedia.org/wiki/Dielectric
http://en.wikipedia.org/wiki/Printed_circuit_board
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Fig. 3.2. A typical patch antenna and its 3-D radiation pattern. 

3.1.2  Dual-Dipole Element 

In order to construct a model that enables us to change the beamwidth of the 

radiation pattern, we arrange two dipoles in parallel on the Tx side as one element as 

shown in Fig. 3.3. The new element is named as dual-dipole [80] element, which can 

adjust the beam width of the element radiation pattern by changing the internal 

distance between two dipoles in one element, denoted as Δd. In addition, the 

transmission power of each dual-dipole element is constrained as the same as that for 

a conventional dipole element.  

To measure the change of the beam width in the radiation pattern, we use the 

HPBW (half power beam width) in this research. The HPBW is the angular separation 

at which the power of the radiation pattern decreases by 50% (or -3 dB) from the peak 

of the main beam as shown in Fig. 3.4. This research is in the near-field region, but 

the HPBW [81] can be defined only in the far-field radiation pattern. To explain the 

definition of the HPBW, the far-field radiation pattern is utilized in this paper. 
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Fig. 3.3. Dual-dipole element and its 3-D radiation pattern. 

 

 

Fig. 3.4. Definition of HPBW. 
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The 3-D radiation pattern of a dual-dipole element is shown in Fig. 3.3. We 

note that, the receiver antenna is in the y direction, so the x-z plane pattern does not 

need to be considered. By changing the distance between the two dipoles in one 

element, Δd, we find that the y-z plane pattern hardly changes. The Δd can only 

control the HPBW of the x-y plane (horizontal plane) pattern, so we should focus on 

the HPBW of the x-y plane pattern. Hereafter, the HPBW of the x-y plane is used to 

judge the change in the radiation pattern. 

The relation between Δd and the HPBW of the x-y plane is shown in Fig. 3.5. 

Generally speaking, as the Δd becomes larger, the HPBW changes smaller. However, 

when HPBW is less than 50º (the corresponding Δd increases over about 0.6λ0), the 

side lobes will occur. The side lobes will carry off some power from the main beam, 

and lead to more spatial correlation in the horizontal array. To avoid the effect of side 

lobes, the HPBW in this paper is considered only larger than 50º (the corresponding 

Δd is from 0.2λ0 to 0.6λ0) when using the dual-dipole arrays. Here, when the radiation 

pattern has no obvious main beam, we set the HPBW to be 180º. 

 

Fig. 3.5. Relation between Δd and HPBW. 
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3.2 Dual-Dipole Array Models 

3.2.1  Array Arrangements 

The near-field MIMO analysis models used in this paper are basically consists 

of dual-dipole elements. Due to the different gain of the x and y directions in the 

radiation pattern shown in Fig. 3.3, the different performances when the dual-dipole 

elements is arranged in different methods are expected. Therefore, the analysis 

models in this dissertation are considered in two types of arrangements, the horizontal 

arranged linear array and the vertical arranged linear array. 

Two linear arrays consisting of identical half-wavelength dipole antennas are 

placed parallel face-to-face as the transmitter and receiver. Since the Tx and Rx 

antennas are placed at a very short distance from each other, the shape of the radiation 

pattern is a significant component that affects the channel capacity. The numbers of 

antenna elements on Tx side MT and on Rx side MR are set to be the same, i.e., four. 

The distance between the transmitter and the receiver is defined as antenna distance D, 

the distance between two adjacent antenna elements is denoted as element spacing d, 

and the internal distance between the two dipoles in one transmitter element is defined 

as Δd. In addition, the transmission power of each dual-dipole element is constrained 

as the same as that for a conventional dipole element. 

A.  Horizontal Array 

The horizontal arranged linear array is shown in Fig. 3.6. Two linear arrays 

consisting of identical half-wavelength dipole antennas are placed parallel 

face-to-face as the transmitter and receiver. The transmitting antenna array consists of 

dual-dipole elements, in the other hand, the receiving antenna array is composed of 

conventional single dipole element. The adjacent elements are arranged in a 

horizontal line.  

Since the Tx and Rx antennas are placed at a very short distance from each 

other, the shape of the radiation pattern is a significant component that affects the 

channel capacity. The numbers of antenna elements on Tx side MT and on Rx side MR 
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are set to be the same, i.e., four. The distance between the transmitter and the receiver 

is defined as antenna distance D, the distance between two adjacent antenna elements 

is denoted as element spacing d, and the internal distance between the two dipoles in 

one transmitter element is defined as Δd. In addition, the transmission power of each 

dual-dipole element is constrained as the same as that for a conventional dipole 

element. 

 

Fig. 3.6. Analysis model of horizontal arranged dual-dipole array. 
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B.  Vertical Array 

The horizontal arranged linear array is shown in Fig. 3.7. 

 

Fig. 3.7. Analysis model of vertical arranged dual-dipole array.  

Two linear arrays consisting of identical half-wavelength dipole antennas are 

placed parallel face-to-face as the transmitter and receiver. The transmitting antenna 
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array consists of dual-dipole elements, in the other hand, the receiving antenna array 

is composed of conventional single dipole element. The adjacent elements are 

arranged in a vertical line. And the measurements of the vertical array are denoted by 

the same parameters in the horizontal one. 

3.2.2  Arrays‘ Location Errors 

In the previous models, the transmission antennas are placed face to face. 

However, in a practical application the opposing antennas cannot always be placed in 

the ideal position. Since the antenna distance is fairly short, a slight deviation or bias 

of the receiver antenna to the transmitter antenna may significantly affect the channel 

capacity. Therefore, we address the deterioration in the channel capacity caused by 

antenna location errors in this subsection.  

Considering a practical application where the near-field MIMO is used to 

transmit data through a wall as shown in Fig. 2.2(c), the antenna distance is constant 

(the thickness of the wall) and the two planes including the transmitter and receiver 

are parallel to each other. Hence, the antenna location errors are limited considering 

the offset error in the x and z directions and rotational error around the y axis. 

A.  Offset Errors 

The analysis models of the dual-dipole array with offset error are shown in Fig. 

3.8. The horizontal array and the vertical array are shown respectively. The offset 

error is only considered in the x and z directions because the offset in the y direction 

can be involved in the change of antenna distance D. In addition, the scenarios of the 

models are assumed through a wall, so the distance in y direction indicates the 

thickness of the wall, which is fixed. And the offset errors in the x and z directions are 

denoted by Δx and Δz, respectively. 
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 3.8. Analysis model of offset errors in dual-dipole array.  
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B.  Rotational Errors 

 

(a) Horizontal array 

 

(b) Vertical array 

Fig. 3.9. Analysis model of rotational errors in dual-dipole array.  
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The analysis models of the dual-dipole array with offset error are shown in Fig. 

3.9. The horizontal array and the vertical array are shown respectively. The rotational 

error is only considered in the y direction because the array on the wall can‘t change 

its rotation in x and z directions. And the rotational errors in the y directions are 

denoted by θy. 

3.3 Array with Objects 

Due to the short transfer distance of the near-field MIMO, a tiny variation of 

the channel will lead to a significant difference on the channel capacity. Therefore, we 

employ objects in the near-field MIMO system to increase the multipath richness and 

clarify the effect of obstacles in the system. 

3.3.1  Array with a Single Metal Wire 

In the practical application, the objects between the transmitting antennas and 

the receiving antennas might be the wall, so the effect of the metal wires in the wall is 

very necessary to be investigated. For the basic discussion, first of all, only one single 

metal wire is added in the dual-dipole array near-field MIMO system. Considering the 

effect of antennas‘ polarization, only when the metal wire is parallel with the dipoles, 

the metal wire will affect the system channel capacity most significantly, the analysis 

models abandon the case when the metal wire is perpendicular to the dipoles. The 

models of horizontal array and the vertical array with single metal wire are described 

respectively. 

A.  Horizontal Array 

A model of the horizontal dual-dipole arrays with a metal wire is shown in Fig. 

3.10. The antenna parameters are set the same as those in the previous subsections. 

The metal wire is placed near the opposing arrays, and is parallel to the dipoles. The 

length for the metal wire, is denoted as L. For discussing the effect of the location of 

the metal wire in the system, the metal wire is moved around the antenna arrays. The 

terms Δxmw and Δymw denote the offset in the x and y directions, respectively. 
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(a) Configuration of model 

 

(b) Top view of model 

Fig. 3.10. Analysis model of horizontal dual-dipole array with single metal 

wire.  
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Since the top view of the horizontal array is symmetrical, the offset area is 

considered to be only the upper half, as shown in Fig. 3.10(b). The center of the 

system is set as the origin of the offset for the metal wire. Especially, in the y 

direction, when the metal wire is close to the transmitter array, Δymw is defined as ‗-‘, 

and when it is close to the receiver array, Δymw is defined as ‗+‘. 

B.  Vertical Array 

A model of the vertical dual-dipole arrays with a metal wire is shown in Fig. 

3.11. The antenna parameters are set the same as those in the previous subsections. 

Since the top view of the vertical array is also symmetrical, the offset area is 

considered to be only the upper half, as shown in Fig. 3.11(b). 

 

(a) Configuration of model 
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(b) Top view of model 

Fig. 3.11. Analysis model of vertical dual-dipole array with single metal wire.  

 

3.3.2  Array with Multiple Metal Wires 

For further discussion on the effect of metal wire, the effect of the multiple 

metal wires on channel capacity in the system is also researched. In this discussion, 

besides the horizontal and vertical arrays, the square array with dual-dipole elements 

is also proposed. The reason of utilizing the square array will be explained in Chapter 

5 in detail. The models of the arrays with multiple metal wires are shown in Fig. 3.12. 

All the metal wires are placed in the proper locations of the system. 
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(a) Horizontal array                             (b) Vertical array 

 

(c) Square array 

Fig. 3.12. Analysis model of arrays with multiple metal wires.  
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3.4 Evaluation Methods 

The performance of urban MIMO systems considered throughout this study is 

dealt with many parameters, such as the SNR, spatial correlation, eigenvalue and 

finally the channel quality is judged by the channel capacity. For an intuitive 

understanding of the near-field MIMO channel, the definitions of these parameters are 

first introduced in this section. 

3.4.1  Eigen Value 

The Singular Value Decomposition (SVD) is an elegant tool to analyze MIMO 

systems. It is capable of identifying the independent spatial excitation modes that are 

intrinsic to the channel. Consider a MIMO channel, H, with Nt and Nr antennas at 

transmitter and receiver respectively. Define m = min(Nt;Nr), n = max(Nt;Nr) and l = n 

- m. By using the SVD, H can be expressed as [21, 82] 

                                    (3.1) 

where          and          are unitary matrices, and      represents 

Hermitian transpose.   is a diagonal matrix whose diagonal elements       

     are the positive singular values of the channel matrix H. The non-diagonal 

elements of    are all zero and m is the rank of H. It is easy to show that the squared 

singular values,   
 , are the eigenvalues of the instantaneous correlation matrix    , 

since 

                                   (3.2) 

Moreover, the columns of U are eigenvectors of      and the columns of   

are eigenvectors of    . 

In terms of pure mathematics, the rank of matrix H is said to be m as there are 

m positive singular values with probability one. In the context of MIMO 

communication engineering, however, the rank of H is usually defined as the number 

of significant singular values. In general, the Rayleigh i.i.d channel is anticipated to 

be "full rank" as the average magnitude of all m singular values are reasonably high. 
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The components of the diagonal matrix   represent the square roots of the 

eigenvalues [83, 84], and can be expressed as, 

   
     

   

     

                                     (3.3) 

When decomposed in this manner, the propagation path for a MIMO channel 

can be represented as in Fig. 3.13 where (a) shows the equivalent circuit representing 

channel matrix, and (b) is the equivalent circuit represented in SVD. It is clear that the 

MIMO channel comprises a maximum of m independent transmission paths. In this 

context, the term ―maximum‖ refers to the maximum possible number of actual paths. 

If there are multiple paths for which the eigenvalue is 0, the number of paths will be 

reduced even further. Such virtual paths are referred to as eigenpaths. The amplitude 

gain for each unique path is    , and it varies according to its eigenvalue. Thus, the 

MIMO channel possesses the capacity to transmit m independent streams of signals 

without cross-talk. Figure 3.14 shows the specific configuration of an eigenmode 

transmission scheme [15]. 
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(a) Channel response matrix 

 

m=min(Nt;Nr) 

(b) Equivalent circuit based on SVD 

Fig. 3.13. Equivalent circuit of MIMO channel based on SVD. 
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Fig. 3.14. Parallel data transmission scheme through each eigenpath. 

3.4.2  Spatial Correlation 

In multi-element antenna systems, spatial correlation is a measure of 

relationship between two antennas' signals. The ideal huge capacity anticipated by a 

MIMO system can be realizable if there is no spatial correlation. However, in real 

propagation environments, MIMO channels are correlated due to low scattering and 

reduced spatial selectivity. Correlated channels of MIMO reduce the high-capacity 

potential considerably, suggesting that MIMO systems should be designed with low 

or no correlation [85-87].  

Design of systems with low correlation requires a full investigation of 

underlying parameters that strengthen spatial correlation. The analysis in this article 

presents spatial correlation as a function of an antenna's spatial structure, AoA 

distribution, mutual coupling, and antenna patterns. Each of these parameters play a 

decisive role in the analysis.  
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Mathematically, the spatial correlation coefficient between two antennas can 

be expressed as  

 

*

1

22

1 1



 

 


 

M

im jmm
ij

M M

im jmm m

h h

h h

. (3.4) 

where hij is a component of channel matrix H, and the channel response between 

the j-th transmitting antenna and the i-th receiving antenna. It is noted that i, j = 

1,2,3,4 in the case of 4×4 MIMO.  

MIMO channels can bear spatial correlation due to low scattering and reduced 

spatial selectivity. The impact of correlation on the capacity of a MIMO system is 

usually analyzed through the eigenvalues of HH
H

. The eigenvalues reveal the degree 

of independence between channels or the effective number of parallel channels. 

Analyses show that the capacity of a MIMO system is greatly diminished by the 

spatial correlation [88]. Due to spatial correlation, the number of independent 

channels is reduced.  In the extreme case, when all the channels are correlated, the 

capacity reduces to that provided by a single transmit and receive antenna. Hence, 

systems with lower spatial correlation are highly desired. Although mutual coupling 

reduces the correlation, it also causes a lower SNR by decreasing the effective gain of 

antennas. 

In the near-field MIMO communications, the facing Tx and Rx antennas can 

transfer multiple streams without any degeneracy since the two antenna elements 

directly communicated with each other. This topology forms, in effect, as many 

parallel transmission channels as there are antennas. Then channels are not perfectly 

parallel because of leakage, but the signals from non-facing antenna elements have 

different phases and amplitudes from that of the facing one since the optical path 

differences between them are not negligible. For this reason, we can expect low 

spatial correlation characteristics even without multipath components.  
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3.4.3  Channel Capacity 

The Eigen-mode Transmission System (EMTS), which is MLSE-like 

algorithm and has been employed in many studies about MIMO systems [89, 90], is 

herein considered as an optimal equalization. As mentioned in Section 2.4, the 

decoding complexity of this MLSE-like algorithm can be reduced by using a linear 

filter to separate the transmitted data streams and then decode each stream 

independently. Hence, the linear MMSE equalization, which is used to mitigate the 

intersymbol interference (ISI) and noise enhancement, is also considered herein. 

Assume that the Channel State Information (CSI) between the transmitting and 

receiving antennas is not known by the transmitting antenna. Referring back to 

Sections 2.3 and 2.4, in such a case, when the adaptive control for the weight 

coefficients is MMSE, the channel capacity can be obtained in units of 

bit/second/Hertz (bps/Hz) using [91] 
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The upper subscript H denotes the Hermitian transposition, and hm denotes the m-th 

column of H. 

By using EMTS with equal power control, the channel capacity of MIMO can 

be obtained using [92] 
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or simply in terms of  H as 

 2 0log det     
H

EMTSC I HH . (3.7) 

The term m represents the eigenvalue that is obtained by the matrix of HH
H
. The 

channel response matrices are determined from the matrices of amplitude and phase 
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of the received signal at each receiving antenna from each transmitting antenna, and 

obtained by tracing the ray into the propagation model. The channel capacity is then 

obtained by deriving the average SNR.  
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Chapter 4 Channel Capacity 

Characteristics of 

Near-Field MIMO Systems 

In this chapter, the impact of the radiation pattern of each antenna element in 

near-field MIMO system is researched. The dual-dipole arrays are utilized to 

investigate the effect of HPBW (half-power beamwidth) on channel capacity. The 

HPBW can be changed by varying the internal distance between two dipoles in one 

element. With a proper HPBW of the antenna element, the channel capacity of a 

dual-dipole array is improved obviously from a conventional dipole array. And the 

optimum HPBW is found to be approximately 50º. In addition, we also address the 

deterioration in the channel capacity caused by antenna location errors in this chapter. 

4.1  Effect of HPBW on Channel Capacity in Near-Field MIMO 

Systems 

Considering the very short distance between transmitter and receiver in the 

near-field MIMO system, the impact of the radiation pattern of each antenna element 

is not neglectable. Contrary to conventional MIMO systems, near-field MIMO 

communication systems transfer data in a very short range [19], and the LOS  paths 

are the major components [20, 21]. Therefore the beamwidth of the antenna element 

radiation pattern affects not only the receiving gain but also the spatial correlation 

characteristics. Consequently, the impact of the radiation pattern of each antenna 

element can‘t be neglected. Usually, the conventional dipole antennas are used to 

investigate the MIMO channel capacity. However, the conventional dipoles are 

omni-directional in the horizontal plane. Therefore, it is very necessary to discuss the 

effect of the elements radiation pattern in the near-field MIMO system. The effect of 

HPBW on channel capacity will be clarified very well in the section. 
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4.1.1  Channel Capacity Characteristics in Conventional Single 

Dipole Arrays 

Before investigating the channel capacity of the dual-dipole arrays, we will 

make a briefly research at the conventional single dipole arrays. For comparing the 

different performances on channel capacity in the near-field MIMO system with 

different antenna elements, and also for highlighting the advantages of the utilization 

of dual-dipole elements, the models of near-field MIMO system with conventional 

single dipole elements are applied.  

The conventional single dipole arrays‘ analysis models used in this chapter are 

shown in Fig. 4.1. Two linear arrays consisting of identical half-wavelength dipole 

antennas are placed parallel face-to-face as the transmitter and receiver, respectively. 

The number of antenna elements in both ends are set the same as MT=MR=M. The 

distance between two adjacent antenna elements is denoted as element spacing d, and 

the distance between the transmitter and the receiver is defined as antenna distance D. 

Considering that the dipole antenna has an omni-distributional radiation 

pattern rather than an isotropic pattern [99-103], the array antennas are arranged in 

two types, horizontal and vertical. They are placed in the same arrangements as the 

model in Figs. 3.6 and 3.7.  At the transmitting array, the equal transmitting power is 

fed on each antenna element, respectively. 
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 4.1. Analysis models of conventional single dipole arrays. 
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A. Effect of Antenna Parameters on Channel Capacity 

In this simulation, the two type arranged linear dipole arrays with antenna 

element number MT=MR=4 are simulated. And the antenna distance D and element 

spacing d changes at the same time. The channel capacity at each situation is plotted 

in the Fig. 4.2.  

We can find that obviously in the Fig. 4.2, the channel capacity is affected 

significantly by the antenna distance D. That means in the near-field MIMO, the 

distance between the transmitting antennas and the receiving antennas plays the most 

important role. However, we should notice that as the antenna distance D is changing, 

the maximum channel capacity will appear with different element spacing d.  

In fact, in a near-field MIMO system, the spatial correlation and SNR play 

significant roles in channel capacity performance. Furthermore, the spatial correlation 

and SNR are both conditioned strongly by the element spacing d, so the element 

spacing d need to be discussed carefully in antenna designing of near-field MIMO 

system. N. Honma mentioned that, there was an optimal element spacing with certain 

antenna distance and certain number of the antenna elements, and the situation of 

using two facing squarely arranged dipole array was analysed in detail [21]. 
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 4.2. Effect of antenna parameters in the conventional single dipole 

arrays. 
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B. Optimum Element Spacing d 

In this section, the two type arranged linear dipole arrays with antenna element 

number MT=MR=4 are simulated. The antenna distance D normalized by λ0 (λ0 is the 

wavelength in free space) is changed, and the optimal element spacing dopt (dopt is 

defined as the element spacing that derive the highest channel capacity at a certain D) 

and the channel capacity approached at dopt are plotted in Fig. 4.3. Figure 4.3 indicates 

that we obtain almost the same trend of dopt as squarely arranged arrays in [21], that is, 

dopt increases with D. However, the linearly arranged arrays can obtain smaller dopt 

than the squarely arranged ones, especially the horizontal type array. It also can be 

seen in Fig.3 that, the horizontal linear array can obtain higher channel capacity than 

vertical one at the same spacing. 

 

 

Fig. 4.3. Optimal element spacing dopt at certain antenna distance. 
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4.1.2  Effect of HPBW in Dual-Dipole Arrays 

The effects of the basic antenna parameters on channel capacity in near-field 

MIMO were descript in detail in the previous section. Finally, the protagonists of this 

research, the impact of the dual-dipole arrays are going to come on the stage. For 

comparing the different performances on channel capacity in the near-field MIMO 

system with the conventional single dipole arrays, the total exciting power for the 

transmitting antenna is constrained the same as the previous simulation.  

A. Channel Capacity Improvement by the Optimum HPBW 

To investigate the effect of the HPBW of the dual-dipole array, the analysis 

models in Figs. 3.6 and 3.7 are used. And the basic antenna parameters are fixed, that 

is antenna distance D is fixed at 1.6λ0 and element d is fixed at λ0. The HPBW is the 

only various parameter. 

In Fig. 4.4, we can see the relationship of the HPBW versus the channel 

capacity. The straight dashed lines indicate the channel capacity when conventional 

dipole arrays are used on both sides in the same situation. Fig. 4.4 indicates that the 

beamwidth of the radiation pattern has a great impact on the channel capacity. 

General speaking, when the HPBW becomes narrower, the dual-dipole MIMO system 

achieves a higher channel capacity than that for a conventional dipole antenna. As the 

HPBW changes, the channel capacity achieves a peak. The highest channel capacity is 

obtained when the HPBW is approximately 50º. The corresponding Δd for the optimal 

HPBW is approximately 0.6λ0 (λ0 is the wavelength). 
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 4.4. Effect of HPBW on channel capacity in near-field MIMO. 
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It is obvious that, when the HPBW is larger than 50º, the improvement in the 

vertical array is much considerable than that in the horizontal array. The different 

performances of the two types of arrangements are caused by the different spatial 

correlation and the different receiving SNR in each non-facing Rx element branch. 

The spatial correlation can be ignored in the vertical array but important in the 

horizontal array. Especially when the HPBW is near 180°, the spatial correlation in 

the dual-dipole horizontal array is larger than that of the conventional dipole array. 

Because the dipoles number in Tx increases from 4 to 8. Therefore, the tiny increase 

on SNR can‘t cancel off the effect of the spatial correlation increment. Furthermore, 

in the horizontal array, as the HPBW in x-y plane becomes narrower, the power 

received by the non-facing elements (especially the ones further from the facing one) 

will not increase as much as the facing one. On the other hand, in the vertical array 

the beamwidth in the y-z plane affects the SNR in each non-facing Rx element branch. 

The beamwidth in the y-z plane will not change with the Δd, but the gain of the 

radiation pattern in the y-z plane will increase. Therefore, besides the facing element, 

the SNR in the other Rx branches will also increase as Δd increases. That‘s why the 

improvement in the vertical array is larger.  

The reduction of the channel capacity when HPBW is less than 50º (the 

corresponding Δd increases over about 0.6λ0), is caused by the occurrence of the side 

lobes. The side lobes will carry off some power from the main beam, and as the 

HPBW becomes narrower the side lobes become larger, which leads to more spatial 

correlation in the horizontal array. That‘s why the channel capacity in the horizontal 

array decreases earlier than that in the vertical array. Especially in the dual-dipole 

horizontal array, when the HPBW is near 30°, the side lobes are so large that the 

negative impact of the spatial correlation exceeds the positive impact of SNR 

increment. So the channel capacity for the dual-dipole horizontal array becomes less 

than the results for conventional dipole hereafter. To avoid the effect of side lobes, the 

HPBW should be considered only larger than 50º (the corresponding Δd is from 0.2λ0 

to 0.6λ0). 
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 4.5. Effect of HPBW on eigenvalue in near-field MIMO. 
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The theoretic explanation can be made by the change of eigenvalues. The 

effect of HPBW on eigenvalues in near-field MIMO is shown in Fig. 4.5. From Fig. 

4.5, the effect of the HPBW on eigenvalue distributions is plotted. When the HPBW 

is larger than 50º, we can see that in the horizontal array, although the 3
rd

 and 4
th

 

eigenvalues change very obviously, the 1
st
 and 2

nd
 eigenvalues those are the principal 

components of channel capacity vary gently. On the other hand, all the eigenvalues in 

the vertical array are affected by the HPBW seriously. Hence, we can find in Fig. 4.4 

that the improvement of channel capacity in the vertical array is much more 

significant than that in the horizontal array. When the HPBW is larger than 50º, the 

trends of all 4 eigenvalues curves of vertical array are similar. But the trends of 

horizontal array are distinctly different. The vertical eigenvalues have an obvious 

steeper decreasing slope than the 2
nd

 horizontal eigenvalue, but a little gentler slope 

than the 1
st
 and 4

th
 horizontal eigenvalues and a similar slope as the 3

rd
 one. The 

differences among every horizontal eigenvalue will cancel out the impact of each 

other, and finally it shows the similar trend of channel capacity slope as that of the 

vertical one in Fig. 4.4. Therefore, the improvement of channel capacity can be 

explained well by the variation of eigenvalues. 

B. Generality of Optimum HPBW 

The effect of antenna distance D and element spacing d on the channel 

capacity in the near-field MIMO systems was clarified in previous section. The 

channel capacity will simply decrease with D enlarges. However, an optimum 

element spacing dopt could be obtained at each certain D, because that the variation of 

d will affect not only the SNR in each Rx element branch but also the spatial 

correlation. To verify the generality of the optimum HPBW mentioned previously, we 

will check the channel capacity when the HPBW changes with D at the same time, or 

when the HPBW changes with d at the same time. The generality of the optimum 

HPBW will be verified in this section. 
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 4.6. Effect of D and HPBW on channel capacity when d is λ0. 
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 4.7. Effect of d and HPBW on channel capacity when D is 1.6λ0. 
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Figure 4.6 shows the situation when d is fixed at λ0 and the HPBW and D are 

variable. We can find that as the conventional single dipole arrays, the antenna 

distance D still affects the channel capacity very significantly. In addition, the effect 

of the HPBW is also very considerable. And whatever D changes, the optimum 

HPBW is always found to be approximately 50º. That means the channel capacity 

improvement caused by adjusting HPBW is independent from D changes. 

Figure 4.7 indicates that the dopt still exists whatever Δd changes, and the dopt 

is 0.7λ0 as the same as mentioned in [21]. However, the effect of d is much less than 

HPBW, especially in the vertical array. In addition, the channel capacity improvement 

caused by adjusting HPBW is independent from d changes. The optimum HPBW can 

be found to be approximately 50º. 

Therefore, we can say that the effect of the HPBW in near-field MIMO system 

is independent, and the generality of the optimum HPBW is clarified.  

 

4.2 Effect of Antenna Location Errors on Channel Capacity in 

Near-Field MIMO System 

In the previous discussion, we clarified the effects of the radiation pattern of 

the dual-dipole array. In those cases, the transmission antennas are placed face to face. 

However, in a practical application the opposing antennas cannot always be placed in 

the ideal position. Since the antenna distance is fairly short, a slight deviation or bias 

of the receiver antenna to the transmitter antenna may significantly affect the channel 

capacity. Therefore, we address the deterioration in the channel capacity caused by 

antenna location errors in this subsection. 

Considering a practical application where the near-field MIMO is used to 

transmit data through a wall as shown in Fig. 2.2(c), the antenna distance is constant 

(the thickness of the wall) and the two planes including the transmitter and receiver 

are parallel to each other. Hence, the antenna location errors are limited considering 
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the offset error in the x and z directions as shown in Fig. 3.8, and rotational error 

around the y axis, as shown in Fig. 3.9. 

In this simulation, both the horizontal and vertical arrays are simulated to 

clarify the deterioration in the channel capacity. Antenna distance D is fixed at 1.6λ0, 

and element spacing d is fixed at λ0. The distance between the two dipoles in one 

element, Δd, is variable, which means that the corresponding HPBW is also variable. 

 

4.2.1  Effect of Antenna Offset Errors on Channel Capacity 

In the offset error model, the offsets of the receiving antenna in both the x and 

z directions are considered. The relationship between the offset error and channel 

capacity for a different case of HPBW (caused by Δd) is shown in Fig. 4.8 and Fig. 

4.9. Generally speaking, in all cases, as the offset errors increases, the channel 

capacity decreases. In addition, we find that the highest channel capacity is obtained 

when Δd=0.5λ0 or 0.6λ0, with the corresponding HPBW from 49º to 60º. These results 

support the conclusion in Section 4.1. 

A. Offset Errors in the x direction 

To verify the effect of the offset error only in the x direction, the Δz is 

considered as 0. The simulation results are shown in Fig. 4.8. Each curve indicates a 

situation with a different HPBW (Δd). It is clear that when Δx increases, the 

deterioration in the channel capacity in the horizontal array is less than that in the 

vertical array. This means that the offset error in the x direction has a more significant 

effect on the vertical array than on the horizontal array. Especially when the HPBW is 

narrower, the deterioration in the channel capacity is more pronounced. Furthermore, 

there are fluctuations in the curves when the HPBW is narrow. This is because when 

the HPBW becomes very narrow, the side lobes of the radiation pattern in the x 

direction become larger. As Δx increases, although the receiver array will miss the 

signal from the main beam, it can receive the signal from the side lobes. Therefore, 

the channel capacity will increase again. In the case of the horizontal array, in 
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addition to the contribution from the side lobes of the opposite transmitter element, 

the radiation pattern of the adjacent transmitter element can increase the channel 

capacity. This is the reason why there are multiple fluctuations in the horizontal array 

but only one in the vertical array. 

(a) Horizontal array 

(b) Vertical array 

Fig. 4.8. Effect of offset error in x direction with different HPBWs. 
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B. Offset Errors in the z direction 

Figure 4.9 shows the effect of the offset error only in the z direction. 

Conversely to Fig. 4.8, the offset error in the z direction has a more pronounced effect 

on the horizontal array than the vertical array. The tendency of the channel capacity 

curves in Fig. 4.9 is a straightforward decline as Δz increases, which is much simpler 

than that in Fig. 4.8. Furthermore, we find the same tendency for Δx, i.e., the HPBW 

affects the channel capacity for the vertical array more than that for the horizontal 

array. 

 

4.2.2 Effect of Antenna Rotational Errors on Channel Capacity 

Rotational error is only considered when the receiver antenna rotates around 

the y axis by θy from 0 to 45º. The simulation results are shown in Fig. 4.10. The 

effects on both the horizontal and vertical arrays are almost the same. As rotational 

error θy increases, the channel capacity becomes worse slowly and continuously. In 

addition, the best channel capacity is still obtained when Δd=0.5λ0 or 0.6λ0 (HPBW is 

from 49º to 60º). 
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(a) Horizontal array 

(b) Vertical array 

Fig. 4.9. Effect of offset error in z direction with different HPBWs.  
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(a) Horizontal array 

(b) Vertical array 

Fig. 4.10. Effect of rotational error around y axis with different 

HPBWs. 
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4.2.3  Effect of HPBW on Stability of Deterioration in Channel 

Capacity 

The previous subsections showed the direct effect of the HPBW on the 

antenna location error based on the channel capacity. The performance of the system 

in every situation can be compared easily. In this subsection, the stability of the 

system in different situations is discussed using an average unit for deterioration in 

the channel capacity. The unit of deterioration indicates the percentage that the 

channel capacity deteriorates when the location error increases one unit. In the case of 

the offset error, one unit represents a step of 0.1λ0, and in terms of the rotational error, 

one unit represents a step of 1º. Since the unit of deterioration is variable, we use the 

average value of all the units in location error areas to evaluate the stability of the 

system at different HPBWs. Hence, when the absolute value of the average unit of 

deterioration is large, this means that the channel capacity of the system decreases 

quickly, which indicates that the system is unstable. On the contrary, when the 

absolute value is smaller, the stability of the system is better.   

Figure 4.11 shows the effect of the HPBW on the stability of the system. All 

the location error situations are plotted in the figure. The solid lines represent the 

horizontal array and the dashed lines represent the vertical array. Figure 11 shows that 

when the HPBW becomes wider, its effect on the system stability is less important. In 

the case of rotational error, the levels of stability for both the horizontal and vertical 

arrays are almost the same. As the HPBW exceeds 50º, the average unit of 

deterioration remains at approximately -0.8% per degree. When considering the offset 

errors, the horizontal array is more stable than the vertical array for an offset in the x 

(horizontal) direction, and the vertical array is more stable for an offset in the z 

(vertical) direction. 



81 

 

Fig. 4.11. Effect of HPBW on stability of deterioration in channel 

capacity. 
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Chapter 5 Effect of Objects in 

Near-Field MIMO Systems 

Basically two factors determine the capacity of a MIMO system—the path 

loss and the multipath richness [25, 93, 94]. The dual-dipole arrays lead to much 

lower path loss than the conventional dipole arrays, hence, the channel capacity 

improves significantly. However, the multipath richness rarely exists in the near-field 

MIMO. So far, all the researches on the near-field MIMO are in the free space 

without any obstacle. However, due to the short transfer distance of the near-field 

MIMO, a tiny variation of the channel will lead to a significant difference on the 

channel capacity. Therefore, we employ metal wire [97, 98] in the near-field MIMO 

system to increase the multipath richness and clarify the effect of obstacles in the 

system. 

In this chapter, the metal wires are chosen as the objects between the 

transmitting antennas and the receiving antennas for the fundamental research. First of 

all, one single metal wire is investigated to confirm the effects of metal wire‘s length, 

radius and polarization. Especially, the effect of the metal wire‘s location is verified 

clearly, the proper locations in the system for the metal wire are pointed out. In 

addition, the effect of multiple metal wires placed at the proper locations in the 

system is also described in detail.  

5.1  Effect of Single Metal Wire in Near-Field MIMO Systems 

In the expected practical application, the objects between the transmitting 

antennas and the receiving antennas might be the wall, so the effect of the metal wires 

in the wall is very necessary to be investigated. Hence, for the basic discussion, first 

of all, only one single metal wire is added in the dual-dipole array near-field MIMO 

system.  
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5.1.1 Effect of the Basic Characters of the Single Metal Wire 

Before investigating the effect of the metal wire‘s location on the channel 

capacity of the dual-dipole arrays, we will choose the appropriate basic characters of 

the single metal wire for normalize the simulation results.  

A. Effect of the Length of the Metal Wire 

In this simulation, the antenna distance D is fixed at 1.6λ0, the element spacing 

d is fixed at λ0, and the distance between two dipoles in one element Δd is fixed at 

0.6λ0. The length of the metal wire L changes from 0 (no wire) to 20λ0. The simulation 

results are shown in Fig. 5.1. 

Figure 5.1 indicates that the general tendency of the channel capacity 

fluctuates and decreases as L increases. And when L is larger enough, the channel 

capacity will converge to a constant.  

 

Fig. 5.1. Effect of the length of the metal wire. 
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To avoid instability from diffraction caused by a short metal wire, and to avoid 

the mass calculation caused by long length of metal wire, a suitable length for the 

metal wire, L, is selected as 10λ0 (λ0 is the wavelength) and used hereafter. 

B. Effect of the Radius of the Metal Wire 

In this section, we try to find out the effect of the radius of the metal wire in 

the system. In this simulation, we set the metal wire in the vertical array system and 

the radius of the metal wire is denoted as R, as shown in Fig. 5.2. The other 

parameters are all the same as previous research: the antenna distance D is fixed at 

1.6λ0, the element spacing d is fixed at λ0 and the distance between two dipoles in one 

element Δd is 0.6λ0, the length of the metal wire L is 10λ0. The offset of the metal 

wire in x direction Δxmw is from 0 to 2λ0, in y direction Δymw is from -2λ0 to 2λ0. 

 

Fig. 5.2. Analysis model of metal wire radius. 
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The effect of the radius of the metal wire on the maximum channel capacity is 

shown in the following figure. We can see that as the R increases, the maximum 

channel capacity becomes larger. Therefore, we can say that the larger radius can 

affect the system more significantly. 

 

 

Fig. 5.3. Effect of Radius of Metal Wire on Maximum Channel Capacity. 
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        (a) Horizontal array                    (b) Vertical array 

Fig. 5.4. Analysis models of dual-dipole arrays with perpendicular metal wires. 

 

The models of horizontal array and the vertical array with perpendicular metal 

wire are described respectively in Fig. 5.4. To verify the effect of the perpendicular 

metal wire on the channel capacity, it is moved in the z direction, which is denoted as 

Δzmw. The effect of the perpendicular metal wire in the system is shown in Fig. 5.5(a). 

We can see that the perpendicular metal wire can rarely affect the system channel 

capacity. On the contrary, the systems with parallel metal wires are shown in Figs. 

3.10 and 3.11, and the effects of the offset in x direction in these systems are shown in 

Fig. 5.5(b). The effect of the parallel in the system is considerable. Therefore, the 

metal wires in the system are chosen as the parallel ones in this research hereafter.  
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(a) Perpendicular metal wire 

 

(b) Parallel metal wire 

Fig. 5.5. Effect of rotation of metal wire. 
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5.1.2  Effect of the HPBW 

The effect of the HPBW on channel capacity in the system without a metal 

wire has been verified in [10]. And in this simulation, we set the metal wire placed in 

the centre between the transmitter and receiver. Figure 5.6 plots the relationship of the 

HPBW versus the channel capacity when D is fixed at 1.6λ0 and d is fixed at λ0. The 

variation of channel capacity for the system without a metal wire is also plotted in the 

same figure used as a comparison. The horizontal and vertical arrays are considered 

respectively.  

Figure 5.6 indicates that the beamwidth of the radiation pattern has a great 

impact on the channel capacity. We find that as the HPBW decreases the channel 

capacity achieves a peak. The highest channel capacity is obtained when the HPBW is 

approximately 50º, the same as the system without a metal wire [10]. Due to the 

significant improvement on channel capacity, the HPBW is set 50º in the following 

discussion.  

It should be noted that although the metal wire is placed in the centre of either 

the horizontal array or the vertical array, the influences of the metal wire are different. 

As shown in Fig. 5.6(a), in the horizontal array, the two curves are almost the same, 

which means the influence of the metal wire can be ignored. However, as shown in 

Fig. 5.6(b), in the vertical array, the metal wire reduces the channel capacity distinctly. 

It is because the centre of the vertical array is between the Tx and Rx. When the metal 

wire is placed in this location, it will obstruct the signal transmission and enlarge the 

path loss. On the other hand, the centre of the horizontal array is out of the main 

transmission path, thus the influence of the metal wire is insignificant. Therefore, not 

only the HPBW but also the array arrangement and metal wire location will affect the 

system channel capacity. 
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 5.6. Effect of HPBW on channel capacity in the system with metal wire.  
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5.1.3  Effect of the Location of the Metal Wire 

 

Since the distance between Tx and Rx arrays is very short, a slight offset of 

the metal wire location will significantly affect the channel capacity. To verify the 

effect of the metal wire location, the metal wire is simulated at different locations in 

the offset area, as shown in Fig. 3.10 and Fig. 3.11. We fix antenna distance D at 1.6λ0, 

element spacing d at λ0 and the HPBW at 50º. Since the top views of the arrays are 

symmetrical, the offset area is considered to be only the upper half. The center of the 

system is set as the origin of the offset for the metal wire. The terms Δxmw and Δymw 

denote the offset in the x and y directions, respectively. Especially, in the y direction, 

when the metal wire is close to the Tx array, Δymw is defined as ‗-‘, and when it is 

close to the Rx array, Δymw is defined as ‗+‘. 

 

The effect of the metal wire location in the offset area on the channel capacity 

is shown in Fig. 5.7. The level curves of the channel capacities when the system is 

without any metal wire are drawn as the white lines and denoted by CCw/o. The 

locations where the channel capacities are much higher than CCw/o are defined as the 

proper locations, and they are marked as stars. And the location of the lowest channel 

capacity is marked by a square. The locations of the Tx and Rx antennas are indicated 

by ‗⊳‘ and ‗⊲‘, respectively.   
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 5.7. Effect of metal wire location on channel capacity. 

Figure 5.7 shows that when the location of the metal wire changes, the channel 

capacity of the system changes greatly. Especially, when the metal wire is placed 

between the Tx and Rx elements in one pair, the channel capacity decreases 

significantly, as shown by the dark areas. When the metal wire is far from the arrays 

the effect of the metal wire can be ignored. Furthermore, it should be noted that when 
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the metal wire is placed in certain locations as the bright areas shown in Fig. 5.7, we 

can obtain a high channel capacity which is even higher than that in the system 

without a metal wire. We named the kind of areas as the proper locations. The proper 

locations distribute on both sides of each Rx element, and the Δymw is found at 0.65λ0. 

As shown in Fig. 5.7(a), the proper locations in the horizontal array can be found 

between every two adjacent Rx elements and another two proper locations can be 

found beyond the two outer Rx elements. That means in the horizontal array, the 

number of proper locations will increase with the number of elements increases. And 

we only considered upper half of the total offset area as shown in Fig. 3.10(b), 

therefore, there are      proper locations in the system when using the horizontal 

array. On the other hand, in the vertical array, we can observe only one Rx element 

from the top view as shown in Fig. 3.11(b). So no matter how many elements are 

there in the arrays, the number of proper locations is always only 2 in the system 

when using the vertical array. 

For observing the effect of the metal wire on channel capacity more clearly, 

we fix Δymw at 0.65λ0 (the offset of the proper locations in y direction) and change 

Δxmw. The variation of the channel capacity with Δxmw is shown in Fig. 5.8. The 

channel capacities of the systems without metal wires are also plotted in the figure as 

straight lines. Figure 5.8 indicates that when the metal wire is placed at the proper 

locations, the improvement of the channel capacity is considerable. Especially, in the 

vertical array, the maximum channel capacity increases more than 3bps/Hz from the 

system without a metal wire. In the horizontal array, the improvement of channel 

capacity is not so obvious, but there are several proper locations. At the meanwhile, 

we can see that when the metal wire is placed at some locations that can decrease the 

channel capacity, the degradation in the vertical array is much more serious than that 

in the horizontal array. Because the metal wire is placed parallel with the dipoles, it 

will exert the same influence on all the elements at the same time in the vertical array. 

However, in the horizontal array, due to the distances from each element to the metal 

wire are different, the effects of the metal wire to each element are different, and they 

may weaken the effects by each other. That is the reason why the effect of metal wire 

in the vertical array is more obvious. 
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Fig. 5.8. Comparison in effect of metal wire location on channel capacity (D=1.6λ0 

d=λ0 Δd=0.6λ0 Δymw=0.65λ0). 
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(a) Horizontal 

(b) Vertical 

Fig. 5.9. Effect of metal wire location on eigenvalue (D=1.6λ0 d=λ0 Δd=0.6λ0 

Δymw=0.65λ0). 
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5.1.4 Generality of Improvement by Metal Wire 

The effect of the metal wire was investigated only upon one specific situation 

in previous section. To clarify the generality of the improvement on channel capacity 

caused by the metal wire, we fix the element spacing d at λ0 and change the antenna 

distance D and the HPBW at the meanwhile of moving the metal wire in the offset 

area.  

The channel capacity of the system without a metal wire is denoted as CCw/o 

and the maximum channel capacity of the system affected by a metal wire is denoted 

as CCmax. Then, the difference between the maximum channel capacity and the 

channel capacity without a metal wire can be defined as  

CC△= CCmax-CCw/o.                                          (5.1) 

We use the CC△ to evaluate the improvement of the channel capacity caused 

by the metal wire. 

The value of CC△ in every specific situation is plotted in Fig. 5.10. And the 

highest CC△ is marked as a star. From Fig. 5.10, we can find that all the values of 

CC△ are larger than 0. It implies that no matter how the antenna distance or the 

HPBW change, as long as the metal wire is placed in the proper location, the channel 

capacity in the near-field MIMO will improve. Therefore, the generality of the 

improvement by a metal wire is verified. In addition, Fig. 5.10 indicates that the D 

makes the larger influence than the HPBW on the CC△. Once the D is determined, the 

CC△ will hardly change with different HPBW. The maximum CC△ in the horizontal 

array is found at the situation when D=0.6λ0 and HPBW=150º, and in the vertical 

array is found at the situation when D=0.7λ0 and HPBW=180º.  

The effects of the metal wire location at both maximum situations are shown 

in Fig. 5.11 in horizontal array and vertical array respectively. In these cases, the 

metal wires are placed in the center of the Tx and Rx. Corresponding to the expected 

application image, if the relative location between the MIMO antennas and the metal 

wire in the wall is set properly, the channel capacity will improve. 
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(a) Horizontal array

 (b)Vertical array 

Fig. 5.10. Generality of channel capacity improvement. 

0
.5

0
.5

0
.5

0.
5

1

1
1

1
1

1

1

1

1
1

1 1

1
1

1

1

1
.5

1
.5

1.
5

1
.5

1
.5

2

2

2

2

1

2
.5

2
.5

Antenna Distance  D/
0

H
a

lf
-P

o
w

er
 B

ea
m

w
id

th
 [

d
eg

]

C
C

 [

b
p

s/
H

z]

 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
180

160

140

120

100

80

60
50

0.5

1

1.5

2

2.5

3

3.5

1
1

1
1
.5

1
.5

2
2

2

2

2
.5

2
.5

2.5

2
.5

2.5

3
3

3
3

3

3

3
3

3
3

3

3

3
3

3
3

3
.5

3
.5

3
.5

3
.5

3
3

3

3
.5

3
.5

Antenna Distance  D/
0

H
a

lf
-P

o
w

er
 B

ea
m

w
id

th
 [

d
eg

]

C
C

 [

b
p

s/
H

z]

 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
180

160

140

120

100

80

60
50

0.5

1

1.5

2

2.5

3

3.5



98 

 

(a) Horizontal array (D=0.6λ0, d=λ0, HPBW=150°) 

 

(b) Vertical array (D=0.7λ0, d=λ0, HPBW=180°) 

Fig. 5.11. Effect of metal wire location at the situation of the maximum CC△. 
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5.2 Effect of Multiple Metal Wires in Near-Field MIMO System 

The effect of only one metal wire in the near-field MIMO system was clarified 

in the Section 5.1, and we can notice that there are plural proper locations in the 

system. Hence, it is expected that the channel capacity will increase with multiple 

metal wires. The analysis models of different arranged arrays with multiple metal 

wires are shown in Fig. 3.12. The metal wires are placed at the proper locations. The 

antenna distance D is fixed at 1.6λ0, the element spacing d fixed at λ0, and the HPBW 

is fixed at 50°. 

The performance of the metal wire placed in the horizontal or the vertical 

array is depicted very clearly in Figs. 5.7 and 5.8. In the vertical array, although the 

effect of an individual metal wire in the channel capacity is much better than that in a 

horizontal array, the proper locations in which the metal wire could improve channel 

capacity are only 2, not as many as in the horizontal array. Therefore, to combine the 

advantages of the horizontal and vertical arrays, we choose the square arrays to 

investigate the effect of multiple metal wires in the near-field MIMO system. In the 

square arrays, as shown in Fig. 3.12(c), the antenna elements are arranged the same in 

the both horizontal and vertical dimensions, and with the same element spacing d 

fixed at λ0.  
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5.2.1  Proper Locations for Multiple Metal Wires 

The effect of single metal wire in near-field MIMO systems was clarified in 

the Sec. 5.1, and we can note that there are plural proper locations in the system.  

In this subsection, 2 metal wires are employed in the system to clarify the 

proper locations for the multiple metal wires. The parameters of the system are 

entirely the same as the system discussed in Sec. 5.1.3. Except that an additional 

metal wire is fixed at the proper location on the opposing side of the offset area. The 

other metal wire moves in the same offset area as shown in Figs. 3.10 and 3.11. The 

effect of the location of the mobile metal wire in the offset area on the channel 

capacity is shown in Fig. 5.12. The level curves of the channel capacities when the 

system is with only one metal wire at the proper location are drawn as the white lines 

and denoted by CC1mw. 

Comparing Fig. 5.7 and Fig. 5.12, we can see that the proper locations for a 

single metal wire and for 2 metal wires are exactly at the same place. Thus, we can 

say that the proper locations for one wire are also effective for plural wires. In 

addition, the channel capacities in Fig. 5.12 are obviously larger than the ones in Fig. 

5.7, and the differences are just the same as the improvement caused by the fixed 

metal wire in the proper location. So it is clarified that the effects of multiple metal 

wires can be accumulated together. Therefore, we can expect that the channel capacity 

will increase with multiple metal wires placed in the plural proper locations 

simultaneously. 
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(a) Horizontal array 

 

(b) Vertical array 

Fig. 5.12. Proper locations for 2 metal wires. 
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5.2.2  Effect of Array Arrangement 

Figure 5.13 shows the comparison of using different array arrangements. We 

can find that the numbers of the proper locations are limited and related to the 

different array arrangements. As mentioned in Sec. 5.1.3, there are      proper 

locations in the horizontal array and only 2 proper locations in the vertical array. In 

addition, in a square array with     elements, the number of proper locations is 

   . When the number of antenna elements is fixed, even if more metal wires are 

placed in the system, the channel capacity will hardly improve. From Fig. 5.13 we can 

find that the vertical array is affected by the metal wire most. And the square array 

would achieve the same channel capacity by utilizing more additional metal wires 

placed in different proper locations. According to the different array arrangements, 

the speed of channel capacity improvement is different. The vertical array is the 

fastest, however, no matter how many antenna elements are there in the vertical 

arranged array, there are only two proper locations. Obviously, two is not enough to 

investigate the effect of multiple metal wires. In the square array and horizontal array, 

the number of proper locations increases when the number of antenna elements 

increases. And in the square array, the effect of the metal wires is more significant. 

Therefore, the square arrays are selected to clarify the effect of multiple metal wires. 

 

Fig. 5.13. Comparison of different array arrangements. 
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5.2.3  Effect of the Number of Metal Wires 

Figure 5.14 shows the effect of the number of metal wires on the improvement 

of channel capacity when the square arrays are used. From Fig. 5.14 we can see that 

as the number of antenna elements increases, we can set more metal wires in the 

system to improve the channel capacity. And as the number of metal wires increases, 

the maximum channel capacity of the system will enhance. The effects of multiple 

metal wires can accumulate together. The improvement of channel capacity is 

approximately proportional to increase with the number of metal wires. 

 

Fig. 5.14. Effect of number of metal wires on CCΔ. 
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Chapter 6 Frequency Dependency of 

Channel Capacity in 

Near-Field MIMO System 

with Metal Wire 

Recently, a novel scheme of applying Multiple-Input-Multiple-Output (MIMO) 

technology for the near-field communication has been proposed. Contrary to 

conventional MIMO systems, near-field MIMO communication systems transfer data 

over very short ranges, and the line-of-sight (LOS) paths are the major components. 

Hence, the contribution of the multipath components will not appear in near-field 

MIMO systems. However, the channel capacity might be higher than the ergodic 

capacity since the near-field MIMO system has a high similarity with a parallel data 

transmission. One of the expected applications for near-field MIMO systems is a 

wireless repeater, which can connect networks in two adjacent rooms through a wall. 

The metal wires in the wall are considered as the major obstacles in the system. The 

improvement on channel capacity by metal wire and the proper location for the 

obstacle metal wire in near-field MIMO system have been verified in. However, in 

actual applications, the system might work within various wireless communication 

standards with different specific frequencies. Therefore, this paper applies the 

near-field MIMO system with metal wire in different frequencies to study the effect 

of frequency on channel capacity. 

6.1 Configuration of analysis model 

The Near-field MIMO analysis model used in this paper is shown in Fig. 

6.1(a). Two linear vertical arrays consisting of identical half-wavelength dipole 

antennas are placed parallel face-to-face as the transmitter (Tx) and receiver (Rx), 

respectively. The numbers of antenna elements on the Tx side,   , and on the Rx 
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side,   , are set to the same value, i.e., four. The distance between two adjacent 

antenna elements is denoted as element spacing d, and the distance between the 

transmitter and receiver is defined as antenna distance D. The operating frequency of 

the system is variable, so the length of the dipoles changes with the frequency varying. 

But D and d are fixed while changing the frequency. A metal wire is placed near the 

arrays. Considering the polarization direction, the impact of the metal wire is 

negligible when the metal wire is set perpendicular to the dipoles. Hence, the metal 

wire is set parallel to the dipoles. Term L indicates the length of the metal wire. To 

avoid instability from diffraction caused by a short metal wire, and to avoid a heavy 

calculation load caused by a long metal wire, 1000mm is selected as a suitable length 

for the metal wire and used hereafter. 

     

(a) Configuration of analysis model.          (b) Top view of analysis model. 

Fig. 6.1. Analysis models of near-field MIMO with metal wire. 

To verify the effect of the location of the metal wire, the metal wire is 

simulated at different locations in the offset area, as shown in Fig. 6.1(b). Since the 

top view of the array is symmetrical, the offset area is considered to be only the upper 
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half. The center of the system is set as the origin of the offset for the metal wire. 

Terms Δxmw and Δymw denote the offset in the x and y directions, respectively. 

Especially, in the y direction, when the metal wire is close to the Tx array, Δymw is 

defined as ‗-‘, and when it is close to the Rx array, Δymw is defined as ‗+‘. 

The SNR in this study is constrained at 20dB. All of the results in this paper 

are calculated using the Method of Moments (by EEM-MOM). 

6.2 Effect of frequency on metal wire‘s proper location  

The channel capacity of the system without a metal wire is denoted as CCw/o 

and the channel capacity of the system affected by the metal wire in each specific 

location is denoted as CCmw. Then, the difference between the channel capacity of the 

system with a metal wire and that without a metal wire can be defined as 

CCΔ= CCmw-CCw/o.                          (6.1) 

CCΔ can be used to evaluate the improvement in the channel capacity due to 

the metal wire. The effect of the metal wire location in the offset area with different 

frequencies is shown in Fig. 6.2. In this simulation, D and d are fixed at 160mm and 

100mm, respectively. The locations of the Tx and Rx antenna elements are indicated 

by ‗⊳‘ and ‗⊲‘, respectively. The level curves of the channel capacities when the 

system is without a metal wire are marked by ‗0‘. The location with the highest 

channel capacity is defined as the proper location, and it is marked by a star. The 

location of the lowest channel capacity is marked by a circle. 

From Figs. 6.2(a-c), we can find that although the offset area of the metal wire 

is exactly the same, the effects of the metal wire on channel capacity with respective 

frequencies are different. As the frequency increases, the coverage of the metal wire‘s 

effect becomes smaller. Especially, when using 10GHz, once the offset in x direction, 

Δxmw, is larger than 100mm, the effect of the metal wire is negligible. In addition, the 

effects of the metal wire on the Tx side and on the Rx side are similar, the figures are 

almost symmetric, but the effect on the Tx side is slightly greater. Both the best and 

the worst points are found on the Tx side. Furthermore, the proper location is closer to 
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the antenna element when the frequency becomes larger. The distance between the 

proper location and the Tx element is denoted as dpl. The relationship between 

frequency and dpl is shown in Fig. 6.2(d). dpl in each specific frequency is marked by a 

red circle, and the corresponding half wavelength of every specific frequency, 0.5λ0, 

is also ploted by a dotted line in the same figure. Comparing the dpl and the 

corresponding half wavelength, we can find that no matter how the frequency changes, 

the proper location can be found nearly 0.5λ0 from the Tx element. In addition, once 

the frequency is decided, dpl will hardly change with different D.  
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 (b) 5GHz 
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(d) Relationship between frquency and dpl. 

Fig. 6.2. Effect of frequency on metal wire‘s proper location. 

 

6.3 Frequency dependency of channel capacity improvement 
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respect to λ0 are variable. Element spacing, d, affects not only the receiving SNR but 

also the spacial correlation [21], therefore, the channel capacity is fluctuated with the 

frequency. 

From Fig. 6.3, we can see that the channel capacity improvement appears with 

every frequency. Especially, in the range from 5GHz to 25GHz, the improvement is 

very consideralbe. However, the improvement becomes smaller as the frequency 

becomes larger. When the frequency is larger than 30GHz, the improvement on 

channel capacity by a metal wire is negligible. 

 

Fig. 6.3. Frequency dependency of channel capacity change. 
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of the metal wire will change as frequency changes. Hence, the metal wire‘s location 

in Fig. 6.4 is varied depending on the frequency to maintain the optimum condition. 

From Fig. 6.4, we can see that the channel capacity improvement appears with 

every frequency. When the frequency is less than 10GHz, CCΔmax increases as the 

frequency increases. And when the frequency is larger than 20GHz, CCΔmax decreases 

as the frequency increases. Especially, the maximum value of the channel capacity 

improvement is found in the range from 10GHz to 20GHz. In addition, as the antenna 

distance, D, increases, CCΔmax becomes smaller, and the curve of CCΔmax declines 

earlier. 

 

Fig. 6.4. Frequency dependency of channel capacity improvement. 
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Chapter 7 Conclusions 

In this chapter, the contributions of this dissertation are concluded. It is 

summarized how the HPBW affect channel capacity in the near-field MIMO systems, 

and how the metal wire improve the channel capacity. The metal wire that was 

supposed as the obstacle in the system but with the proper location will improve the 

channel capacity. 

In this study, the channel capacity characteristics in near-field MIMO system 

were exhaustively researched. Two methods of improving the channel capacity in the 

near-field MIMO systems were proposed and verified. The first one was the 

utilization of the dual-dipole array and by adjusting the beamwith of the radiation 

pattern, and then the channel capacity would increase considerably with the proper 

HPBW. And the second method was adding the metal wires between the transmitting 

antennas and the receiving antennas to increase the multipath richness of the system. 

When the metal wires were settled in the proper locations in the near-field MIMO 

system, the channel capacity exceeded that without a metal wire. 

First, after showing the overview of near field communication and MIMO 

system, the system models and analysis methods employed in this study were 

introduced. Especially, the characteristics and advantages of dual-dipole element were 

declared in detail. The beamwidth of the radiation pattern of the dual-dipole element 

could be adjusted by the internal distance between the two dipoles in one element. 

The relationship between the HPBW and the internal distance Δd was clarified. 

Second, the horizontal and vertical dual-dipole arrays were introduced to 

near-field MIMO system in this research. General speaking, when the HPBW became 

narrower, the dual-dipole MIMO system achieved a higher channel capacity than that 

for a conventional dipole antenna. As the HPBW changed, the channel capacity 

achieved a peak. The highest channel capacity was obtained when the HPBW was 
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approximately 50º. The corresponding Δd for the optimal HPBW was approximately 

0.6λ0. The theoretic explanation was made by the change of eigenvalues. 

Third, the effect of the receiver array location error, including offset error and 

rotational error, were also clarified in this research. The change in the HPBW in terms 

of the location error affected not only system channel capacity, but also how quickly 

the channel capacity deteriorates, which represents the stability of the system. The 

maximum channel capacity was obtained when the HPBW was approximately 50º, 

regardless of the location error. As the HPBW became wider, the system became 

more stable in terms of the location error. 

Forth, this study also clarified the channel capacity improvement in near-field 

MIMO systems, by employing the metal wires placed on the proper locations near the 

MIMO arrays.  Horizontal and vertical dual-dipole arrays were introduced to the 

near-field MIMO system with the metal wires placed parallel to the dipoles. The basic 

characters of the metal wire were discussed. The metal wires which were parallel to 

the dipoles and with the length of 10λ0 were fit for the investigation. The location of 

the metal wire near the transmitter array and receiver array affected the system 

channel capacity significantly. We could obtain different channel capacity by 

adjusting the relative position between the metal wire and the arrays. In addition, this 

paper verified that when a metal wire was placed at the proper location in the 

near-field MIMO system, the channel capacity exceeded that without a metal wire. 

The improvement with one single metal wire in the vertical array was more 

considerable, but there were more proper locations in the horizontal array. And the 

generality of the channel capacity improvement by a single metal wire was verified.  

Then, to research the effect of multiple metal wires, the square array was 

chosen to combine the advantages of both the horizontal and vertical arrays. As the 

number of antenna elements increased, the square array could contain more metal 

wires set in proper locations. The effects of multiple metal wires could accumulate 

together, and the improvement of channel capacity was approximately proportional to 

increase with the number of metal wires. 
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Finally, this study investigated the frequency dependency of channel capacity 

improvement in near-field MIMO system with metal wire. A vertical arranged 

near-field MIMO array model with fixed antenna distance and element spacing was 

built. The frequency was varied while moving the metal wire in the offset area. The 

proper location for the metal wire changed with the frequency changing. The distance 

between the proper location and the antenna element was found to be approximately 

0.5λ0, corresponding to the frequency. In addition, the improvement on the channel 

capacity by a metal wire was also affected by the frequency. The channel capacity 

improvement in the frequency from 5GHz to 25GHz was clearly considerable. 

However, the improvement was negligible when the frequency was larger than 

30GHz. 

Confidently, the research of the effect of the element HPBW and the objects 

between Tx and Rx introduced in this study can be beneficially applied in actual 

network preparation of future near-field MIMO wireless communications in which the 

improvement in the channel capacity are required. 
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Appendix: MATLAB Source Code 

I. Setting parameters and launching EEM-MOM 

clear all; 

  
global num_calc num_calc_total 
global TxRx_Tx TxRx_Rx Delta_d 
global ObjectShape_horizontal ObjectShape_vertical ObjectShape_cross 

ObjectShape_without ObjectShape_mesh ObjectShape_2cross 

ObjectShape_crossNoConnection;% for main,ObjectShape 
global ArrangeType_horizontal ArrangeType_vertical ArrangeType_square 

ArrangeType_crossHorizontal ArrangeType_crossVertical 

ArrangeType_crossSquare ArrangeType_crossCross 

ArrangeType_crossCross_big ArrangeType_xSquare 
global DipoleType_horizontal DipoleType_vertical 

DipoleType_dualVertical DipoleType_leftBias DipoleType_rightBias; 
global filename fid_bat; % for Make_batFile.m 
global lambda_0 D d Nt Nr ob_offset_x ob_offset_y ob_offset_z L 

TotalObjectNum ArrangeType ObjectShape ObjectRadius 

DistanceOfMetalWire% for main program 
global foldername_mom foldername_main foldername_sub foldername 

filename_bat % for main program 
global MeshGap MeshWireNum % for objectShape 

  
DipoleType_horizontal=11; 
DipoleType_vertical=12; 
DipoleType_dualVertical=13; 
DipoleType_leftBias=14; 
DipoleType_rightBias=15; 

  
ArrangeType_horizontal=21; 
ArrangeType_vertical=22; 
ArrangeType_square=23; 
ArrangeType_crossHorizontal=24; 
ArrangeType_crossVertical=25; 
ArrangeType_crossSquare=26; 
ArrangeType_crossCross=27; 
ArrangeType_crossCross_big=28; 
ArrangeType_xSquare=29; 

  
ObjectShape_horizontal=31; 
ObjectShape_vertical=32; 
ObjectShape_cross=33; 
ObjectShape_mesh=34; 
ObjectShape_2cross=35; 
ObjectShape_crossNoConnection=36; 
ObjectShape_without=39; 
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TxRx_Tx=41; 
TxRx_Rx=42; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
run_bat=1;      % Whether lauch the EEM-MOM or not. 1 is to launch, 0 is 

not to launch. 
foldername_mom='C:¥Users¥zhang¥Documents¥EEM-MOM¥'; % Access to save the 

files of .bat to lauch the EEM-MOM 
foldername_main='C:¥Work¥EEM-MOM5¥'; % Main Access to save the files of 

models and results 
foldername_sub='20120920_Object_cross_D'; % Sub access to save the files 

of models and results   
foldername=[foldername_main,foldername_sub,'¥']; 
filename_bat=[foldername_mom,foldername_sub,'.bat']; 
fid_bat=fopen(filename_bat,'w'); 

  
lambda_0=100e-3;    % wavelength 
D=1*lambda_0:0.5*lambda_0:5*lambda_0;   % Range of antenna distance 
d=[1*lambda_0:0.1*lambda_0:1*lambda_0]; % Range of element spacing 
Delta_d=0*lambda_0:0.01*lambda_0:0*lambda_0;    % Range of internal 

distance 
Nt=8;   % Number of transmitting antennas 
Nr=Nt;  % Number of receiving antennas 
ArrangeType=[ArrangeType_crossSquare];  % Arrange types of arrays 
ObjectShape=[ ObjectShape_cross];       % Shape of objects 
ObjectRadius=0.1e-3;                    % Radius of metal wire 
DistanceOfMetalWire=0e-3:2e-3:0e-3;     % Distance of two metal wires, 

unit is meter 
L=20*lambda_0;                          % Length of metal wire 
TotalObjectNum=1;                       % Number of objects 
MeshGap=2*lambda_0:0.5*lambda_0:2*lambda_0; % Interval in mesh 
MeshWireNum=2*(floor((L-MeshGap)/2./MeshGap)+1);  % MidleHole  
ob_offset_x=0*lambda_0:0.05*lambda_0:4*lambda_0; 
ob_offset_y=0*lambda_0:0.05*lambda_0:0*lambda_0; 
ob_offset_z=0*lambda_0:0.05*lambda_0:4*lambda_0; 

  
if ObjectShape==ObjectShape_without 
    TotalObjectNum=0; 
end 
if TotalObjectNum==0 
    ob_offset_x=0; 
    ob_offset_y=0; 
    ob_offset_z=0; 
    ObjectShape=ObjectShape_without; 
end 

  
num_calc=0; 
num_calc_total=length(Nt)*length(ArrangeType)*length(D)*length(d)*len

gth(Delta_d)*length(ObjectShape)*length(ob_offset_x)*length(ob_offset

_y)*length(ob_offset_z)*length(MeshGap)*length(ObjectRadius)*length(D

istanceOfMetalWire); %*length(MeshWireNum); 
save initial_parameters.mat 
initial_mat=[foldername_sub, '_ini.mat']; 
save (initial_mat); 
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creatModel; % Launch the fuction of creating models 

  
if run_bat 
winopen(filename_bat); % Lauch the EEM-MOM 
end 

 

II. Calculation of channel capacity 

clear all; 
load initial_parameters.mat; 

  
global num_calc num_calc_total 
global TxRx_Tx TxRx_Rx Delta_d 
global ObjectShape_horizontal ObjectShape_vertical ObjectShape_cross 

ObjectShape_without ObjectShape_mesh ObjectShape_2cross 

ObjectShape_crossNoConnection; 
global ArrangeType_horizontal ArrangeType_vertical ArrangeType_square 

ArrangeType_crossHorizontal ArrangeType_crossVertical 

ArrangeType_crossSquare ArrangeType_crossCross 

ArrangeType_crossCross_big ArrangeType_xSquare 
global DipoleType_horizontal DipoleType_vertical 

DipoleType_dualVertical DipoleType_leftBias DipoleType_rightBias; 
global filename fid_bat; % for Make_batFile.m 
global lambda_0 D d Nt Nr ob_offset_x ob_offset_y ob_offset_z L 

TotalObjectNum ArrangeType ObjectShape ObjectRadius 

DistanceOfMetalWire% for main program 
global foldername_mom foldername_main foldername_sub foldername 

filename_bat % for main program 
global MeshGap MeshWireNum % for objectShape 

  
initialProgramParameter; % initial the parameters of program 

  
initialModelParameter; % initial the parameters of models 

  
for i_Nt=1:length(Nt) 
    for i_Nr=i_Nt 
        for i_ArrangeType=1:length(ArrangeType) 
            for i_D=1:length(D) 
                for i_d=1:length(d) 
                    for i_Delta_d=1:length(Delta_d) 
                        for i_ObjectShape=1:length(ObjectShape) 
                            for i_ObjectRadius=1:length(ObjectRadius) 
                                for i_MeshGap=1:length(MeshGap) 
                                    for i_MeshWireNum=i_MeshGap 
                                        for 

i_DistanceOfMetalWire=1:length(DistanceOfMetalWire); 
                                            for i_ox=1:length(ob_offset_x) 
                                                for 

i_oy=1:length(ob_offset_y) 
                                                    for 

i_oz=1:length(ob_offset_z) 
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                                                        for Num_MoM=1:Nt 
                                                            load 

ModelParameterDefault.mat; 

                                                             
                                                            switch 

ArrangeType(i_ArrangeType) 
                                                                case 

ArrangeType_horizontal 
                                                                    

filename_arrangeType='ArrangeType_horizontal_'; 
                                                                case 

ArrangeType_vertical 
                                                                    

filename_arrangeType='ArrangeType_vertical_'; 
                                                                case 

ArrangeType_square 
                                                                    

filename_arrangeType='ArrangeType_square_'; 
                                                                case 

ArrangeType_crossHorizontal 
                                                                    

filename_arrangeType='ArrangeType_crossHorizontal_'; 
                                                                case 

ArrangeType_crossVertical 
                                                                    

filename_arrangeType='ArrangeType_crossVertical_'; 
                                                                case 

ArrangeType_crossSquare 
                                                                    

filename_arrangeType='ArrangeType_crossSquare_'; 
                                                                case 

ArrangeType_crossCross 
                                                                    

filename_arrangeType='ArrangeType_crossCross_'; 
                                                                case 

ArrangeType_crossCross_big 
                                                                    

filename_arrangeType='ArrangeType_crossCross_big_'; 
                                                                case 

ArrangeType_xSquare 
                                                                    

filename_arrangeType='ArrangeType_xSquare_'; 

                                                                     
                                                            end 

                                                             
                                                            switch 

ObjectShape(i_ObjectShape) 
                                                                case 

ObjectShape_horizontal 
                                                                    

filename_objectShape='ObjectShape_horizontal_'; 
                                                                case 

ObjectShape_vertical 
                                                                    

filename_objectShape='ObjectShape_vertical_'; 
                                                                case 

ObjectShape_cross 
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filename_objectShape='ObjectShape_cross_'; 
                                                                case 

ObjectShape_without 
                                                                    

filename_objectShape=''; 
                                                                case 

ObjectShape_mesh 
                                                                    

filename_objectShape='ObjectShape_mesh_'; 
                                                                case 

ObjectShape_2cross 
                                                                    

filename_objectShape='ObjectShape_2cross_'; 
                                                                case 

ObjectShape_crossNoConnection 
                                                                    

filename_objectShape='ObjectShape_crossNoConnection_'; 
                                                            end 

                                                             
                                                            

filename_sub=sprintf('%d_of_%d_D%2.1f_d%2.1f_dd%2.3f_obx%2.3f_oby%2.3

f_obz%2.3f_obr%2.1fmm',... 
                                                                

Num_MoM,Nt(i_Nt),D(i_D)/lambda_0,d(i_d)/lambda_0,Delta_d(i_Delta_d)/l

ambda_0,ob_offset_x(i_ox)/lambda_0,ob_offset_y(i_oy)/lambda_0,ob_offs

et_z(i_oz)/lambda_0,ObjectRadius(i_ObjectRadius)/1e-3); 
                                                            if 

ObjectShape(i_ObjectShape)==ObjectShape_mesh| 

ObjectShape(i_ObjectShape)==ObjectShape_2cross 
                                                                

filename_sub=sprintf('%d_of_%d_D%2.1f_d%2.1f_dd%2.3f_gap%2.3f_meshwir

enum%d_obx%2.3f_oby%2.3f_obz%2.3f_obr%2.1fmm',... 
                                                                    

Num_MoM,Nt(i_Nt),D(i_D)/lambda_0,d(i_d)/lambda_0,Delta_d(i_Delta_d)/l

ambda_0,MeshGap(i_MeshGap)/lambda_0,MeshWireNum(i_MeshWireNum),ob_off

set_x(i_ox)/lambda_0,ob_offset_y(i_oy)/lambda_0,ob_offset_z(i_oz)/lam

bda_0,ObjectRadius(i_ObjectRadius)/1e-3); 
                                                            end 
                                                            if 

ObjectShape(i_ObjectShape)==ObjectShape_crossNoConnection 
                                                                

filename_sub=sprintf('%d_of_%d_D%2.1f_d%2.1f_dd%2.3f_gap%2.3f_meshwir

enum%d_obx%2.3f_oby%2.3f_obz%2.3f_obr%2.1fmm_dmw%2.1fmm',... 
                                                                    

Num_MoM,Nt(i_Nt),D(i_D)/lambda_0,d(i_d)/lambda_0,Delta_d(i_Delta_d)/l

ambda_0,MeshGap(i_MeshGap)/lambda_0,MeshWireNum(i_MeshWireNum),ob_off

set_x(i_ox)/lambda_0,ob_offset_y(i_oy)/lambda_0,ob_offset_z(i_oz)/lam

bda_0,ObjectRadius(i_ObjectRadius)/1e-3,DistanceOfMetalWire(i_Distanc

eOfMetalWire)/1e-3); 
                                                            end 

                                                             
                                                            

filename=[foldername,filename_arrangeType,filename_objectShape,filena

me_sub]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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filename_current=[filename,'_current.log']; 
                                                            clear fid_current; 
                                                            

fid_current=fopen(filename_current); 
                                                            

num_element=13*(2*Nt(i_Nt)+Nr(i_Nr)); 
                                                            

FormatString=[repmat(' %f',1,6)]; 
                                                            current.data= 

cell2mat(textscan(fid_current,FormatString,num_element,'HeaderLines',

1)); 
                                                            

fclose(fid_current); 

                                                             
                                                            

current.amp=current.data(:,2); 
                                                            

current.pha=current.data(:,3); 
                                                            

current.r=current.data(:,4); 
                                                            

current.i=current.data(:,5); 
                                                            

current.type=current.data(:,6); 

                                                             
                                                            

index.feedpoint=find(current.type==1); 
                                                            

index.loadpoint=find(current.type==2,Nr(i_Nr),'last'); 

                                                             
                                                            for 

n=1:length(index.loadpoint) 
                                                                

current.loadpoint(n,1)=current.r(index.loadpoint(n))+sqrt(-1)*current

.i(index.loadpoint(n)); 
                                                            end 

                                                             
                                                            for 

n=1:length(index.feedpoint) 
                                                                

current.feedpoint(n,1)=current.r(index.feedpoint(n))+sqrt(-1)*current

.i(index.feedpoint(n)); 
                                                            end 

                                                             
                                                            

v_loadpoint=(current.loadpoint*70.987/1000); 
                                                            

h_v(:,Num_MoM)=v_loadpoint; 

                                                             
                                                        end 

                                                         
                                                        

h_ave_0=mean(mean(abs(h_v))) 
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h_ave_1=0.04012558048405; %imp=70.987 
                                                        h=h_v 
                                                        h_1=h_v/h_ave_1 
%%% calculating SNR %%% 
                                                        

signal_power=sum(sum(abs(h_1).^2)); 
                                                        

signal_power_eigen=sum((abs(h_1).^2)')' % Total receiving power 

                                                         
                                                        

noise_power=0.297077976949821; 
                                                        

snr=signal_power/noise_power; 
                                                        

snr_eigen=signal_power_eigen./noise_power; % SNR in each branch 
                                                        gamma = snr;    % 

average received signal-to-noise ratio (Watts) 
                                                        

H(:,:,i_ox,i_oz,i_D)=h_1; % normalized response matrix 
                                                        

Eigenvalue_sqrt(:,i_ox,i_oz,i_D)=svd(h_1)'; % normalized sqare root of 

eigenvalue 
                                                        

Eigenvalue(:,i_ox,i_oz,i_D)=Eigenvalue_sqrt(:,i_ox,i_oz,i_D).^2;  % 

normalized eigenvalue 
                                                        

H_origin(:,:,i_ox,i_oz,i_D)=h_v; % original response matrix 
                                                        

Eigenvalue_sqrt_origin(:,i_ox,i_oz,i_D)=svd(h_v)'; % original sqare 

root of eigenvalue 
                                                        

Eigenvalue_origin(:,i_ox,i_oz,i_D)=Eigenvalue_sqrt_origin(:,i_ox,i_oz

,i_D).^2;  % original eigenvalue 
                                                        

Eigenvalue_origin_db(:,i_ox,i_oz,i_D)=20*log10(Eigenvalue_origin(:,i_

ox,i_oz,i_D)); 
                                                        

cc_1=abs(log2(det(eye(Nr(i_Nr))+gamma/Nt(i_Nt)*h_1*h_1'))); 
                                                        cc_2=0; 
                                                        for i=1:Nt(i_Nt) 
                                                            

cc_2=cc_2+log2(1+Eigenvalue(i,i_D)*snr_eigen(i)); % Channel capacity 

calulated by eigen value 
                                                        end 
                                                        

cc_data(i_ox,i_oz,i_D)=cc_1; 
                                                        

cc_data_eigen(i_ox,i_oz,i_D)=cc_2; 
                                                        clear current index 

v_loadpoint 
                                                        clear h_v; 
                                                        clear cc_1 cc_2; 
                                                    end 
                                                end 
                                            end 
                                        end 
                                    end 
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                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 

  
cc_data_format='i_ox,i_oz,i_D'; 
matname=[foldername_sub, '_result.mat']; 
save (matname); 

 

 

III. Creating near-field MIMO Models 

function creatModel 

  
tic 
global num_calc num_calc_total 
global TxRx_Tx TxRx_Rx Delta_d 
global ObjectShape_horizontal ObjectShape_vertical ObjectShape_cross 

ObjectShape_without ObjectShape_mesh ObjectShape_2cross 

ObjectShape_crossNoConnection; 
global ArrangeType_horizontal ArrangeType_vertical ArrangeType_square 

ArrangeType_crossHorizontal ArrangeType_crossVertical 

ArrangeType_crossSquare ArrangeType_crossCross 

ArrangeType_crossCross_big ArrangeType_xSquare 
global DipoleType_horizontal DipoleType_vertical 

DipoleType_dualVertical DipoleType_leftBias DipoleType_rightBias; 
global filename fid_bat; % for Make_batFile.m 
global lambda_0 D d Nt Nr ob_offset_x ob_offset_y ob_offset_z L 

TotalObjectNum ArrangeType ObjectShape ObjectRadius 

DistanceOfMetalWire% for main program 
global foldername_mom foldername_main foldername_sub foldername 

filename_bat % for main program 
global MeshGap MeshWireNum % for objectShape 

  
initialModelParameter;  

  
for i_Nt=1:length(Nt) 
    for i_Nr=i_Nt 
        for i_ArrangeType=1:length(ArrangeType) 
            for i_D=1:length(D) 
                for i_d=1:length(d) 
                    for i_Delta_d=1:length(Delta_d) 
                        for i_ObjectShape=1:length(ObjectShape) 
                            for i_ObjectRadius=1:length(ObjectRadius) 
                                for i_MeshGap=1:length(MeshGap) 
                                    for i_MeshWireNum=i_MeshGap 
                                        for 

i_DistanceOfMetalWire=1:length(DistanceOfMetalWire); 
                                            for i_ox=1:length(ob_offset_x) 
                                                for 
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i_oy=1:length(ob_offset_y) 
                                                    for i_oz=1:i_ox  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                                                        for Num_MoM=1:Nt 

                                                             
                                                            load 

ModelParameterDefault.mat; 

                                                             
                                                            switch 

ArrangeType(i_ArrangeType) 
                                                                case 

ArrangeType_horizontal 
                                                                    

filename_arrangeType='ArrangeType_horizontal_'; 
                                                                case 

ArrangeType_vertical 
                                                                    

filename_arrangeType='ArrangeType_vertical_'; 
                                                                case 

ArrangeType_square 
                                                                    

filename_arrangeType='ArrangeType_square_'; 
                                                                case 

ArrangeType_crossHorizontal 
                                                                    

filename_arrangeType='ArrangeType_crossHorizontal_'; 
                                                                case 

ArrangeType_crossVertical 
                                                                    

filename_arrangeType='ArrangeType_crossVertical_'; 
                                                                case 

ArrangeType_crossSquare 
                                                                    

filename_arrangeType='ArrangeType_crossSquare_'; 
                                                                case 

ArrangeType_crossCross 
                                                                    

filename_arrangeType='ArrangeType_crossCross_'; 
                                                                case 

ArrangeType_crossCross_big 
                                                                    

filename_arrangeType='ArrangeType_crossCross_big_'; 
                                                                case 

ArrangeType_xSquare 
                                                                    

filename_arrangeType='ArrangeType_xSquare_'; 

                                                                     
                                                            end 

                                                             
                                                            switch 

ObjectShape(i_ObjectShape) 
                                                                case 

ObjectShape_horizontal 
                                                                    

filename_objectShape='ObjectShape_horizontal_'; 
                                                                case 
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ObjectShape_vertical 
                                                                    

filename_objectShape='ObjectShape_vertical_'; 
                                                                case 

ObjectShape_cross 
                                                                    

filename_objectShape='ObjectShape_cross_'; 
                                                                case 

ObjectShape_without 
                                                                    

filename_objectShape=''; 
                                                                case 

ObjectShape_mesh 
                                                                    

filename_objectShape='ObjectShape_mesh_'; 
                                                                case 

ObjectShape_2cross 
                                                                    

filename_objectShape='ObjectShape_2cross_'; 
                                                                case 

ObjectShape_crossNoConnection 
                                                                    

filename_objectShape='ObjectShape_crossNoConnection_'; 
                                                            end 

                                                             
                                                            

filename_sub=sprintf('%d_of_%d_D%2.1f_d%2.1f_dd%2.3f_obx%2.3f_oby%2.3

f_obz%2.3f_obr%2.1fmm',... 
                                                                

Num_MoM,Nt(i_Nt),D(i_D)/lambda_0,d(i_d)/lambda_0,Delta_d(i_Delta_d)/l

ambda_0,ob_offset_x(i_ox)/lambda_0,ob_offset_y(i_oy)/lambda_0,ob_offs

et_z(i_oz)/lambda_0,ObjectRadius(i_ObjectRadius)/1e-3); 
                                                            if 

ObjectShape(i_ObjectShape)==ObjectShape_mesh| 

ObjectShape(i_ObjectShape)==ObjectShape_2cross 
                                                                

filename_sub=sprintf('%d_of_%d_D%2.1f_d%2.1f_dd%2.3f_gap%2.3f_meshwir

enum%d_obx%2.3f_oby%2.3f_obz%2.3f_obr%2.1fmm',... 
                                                                    

Num_MoM,Nt(i_Nt),D(i_D)/lambda_0,d(i_d)/lambda_0,Delta_d(i_Delta_d)/l

ambda_0,MeshGap(i_MeshGap)/lambda_0,MeshWireNum(i_MeshWireNum),ob_off

set_x(i_ox)/lambda_0,ob_offset_y(i_oy)/lambda_0,ob_offset_z(i_oz)/lam

bda_0,ObjectRadius(i_ObjectRadius)/1e-3); 
                                                            end 
                                                            if 

ObjectShape(i_ObjectShape)==ObjectShape_crossNoConnection 
                                                                

filename_sub=sprintf('%d_of_%d_D%2.1f_d%2.1f_dd%2.3f_gap%2.3f_meshwir

enum%d_obx%2.3f_oby%2.3f_obz%2.3f_obr%2.1fmm_dmw%2.1fmm',... 
                                                                    

Num_MoM,Nt(i_Nt),D(i_D)/lambda_0,d(i_d)/lambda_0,Delta_d(i_Delta_d)/l

ambda_0,MeshGap(i_MeshGap)/lambda_0,MeshWireNum(i_MeshWireNum),ob_off

set_x(i_ox)/lambda_0,ob_offset_y(i_oy)/lambda_0,ob_offset_z(i_oz)/lam

bda_0,ObjectRadius(i_ObjectRadius)/1e-3,DistanceOfMetalWire(i_Distanc

eOfMetalWire)/1e-3); 
                                                            end 

                                                             



141 

                                                            

filename=[foldername,filename_arrangeType,filename_objectShape,filena

me_sub]; 

                                                             
                                                            %%%%%%%%%%%%%%%%%%% 
                                                            %%% Make .bat File %% 
                                                            %%%%%%%%%%%%%%%%%%% 

                                                             
                                                            Make_batFile; 

                                                             
                                                            %%%%%%%%%%%%%%%%%% 
                                                            %%% PRINT DATA %% 
                                                            %%%%%%%%%%%%%%%%%% 

                                                             
                                                            

filename_model=[filename,'_model.mom'];    % the name of the .mom file 
                                                            

print_data(filename_model,model_title,Freq,ground,div_wavelength,r_wi

re,Incidence,Solver); 

                                                             
                                                            %%%%%%%%%%%%%%%%%%% 
                                                            %%% PRINT MODEL %% 
                                                            %%%%%%%%%%%%%%%%%%% 

                                                             
%%% Print Tx %%%%%%%%%%% 

                                                             
                                                            

[TxShapeAxes]=dipoleType(DipoleType_vertical,Delta_d);  
                                                            

[Dipole_num_in_element, Dipole_Axes]=size(TxShapeAxes); 

                                                             
                                                            for 

ElementNum=1:Nt(i_Nt) 
                                                                for 

i_dipole_num_in_element=1:Dipole_num_in_element 
                                                                    

Vertex(1,:)=TxShapeAxes(i_dipole_num_in_element,1:3); 
                                                                    

Vertex(2,:)=TxShapeAxes(i_dipole_num_in_element,4:6); 
                                                                    

elementArrangement(ArrangeType(i_ArrangeType),D(i_D),d(i_d),Delta_d(i

_Delta_d),Nt(i_Nt),ElementNum,TxRx_Tx,Num_MoM);  
                                                                    

print_model(filename_model,type_shape,type_coord,type_comment,Vertex,

Feed_point,Load_point,Division,Wire_radius,Offset); 
                                                                end 
                                                            end 

                                                             
%%% Print Rx %%%%%%%%%%% 

                                                             
                                                            

[RxShapeAxes]=dipoleType(DipoleType_vertical,Delta_d);  
                                                            

[Dipole_num_in_element, Dipole_Axes]=size(RxShapeAxes); 
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                                                            for 

ElementNum=1:Nr(i_Nr) 
                                                                for 

i_dipole_num_in_element=1:Dipole_num_in_element 
                                                                    

Vertex(1,:)=RxShapeAxes(i_dipole_num_in_element,1:3); 
                                                                    

Vertex(2,:)=RxShapeAxes(i_dipole_num_in_element,4:6); 
                                                                    

elementArrangement(ArrangeType(i_ArrangeType),D(i_D),d(i_d),Delta_d(i

_Delta_d),Nr(i_Nr),ElementNum,TxRx_Rx,Num_MoM);  
                                                                    

print_model(filename_model,type_shape,type_coord,type_comment,Vertex,

Feed_point,Load_point,Division,Wire_radius,Offset); 
                                                                end 
                                                            end 

                                                             
%%% Print Object %%%%%%%%%%% 

                                                             
                                                            

[ObjectAxes]=objectShape(ObjectShape(i_ObjectShape),L,MeshGap(i_MeshG

ap),MeshWireNum(i_MeshWireNum),DistanceOfMetalWire(i_DistanceOfMetalW

ire));  
                                                            

[Metal_wire_num_in_object, Metal_wire_Axes]=size(ObjectAxes); 

                                                             
                                                            for 

ObjectNum=1:TotalObjectNum 
                                                                for 

i_Metal_wire_num_in_object=1:Metal_wire_num_in_object 
                                                                    

Vertex(1,:)=ObjectAxes(i_Metal_wire_num_in_object,1:3); 
                                                                    

Vertex(2,:)=ObjectAxes(i_Metal_wire_num_in_object,4:6); 
                                                                    

objectPosition(-1*(-1)^ObjectNum*ob_offset_x(i_ox),ob_offset_y(i_oy),

-1*(-1)^ObjectNum*ob_offset_z(i_oz)); 
                                                                    

Division(1:2)=[1,round(40*L/lambda_0)]; 
                                                                    

Wire_radius=[1,ObjectRadius(i_ObjectRadius)]; 
                                                                    

print_model(filename_model,type_shape,type_coord,type_comment,Vertex,

Feed_point,Load_point,Division,Wire_radius,Offset); 
                                                                end 
                                                            end 
                                                        end 
 %%%% Evaluate the Remain Time %%%%%%%%%%%%%%%%%% 

                                                         
                                                        num_calc=num_calc+1; 
                                                        sprintf('Now creating 

the %dth out of %d models', num_calc,num_calc_total) 

                                                         
                                                        

percent_finish=num_calc/num_calc_total*100; 
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percent_finish_text=sprintf('Completed %f', percent_finish); 
                                                        time_used=toc; 
                                                        

time_remain=time_used/(percent_finish/100)-time_used; 
                                                        

time_used_text=sprintf('%f Seconds Passed', time_used); 
                                                        

time_remain_text=sprintf('%f Seconds Remain', time_remain); 
                                                        fprintf 

(percent_finish_text);fprintf('%%'); 
                                                        fprintf('->'); 
                                                        

fprintf(time_used_text); 
                                                        fprintf('->'); 
                                                        

fprintf(time_remain_text); 
                                                        fprintf('¥n'); 
                                                    end 
                                                end 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 

  
fclose(fid_bat); 
fclose('all'); 

 

 

IV. Making .bat files for EEM-MOM 

function Make_batFile 

  
    global filename fid_bat; 
    filename_model=[filename,'_model.mom'];    % the name of the .mom file 
    filename_current=[filename,'_current.log']; 
    fprintf(fid_bat,'type '); 
    fprintf(fid_bat,'%s',filename_model); 
    fprintf(fid_bat,' > inp.dat¥r¥n'); 
    fprintf(fid_bat,'mom2.exe -n 32¥r¥n'); 
    fprintf(fid_bat,'copy current.log '); 
    fprintf(fid_bat,'%s',filename_current); 
    fprintf(fid_bat,'¥r¥n'); 
    fprintf(fid_bat,'¥r¥n'); 
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V. Initialization of parameters of models 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                   MODEL PARAMETER                %%% 
%%% Initial parameters of models for print_model  %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function initialModelParameter 

  
global Vertex Feed_point Load_point Division Wire_radius Offset Freq 

Incidence Solver; 

  
%%====TYPE&COMMENT====%% 
type_shape=0;                       % Shape 0=Wire; 1=Quadangle; 2=Box 
type_coord=0;                       % Coordinate 0=XYZ; 1=Cylinder; 2=Polar 
type_comment='';                    % Comment 

  
%%====VERTEX====%% 
Vertex_1(1)=0;                      % Vertex_1 if Coordinate=XYZ then X[m]; 

if Cylinder then R[m]; if Polar then R[m] 
Vertex_1(2)=0;                      % Vertex_1 if Coordinate=XYZ then Y[m]; 

if Cylinder then phi[deg]; if Polar then theta[deg] 
Vertex_1(3)=-25e-3;                 % Vertex_1 if Coordinate=XYZ then 

Z[m]; if Cylinder then Z[m]; if Polar then phi[deg] 

  
Vertex_2(1)=0;                      % Vertex_2 if Coordinate=XYZ then X[m]; 

if Cylinder then R[m]; if Polar then R[m] 
Vertex_2(2)=0;                      % Vertex_2 if Coordinate=XYZ then Y[m]; 

if Cylinder then phi[deg]; if Polar then theta[deg] 
Vertex_2(3)=25e-3;                  % Vertex_2 if Coordinate=XYZ then Z[m]; 

if Cylinder then Z[m]; if Polar then phi[deg] 

  
Vertex_3(1)=0;                      % Vertex_3 if Coordinate=XYZ then X[m]; 

if Cylinder then R[m]; if Polar then R[m] 
Vertex_3(2)=0.0040;                 % Vertex_3 if Coordinate=XYZ then 

Y[m]; if Cylinder then phi[deg]; if Polar then theta[deg] 
Vertex_3(3)=-0.0025;                % Vertex_3 if Coordinate=XYZ then 

Z[m]; if Cylinder then Z[m]; if Polar then phi[deg] 

  
Vertex_4(1)=0;                      % Vertex_4 if Coordinate=XYZ then X[m]; 

if Cylinder then R[m]; if Polar then R[m] 
Vertex_4(2)=0.0040;                 % Vertex_4 if Coordinate=XYZ then 

Y[m]; if Cylinder then phi[deg]; if Polar then theta[deg] 
Vertex_4(3)=-0.0025;                % Vertex_4 if Coordinate=XYZ then 

Z[m]; if Cylinder then Z[m]; if Polar then phi[deg] 

  
%%====FEED POINT====%% 
feed_sel=0;                         % Feed select: 1=selected; 0=not 

seclected 
feed_volt=1;                        % Feed Voltage value [V] 
feed_phase=0;                       % Feed Phase value [deg] 

  
%%====LOAD POINT====%% 
load_sel=0;                         % Load select: 1=selected; 0=not 

seclected 
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load_r=50;                          % Load R value [Ohm] 
load_l=0;                           % Load L value [Henry] 
load_c=0;                           % Load C value [Farad] 

  
%%====DIVISION====%% 
div_sel=1;                          % Divisions select: 1=selected; 

0=default 
div_1=13;                           % 
div_2=0;                            % 
div_3=0;                            % 

  
%%====WIRE RADIUS====%% 
w_radius_sel=0;                     % Wire Radius select: 1=selected; 

0=default 
w_radius_val=0;                     % Wire Radius value [m] 

  
%%====OFFSET====%% 
offset_sel=1;                       % Offset select: 1=selected; 0=not 

seclected 
offset_x=0;                         % Offset on X axis value [m] 
offset_y=0;                         % Offset on Y axis value [m] 
offset_z=0;                         % Offset on X axis value [m] 

  

  
%%%%%%%%%%%%%%%%%%%%%%% 
%%% DATA PARAMETER %% 
%%%%%%%%%%%%%%%%%%%%%%% 

  
model_title='';                     % the name of the model, default as '' 

  
%%====FREQ====%% 
freq_start=3e09; 
freq_stop=3e09; 
freq_div=00;                        % division number between freq_start and 

freq_stop, when freq_start=freq_stop the freq_div should be set as 0 

  
%%====GROUND====%% 
ground=0;                           % 0 means the ground doesn't exist, 1 

means the ground exists, default as 0 

  
%%====DIVISION====%% 
div_wavelength=25;                  % division of wavelength 

  
%%====RADIUS====%% 
r_wire=0.1e-3;                      % wire radius with the unit as (m), and 

the nagative value means the radius/length 

  
%%====INCIDENCE====%% 
inc_plane_wave=0;                   % Plane Wave Incidence, 0 means not 

exist, 1 means exist 
inc_theta=0;                        % the input plane wave angle theta with 

the unit (degree) 
inc_phi=0;                          % the input plane wave angle phi with the 

unit (degree) 
inc_polar=0;                        % the Polarization of the plane wave 0 
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= Vertical, 1 = Horizontal, 2 = RHCP, 3 = LHCP 

  
%%====SOLVER====%% 
sol_sel=0;                          % to select the solver: 0=Cholesky, 

1=Conjugate Gradient; default as 0 
sol_max_ite=3000;                   % when sol_sel=1, Max iterations 
sol_conv=1.0e-5;                    % when sol_sel=1, Convergence 
sol_out_int=100;                    % when sol_sel=1, Output interval 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% ADJUST PARAMERTER FORMAT %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%adjust the paramerter format for the subfunctions% 

  
Vertex=[Vertex_1;Vertex_2;Vertex_3;Vertex_4]; 
Feed_point=[feed_sel,feed_volt,feed_phase]; 
Load_point=[load_sel,load_r,load_l,load_c]; 
Division=[div_sel,div_1,div_2,div_3]; 
Wire_radius=[w_radius_sel,w_radius_val]; 
Offset=[offset_sel,offset_x,offset_y,offset_z]; 

  
Freq=[freq_start,freq_stop,freq_div]; 
Incidence=[inc_plane_wave,inc_theta,inc_phi,inc_polar]; 
Solver=[sol_sel,sol_max_ite,sol_conv,sol_out_int]; 

  
save ModelParameterDefault.mat; 

 

 

VI. Printing parameter data for EEM-MOM model files 

function 

print_data(filename,model_title,Freq,ground,div_wavelength,r_wire,Inc

idence,Solver) 

  
freq_start=Freq(1); 
freq_stop=Freq(2); 
freq_div=Freq(3); 

  
inc_plane_wave=Incidence(1); 
inc_theta=Incidence(2); 
inc_phi=Incidence(3); 
inc_polar=Incidence(4); 

  
sol_sel=Solver(1); 
sol_max_ite=Solver(2); 
sol_conv=Solver(3); 
sol_out_int=Solver(4); 

                             
%%%%%%%%%%%%%%%%%%%%%%% 
%%  PRINT PARAMETER   %% 
%%%%%%%%%%%%%%%%%%%%%%% 

  
fid=fopen(filename,'w'); 
fprintf(fid,'EEM-MOM¥r¥n'); 



147 

fprintf(fid,'2,0¥r¥n'); 
fprintf(fid,'%s¥r¥n',model_title); 
fprintf(fid,'====FREQ====¥r¥n'); 
fprintf(fid,'%d,%d,%d¥r¥n',freq_start,freq_stop,freq_div); 
fprintf(fid,'====GROUND====¥r¥n'); 
fprintf(fid,'%d¥r¥n',ground); 
fprintf(fid,'====DIVISION====¥r¥n'); 
fprintf(fid,'%d¥r¥n',div_wavelength); 
fprintf(fid,'====RADIUS====¥r¥n'); 
fprintf(fid,'%f¥r¥n',r_wire); 
fprintf(fid,'====INCIDENCE====¥r¥n'); 
if inc_plane_wave==1 
    

fprintf(fid,'%d,%d,%d,%d¥r¥n',inc_plane_wave,inc_theta,inc_phi,inc_po

lar); 
elseif inc_plane_wave==0 
    fprintf(fid,'%d¥r¥n',inc_plane_wave); 
end 
fprintf(fid,'====SOLVER====¥r¥n'); 
if sol_sel==1 
    

fprintf(fid,'%d,%d,%d,%d¥r¥n',sol_sel,sol_max_ite,sol_conv,sol_out_in

t); 
elseif sol_sel==0 
    fprintf(fid,'%d¥r¥n',sol_sel); 
end 
fprintf(fid,'====DATA====¥r¥n'); 
fclose(fid); 

 

 

VII. Printing the model data for EEM-MOM model files 

function 

print_model(filename,type_shape,type_coord,type_comment,Vertex,Feed_p

oint,Load_point,Division,Wire_radius,Offset) 

  

  
Vertex_1=Vertex(1,:); 
Vertex_2=Vertex(2,:); 
Vertex_3=Vertex(3,:); 
Vertex_4=Vertex(4,:); 

  
feed_sel=Feed_point(1);                         
feed_volt=Feed_point(2);                      
feed_phase=Feed_point(3);         

  
load_sel=Load_point(1); 
load_r=Load_point(2); 
load_l=Load_point(3); 
load_c=Load_point(4); 

  
div_sel=Division(1); 
div_1=Division(2); 
div_2=Division(3); 
div_3=Division(4); 
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w_radius_sel=Wire_radius(1); 
w_radius_val=Wire_radius(2); 

  
offset_sel=Offset(1); 
offset_x=Offset(2); 
offset_y=Offset(3); 
offset_z=Offset(4); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%    ADJUST FOMAT OF DATA   %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
if type_shape==0 
    division=[div_sel,div_1]; 
elseif type_shape==1 
    division=[div_sel,div_1,div_2]; 
    %feed_sel=0; 
    %load_sel=0; 
elseif type_shape==2 
    division=[div_sel,div_1,div_2,div_3]; 
    %feed_sel=0; 
    %load_sel=0; 
end 

  
if feed_sel==0 
    feed_point=[feed_sel]; 
elseif feed_sel==1 
    feed_point=[feed_sel,feed_volt,feed_phase];     
end 

  
if load_sel==0 
    load_point=[load_sel]; 
elseif load_sel==1 
    load_point=[load_sel,load_r,load_l,load_c];     
end 

  
if div_sel==0 
    division=[div_sel]; 
end 

  
if w_radius_sel==0 
    w_radius=[w_radius_sel]; 
elseif w_radius_sel==1 
    w_radius=[w_radius_sel,w_radius_val];     
end 

  
%if offset_sel==0 
%    offset=[offset_sel]; 
%elseif offset_sel==1 
%    offset=[offset_sel,44,offset_x,44,offset_y,44,offset_z]; 
%end 

  
%%%%%%%%%%%%%%%%%%%%%%%%% 
%% PRINT MODEL DATA %% 
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%%%%%%%%%%%%%%%%%%%%%%%%% 

  
fid=fopen(filename,'a'); 
%fprintf(fid,'====DATA====¥n'); 
fprintf(fid,'%d,%d,%s¥r¥n',type_shape,type_coord,type_comment); 

  
if (type_shape==0)||(type_shape==2) 
    fprintf(fid,'%d,%d,%d,%d,%d,%d¥r¥n',Vertex_1,Vertex_2); 
elseif type_shape==1 
            

fprintf(fid,'%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d¥r¥n',Vertex_1,Vertex

_2,Vertex_3,Vertex_4); 
end 

  
if type_shape==0 
    fprintf(fid,'%d,',feed_point); 
    fprintf(fid,'%d,',load_point); 
end 

  
fprintf(fid,'%1.0f,',division); 
fprintf(fid,'%d,',w_radius); 

  
if offset_sel==0 
    fprintf(fid,'%d¥r¥n',offset_sel); 
elseif offset_sel==1 
    

fprintf(fid,'%d,%d,%d,%d¥r¥n',offset_sel,offset_x,offset_y,offset_z);

     % (%s 44)=',' 
end 

  

  
fclose(fid); 

 

 

VIII. Setting type of dipoles in elements 

%%% Type and orietation of dipole %%%%  
function [DipoleAxes]=dipoleType(DipoleType,Delta_d) 

  
global Vertex Feed_point Load_point Division Wire_radius Offset Freq 

Incidence Solver; 
global DipoleType_horizontal DipoleType_vertical 

DipoleType_dualVertical DipoleType_leftBias DipoleType_rightBias; 

  
StartPoint=[0,0,0]; % Start point [x,y,z] 
StopPoint=[0,0,0]; % Stop point [x,y,z] 

  
switch DipoleType 
    case DipoleType_horizontal 
        StartPoint=[-25e-3,0,0]; 
        StopPoint=[25e-3,0,0]; 
        Vertex(1,:)=StartPoint;        
        Vertex(2,:)=StopPoint;         
        clear DipoleAxes; 
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        DipoleAxes(1,:)=[StartPoint,StopPoint]; 
    case DipoleType_vertical 
        StartPoint=[0,0,-25e-3]; 
        StopPoint=[0,0,25e-3]; 
        Vertex(1,:)=StartPoint;        
        Vertex(2,:)=StopPoint;         
        clear DipoleAxes; 
        DipoleAxes(1,:)=[StartPoint,StopPoint]; 
    case DipoleType_dualVertical 
        clear DipoleAxes; 
        StartPoint=[-Delta_d/2,0,-25e-3]; 
        StopPoint=[-Delta_d/2,0,25e-3]; 
        DipoleAxes(1,:)=[StartPoint,StopPoint]; 
        StartPoint=[Delta_d/2,0,-25e-3]; 
        StopPoint=[Delta_d/2,0,25e-3]; 
        DipoleAxes(2,:)=[StartPoint,StopPoint]; 
    case DipoleType_leftBias 
        StartPoint=[25e-3/sqrt(2),0,-25e-3/sqrt(2)]; 
        StopPoint=[-25e-3/sqrt(2),0,25e-3/sqrt(2)]; 
        Vertex(1,:)=StartPoint;       
        Vertex(2,:)=StopPoint;       
        clear DipoleAxes; 
        DipoleAxes(1,:)=[StartPoint,StopPoint]; 
    case DipoleType_rightBias 
        StartPoint=[-25e-3/sqrt(2),0,-25e-3/sqrt(2)]; 
        StopPoint=[25e-3/sqrt(2),0,25e-3/sqrt(2)]; 
        Vertex(1,:)=StartPoint;      
        Vertex(2,:)=StopPoint;      
        clear DipoleAxes; 
        DipoleAxes(1,:)=[StartPoint,StopPoint]; 

         
end 

 

 

IX. Setting arrangement of elements in arrays 

%%% element arrangement %%%% 

  
function 

elementArrangement(ArrangeType,D,d,Delta_d,TotalElementNum,ElementNum

,TxRx,Num_MoM) 

  

  
global Vertex Feed_point Load_point Division Wire_radius Offset Freq 

Incidence Solver; 
global TxRx_Tx TxRx_Rx  
global ArrangeType_horizontal ArrangeType_vertical ArrangeType_square 

ArrangeType_crossHorizontal ArrangeType_crossVertical 

ArrangeType_crossSquare ArrangeType_crossCross 

ArrangeType_crossCross_big ArrangeType_xSquare 
global DipoleType_horizontal DipoleType_vertical 

DipoleType_dualVertical DipoleType_leftBias DipoleType_rightBias; 

  
%% Decision of elements' positons %% 
ElementOffset=[0,0,0]; % ElementOffset=[offset_x,offset_y,offset_z]; 
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switch ArrangeType 

     
    case ArrangeType_horizontal 
        offset_x=(TotalElementNum-1)/2*(-d)+(ElementNum-1)*d; 
        switch TxRx 
            case TxRx_Tx 
                offset_y=-D/2; 
            case TxRx_Rx 
                offset_y=D/2; 
        end % Checking it is Tx or Rx 
        offset_z=0; 
        ElementOffset=[offset_x,offset_y,offset_z]; 
        Offset(1)=1; 
        Offset(2:4)=ElementOffset; 

         
    case ArrangeType_vertical 
        offset_x=0; 
        switch TxRx 
            case TxRx_Tx 
                offset_y=-D/2; 
            case TxRx_Rx 
                offset_y=D/2; 
        end % % Checking it is Tx or Rx 
        offset_z=(TotalElementNum-1)/2*(-d)+(ElementNum-1)*d; 
        ElementOffset=[offset_x,offset_y,offset_z]; 
        Offset(1)=1; 
        Offset(2:4)=ElementOffset; 

         
    case ArrangeType_square 
        %fprintf ('The tx array is square.'); 
        Num_in_edge=sqrt(TotalElementNum); 
        Index_in_x=mod(ElementNum,Num_in_edge); 
        Index_in_z=ceil(ElementNum./Num_in_edge); 
        if Index_in_x==0; 
            Index_in_x=Num_in_edge; 
        end 
        offset_x=((Num_in_edge-1)/2-(Index_in_x-1))*d; 
        switch TxRx 
            case TxRx_Tx 
                offset_y=-D/2; 
            case TxRx_Rx 
                offset_y=D/2; 
        end % % Checking it is Tx or Rx 
        offset_z=((Num_in_edge-1)/2-(Index_in_z-1))*d; 
        ElementOffset=[offset_x,offset_y,offset_z]; 
        Offset(1)=1; 
        Offset(2:4)=ElementOffset; 

         
    case ArrangeType_crossHorizontal 
        if mod(TotalElementNum,2)~=0 
            fprintf('The number of Nt should be even number!!');  
        else 
            if ElementNum<=TotalElementNum/2     
                dipoleType(DipoleType_horizontal,0); 
                offset_x=(TotalElementNum/2-1)/2*(-d)+(ElementNum-1)*d; 
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                switch TxRx 
                    case TxRx_Tx 
                        offset_y=-D/2-Delta_d/2; 
                    case TxRx_Rx 
                        offset_y=D/2-Delta_d/2; 
                end % % Checking it is Tx or Rx 
                offset_z=0; 
                ElementOffset=[offset_x,offset_y,offset_z]; 
                Offset(1)=1; 
                Offset(2:4)=ElementOffset; 
            else                                 
                dipoleType(DipoleType_vertical,0); 
                

offset_x=(TotalElementNum/2-1)/2*(-d)+(ElementNum-1-TotalElementNum/2

)*d; 
                switch TxRx 
                    case TxRx_Tx 
                        offset_y=-D/2+Delta_d/2; 
                    case TxRx_Rx 
                        offset_y=D/2+Delta_d/2; 
                end % % Checking it is Tx or Rx 
                offset_z=0; 
                ElementOffset=[offset_x,offset_y,offset_z]; 
                Offset(1)=1; 
                Offset(2:4)=ElementOffset; 
            end 
        end 

         
    case ArrangeType_crossVertical 
        if mod(TotalElementNum,2)~=0 
            fprintf('The number of Nt should be even number!!');  
        else 
            if ElementNum<=TotalElementNum/2     
                dipoleType(DipoleType_horizontal,0); 
                offset_x=0; 
                switch TxRx 
                    case TxRx_Tx 
                        offset_y=-D/2-Delta_d/2; 
                    case TxRx_Rx 
                        offset_y=D/2-Delta_d/2; 
                end % % Checking it is Tx or Rx 
                offset_z=(TotalElementNum/2-1)/2*(-d)+(ElementNum-1)*d; 
                ElementOffset=[offset_x,offset_y,offset_z]; 
                Offset(1)=1; 
                Offset(2:4)=ElementOffset; 
            else                               
                dipoleType(DipoleType_vertical,0); 
                offset_x=0; 
                switch TxRx 
                    case TxRx_Tx 
                        offset_y=-D/2+Delta_d/2; 
                    case TxRx_Rx 
                        offset_y=D/2+Delta_d/2; 
                end % % Checking it is Tx or Rx 
                

offset_z=(TotalElementNum/2-1)/2*(-d)+(ElementNum-1-TotalElementNum/2

)*d; 
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                ElementOffset=[offset_x,offset_y,offset_z]; 
                Offset(1)=1; 
                Offset(2:4)=ElementOffset; 
            end 
        end 

         
    case ArrangeType_crossSquare 
        if ElementNum<=TotalElementNum/2     
            dipoleType(DipoleType_horizontal,0); 
            

elementArrangement(ArrangeType_square ,D,d,Delta_d,TotalElementNum/2,

ElementNum,TxRx,Num_MoM); 
            Offset(3)=Offset(3)-Delta_d/2; 
        else 
            dipoleType(DipoleType_vertical,0); 
            

elementArrangement(ArrangeType_square,D,d,Delta_d,TotalElementNum/2,E

lementNum-TotalElementNum/2,TxRx,Num_MoM); 
            Offset(3)=Offset(3)+Delta_d/2; 

             
        end 

         
    case ArrangeType_crossCross 
        if ElementNum<=TotalElementNum/2      
            

elementArrangement(ArrangeType_crossHorizontal ,D,d,Delta_d,TotalElem

entNum/2,ElementNum,TxRx,Num_MoM); 
        else 
            

elementArrangement(ArrangeType_crossVertical,D,d,Delta_d,TotalElement

Num/2,ElementNum-TotalElementNum/2,TxRx,Num_MoM); 
        end 

         
    case ArrangeType_crossCross_big 
        if ElementNum<=TotalElementNum/2     
            

elementArrangement(ArrangeType_crossHorizontal ,D,d*sqrt(2),Delta_d,T

otalElementNum/2,ElementNum,TxRx,Num_MoM); 
        else 
            

elementArrangement(ArrangeType_crossVertical,D,d*sqrt(2),Delta_d,Tota

lElementNum/2,ElementNum-TotalElementNum/2,TxRx,Num_MoM); 
        end 

         
        case ArrangeType_xSquare 
        if ElementNum<=TotalElementNum/2     
            dipoleType(DipoleType_leftBias,0); 
            

elementArrangement(ArrangeType_square ,D,d,Delta_d,TotalElementNum/2,

ElementNum,TxRx,Num_MoM); 
            Offset(3)=Offset(3)-Delta_d/2; 
        else 
            dipoleType(DipoleType_rightBias,0); 
            

elementArrangement(ArrangeType_square,D,d,Delta_d,TotalElementNum/2,E

lementNum-TotalElementNum/2,TxRx,Num_MoM); 
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            Offset(3)=Offset(3)+Delta_d/2; 

             
        end 
end 
%% Decision of Feed point or Load point %%% 

  
switch TxRx 
    case TxRx_Tx 
        if ElementNum==Num_MoM 
            Feed_point=[1,1,0]; 
            Load_point=[0,0,0,0]; 
        else 
            Feed_point=[0,0,0]; 
            Load_point=[1,70.987,0,0]; 
        end 
    case TxRx_Rx 
        Feed_point=[0,0,0]; 
        Load_point=[1,70.987,0,0]; 
end 

 

 

X. Setting shape of objects 

%%% Setting the shape of objects %%% 

  
function 

[ObjectAxes]=objectShape(ObjectType,ObjectLength,MeshGap,MeshWireNum, 

DistanceOfMetalWires) 

  
global Vertex Feed_point Load_point Division Wire_radius Offset Freq 

Incidence Solver; 
global ObjectShape_horizontal ObjectShape_vertical ObjectShape_cross 

ObjectShape_without TotalObjectNum ObjectShape_mesh ObjectShape_2cross 

ObjectShape_crossNoConnection ; 
% global MeshGap MeshWireNum 

  
ObjectStartPoint=[0,0,0]; % Start point [x,y,z] 
ObjectStopPoint=[0,0,0]; % Stop point [x,y,z] 

  
switch ObjectType 
    case ObjectShape_horizontal 
        ObjectStartPoint=[-ObjectLength/2,0,0]; 
        ObjectStopPoint=[ObjectLength/2,0,0]; 
        Vertex(1,:)=ObjectStartPoint;       
        Vertex(2,:)=ObjectStopPoint;       
        ObjectAxes=[ObjectStartPoint,ObjectStopPoint]; 

         
    case ObjectShape_vertical 
        ObjectStartPoint=[0,0,-ObjectLength/2]; 
        ObjectStopPoint=[0,0,ObjectLength/2]; 
        Vertex(1,:)=ObjectStartPoint;      
        Vertex(2,:)=ObjectStopPoint;     
        ObjectAxes=[ObjectStartPoint,ObjectStopPoint]; 
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    case ObjectShape_cross 
        ObjectStartPoint=[-ObjectLength/2,0,0]; 
        ObjectStopPoint=[ObjectLength/2,0,0]; 
        ObjectAxes(1,:)=[ObjectStartPoint,ObjectStopPoint]; % parallel 

metal wire 
        ObjectStartPoint=[0,0,-ObjectLength/2]; 
        ObjectStopPoint=[0,0,ObjectLength/2]; 
        ObjectAxes(2,:)=[ObjectStartPoint,ObjectStopPoint]; % 

perpendicular metal wire 
    case ObjectShape_without 
        TotalObjectNum=0; 
        ObjectAxes=[ObjectStartPoint,ObjectStopPoint]; 
    case ObjectShape_mesh 
        for i_MeshWireNum=1:MeshWireNum 
            

ObjectStartPoint=[-ObjectLength/2,0,-(MeshWireNum-1)/2*MeshGap+(i_Mes

hWireNum-1)*MeshGap]; 
            

ObjectStopPoint=[ObjectLength/2,0,-(MeshWireNum-1)/2*MeshGap+(i_MeshW

ireNum-1)*MeshGap]; 
            

ObjectAxes(i_MeshWireNum,:)=[ObjectStartPoint,ObjectStopPoint]; % 

parallel metal wire 
        end 
        for i_MeshWireNum=MeshWireNum+1:2*MeshWireNum 
            

ObjectStartPoint=[-(MeshWireNum-1)/2*MeshGap+(i_MeshWireNum-MeshWireN

um-1)*MeshGap,0,-ObjectLength/2]; 
            

ObjectStopPoint=[-(MeshWireNum-1)/2*MeshGap+(i_MeshWireNum-MeshWireNu

m-1)*MeshGap,0,ObjectLength/2]; 
            

ObjectAxes(i_MeshWireNum,:)=[ObjectStartPoint,ObjectStopPoint]; % 

perpendicular metal wire 
        end 
    case ObjectShape_2cross 
        for i_MeshWireNum=1:2 
            

ObjectStartPoint=[-ObjectLength/2,0,-(MeshWireNum-1)/2*MeshGap+(i_Mes

hWireNum-1)*MeshGap]; 
            

ObjectStopPoint=[ObjectLength/2,0,-(MeshWireNum-1)/2*MeshGap+(i_MeshW

ireNum-1)*MeshGap]; 
            

ObjectAxes(i_MeshWireNum,:)=[ObjectStartPoint,ObjectStopPoint]; % 

parallel metal wire 
        end 
        for i_MeshWireNum=3 
            

ObjectStartPoint=[-(MeshWireNum-1)/2*MeshGap+(i_MeshWireNum-MeshWireN

um-1)*MeshGap,0,-ObjectLength/2]; 
            

ObjectStopPoint=[-(MeshWireNum-1)/2*MeshGap+(i_MeshWireNum-MeshWireNu

m-1)*MeshGap,0,ObjectLength/2]; 
            

ObjectAxes(i_MeshWireNum,:)=[ObjectStartPoint,ObjectStopPoint]; % 

perpendicular metal wire 
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        end 
    case ObjectShape_crossNoConnection 

         
        ObjectStartPoint=[-ObjectLength/2,-DistanceOfMetalWires/2,0]; 
        ObjectStopPoint=[ObjectLength/2,-DistanceOfMetalWires/2,0]; 
        ObjectAxes(1,:)=[ObjectStartPoint,ObjectStopPoint]; % parallel 

metal wire 
        ObjectStartPoint=[0,DistanceOfMetalWires/2,-ObjectLength/2]; 
        ObjectStopPoint=[0,DistanceOfMetalWires/2,ObjectLength/2]; 
        ObjectAxes(2,:)=[ObjectStartPoint,ObjectStopPoint];% 

perpendicular metal wire 
end 

 

 

XI. Setting position of objects 

%%%%% Setting the position of objects %%%% 

  
function objectPosition(offset_x,offset_y,offset_z) 
global Vertex Feed_point Load_point Division Wire_radius Offset Freq 

Incidence Solver; 

  
ObjectOffset=[0,0,0]; % ElementOffset=[offset_x,offset_y,offset_z]; 

  
ObjectOffset=[offset_x,offset_y,offset_z]; 
Offset(1)=1; 
Offset(2:4)=ObjectOffset; 
Feed_point=[0,0,0]; 
Load_point=[0,0,0,0]; 

 

  


