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I 

 

The majority of Fuzzy Logic Controllers (FLCs) to date are working on the basis of expert 

knowledge derived from heuristic knowledge of experienced operators. Traditional fuzzy logic 

controller has inferior adaptability due to invariable membership functions (MFs) parameters and 

fixed type rule set. These manual coded traditional FLCs use only expert knowledge base. 

Therefore, they do not perform well in complex problems, especially when there are a large number 

of input variables. Therefore, an optimization tool is highly desirable to automatically build the 

fuzzy knowledge base that maximizes the controller performance. In this thesis, we first develop a 

multi-criteria optimization tool using new hybrid genetic algorithm (HGAs) for automatic fuzzy 

knowledge base (FKB) acquisition. Our approach consists of two phases: first phase involves 

selection and definition of fuzzy control rules as well as adjustment of membership functions 

parameters, while the second phase performs an optimal selection of membership function types 

corresponding to fuzzy control rules. Learning both parts concurrently represents a way to improve 

the accuracy of the FLCs to minimize the errors.  Furthermore, sensitivity of the FLC has been 

analyzed and compared for various types of membership functions. It has been argued that the 

performance of FLCs greatly depends on the parameters as well as types of membership functions. 

Thus, the aforementioned HGAs are a viable solution for designing an efficient adaptive FLCs 

system. 

On the other hand, a serious problem limiting the applicability of standard fuzzy controllers is the 

rule-explosion problem; that is, the number of rules increases exponentially with the number of 

input variables to the fuzzy controller. We propose automatic design methods with rule base size 

reduction for fuzzy logic controllers (FLCs) through genetic algorithms (GAs). This is done by 

optimizing the FLCs membership functions and automatically generates the fuzzy rules and at the 

same time applies the genetic reduction technique to determine the minimum number of fuzzy rules 

required in building the fuzzy models. In the rule base reduction process, the redundant rules are 

removed by setting their all consequent weight factor to zero and merging the conflicting rules 

during the learning process. Optimizing the FLCs MFs with learning and reducing rule base 

concurrently represents a way to maximize the performance of FLCs. The control algorithm is 

successfully tested for intelligent control of two degrees of freedom inverted pendulum.  

Moreover, an efficient tool to deal with the ‘rule explosion’ problem is the hierarchical system by 

which a fuzzy system can be decomposed into a number of hierarchically connected low-

dimensional systems. In this thesis, we also propose an automatic way of evolving hierarchical 

fuzzy logic controller. Firstly, genetic programming (GP) is employed to identify the optimum and 

appropriate hierarchical architecture and secondly, genetic algorithm (GA) employed to tune the 

fuzzy sub controllers (SC) involve in hierarchical controllers. The proposed control algorithms 
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coupled both GP and GA optimizations. The automatically generated hierarchical fuzzy controller 

consists of a number of low-dimensional fuzzy systems in a hierarchical form. 

Interval type-2 fuzzy sets are able to model and minimize the numerical and linguistic uncertainties 

associated with the inputs and outputs of fuzzy logic controller (FLC). In the fourth part of the 

thesis, an adaptive interval type-2 FLC is proposed for trajectory control of mobile robot with 

unstructured dynamical uncertainties. Quantum genetic algorithm is employed to tune type-2 fuzzy 

sets and rule sets simultaneously for effective design of interval type-2 FLCs. Traditional fuzzy 

logic controllers (FLCs), often termed as type-1 FLCs using type-1 fuzzy sets, have difficulty in 

modeling and minimizing the effect of uncertainties present in many real time applications. 

Therefore, manually designed type-2 FLCs have been utilized in many control process due to their 

ability to model uncertainty and it relies on heuristic knowledge of experienced operators. The type-

2 FLC can be considered as a collection of different embedded type-1 FLCs. However, manually 

designing the rule set and interval type-2 fuzzy set for an interval type-2 FLC to give a good 

response is a difficult task. The purpose of our study is to make the design process fully automatic 

for building a type-2 FLCs. The type-2 FLCs exhibit better performance for compensating the large 

amount of uncertainties with severe nonlinearities.  

Finally, the above proposed control algorithms are successfully tested and evaluated for intelligent 

control of well known benchmark applications namely backing up a truck, trailer-and-cab, and 

trajectory control of nonholonomic robots and two degrees of freedom inverted pendulum. The 

simulation studies exhibit competing results with high accuracy that demonstrates the effective use 

of the proposed control algorithms. 
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1.1 Preamble 

Nowadays fuzzy logic controllers (FLCs) are increasingly used in numerous practical applications 

in control [1-3], prediction [4], classification [5], inference [6], and decision making [7]-[10]. 

Specifically, they have been used for designing a robust controller that can yield satisfactory 

performance and deal with uncertainty and imprecision. FLCs works based on the fuzzy knowledge 

base (FKB) but the generation of the FKB of a fuzzy rule-based system (FRBS) presents several 

difficulties because the FKB depends on the concrete application, and this makes the accuracy of 

the FRBS directly depend on its composition. Many approaches have been proposed to 

automatically learn the FKB from numerical information. Most of them have focused on the rule 

base (RB) learning, using a predefined data base (DB) [11]-[13]. Several approaches adjust the 

membership function definitions and do not modify the number of linguistic terms in each fuzzy 

partition since the RB remains unchanged [14]. For this reason, an optimization tool is highly 

desirable to tune FKB components concurrently.  

In fuzzy control the number of fuzzy rules required increases in an exponential manner and this 

phenomenon is known as the curse of dimensionality or combinatorial rule explosion problem.  

Then a reduction of the rule base becomes necessary. It is thought that dense rule bases should be 

reduced, so that only the minimal necessary number of rules remains, still containing the essential 

information in the original base. Although several techniques are used for this purpose, such as: the 

boolean method [15], neural networks [16], the decoupling approach [17], and clustering methods 

[18] but none of them fully satisfactory. This problem is avoided here by the introduction of a new, 

evolutionary based method for synthesizing the fuzzy control. 

On the other hand, type-2 fuzzy sets and fuzzy logic controller have been used in classification of 

coded video streams [19], co-channel interference elimination from nonlinear time-varying 

communication channels[20], connection admission control[21], control of mobile robots[22], 

decision making[23][24], equalization of nonlinear fading channels[25]-[28], learning linguistic 

membership grades[29], pre-processing of data in medical diagnosis [30]-[32], quality control[33], 

relational database[34], survey processing[21][35]-[37], time series forecasting[38], and transport 

scheduling[39]. The authors [40] applied GAs to search for optimal uncertain means and its extent 

of interval type-2 gaussian MFs for the chaotic time series prediction. Although many reasonable 

results have been obtained by using GAs, the discussion of stable and optimal learning of type-2 

fuzzy sets with rule base has not been established in type-2 FLCs (T2FLCs).   

1.2 Contributions of the thesis  

Indeed, the contributions brought together in this thesis can be divided into four main parts. The 

first part deals with the evolutionary tuning and learning of fuzzy knowledge base (FKB), second 

part deals with a rule base reduction and tuning algorithm is proposed as a design and optimization 
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tool for the knowledge-based fuzzy control of a nonlinear system, third part deals with the 

automatic designing technique of hierarchical fuzzy system and four part deals with the adaptive 

type-2 fuzzy logic system.    

1) Firstly, we propose a method for designing fuzzy logic controllers (FLCs) based on hybrid 

genetic algorithms (HGAs) with a view to make the design process fully automatic, without 

requiring any human expert and numerical data. Our approach consists of two phases: first phase 

involves selection and definition of fuzzy control rules as well as adjustment of membership 

functions parameters, while the second phase performs an optimal selection of membership function 

types corresponding to fuzzy control rules. Learning both parts concurrently represents a way to 

improve the accuracy of the FLCs to minimize the errors. It has been argued that the performance of 

FLCs greatly depends on the parameters as well as types of membership functions. Thus, the 

aforementioned HGAs are a viable solution for designing an efficient adaptive FLCs system. In 

order to evaluate the effectiveness of the proposed method for optimal design of the FLCs, the 

proposed approach is applied to a well-known benchmark controller design task, car like robot 

system. Simulation results illustrates that proposed optimization approach can find optimal fuzzy 

rules and their corresponding membership functions types with a high rate of accuracy. The new 

HGAs optimized adaptive FLCs outperforms not only a passive control strategy but also human-

designed FLCs, a neural coded controller with clustering and a neural fuzzy control algorithm. 

2) Secondly, rule base size reduction and tuning algorithm is proposed as a design tool for fuzzy 

logic controllers (FLCs) through real and binary coded coupled genetic algorithms (GAs). The 

adaptive schema is divided into two phases: the first phase is concerned with optimizing the FLCs 

membership functions and learning and reducing phase, automatically generate the fuzzy rules and 

at the same time applies the genetic reduction technique to determine the minimum number of fuzzy 

rules required in building the fuzzy models. In the second phase, the redundant rules are removed by 

setting their all consequent weight factor to zero and merging the conflicting rules during the 

learning process. The first and second phases are carried out by the real and binary coded coupled 

GAs. Optimizing the FLCs MFs with Learning and reducing rule base concurrently represents a 

way to maximize the performance of a FLCs. The control algorithm is successfully tested for 

intelligent control of two degrees of freedom inverted pendulum. Finally, the simulation studies 

exhibit competing results with high accuracy that demonstrates the effective use of the proposed 

algorithm. 

3) Thirdly, we propose an automatic way of evolving hierarchical fuzzy Logic controller which is a 

combination of cascaded fuzzy modules. The control algorithm works in a two steps process 

simultaneously: Firstly, genetic programming (GP) is employed to identify the optimum 

hierarchical architecture and secondly, genetic algorithm (GA) employed to tune the fuzzy sub 

controllers (SC) involve in hierarchical controllers. The proposed control algorithms coupled both 

GP and GA optimizations. The fine tuning of the antecedent and consequent parameters of fuzzy 

control rules and their corresponding membership functions (MFs) of SCs encoded in the structure 

is accomplished using genetic algorithms (GAs). In this method, the total number of rules increases 

only linearly with the number of input variables. The automatically generated hierarchical fuzzy 

controller consists of a number of low-dimensional fuzzy systems in a hierarchical form. The 

proposed hierarchical control algorithm is evaluated using well known benchmark applications 

namely trailer-and-cab, a nonlinear motion control of nonholonomic robots. Simulation results are 
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presented at different operating conditions and under various disturbances to verify the effectiveness 

of developed adaptive small size hierarchical controller. 

4) Fourthly, a type-2 Fuzzy logic controller adapted with quantum genetic algorithm, referred to as 

type-2 quantum fuzzy logic controller (T2QFLC), is presented in this article for trajectory tracking 

of mobile robot with unstructured dynamical uncertainties. Quantum genetic algorithm is employed 

to tune type-2 fuzzy sets and rule sets simultaneously for effective design of interval type-2 FLCs. 

Traditional fuzzy logic controllers (FLCs), often termed as type-1 FLCs using type-1 fuzzy sets, 

have difficulty in modeling and minimizing the effect of uncertainties present in many real time 

applications. Therefore, manually designed type-2 FLCs have been utilized in many control process 

due to their ability to model uncertainty and it relies on heuristic knowledge of experienced 

operators. The type-2 FLC can be considered as a collection of different embedded type-1 FLCs. 

However, manually designing the rule set and interval type-2 fuzzy set for an interval type-2 FLC to 

give a good response is a difficult task. The purpose of our study is to make the design process 

automatic. The type-2 FLCs exhibit better performance for compensating the large amount of 

uncertainties with severe nonlinearities. Furthermore, the adaptive type-2 FLC is validated through 

a set of numerical experiments and compared with QGA evolved type-1 FLCs, traditional and 

neural type-1 FLCs. 

 1.3 Thesis Structures 

This thesis is organized as follows: Chapter 2 reviews literature relevant to type-1 and type-2 fuzzy 

logic system with their fuzzifier, inference engine, defuzzifier and type reducer with examples. This 

chapter also describes how various types of membership functions effects on inference engine 

performance. A fuzzy knowledge base (FKB) optimization model with new hybrid genetic 

algorithms will be defined in chapter 3. Chapter 4 discusses an evolutionary fuzzy rule base 

reduction technique with learning of membership function. Chapter 5 describes a novel method of 

generating hierarchical fuzzy system. Chapter 6 describes new methods for building intelligent 

systems using type-2 fuzzy logic and evolutionary computation. Chapter 7 presents conclusion and 

guidelines about future research works. 
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2.1 Introduction 

Type-1 FLCs will be first reviewed with its fuzzifier, inference engine, rule base and defuzzifier. An 

example of two rules type-1 FLCs will show different defuzzification results via various type MFs. 

Then general type-2 FLCs will be described more detail in similar way.    

2.2 Type-1 Fuzzy Logic Controllers 

FLCs comprise four principal components, which are fuzzifier, FKB, fuzzy inference engine, and 

defuzzifier as depicted in Fig.1. The FLCs works as follows: the crisp inputs are first fuzzified into, 

in general, input fuzzy sets (however, we will consider only singleton fuzzification) which then 

activate the inference engine and the FKB to produce output fuzzy sets. The defuzzifier can then 

defuzzify fuzzy outputs from the inference engine in order to produce crisp outputs. In the following 

subsection, each of the four principal components will be described in detail to show how the fuzzy 

mathematical and logic principles are used in FLCs.  

Fig. 2.1. Type-1 Fuzzy Logic Controller 

2.2.1 Fuzzifier 

The fuzzifier maps a crisp input vector with p inputs XXXXxxx p

T

p  .......),......( 211  into 

input fuzzy sets, xA . However, we will use the most frequently used singleton fuzzification method 

as it is fast to compute and thus suitable for real time operation. Input fuzzy sets have only a single 

point of nonzero membership in the singleton fuzzification[36].  

2.2.2 Fuzzy Inference Engine 

The fuzzy inference engine combines rules and gives a mapping from fuzzy sets in the input 

universe of discourse 
nRU  to fuzzy sets in the output universe of discourse RV  based on the 

fuzzy logic principle. In the inference engine, multiple antecedents in the rules are connected using 

AND operation, and the degree of membership in the input sets are combined using those in the 

output sets using sub-star composition, described in detail in [41] . Multiple rules are combined then 

by using a join operation. 

Output fuzzy sets 

Crisp Outputs 

Fuzzifier Defuzzifier 

Fuzzy Inference Engine 

Fuzzy Knowledge 

Base (FKB) 
  

  
Input fuzzy sets 
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2.2.3 Defuzzification Process 

Finally, the defuzzification process is used to transfer fuzzy sets into a crisp value, cy . There are 

several defuzzifier methods in the literature. Centre of gravity (COG) is one of the most popular 

simple methods for defuzzification process. One of the important advantages of the COG method is 

that all activated membership functions of the consequents (all active rules) take part in the 

defuzzification process [42]. The COG method works based on the following equation for 

transferring fuzzy scheme into a crisp value [43]: 

                    

 

  2.1) (                                                                                                            
)(

)(






y

A

y

A

c
dzz

zdzz

Z




                                                                                

where z and )(zA are a output fuzzy variable and its membership function, calculated from 

equation (2.7) and equation (2.8), due to the consequent fuzzy rules, respectively. )(zA value 

greatly depends on the shape, type and distribution of MFs. Based on the above definition, it can be 

shown that the controller output depends on the type of input output fuzzy sets, i.e., the MFs form 

(shape and type) of fuzzy sets.  

There are many existing defuzzifiers so far. For engineering applications, the criterion for the choice 

of a defuzzifier is computational simplicity, such as maximum, centroid, center-of-sums, center 

average (also called the height defuzzifier [44][45]), modified height, and center of sets. Some 

major defuzzifiers are briefly overviewed as:  

2.2.3.1 Height Defuzzifier 

Height defuzzifier[46] is most popular used in type-1 fuzzy set as defined: 








M

l

l

B

M

l

l

B

l

h

y

yy
y

l

l

1

1

)(

)(




                                                                                     (2.2)                                                                          

Where l is rule number and 
ly is the point having maximum membership in the l

th
 output fuzzy set 

lB
 , and its membership grade in the l

th
 output fuzzy set is )( l

B
yl that can be expressed as  

 )(.....)()()( ''
11 n

l
Fn

l
F

l

G

l

B
xxyy ll                                                    (2.3) 

where l

G
yl ( is the value of MFs grade of consequent set,   is the t-norm, which is normally the 

product or minimum. Hence, only minimum t-norm is considered for height defuzzifier. However it 

does not consider the entire shape of the consequent MF, i.e., it only uses the center of the support,
ly , of the consequent MF. So the modified height defuzzifier is proposed to improve the height 

defuzzifier. 
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2.2.3.2 Modified Height Defuzzifier 

Under the framework of type-1 fuzzy set, the way to handle consequent uncertainty using the 

modified height defuzzification with spread measure )( l was discussed in [44][47]. To handle 

uncertainty, it is a bit artificial but this is the only way in type-1 fuzzy logic systems. 








M

l

ll

B

M

l

ll

B

l

mh

y

yy
y

l

l

1

1

2

2

/)(

/)(




                                                                           (2.4) 

Where l is the spread measure/standard deviation of the lth consequent set. For triangular and 

trapezoidal membership functions, l  could be the length of its base, whereas for Gaussian 

membership functions, l could be the length of its base, whereas for Gaussian membership 

functions, l  could be its standard deviation. 

2.2.3.3 Centroid Defuzzifier 

Firstly centroid fuzzifier [48] must combine all the output type-1 fuzzy sets using union (t-conorm), 
lM

l BB 1 , and then find the centroid of this set as 








N

i
iB

N

i
iBi

c

y

yy
xy

1

1

)(

)(
)(




                                                                                 (2.5) 

Where the output set is discretized into N points. Obviously the  )(xyc


 is a function of x


because 

)( iB y is also a function of FLS input x


. Due to computing the union of all output sets, usually it 

becomes more difficult to implement than above two fuzzifiers. 

2.2.3.4 Center of Sets Defuzzifier 

For center-of-Sets defuzzifier[48][36], each rule consequent set is replaced by its singleton centroid 
lc  whose amplitude equals the firing strength. The output can be expressed as  












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n
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l
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l
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1
1

1
1
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


                                                                       (2.6) 

where )(1 iF

n
i xT l

i

  is the degree of membership value of output fuzzy set where the input are i=1 to 

n. If each consequent is symmetric, normal, and convex, then 
ll yc   and 1)( l

G
yl for singleton 

case; the results leads to )()(cos xyxy h


 . However, the consequents are not all symmetric that the 

center-of-sets defuzzifier will derive more appropriate results of defuzzification than height 

defuzzifier. 

2.2.3.5 Example 2.1 

Example 2.1: A type-1 FLC has 3 rules whose antecedents and consequents MFs are shown in 

Figure 2.2 (a)-(c). Each rule has two antecedents in Figure (a)-1 (a)-2, (b)-1 (b)-2, and c(1) (c)-2, 

respectively. Suppose that for the particular inputs 3x  and 5x , by using min t-norm for firing 



FUZZY LOGIC CONTROLLER 

 

 8 

strength selection and product t-norm for inference, the fired output MFs are shown in Figure 2.2 

(a)-3, (b)-3 and (c)-3. Then using t-conorm all outputs are combined in Figure 2.2 (d). The numbers 

0.9, 0.8, 0.2 indicate the firing strength of each of consequent sets. The output of four defuzzifiers, 

i.e. hy , mhy ,  cy  and  cosy , for this example are listed in Figure 2.2(d). For the modified height 

defuzzifier l  is set equal to the standard deviation of the l
th

 consequent set, i.e. 0.4, 0.2, and 0.2 

from left to right in Figure 2.2 (d), respectively. Note that for the 3
rd

 consequent set centered at 5, 

height 53 y  but centroid 8436.43 c ; hence, the outputs of the height and center of sets 

defuzzifiers are slightly different. 

 

 

 

 

Fig. 2.2. two antecedents of the first rule are shown in (a)-1 and (a)-2 and the consequents (upper solid curve) with its fired 
output are shown in (a)-3. The two antecedents of second rule are shown in (b)-1 and (b)-2, and the consequents with its fired 

output are shown in (b)-3. The two antecedents of third rule are shown in (c)-1 and (c)-2, and the consequents with its fired 

output are shown in (c)-3. Figure (d) shows all fired outputs together. To compute cy , first it need to combine all outputs as 

shown in (e). 
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Details computing for height defuzzifier hy  and modified height defuzzifier mhy  are described as 

bellows:  

7368.2
2.08.09.0

52.038.029.0





hy  

 1429.3
2.0/2.02.0/8.04.0/9.0

2.0/52.02.0/38.04.0/29.0
222

222





mhy  

To compute cy , we need first combine all the output type-1 fuzzy sets shown in Figure 2.2 (e) and 

discretized into 20 points, then using (2.11) to derive the defuzzified result: 4289.2cy  

To compute cosy , each rule consequent in Figure 2.2 (d) can have its centroid lc , i.e., 0068.21 c , 

32 c  and 8436.43 c , then using (2.12) to derive cosy  as below: 

7235.2
2.08.09.0

8436.42.038.00068.29.0
cos 




y  

2.2.4 Fuzzy Inference Using Different Types of MFs 

In this section, we describe a fuzzy inference system with respect to the different type, shape and 

distribution of MFs. How different MFs types can change the fuzzified and defuzzified value is also 

discussed in this section. The following (Fig. 2.3) simple numerical example illustrates that the 

controller output varies according to the type, shape and distribution of MFs. 

2.2.4.1 Different Types of MFs 

In this section two types of MFs are considered for the convenience of the explanation.  The most 

commonly used triangular and gaussian typed MFs are often used in the conventional fuzzy 

reasoning rules. They are formally described as follows: 

 

(2.7)                                      

otherwise  ,                   0

22
 ,  

2
1

)(
















ji

jij

ji

ji
ji

jij

j
i
j

b
ax

b
a

b

ax

xF

 (2.8)                                                                      }/)(exp{)( 2
jijijj

i
j baxxF 

 

2.2.4.2 Fuzzy Inference w.r.t type, shape and distribution of MFs 

Fuzzification of the fuzzy inference system is the process of changing a real value into a fuzzy 

value. Fuzzification of a real-valued variable is done with intuition, experience and analysis of the 

set of rules and their associated MFs, i.e fuzzy sets. The different type of MFs defined in equation 

(2.7) and (2.8) produces different fuzzified value for the same real value as shown in example (Fig. 

2.3). 
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Fig. 2.3. Fuzzy inference system for representing rules by (a) Triangular MFs (b) Gaussian MFs (c) Mixed(one rule is 

triangular and another one gaussian) MFs 

 

 

Rule 1: if  x is MF1-R1  and      is MF2-R1          Then Control Angle is MF3-R1 

Rule 2: if  x is MF1-R2  and      is MF2-R2          Then Control Angle is MF3-R2 

Input 1 

x=2 

Input 2 

=5 

Output 

=3.7 

Input 1 
x=2 

Input 2 

=5 

Rule 1: if  x is MF1-R1  and      is MF2-R1          Then Control Angle is MF3-R1 

Rule 2: if  x is MF1-R2  and      is MF2-R2          Then Control Angle is MF3-R2 

Output 

Rule 1: if  x is MF1-R1  and      is MF2-R1          Then Control Angle is MF3-R1 

Rule 2: if  x is MF1-R2  and      is MF2-R2          Then Control Angle is MF3-R2 

Input 1 

x=2 

Input 1 

=5 

Output 

=4.31 

(a) 

(b) 

(c) 
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The example is considered for the controller output of two rules system with triangular (i.e., two 

rules MFs type are triangular), trapezoidal and mixed MFs (i.e., one rule MFs type is gaussian and 

another rule MFs is triangular). 

The fuzzification of the input variable should be realistic. Experience and different procedures as 

well as the use of different MFs type should be followed while designing a large fuzzy system for 

the realistic and accurate output. The wrong fuzzification of the input variable(s) might cause 

instability and error in the system.  

From the above example (Fig. 2.3) we have shown that fuzzified and defuzzified value vary 

according to the MFs type. So, optimal MFs type selection for the rule base is also a crucial issue 

while designing a controller. Fuzzification or defuzzification process parameters will change the 

final output of fuzzy controller.  In this study, the effect of MFs type on fuzzification and 

defuzzification process to construct the fuzzy model and controller is also investigated (Chapter 3) 

as well as selection and definition of fuzzy rules. 

2.3 Type-2 Fuzzy Sets and FLCs 

The concept of a type-2 fuzzy set was introduced by Prof. Zadeh [49] in 1975. A type-2 fuzzy set is 

defined by MFs as shown in Fig. 2.4. The fuzzy grade of that is a fuzzy set in the closed interval [0, 

1] rather than a point in [0, 1]. A type-2 fuzzy set, denoted as 
~

A , is characterized by a type-2 MF 

),(~

A
ux  [45], where Xx  and ]1,0[ xJu , i.e.,  

[0,1]}J      X  |u))(x,u),{((x, xux
A

~

~  A in which 1),(0 ~  ux
A

 . A can also be 

expressed as follows [24]: 

  


Xx Ju
A

x

uxuxA ]1,0[J    ),/(),( x where ),( uxA is the secondary grade of MFs, 

denotes union over all admissible x and u. xJ is called primary membership of x, where ]1,0[xJ

for Xx  [24]. The uncertainty in the primary memberships of a type-2 fuzzy set
~

A , consists of a 

bounded region that is called the footprint of uncertainty (FOU)[24]. It is the union of all primary 

memberships [50].   

Now how to construct a type-2 fuzzy set. Let the upper membership function be y=x-2 and the 

lower membership function be y’=2x-5. When x1=2.8, we get the values of these two functions as 

0.6 and 0.8 respectively. So the interval 
1x

J = [0.6, 0.8]. Then, correspondingly, the secondary 

membership function should be also in this interval. 

2.3.1 Example 2.2 

Example 2.2: Figure 2.5 shows a type-2 fuzzy membership function ),(~ ux
A

 with the discrete x

and u .  }5 ,4 ,3 ,2 ,1{X  and }8.0 ,0.6 ,40. ,20. ,0{U . 

The secondary membership function 

at 1x is 8.0/15.06.0/4.04.0/25.02.0/35.00/1)1(~ 
A

  and 

at 3x is 8.0/4.06.0/25.0)1(~ 
A

 . 
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The primary memberships are  

}8.0 ,6.0 ,4.0 ,2.0 ,0{5421  JJJJ  and  

}8.0 ,6.0{3 J  

The shaded area is FOU. 

2.3.2 Type-2 FLC 

A type-2 FLC comprises five components, which are fuzzifier, knowledge base (KB) consisting of 
rule base (RB) and database (DB), fuzzy inference engine, type- reducer and defuzzifier as depicted 
in Fig.2.6.  

Fig. 2.4. An Interval Gaussian type-2 fuzzy set where σL and σU are minimum and maximum resultant widths respectively 

 

Fig. 2.5. Type-2 Membership Function with Primary and Secondary MFs Value 

 

 

2.3.1.1 Fuzzifier 

Since the input is in crisp normalized values, a fuzzification operator fuzz  is used to fuzzify it in 

fuzzy form. The fuzzifier maps a crisp input vector with p inputs 

XXXXxxx p
T

p  .......),......( 211  into input fuzzy sets, x

~

A [51][52]. However, we will 

use most frequently used singleton fuzzification method as it is fast to compute and thus it is 

suitable for mobile real time operation. In the singleton fuzzifier, fuzzy set 
~

A  has only a single 

point of non-zero membership with support ix , where 1),(~

A
ux for ixx   and 0),(~

A
ux for 

ixx  which input measurement x is perfect crisp. 

0 2 4 6 8 10m 

Foot print of 

Uncertainty(FOU) 

Lower Membership 

Function (LMF) 

Upper Membership 

Function (UMF) 

σL

σU 
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Fig. 2.6. Interval Type-2 FLCs 

2.3.1.2 Rule base 

The rules will remain the same as in type-1 FLCs but the antecedents and consequents will be 

represented by interval type-2 fuzzy sets [52]. Like most FLCs [53], the FLC discussed here applies 

the concepts of fuzzy implication and the compositional rules of inference for approximate 

reasoning. Suppose that we need to design a multiple-input-multiple-output (MIMO) mobile robot 

type-2 FLC having p inputs pp XxXx  ,,.........11  and c outputs cc YyYy  ,.....,11  with i
th

 fuzzy 

rule of the form: 

MiGy

FxxR

i

c

i

pp

i

MIMO

,...,1   , is y ......... G is                

THEN    , is  .......andF is  IF :

~

c

~
i

11

~~
i

11



                                                       

(2.9) 

Where

~~

1 ,........, i
p

i FF  and 

~~

1 ,........, i
c

i GG are the antecedent and consequent MFs associated with the 

linguistic p input variables and c output variables, respectively, and M is the number of rules in the 
rule base. 

 2.3.1.3 Fuzzy Inference Engine 

The fuzzy inference engine combines rules and gives a mapping from type-2 fuzzy sets in the input 

universe of discourse nRU  to type-2 fuzzy sets in the output universe of discourse RV  based on 

the fuzzy logic principle. The structure of i
th

 type-2 rule is having one output kk Yy  : 

~~~

21

~

......: i
k

i
p

i
i

i GFFFR  and the type-2 fuzzy relation can be expressed by membership 

function as: 






)()(..........)(               
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1

......

1

21
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GFFFR





                                            (2.10) 
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Where  denotes meet operation. The membership grades in the input type-2 fuzzy sets are 

combined with those in the output type-2 fuzzy sets using the extended sup–star composition; 

multiple rules are combined using the Join operation. They are defined and explained in a greater 

detail in [54]-[55].  

2.3.1.3.1 Sub-Star Composition 

If R is a fuzzy relation in U×V, and x is a fuzzy set in U, then the “sub star composition” asserts that 

the fuzzy set y in V induced by x is given by 

y=x ο R 

where (xοR) is the substar composition of x and R. If star represents the minimum operator, then 

this definition reduces to zadeh’s composition rule of inference. The extended sup-star composition 

can be obtained simply by extending the type-1 sup-star composition by replacing type-1 

membership functions by type-2 membership functions, the sup operation with Join operation and 

the t-norm operation with the Meet operation. 

2.3.1.3.2 Fuzzy Relation Form 

A fuzzy relation is characterized by the same two items as a fuzzy set as shown in Fig. 2.7. First is a 

list containing element and membership grade pairs, 

}.},,{{},.......,},,{{},},,{{ 12211111 nmmn RwvRwvRwv  Note that the elements of the relation are 

defined as ordered pairs, },{},......,,{},,{ 2111 mn wvwvwv . These elements are again grouped with 

their membership grades, },.......,,{ 1211 nmRRR , which are values that range from 0 to 1, inclusive. 

The second item characterizing fuzzy relations is the universal space. For relations, the universal 

space consists of a pair of ordered pairs, }}c, W,W{},c ,V ,V{{ 2maxmin1maxmin . The first pair 

defines the universal space to be used for the first set under consideration in the relation, and the 

second pair defines the universal space for the second set. The following is an example showing 

how fuzzy relations are represented in this package. 

Universal spaces for fuzzy sets and fuzzy relations are defined with three numbers in this package. 

The first two numbers specify the start and end of the universal space, and the third argument 

specifies the increment between discrete elements. Here is an example. 

Fuzzy Relation [{{{1, 1}, 0.1}, {{1, 2}, 0.5}, {{2, 1}, 0.9}, {{2, 2}, 0.7}, {{3, 1}, 0.4}, {{3, 2}, 

1}}, Universal Space {{0, 3, 1}, {0, 2, 1}}] 

Assuming that V and W are two collections of objects, an arbitrary fuzzy set R, defined in the 

Cartesian product VxW, will be called a fuzzy relation in the space VxW. 

R is thus a function defined in the space VxW, which takes values from the interval [0, 1]. 

R : V x W  [0, 1] 

In the case where V = W, we have a binary fuzzy relation on a single set V. 

We can start our discussion by considering a countable collection of objects. 

V = }v{ i
, i = 1, 2, ... 

W = }w{ j
, j = 1, 2, ... 
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A fuzzy relation R can be represented in the following way: 

R = )}},(},,{{{ jiji wvRwv , i = 1, 2, ... ; j = 1, 2, ... 

A matrix or graphic interpretation is a more convenient way to study fuzzy relations. We examine 

fuzzy relations in this notebook in a manner analogous to that introduced earlier for fuzzy sets. 

Step-1: 

Let V = {1, 2, 3} and W = {1, 2, 3, 4}. 

A fuzzy relation R in VxW has the following definition. 

Step-2: 

Input: R = FuzzyRelaton[{{{1,1},1},{{1,2}, 0.2},{{1,3}, 0.7}, {{1,4},0}, {{2,1},0.7}, {{2,2},1}, 

{{2,3},0.4} {{2,4},0.8},{{3,1},0}, {{3,2}, 0.6},{{3,3},0.3},{{3,4},0.5}}, 

UniversalSpace{{1,3},{1,4}}]; 

This relation can be represented in the following two forms: as a membership matrix 

Step-3: 

Input:To Membership Matrix[R]//Matrix Form 

Output//MatrixForm=

















0.5        0.3      0.6      0

0.8        0.4        1   0.7

0       0.7      0.2     1

 as a graph 

Step-4: 

Input: FuzzyPlot3D[R, AxesLabel{“V”, “W”, “R”}, BoxedFalse] 

 

Fig. 2.7. Fuzzy Relation 

Note that the elements of the fuzzy relation are defined as ordered pairs; iv
 is the first and 

jw
 the 

second element of an ordered pair },{ ji wv . The membership grades of the elements are represented 

by the heights of the vertical lines at the corresponding elements. 

2.3.1.4 Type- Reduction 

Type-reduction is that when an interval type-2 fuzzy sets is reduced to an interval-valued type-1 

fuzzy set and then these type reduced sets are defuzzified to obtain crisp outputs. In this paper, we 

use centroid type reduction due to its reasonable computational complexity.   
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Three major type reduction methods are described as follows: 

2.3.1.4.1 Centroid Type- Reduction 

Similar to the centroid defuzzifier of type-1 (2.5), the union of type-2 fuzzy sets firstly requires 

computing the join of their secondary membership functions; i.e. to compute the secondary 

membership function )(~ y
B

 from 
lM

l BB
~~

1 , as:  

Yyy
M

l BB l 


y
1

~~        )()(                                                                    (2.11) 

where )(~ y
B

 is the secondary membership function for the l
th

 rule, and it depends on many factors 

such as join, meet and embedded sets.  is the join operator. The centroid type reduction 

calculates the centroid of B
~

. Then extension form type-1 centroid defuzzifier (2.5) to type-2 

centroid type reduction can be expressed as 

 












i
N
i

ii
yN

i

yN
J

N

NyN
f

y
f

y
J

x
c

y









 1

1/)](*......*)
1

(
1

[    

11

...........)(                           (2.12) 

 

where   is the t-norm, which is normally the product or minimum, where θi is also the only one 

element that can be chosen from each interval Jxi.  However, as analyzed by Karnik and 

Mendel [36], by using product t-norm, most value of the )](*......*)
1

(
1

[    
NyN

f
y

f  will be very 

small, which cause troubles on practical computation. Hence, only minimum t-norm is considered 

for centroid type-reduction. Obviously, the centroid type reduced output )(xyc   is a type-1 fuzzy 

set. Here i=1,….,N. For different FLS inputs, different values of )(xyc will be derived. Similarly 

the sequence to compute this process, the y-domain is discretized into N points Nyy ,....1 and then 

iyJ is discretized into a suitable number of points Ti (i=0,1,…N). Total number of computations is 

 
N
i iT1 . However, this process needs to compute )(~ y

B
 firstly (i.e. combined from all output sets 

to form one B
~

) that is high computation intensively. Note that the Centroid type reduction here 

must use minimum t-norm to perform [36]. 

 

Example: 

 

Assume that X= {3, 6}. A type-2 fuzzy set Ã is given as follows:  

Ã= (0.5/0.6+1/0.7)/3+ (0.2/0.8+1/0.5)/6. (82)  

According to the type-2 fuzzy set, we can get the centroid of the set as the following type-

1fuzzy set:  

yc(x)=(0.5*0.2)/[(3*0.6+6*0.8)/(0.6+0.8)]+(0.5*1)/[(3*0.6+6*0.5)/(0.6+0.5)]+(1*0.2)/[(3*

0.7+6 *0.8)/(0.7+0.8)]+(1*1)/[(3*0.7+6*0.5)/(0.7+0.5)] 

˭0.1/(4,71)+0.5/(4.36)+0.2/(4.6)+1/(4.25).  

2.3.1.4.2 Height Type- Reduction 

The extension from type-1 height defuzzifier (2.2) to type-2 height type reduction can be expressed 

as  
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 
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






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                     (2.13) 

where Ml ,....,1 . The 
ly is the point having maximum membership in the l

th
 output set and l , 

ly
J , and )( lf ly

 are associated with )(~
l

B
yl . The sequence to obtain )(


xyh is firstly to choose 

ly from each rule output, then discretize the primary membership of each )(~
l

B
yl  into a suitable 

number of points lM , where Ml ,.....,1 , i.e. rule number. Totally there will be  

M

l
lM

1

computations. Compare to centroid type reduction, the difference is that the discretized number of 

points on the horizontal axis is using the number of rules M instead of N [36]. 

2.3.1.4.3 Modified Height Type- Reduction 

The extension from type-1 modified height defuzzifier (2.4) to type-2 modified height type 

reduction can be expressed as  

2

2

/
1

/
1/)](*......*)

1
([    

1

...........)( 1

1
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








           (2.14) 

where all symbols have same meaning as (2.13)[36]. The only difference between the modified 

height type reduction and the height type reduction is that each output set secondary membership 

function, )(~
l

B
yl , in the modified height type reduction is scaled by 

2

/1 l . 

2.3.1.4.4 Center of Sets Type- Reduction 

Similar to center of sets defuzzifier (2.6) of type-1 FLCs the extension to type-2 center of sets type 

reduction needs to replace each type-2 consequent set, lG
~

, by its centroid, lG
C ~ (a type-1 set); and 

finds a weighted average of these centroids. The firing strength corresponding to the l
th

 rule is 

)(
1

~ 

n

i
iF

x
l

 , indicated by lW , i.e., using meet operation for type-2 to replace )(1 iF

n
i xT l

i

 of type-

1 center of sets defuzzifier in (2.6). lW  is also a type-1 set. Then the center-of-sets centroid can be 

depicted by a generalized centroid expression as  





 






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1

1111
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)(*)( ..................

)(
~

~ 111~1



                     (2.15) 

To obtain )(cos xy , a practical sequence is as follows: 

1. Discretize its output space Y and computing its centroid lG
C ~ for each consequent.  

2. Compute the firing strength lW for each rule. 
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3. Discretize the domain of each type-1 fuzzy set lG
C ~  and lW  into a suitable number of 

points as lN and lM  (l=1,…M), respectively. 

4. Enumerate all the possible combinations. The total number of combinations will be 

l

M

l
l NM 1

. 

5. Compute the center-of-sets type reduction using (2.15) with M lG
C ~  and lW . 

2.3.1.4.5 Example 2.3 

Example 2.3: A type-2 FLC consists of the antecedents with type-2 fuzzy sets and the consequents 

with type-1 fuzzy sets. The membership functions of consequents are same as example 2.1 shown in 

Figure 2.2. Suppose that the firing strength lf  and 
lf of the operation in the input and antecedents 

can be derived to fire consequent part. Then, by using product inference and t-norm, the fired rule 

output MFs can be shown as Figure 2.8(a). At each point ]5,1[y , these three fired output sets can 

be described as: 

 1~
B : Two primary memberships, one is 0.9×exp(-1/2((y-2)/0.4)

2
), and the other one is 

0.8×exp(-1/2((y-2)/0.4)
2
). The corresponding secondary grades are 1 and 0.8. 

 2~
B : Two primary memberships, one is 0.8×exp(-1/2((y-3)/0.2)

2
), and the other one is 

0.6×exp(-1/2((y-3)/0.2)
2
). The corresponding secondary grades are 1 and 0.5. 

 3~
B : Two primary memberships, one is 0.2×exp(-1/2((y-5)/0.2)

2
), and the other one is 

0.1×exp(-1/2((y-5)/0.2)
2
). The corresponding secondary grades are 1 and 0.4. 

To compute height type reduction hy , we firstly choose two maximum memberships 
ly from each 

rule output and its corresponding primary memberships of each )(~
l

B
yl , i.e. the first rule: [1/0.9]/2 

and [0.5/0.8]/2, the second rule: [1/0.8]/3 and [0.8/0.6]/3, and the third rule: [1/0.2]/5 and 

[0.4/0.1]/5. From (2.12), the height type reduction need to consider each of the eight possible type-1 

embedded sets and computes height defuzzification on them to get the crisp output in this type-

reduced sets and computes height defuzzification on them to get the crisp output in this type-

reduced set, e.g. first consider the situation where the fired consequents sets have primary 

memberships equal to 0.9, 0.6 and 0.2. The corresponding point in the type-reduced set is calculated 

as 7059.2/8.0)
2.06.09.0

52.036.029.0
/()18.01( 




 . Next, consider that the point having 

maximum membership in the type-reduced set is calculated as 

7368.2/1)
2.06.09.0

52.038.029.0
/()111( 




 . The complete height type-reduced set is shown in 

Figure 2.8 (b). For the centroid type reduction (2.12), a combined output set is shown in Figure 

2.8(c). As simple as this type-2 set discretized to 21 sample points (dot lines), there are 

2
21

=2,097,152 embedded type-2 sets for which the centroid computational procedure must be 

performed. The result of centroid type-reduced set is shown in Figure 2.8(d). For the center of sets 

type reduction, similarly to height type reduction, it need to derive the centroid of each consequent 

then compute each of the eight possible combinations by firing strength and centroids. Table 2.1 

summarizes the results of four type reductions. The last column “centroid” means the center of 

gravity of the type reduced set; it can be used as defuzzified value of the type-reduced set. Note that 

the type reduced set here is not an interval type fuzzy set.  
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2.3.1.5 Defuzzification 

After the type-reduction stage, Defuzzify the type reduced interval set )(

xyc , determined by its left 

most ly and right most point ry  using the average of ly
 
and ry . Hence the defuzzified crisp 

output is 

2
)( rl yy

xY



  

 

Table 2.1. THE RESULTS OF FOUR TYPE REDUCTIONS 

Type-Reduced Set Left-Most Point Right-Most Point Width Unity Height point Centroid 

Height 2.5625 2.7778 0.2153 2.7368 2.6985 

Modified 

Height 

2.9730 3.2000 0.2270 3.1429 3.1125 

Centroid 2.3403 2.5114 0.1711 2.4729 2.4321 

Center of Sets 2.5527 2.7604 0.2077 2.7204 2.6832 

   

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 2.8. The fired outputs are shown in (a), and the height type-reduced set is shown in (b). The combined fired output set 
for centroid type reduction is shown in (c) and its type-reduced set is shown in (d). 
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This chapter presents design and optimization model of type-1 fuzzy logic controller using new 

hybrid GAs in detail.  

3.1 Introduction 

The vast majority of FLCs developed to date are based on the expert knowledge base derived from 

imprecise heuristic knowledge base. Such heuristic knowledge base can be collected and delivered 

by experienced human experts (e.g. decision maker, designer, process planner, machine operator). 

In most cases, FLCs are used when there is an expert knowledge base available to manually 

construct the fuzzy knowledge base (FKB) and an important nonlinearity of the modeled process. 

The manual construction of an FKB requires the evaluation of each proposition made by the expert 

to measure its performance. If the controller performance is not satisfactory, the expert modifies 

(i.e., fuzzy set repartition, change rule base, change the type of MFs) the FKB. Such manual 

approach is very time-consuming and tedious as it requires trial and error method and completely 

dependent on the expert’s intuition, experiences and his understanding of the problem’s behavior. 

Moreover, this process does not guarantee to generates optimal or near optimal FKB [56]-[57]. 

Therefore, an optimization method is highly desirable to automatically build the FKB that maximize 

the controller performance.  

In this study, we consider new hybrid (real and binary coded coupled) GAs as an optimization tool 

for the automatic generation of FKBs. The FKBs contain two cooperative but distinct parts; (1) 

Parameters of fuzzy sets defining the fuzzy control rules and (2) Type of MFs defined on the shape 

of fuzzy set. They are distinct in such a way that first one deals with real numbers while the second 

one uses integer numbers to define the type of MFs. For this matter, we consider a hybrid GAs 

where the binary part is mapped into a string of integers. 

3.2 Review of Existing Methods and differences to proposed Method  

A sustainable number of approaches have been proposed to automatically learn the FKB. Most of 

them have focused on the rule base learning, one part of FKB, from the numerical data using a 

predefined another parts (number of labels, working ranges and MFs types for each linguistic 

variable) of FKB[58]-[61]. This operation mode makes the FKB have a significant influence on the 

controller performance. Moreover, our design approach does not require any set of input-output 

numerical data training pairs. Some methods used genetic algorithms (GAs)[62-63] tabu search 

(TS),[57] particle swarm optimization (PSO),[64]-[65] and self-organizing feature map (SOFM)[66] 

as an optimization tool to improve parameter optimization problem. Currently, GAs,[67] are 

considered to be among the most effective and widely used global search techniques. As a result, 

GAs has been extensively applied to identify fuzzy systems, mainly with the objective of increasing 

accuracy, thus leading to the so-called genetic fuzzy systems [68-69].  
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GAs was used by Arslan and Kaya [62] in the determination of MFs whereas their controller used 

predefined rule base. They applied GAs to design a fuzzy logic control system having a single input 

and output. We employed HGAs to concurrently learn parameters of MFs, rule base and MFs types 

for designing fuzzy logic control system with arbitrary number of input and output variables. Bagis 

[57]
 
proposed a method based on TS algorithm for the determination of MFs only. Bai and Chen 

[56] proposed an automatic method for students’ evaluation task. Its purpose was to automatically 

construct the grade MFs of lenient-type grades, strick-type grades, and normal-type grades of fuzzy 

rules, respectively.  The system performs fuzzy reasoning to infer the scores of students based on 

the constructed grade-MFs. Their proposed method used predefined rule base. Meredith, Karr & 

Krishna [70] presented an approach based on GAs to the tuning of MFs in FLCs for a helicopter. 

Wong[64] et al. applies PSO to determine appropriate MFs of the fuzzy system (FS) automatically 

and presented a motion control structure with a distance fuzzy controller and an angle fuzzy 

controller for the two-wheeled mobile robot. Yang and Bose[66] presented a method for generating 

fuzzy MFs with unsupervised learning using SOFM. The SOFM approach is a two-step procedure: 

firstly, it generates the proper clusters and secondly it generates the fuzzy MFs according to the 

clusters in the first step. They applied this method to pattern recognition. These methods differ 

mostly in the order or the selection of different MF types, shapes, width and distribution on the 

performance of a FLC. Moreover, other differences between the previous approaches lie mainly in 

the type of coding and the way rule set and the shape and width of MFs are optimized. 

 

Fig. 3.1. Combined FLCs and hybrid GAs Architecture 

3.3 Designing Optimal FLCs Using Hybrid GAs 

The first step in designing an integrated FLCs and HGAs architecture (depicted in Fig. 3.1) is to 

decide which parts of the FKB are subject to be optimized by HGAs. FKB of a fuzzy logic control 

system is made up of two principal components, i.e., the parameters of the fuzzy rule base, 

constituted by the collection of fuzzy rules with MFs shape and MFs type associated with the 

linguistic labels of each fuzzy rule. In this case, both of these two components of FKB are adapted 

using HGAs. In the developed architecture, the real coded part of HGAs is employed for generating 

desirable fuzzy control rules with parameters of MFs and at the same time the binary coded part of 

HGAs is employed for optimum selection of MFs type of each control rule.    

The learning of FKB components concurrently for optimal design of FLCs consists of the following 

steps (Fig. 3.2):  

Evaluation Module 

Tuning Process 

Hybrid Genetic Algorithms 

Fuzzifier 

Knowledge Base 

Fuzzy Rules 

and MFs 

MFs Type of 

Fuzzy rules 

Inference 

Engine Defuzzifier 

  
 

Binary Coded Real Coded 

  

Rules and MFs Learning 
Optimum selection  

of MFs type 
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Step 1: Identify the variables (Inputs, states, outputs) of the control process, type of fuzzy inference 

engine, fuzzification and defuzzification type and the MFs type to be used.  

Step 2: Partition the input and output universe of discourse or the interval spanned by each variable 

into a number of fuzzy regions (fuzzy sets) and assign a fuzzy MFs i,e linguistic level of each 

region.  

Step 3: Encode the input output spaces fuzzy regions into real valued-strings. At the same time 

encode the MFs type representing integer number (Fig. 3.5) into bit- string (0 or 1). For example, 

encode 0 to 00, 1 to 01, 2 to 10 and 3 to 11 to select the gaussian, left-triangular, right-triangular and 

triangular MFs respectively. Each chromosome contains real and binary valued string. 

Step 4: Use HGAs in two different ways: phase-1(real coded part) and phase-2 (binary coded part) 

as self-learning adaptive methods to generate a set of fuzzy control rules with adjustment of MFs 

shape and select the optimum MFs type of each rule respectively. 

Step 5: Use newly generated fuzzy rules and their corresponding MFs type to determine the 

performance of FLCs and assign a fitness value. At the same time calculate the importance of 

chromosomes according to the performance of criteria.  

Step 6: Check the termination condition. If termination criterion is not met go to Step 3.  

Step 7: Determine a mapping from the input space to the output space based on the combined fuzzy 

rule base and their corresponding MFs type using a defuzzifying procedure. 

 

Fig. 3.2. Optimization of Fuzzy Logic Controller by Genetic Algorithms 
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Fig. 3.3. Optimizing Parameters of MFs 

 

3.3.1 Optimization of FLCs 

In this study, the FKB of FLCs is tuned using new hybrid GAs (Fig. 3.2) by simultaneously 

optimizing the design objectives.  The design variables of the FLCs are the parameters of the input 

and output MFs of each rule defined by generalized MFs described in Eq. (2.2) and (2.3), and 

parameters selecting the type of MFs.  

3.3.1.1 Rule Optimization parameters  

In this study, we use different MFs type such as triangular, gaussian defined by the equation (2.2), 

(2.3) where jx the crisp value. We can see that triangular and gaussian MFs needs a domain of 

definition  jx  and two real parameters jia and  jib  to be defined (Fig. 3.3).  These tow real 

parameters defines the MFs shape to process the user inputs and the fuzzy inference system (FIS) 

that can provide an “appropriate” output through fuzzy reasoning and inference mechanisms. For 

this reason, we encode each chromosome in a real gens chromosome for optimizing the parameters 

of MFs of each fuzzy control rule. The MFs fully defines the fuzzy set. 

Fig. 3.4. Coding of a MFs type 

3.3.1.2 Optimal MFs Type Selection 

In this study, genetic MFs type selection technique try to select the optimal MFs for each rule 

separately while maintaining and improving the system performance. MFs type selection is a 

preprocessing step when designing a conventional fuzzy controller and every rule used one MFs 

type (i.e., either gaussain or triangular). The MFs types are coded as a set of integers where each 

integer in the set represents a one MFs type (see Fig. 3.4). In this case, we used binary coded GA 

where the binary value is mapped into a string of integers (see Fig. 3.5). In the binary coding, 2 bits 

resolution for every parameter was used. In this way, the binary part of HGAs selects the best 

combination of MFs type for the rule base of FLCs.  
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Fig. 3.5. Membership function Selection Methodology 

3.3.2 Encoding Schema 

We present a new hybrid encoding schema mixing the real and binary coding feature to represent 

the potential solution. Each genetic representation is a FLCs potential solution. Encoding is the 

genetic representation for translating the FKB parameter space into a certain space in which the 

HGAs can operate. The FKB are divided into parameters of MFs and fuzzy rules with their 

corresponding MFs types. So, the genotype C corresponds to several independent sets of reals and a 

set of integers: 

},{ TR CCC 
 

where RC  and TC are the genotypes of the fuzzy rules and their corresponding MFs type 

respectively. The fuzzy rules representing fuzzy sets, iFS  in each variable can be characterized by 

two parameters jia and jib  as shown in Fig. 3.2. All of the information represented by the FKB 

parameters is encoded in a structure called a chromosome or string. Each chromosome is divided 

into two parts (Fig. 3.6): )( RC  defines the fuzzy rules and MFs parameter and )( TC , is used for 

select the MFs type. )( RC  and )( TC  coding schema are as follows: 

RC : The )( RC part is a sequence of real genes for the input and output variable, which identify the 

fuzzy rules and parameters of MFs. 

Fig. 3.6. Composing of Gene 

)( TC : The ( TC ) part is a sequence of binary bits which identify the MFs type for each rule 

individually. The type of MFs such as trapezoidal or triangular or gaussian in the antecedent and 

consequent with linguistic meanings can be selected automatically by two consecutive bit b1 and b2. 

The parameter b1 and b2 are encoded into the gene with a binary-valued representation.  
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The new HGAs have been developed for the adjustment of the two interrelated FKB components 

and seek the optimum FLCs that presents the minimum objective error. A vector represents the 

chromosome of binary bits and real numbers are constructed, which embodies the FKB parameters.  

3.3.3 Evolution Strategy 

The evolution strategy leads from the initial population of FLCs to the optimal FLCs, is described 

as follows: 

Selection: After the evaluation of the initial randomly generated population, the GAs begins the 

creation of the new FLCs generation. FLC-chromosomes from the parent population are selected in 

pairs to replicate and form offspring FLC-chromosomes. The FLCs-chromosome selection 

mechanism for reproduction is that N parents and theirs generated offspring is combined to select 

the best N FLCs-chromosomes to take part in the population of next FLCs generation. 

Crossover:  When two strongest chromosomes are selected for reproduction, their vectors are 

combined in order to produce two new FLC using genetic operators. The main GAs operators used 

are a crossover and a mutation and are applied with varying probabilities. So, if a probability test is 

passed crossover takes place. If the probability test fails, the produced children are identical 

replications of their parents. 

 

Fig. 3.7. Example of HGAs chromosome (CR, CT) coding scheme where CR, define the control rules as well as shape of MFs 
and CT, define the MFs type. Here 1st rule MFs type Triangular and mth rule MFs type Gaussian. 

In the binary GA a uniform crossover operator has been used. In the real GA, the max-min-

arithmetical (MMA) operator was used[66] as a crossover operator. If 
t
uC and 

t
vC are to be crossed 

four possible new individuals (I) are created. 
t
u

t
v

t III )1(1
1  

 
t
u

t
v

t III   )1(1
2                 (3.1) 
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 A constant parameter  is set equal to 0.5 for our experiments. The two individual with higher 

fitness are inserted in the new population replacing the parents, producing the new generation. 
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Mutation: In the binary encoding every parameter of the offspring chromosomes undergoes a 

probability test and if it is passed,[67] the mutation operator alters that parameter using 

Michalewicz’s nonuniform mutation operator[72]. The operator is described below: 

If }.....,.......{ 1 Lk
t
u PPPC   is a FLCs- chromosome vector with length L and kP  is an FLC 

parameter that is chosen for a mutation, the new output 
mut

kP  will be an after mutation  










1   ),(

0   ),(

rifPPtP

rifPPtP
P

klkk

kkrkmut
k                                                                 (3.2) 

where r is the random parameter, ),( klkr PP the domain of parameter kP ),......2,1( Lk  and a 

function ),( xt  returns a value in the range ),0( x such that the probability of the value returned 

being close to 0 increases with t .  

)1.(),( )/1( cTtxxt                                 (3.3) 

where  is the random floating point number in the interval ]1,0[ ; t is the current generation; T is 

the maximum number of generation; c is a parameter determines the degree of dependence on the 

number of generations. For our experimental analysis, c  was chosen equal to 5. Using this selection 

method and crossover operators will tend to cause the algorithms to converge. 

In this system Mutation probability is dynamically changed in the range from 0.04% to 0.24% per 

bit and 1% to 10% per real parameter during the generations. The adaptive parameter control for 

crossover rate is introduced here with the ranges from 40% to 90% per chromosome. Figure 3.7 

shows an example of integrating MFs parameters, fuzzy rule sets and their type of MFs sets 

selection parameters, in a chromosome. Then this chromosome is decoded and represented the 

fuzzy rules with their corresponding MFs type. In Fig. 3.7 1
st
 rule (R

1
) MFs type is triangular and 

m
th

 rule (R
M

 ) MFs type is gaussian. 

3.4 Problem Statement, definitions and Notation 

In this section, we shall first describe the kinematic model of a car-like robot and then analyze the 

fundamental properties of the corresponding system from a control view point. The main challenge 

for the car like robot control problem is to design a controller to successfully back up a car like 

robot to a loading dock from any initial states. 

3.4.1 Modeling and Analysis of car like robot 

The problem, to back up a simulated car like robot to a loading dock in a planner parking lot is 

depicted in Fig. 3.8 and the involved notations.  The fuzzy logic control system must find 

incrementally a path to the loading dock, independently of the initial states ( 000 ,, yx ) of the car 

like robot. In the proposed kinematics model of car-like robot, let (xf,yf) and (xr,yr) be the 

coordinates of the front-wheel and rear-wheel center of the car-like robot, respectively. 

A state vector, (xr,yr) and the angle   of the car like robot with the horizontal line define the actual 

state of the car like robot. The motion of the car like robot can be described by the following set of 

equations: 
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                                                                    (3.4) 

where   is the steering angle (control action).  The discussed objective of this study is how to design 

a suitable fuzzy control system which can make efficient strategies to back the car-like robot into 

the correct state of the parking space under the mentioned equations and constraints. 

Fig. 3.8. A car like robot model 

A fuzzy logic controller receives this state variable as input and calculates the appropriate steering 

angle ),(  xf  that drives the robot toward the goal. The controller have to make the robot reach 

at the loading dock at a right angle (
090 ) and to align the state (x, y) of the robot with the 

desired location ),( dd yx . The car like robot should move backward by some fixed distance b at 

every stage. Assuming enough clearance between the car like robot and the loading dock we can 

ignore the y position of coordinate at the time of output (steering angle  ) calculation. There is no 

predefined path for each car like robot location and therefore the optimum steering angle is 

unknown. So, at every stage our proposed approach should calculate the steering angle ),(  xf  

to back up the car like robot to a loading dock from any state and initial car like robot angle in the 

loading zone. The loading zone corresponding to the plane {0, 0}×{100, 100}. 

This experiment should be regarded as an example of highly nonlinear complex problems. The 

fuzzy logic controller must find the correct function that maps points from the three dimensional 

input-space to the appropriate output variable, continuously from the initial state until the loading 

dock, and for all combinations of the initial state. 

We assume a constant velocity u and the system variables of the car-like robot are restricted by 

physical limits as follows: 

00
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(3.5)                                                                                         27090
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An important characteristic of fuzzy models, FM, is the partitioning of the input and output space of 

system variables (input, output) into fuzzy regions called linguistic terms using fuzzy sets[68]. The 
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number of linguistic terms is application (problem) dependent. For backing up a truck control 

problem, divide the domain regions for x,    and   into   5, 7 and 7 regions respectively. 

Table 3.1.  x,  LINGUISTIC VARIABLE HAS 5 LINGUISTIC TERMS AND THEIR OPERATING RANGE 

Range Linguistic Terms/MFs 

5.22robotx  LE 

5.325.22  robotx  LE and LC 

5.425.32  robotx  LC 

5.525.42  robotx  LC and CE 

555.52  robotx  CE 

5.5755  robotx  CE and RC 

705.57  robotx  RC 

8070  robotx  RC and RI 

80robotx  RI 

The fuzzy linguistic terms for xrobot are: LE (Left), LC (Left Center), CE (Center), RC (Right 

Center), and RI (Right) and the space 1000  robotx has been divided into five non-uniform (Not 

equal) intervals and the result of MFs analysis for the variable xrobot are summarized in the table-3.1: 

Table 3.2.  ,  LINGUISTIC VARIABLE HAS 7 LINGUISTIC TERMS AND THEIR OPERATING RANGE 

Variable Range Linguistic Terms/MFs 

80robot  RB 

580  robot  RB and RU 

5.425  robot  RU 
605.42  robot

 RU and RV 
7060  robot

 RV 
8070  robot

 RV and VE 
9080  robot

 VE 
10090  robot

 VE and LV 
120100  robot

 LV 
135120  robot

 LV and LU 
170135  robot

 LU 
190170  robot

 LU and LB 
190robot

 LB 

The fuzzy linguistic terms for robot  are:  RB (Right Below), RU (Right Upper), RV (Right 

Vertical), VE (Vertical), LV (Left Vertical), LU (Left Upper), LB (Left Below) and the Space 

00 27090  robot has been divided into seven non-uniform intervals. The result of MFs 

analysis for the variable robot  is summarized in the following table-3.2: 

For the output   the linguistic terms are NL (Negative Large), NM (Negative Medium), NS 

(Negative Small), ZE (Zero), PS (Positive Small), PM (Positive Medium), PB (Positive Large) and 

the Space 3030  robot has been divided into seven non-uniform intervals. The result of active 

MFs analysis for the variable robot  is summarized in the table-3.3:  
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Table 3.3. θ , LINGUISTIC VARIABLE HAS 7 LINGUISTIC TERMS AND THEIR OPERATING RANGE 

Table 3. θ ,  Linguistic variable has 7 Linguistic terms 

and their operating range 

Variable Range MFs 

25robot  NB 

1625  robot  NB and NM 

5.1316  robot  NM 

45.13  robot  NM and NS 

54  robot  NS 

05  robot  NS and ZE 

10  robot  ZE 

51  robot  ZE and PS 

65  robot  PS 

126  robot  PS and PM 
1612  robot

 PM 

2416  robot  PM and PB 

24robot  PB 

3.5 Simulation Results and Discussions 

In this section we report the simulation results carried out with our proposed control algorithm 

described in the previous section. We obtained the fuzzy control rules and their corresponding MFs 

type from the best chromosomes of HGAs after 100 generation.  

 

TABLE 3.4. FUZZY CONTROL RULES AND THEIR CORRESPONDING MFS TYPE 

At the beginning of the simulation, the consequent part and MFs type of each rule is empty i.e., each 

entry of FAM (Fuzzy Associative Memories) cell is empty. To get the consequent part in terms of 

linguistic language form and MFs type of each rule from the developed optimization tool, we 

generate 20 successful control trajectory, whose initial states (x, y,  ) are (25, 30, 60
0
), (80, 30, 

150
0
 ), (0, 10, -90

0
).. etc.  

For all the given initial states the HGAs converges to a set of fuzzy rules with their corresponding 

MFs type. During the simulation, we generate the twenty sets of fuzzy rules (FAM) from twenty 

different initial states. Then these rule bases have been combined together to form the FAM as 

  

x 

LE LC CE RC RI 

 

 

 

RB 1PS/G 8ZE/T 15NS/G 22NM/LT 29NM/G 

RU 2NS/LT 9PM/T 16PM/LT 23PM/G 30NS/G 

RV 3NM/T 10NS/RT 17PB/T 24NB/G 31ZE/G 

VE 4NM/G 11NM/G 18ZE/T 25ZE/G 32NM/T 

LV 5NB/G 12PS/G 19PB/RT 26NS/T 33PM/T 

LU 6PM/G
 13NM/T

 20NB/T
 27NB/T

 34NB/LT
 

LB 7PB/T
 14PB/T

 21PS/G
 28PS/G

 35NB/T
 

Consequent Value/MFs Type, G:Gaussian, T: Triangular, LT: Left 

Triangular, RT: Right Triangular 
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shown in table-3.4 using fuzzy amalgamation (FA) methodology[69, 2] FA method works as 

follows: Firstly, generate an empty new FAM. Secondly, combine and compare two tables (FAM): 

if there exists entries in the cells of first table (FAM) are the same with the corresponding entries in 

the second table (FAM) and vice versa then add the cell entries into corresponding cells of new 

table (FAM). On the other hand, for the entries in the cells of two tables are different then compute 

the average (mean) of the two different entries using the following formula: 

(3.6)                                                                  

1

1
)(  




n

i
i

N
n

NVValueNumeric

 

where n is the number of combining tables, iN is the center numeric values of fuzzy rule tables. Find 

the linguistic term (fuzzy set) for NV where it has highest membership value, and return that 

linguistic term as a result of two different entries into the corresponding cell of new table (FAM). 

After the simulation the HGAs discover a compact set of fuzzy control rules and their 

corresponding MFs type as shown in table-3.4. Figure 3.9 shows an example of MFs form of fuzzy 

rules where rule 6 MFs type is gaussian and rule 32 MFs is type triangular.  

Control Surface: The MFs and rules are design tools that give opportunity to model a control 

surface, a convenient way to examine a two input/one-output control strategy and controller 

properties. The fuzzification of the input variables and the defuzzification process determine the 

shape of the output control surface. The defuzzification process affects the total control surface 

since a single operation is applied to all rules in the rule matrix. The fuzzification process divides 

the inputs and outputs into ranges and the MFs are applied to each range. As the input values 

change from one range to another and if the MFs are different type, the shape of the contour 

changes around the range where the change has occurred. It is obvious that using this attributes one 

can more precisely fulfill a quality criterion in full operational range. The control surface (Fig. 3.10) 

generated by the applied FLCs while using (a) triangular (b) Gaussian (c) Mixed MFs.  

 

Fig. 3. 9.  MFs form of Fuzzy Rules (a) Gaussian (b) Triangular 

After applying the FAM and their corresponding MFs (fuzzy sets) type, we obtain the some control 

trajectories of car like robot in the work place from different initial states as depicted in Fig. 3.11. 

 

RULE 6: IF X=LE ABD  =LU THEN  =PM 
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RULE 32: IF X=RI ABD  =VE THEN  =NM 
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For any initial state ),,( 00 oyx is given to back up the robot to hit the loading dock at right angle 

090f and final state at (        = (50, 100). The desired trajectory can be that the robot moves 

along the target line or coincide with the target line and then goes along y-axis to arrive at the goal.  

 
 

 

(a) (b) (c) 

Fig. 3.10. Control Surface generated by applied FLCs (a) Used Triangular MFs (b) Used gaussian MFs (c) Used mixed 
MFs(In a rule base some rules MFs type is triangular, some rules MFs type is gaussian and so on) 

3.5.1 Sensitivity Analysis while selecting different MFs type 

In this study, fuzzy rule base is represented by mixed MFs type, some fuzzy rules in rule base are 

represented by triangular MFs, and some are represented by gaussian MFs etc. while other existing 

control method used only one MFs type (i.e. either gaussian or triangular) for the whole rule base. 

In our control algorithm, the simple triangular, left-triangular, right-triangular or gaussian MFs are 

often used, but may not be the best choice and the basic effect is stated as follows. We have shown 

that the controller performance is improved greatly when using the mixed MF type i.e., some rules 

in the rule base used gaussian, some used triangular and so on.  

 

Fig. 3.11. Car like robot trajectories 

In this case, fitness function is actually an objective function that is used to determine which 

solution within a population is better. In evolution algorithm, the solution space consists of a 

population of chromosomes where each chromosome is one solution that can be evaluated by the 

fitness function. Finally, the chromosomes can be ranked by calculating the fitness function 

value. In this study, chromosomes are sorted according to the fitness error and select the best one 

among all chromosomes of each generation. The fitness error is calculated by the equation 3.7. 

Figure 3.12 shows the genetic progress of average fitness score of (a) controller with triangular MFs 

type, (b) controller with gaussian MFs type, and (c) proposed controller, adaptive selection of mixed 

MFs type. The minimized average trajectory errors after 100 generations for three cases (a, b, c) are 

1.16185, 1.14905, and 1.09342 respectively. From this figure we have shown that when the solution 
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is near the optimum point, only small improvement (sometime the improvement is insignificant) is 

achieved in each generation. 

We also analyzed the performance of our control algorithm with mixed MFs and fuzzy controller 

with triangular or gaussian MFs type. The performances are compared using the value of docking 

errors and the trajectory errors as criteria (shown in Fig. 3.13 and Fig. 3.14).  

The trajectory error is the ratio of the distance of the actual trajectory of the car like robot divided 

by the straight distance from initial state to final state.  

(3.7)                                                  
state final  tostate initial from distanceStraight 

Trajecory  Actual of Distance
Error Trajectory 

 

Fig. 3.12. The best of generation Fitness score (Average Trajectory error in percentage) 

Figure 3.13 represents the comparison of trajectory errors between the, (a) controller with triangular 

MFs and (b) controller with Gaussian MFs (c) proposed controller with mixed MFs type. From the 

Fig. 3.13, we can obtain the average trajectory error of the three controllers (a, b, c) are 1.196, 1.141 

and 1.098, respectively. With this trajectory error comparison, we can see the performance of the 

controller (c) is superior to that of (b) by 0.043 and to that of (a) by 0.098.  

Fig. 3.13. Comparison of trajectory error between three controller (a) Controller with triangular MFs, (b) Controller 

with Gaussian MFs, and (c) Controller with Mixed MFs (Optimal selection of MFs type through optimization tool). 
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The docking error is the Euclidean distance between the desired final state ],,[ ddd yx  and the 

actual final state ],,[ ddd yx  . 

222 )()()(Error Docking fdfdfd yyxx                                               (3.8) 

Figure 3.14 shows the comparison of docking errors of (a) controller with triangular MFs, (b) 

controller with gaussian MFs, and (c) the proposed controller. From this figure, we can obtain the 

average docking error of the three controllers (a, b, c) are 1.035, 0.91 and 0.71, respectively. With 

this docking error comparison, we can show the performance of the controller (c) is superior to that 

of (b) by 0.20 and to that of (a) by 0.325.  

Finally, we have shown that the shape, distribution and type of MFs have a significant influence on 

the behavior of fuzzy logic control systems. Both the improvement and the deterioration of the 

systems’ performance due to the changes in the MFs type have been reported also. 

Fig. 3.14.Comparison of docking error between three controller (a) Controller with triangular MFs, (b) Controller with 
Gaussian MFs, and (c) Controller with Mixed MFs (Optimal selection through HGAs). 

3.5.2 Evaluating the work 

The car like mobile robot (truck), taken from [75, 76, 3] is a typical problem in nonlinear motion 

control of nonholonomic systems. It is a notable example that is generally used as benchmark 

problem for the evaluation of new control algorithms and as such it has been well analyzed [75, 76, 

3].  

Fig. 3.15. Comparison of trajectory steps between three controllers (a) Conventional Fuzzy Controller, (b) Neural Controller 
with clustering [3], and (c) Proposed Fuzzy Controller. 
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Recently Li and Li in[3] have presented the fuzzy control system based on hybrid clustering method 

and neural network for trajectory tracking of a car like robot (truck). In their two stage work, 

structure identification and parameter identification are used to construct fuzzy logic control 

algorithm. The clustering method is applied to construct an initial fuzzy model to determine the 

number of fuzzy rules from the intuitionistic-desired trajectories. The clusters are automatically 

generated and the data are appropriately classified through clustering method. Then neural network 

is applied to obtain a more precise fuzzy model in the parameter identification for the car like robot 

control. The clustering method (off-line approach) is one of the most promising techniques when 

input/output samples are available for the system. It is not possible, however, to generate an initial 

fuzzy model without such type of input output data.  

Fig. 3.16. Comparison of trajectory for the initial states (15, 15.5, 00) between three controllers (a) Conventional Fuzzy 
Controller, (b) Neural Controller with clustering[3], and (c) Proposed Fuzzy Controller. 

The number of required trajectory steps of the car like robot from given states to the loading zone 

controlled by the conventional fuzzy system, the neural fuzzy controller with clustering[3] and our 

proposed control algorithm are given in Fig. 3.15 and Fig. 3.16 (graphical trajectories) for the initial 

state (15, 15.5, 0
0
).  

Fig. 3.17. Comparison of trajectory error between Neural Controller [76] and our proposed Fuzzy Controller. 

The number of required trajectory steps for a neural controller with clustering is smaller than the 

conventional method but larger than our approach. In Fig. 3.16, we can see the proposed controller 

backs the robot up more smoothly than neural controller [3] and conventional controller [3] shown. 

Figures 3.15 and Fig. 3.16 show our proposed control algorithm performance to be better than that 

of existing approaches[3]. It both takes fewer steps to arrive at the goal and shows smoother 

trajectories. 
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Fig. 3.18. Comparison of docking error between Neural Controller[76] and our proposed Fuzzy Controller. 

We also compared the accuracy of the proposed controller against the existing neural controller [76] 

in terms of a docking error and a trajectory error. 

Figure 3.17 shows the comparison of trajectory error between proposed fuzzy controller and neural 

controller[76]. The average trajectory error for the neural controller[76] and the proposed fuzzy 

controller are 1.1768 and 1.0986 respectively. Figure 3.18 shows the comparison of docking error 

between proposed fuzzy controller and the neural controller[76]. The average docking error for 

neural controller and proposed fuzzy controller are 1.4483 and 0.7983 respectively.   

Figure 3.19 shows the comparison of sample robot (truck) trajectory for three initial states between 

proposed fuzzy controller and neural controller[76]. With this trajectory error (Fig. 3.17), docking 

error (Fig. 3.18) and trajectory (Fig. 3.19), we can show that the average performance of the fuzzy 

controller is superior to that of neural controller[76] by 0.0782 and 0.65 respectively.    

 

Fig. 3.19 Comparison of robot (truck) trajectory between Neural Controller[76] and our proposed Fuzzy Controller for the 

initial states (a) (20, 20, 850) (b) (30, 40, -100) and (c) (80, 20, 2700) 

3.6 Conclusions 

This study presented new HGAs to optimize parameters of MFs of linguistic values, optimized 

linguistic rules and their corresponding MFs type concurrently for building a fuzzy controller. The 

new HGAs improve accuracy and stability of the outcomes by improving the degree of cooperation 

(i.e., optimal MFs type for rule) between DB and RB. In our simulation, we found that the fuzzy 
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controller is sensitive not only to how the rules are created but also to how the type of MFs are 

assigned to each rule. We analyzed the behavior of proposed method by applying it on the car like 

robot and compared the outcomes to[3] and[76] which are two common existing approaches in this 

field. For the car like robot, the controller is able to generate an appropriate control action so that 

the next state is appropriate in an overall trajectory sense and irregular or ineffective paths are not 

generated. Actually more tests also showed that HGAs adapts fuzzy control rules and their 

corresponding MFs type to continuously improve system control and the control results are 

successful and our method is encouraging. Simulation results illustrate that the our proposed 

generated fuzzy controller through HGAs performs well, better than the neural controller[3] with 

clustering and neural controller[76], as judged on the basis of a docking error, a trajectory error, 

trajectory steps and sample robot trajectory.  
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This chapter describe the rule reduction techniques of fuzzy logic controller. This chapter also 

describes some optimization criteria for designing a fuzzy logic controller. 

4.1 Introduction 

A fuzzy logic systems (FLSs) is a universal approximator that maps a crisp input vector into a crisp 

scalar output where the heart of a FLSs is a linguistic rule base. The number of rules increases 

exponentially as the number of inputs increases [77]. In some cases when the number of inputs is 

high as a large parameter number equivalently, it produces a serious computation problem. Fuzzy 

systems that can handle large number of inputs as well as large number of fuzzy rules may be hard 

to design and have large storage consumption, high computation complexity and poor convergency 

in parameter tuning.  

In addition to the inconsistency level of rule pairs, it is also meaningful to search for the excess, 

irrelevant, erroneous or redundant rules in the rule base. The redundant rules do not contribute to the 

performance of the controller. For this reason, redundant rules are remove from the rule base is 

necessary. Moreover, irrelevant, redundant, erroneous and conflictive rules in a rule base perturb the 

controller performance when they coexist with others. Therefore, it makes sense to minimize the 

rule set by removing the irrelevant, erroneous and redundant rules from the original rule base and 

merging the conflicting rules, especially when performing fuzzy inference calculations in real time. 

4.2 Review of Existing Methods and differences to proposed Method  

In recent years, a sustainable number of methods have been developed towards fuzzy model 

generation and simplification as well as rule base size reduction in fuzzy systems [78]-[90]. Some 

methods focus on selection of important rules from the rule base that contribute to the inference 

mechanism, some methods are proposed to eliminate the redundant rules based on some criteria or 

merger of rules that share some common property. Chao and Chen [78] proposed a fuzzy rule-base 

simplification method on the basis of similarity analysis. Some fuzzy similarity measures on the 

basis of triangular membership function were proposed to eliminate redundant fuzzy rules and 

combine similar input linguistic terms.  

Setnes et al. [79] proposed a rule-base simplification approach using set-theoretic similarity 

measures to reduce the number off fuzzy sets in the models. Yen and Wang [80] presented a method 

to select a set of important fuzzy rules from a given rule-base using the orthogonal transformation-

based methods. Moreover, rule reduction has been addressed in [78-81] using orthogonal 

transformation or singular value decomposition. In these methods, fuzzy systems are modeled based 

on a linear regression, a rule firing strength matrix is constructed. The decision whether rules are 

eliminated or retained is done according to the effective rank of the firing matrix or the evaluation 

of the rule contributions for ordering. In these methods, a pre-determined number off fuzzy rules is 

required to build initial fuzzy model. 
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Jin [82] proposes an effective approach to data-based fuzzy modeling of high-dimensional systems. 

In order to remove the redundancy in the rule-base a distance based similarity measure has been 

used to define the similarity of fuzzy sets. On the other hand, genetic algorithms and evolutionary 

methods have been also successfully used for rule reduction [83]-[85]. In [83][86], the authors 

present a method to extract rules that contribute the most to the inference system using genetic 

algorithms. On the other hand, a sustainable number of clustering methods have been proposed to 

reduce the rule base by pruning the undesired (redundant/erroneous) rules and merging the similar 

rules [87]-[89]. In [79][90] use a similarity measure to merge the similar rules.   

Fig. 4.1. Schema for discovery and reducing fuzzy rules and tuning suitable MFs  

The above methods have two steps: first, the generation of an original rule base and removal of the 

redundant or conflicting rules from the original rule base. The general problems associated with this 

type of methods are high computational complexity in order to achieve good performance and rather 

conservative results. But very few study has been done on rule base size reduction techniques that 

preserve the inference, i.e., the outputs of the original and the reduced rule bases are identical. This 

study proposes a novel rule base size genetic reduction technique for a restricted class of fuzzy 

systems that preserves the inference. 

4.3 Adaptive Model: Some Optimization issues and Rule Learning and Reducing 

In this study, the binary and real coded coupled GAs based adaptive scheme is considered for 

discovering and reducing useful fuzzy rule base size and generate suitable MFs. The control 

algorithm is divided into two phases as depicted in Fig. 4.1: 

(1) A genetic process to learn the MFs. 

(2) A genetic method to learn and reduce fuzzy control rules. 

We propose a genetic learning process for getting the MFs together with a reducing process for 

getting the optimal number of rules for building the fuzzy controller to maximize the controller 

performance.  
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4.3.1 Genetic Rule Learning and Reduction 

Fuzzy logic systems (FLSs), also called fuzzy inference systems (FIS), are both intuitive and 

numerical systems that maps crisp inputs into a crisp output.  Every FLSs consists of a rule base. 

The j
 th

 rule of the fuzzy controller is of the following format: 

     .......       
21 2211 m

j

k

j

k

j BisyThenAisxandAisxIFR                                         (4.1) 

where ( nl,.......3,2,1k n  ) and nlIII ......, , , 3 21 is the number of linguistic variables for the 1
st
, 2

nd
, 3

rd
 

… n
th

 crisp input. mlm .....4,3,2,1 where ml is the number of linguistic variable for the output 

variable.  

The number of fuzzy rules increases exponentially with the number of input variables and their 

corresponding linguistic variables. If )....... , ,( 21 nxxx  is the inputs variables and )....... , ,( 21 nIII are 

their corresponding number of linguistic terms then the number of candidate rules is 

nIIIIr .......321  . The control action derived from the consequent part of the fuzzy rules.  

In the fuzzy model, the consequent value of fuzzy rule   is either constant or linear combination of 

input variables. If the value is constant consequence and related to the number linguistic variables of 

output variables, then the total number of candidate rules increases by   mIrq  for a FLSs. Then 

the implementation of such controller requires a huge amount of computation time for each step 

time in order to compute the appropriate control action to be applied to the controller.   

Generalizing the fuzzy control rules (eq
n
 4.2) by adding the weight factor, j

mw , determines whether 

the rule is included in the rule base or not as follows:  

       .......       
222111 m

j

m

j

k

j

k

j BwisyThenAisxandAisxIFR                                      (4.2) 

The weight factor, j

mw , is binary value 0 or 1. In this study we consider three factors to determine 

whether the rule is included in the rule base or not. The factors are as follows:  

If  


mI

m

j

mw
1

0 i.e there is no consequent of j
th

 rule then exclude the j
th

 rule from the candidate rule 

base. 

If  


mI

m

j

mw
1

1 i.e., there is only one consequent of j
th

 rule then include the j
th

 rule directly to the rule 

base. 

If  


mI

m

j

mw
1

2 or more i.e., there are two or more consequent of j
th

 rule then combines the two or 

more consequences into one consequence using the following equation: 

 






n

i

iN
n

NVValueNumeric

1

1
)(                                     (4.3) 

where n is the number of consequent, iN is the center numeric values of fuzzy rule consequence. 

Find the linguistic variable for NV where it has the highest membership value, and return that 

linguistic variable as a result of different consequences.  

Table 4.1. CONSEQUENT OF RULES ENCODING  TECHNIQUE 

Rule-1 Rule-2 Rule-3 Rule-4 Rule-5 Rule-6 Rule-7 Rule-8 Rule-9 

N Z P N Z P N Z P N Z P N Z P N Z P N Z P N Z P N Z P 

1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 
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In this case a binary coded genetic schema is applied. Each sub chromosome is a vector of binary 

numbers whose size is the number of candidate rules, r. The vector contains the binary weights j

mw

, determines the consequence of the rule.  Then a decoding schema of sub chromosome as well as 

reducing method is shown in Fig. 4.2. For illustration, you wish to design a control system for a 

problem that has two inputs and one output. In order to clarify the basic ideas of our proposed 

approach, we have chosen two inputs
1x , 

2x   and one output y . It is also mentioned that you can 

chose higher number of input and output variables. In order to design a controller, at first divide the 

state space input 
1x  

2x  variable and output y  variable spaces are divided into fuzzy regions and 

assign a fuzzy MFs of each region. In our running example, we assume that we divide the domain 

regions for
1x , 

2x and y   into   3 regions.  

Fig. 4.2. Rule Reducing Technique 

The linguistic variables for 1x
 2x

 
and y are N (Negative), Z (Zero) and P (Positive).  There are 9 

candidate fuzzy rules, and the fuzzy rule matrix (FRM) can be formed as 3×3. The probable 

consequent value of each rule can be N, Z or P.  If we apply our proposed method then it reduces 

the rule base. In this case the weighting factor j

mw is used as the learning parameter to tune the 

fuzzy rules and reduce the undesired rules. The weighting factor written a bit string depicted in table 

4.1. One of the complexities at the rule base reduction level is to merge the conflicting rules, having 

same antecedents value but different consequent value. Several methods have been developed in the 

literature in different ways to merge the conflicting rules [91]-[94]. In this study, we propose a 

simple technique to reduce the computation complexity for merging the conflicting rules. Figure 4.3 

shows an example of merging technique of conflicting rules with different consequent values. After 

the evolution process of GAs the bit string is decoded into fuzzy production rules as well as reduced 

rules as shown in table 4.2. 
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Fig. 4.3. Consequents combination Technique 

4.3.2 Genetic Tuning process to obtain MFs 

In the proposed learning method of suitable MFs, we will use evolutionary algorithms called CHC 

algorithm [95]. The CHC algorithm is a nontraditional genetic algorithm which combines a 

conservative selection strategy that always preserves the best individuals found so far with a radical, 

highly disruptive recombination operator that produces offsprings which are maximally different 

from both parents. This GAs presents a good trade-off between exploration and exploitation, being a 

good choice in problems with complex search spaces. 

Fig. 4.4. Parameters defining the MFs 

4.3.2.1. MFs Parameter Codification and Initial Gene 

In this case a real coded genetic schema is applied. Each chromosome is a vector of real numbers 

whose size is kept the same as the length of the vector with size n×(m×2), where n is the number of 

items with m linguistic terms. A linguistic term denoted by the fuzzy set can be uniquely defined by 

its two parameters, aji and bji as shown in Fig. 4.4. The Gaussian shape has been adopted for all the 

MFs in the fuzzy model. The gaussian shape is chosen because of its simple shape; membership 

functions of any other form, for example, triangular or trapezoidal, can be considered as well. Then 

a sub chromosome has the following form (Fig. 4.5): 
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Table 4.2. REDUCED RULE BASE FOR FLC 

4.3.3 Genetic optimization process Both Rules and MFs 

The chromosome is composed of two main sub chromosomes containing a) MFs parameters of 

antecedents and consequents and b) Parameters that are used for both rule tuning and rule reducing.   

The previous section described the structure of the overall system in detail. The previous section 

also presented the parametrization of a FRBS that includes the codification of MFs, control rules 

and reducing process. Referring to the previous section, it is clear that each chromosome is 

composed of two sub chromosome, sub chromosome 1 and sub chromosome 2.  Sub chromosome 1 

is a vector of real valued numbers and it contains MFs parameters while sub chromosome 2 is a 

vector of binary valued numbers.    

Fig. 4.5.  MFs Learning coding schema example 

In the present section, a genetic optimization process is described whose goals are to assign the 

antecedents and consequents MFs of the input and output variables and to obtain the reduced rule 
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base. From the overall point of view, the objective of the optimization process is to reduce the rule 

base as well as to optimize the MFs parameters. 

To optimize the chromosome 1 i.e., real valued vector that defines the MFs parameters, a 

nontraditional genetic algorithms called CHC algorithm [95] is used. The four main components of 

the algorithm are as follows:    

4.3.3.1. An elitist selection  

After the evaluation of the initial randomly generated population, the CHC algorithm begins the 

creation of the new FLCs generation. The chromosomes of the current population are merged with 

the offspring population obtained from it. Then the best individuals are selected to take part in the 

population of next new population.  

4.3.3.2. Crossover  

A highly disruptive crossover, HUX, which crosses over exactly of the non-matching alleles, where 

the bits to be exchanged are chosen at random without replacement. In this way, we guarantee that 

the two offsprings are always larger fitness value measured by genetic distance than their two 

parents, thus maintaining not only a high genetic diversity in the new population but also decreasing 

the risk of premature convergence. The highly disruptive recombination operator, HUX, replaces 

classical mutation plus crossover in a GAs. This crossover assures ergodicity of the procedure [96]. 

 

In each generation, chromosomes are sorted according to the fitness error and select the best one 

among all chromosomes of each generation. 

4.3.3.3. An incest prevention mechanism  

Parent population on each generation is randomly chosen without replacement and paired for 

mating during the reproduction process. However, not all these couples are allowed to cross over. 

Before mating, the Hamming distance between the potential parents is calculated and if a half of 

this distance does not exceed a difference threshold D, they are not mated and no offspring coming 

from them is included in the offspring population. The threshold is usually initialized depending on 

the chromosome length. According to [95], if L is the chromosome length the threshold should be D 

= L/4. If no new offspring is obtained and included in the population in one generation, the 

difference incest threshold d is decremented by one. The effect of this mechanism is that only when 

diverse potential parents are mated, the diversity required by the difference threshold automatically 

decreases as the population naturally converges. 

4.3.3.4. A restart Process 

This substitutes the usual GAs mutation, which is only successfully applied when the population has 

converged. The difference threshold test is considered as the stagnation of the search measure. The 

stagnation of the search happens when it has dropped to zero and several generations have been run 

without introducing any new individual in the population. 

Then the population is reinitialized (diverged) by using the best M, in this case M=1, individuals as 

the first chromosome of the new population and generating the remaining M-1 chromosomes by 

randomly flipping a percentage called divergent rate (DR), in this case DR=0.35, in their bits 

belonging to the best global individual. 

The general parameters that affecting the CHC evolution process are as follows: Population size 

(PS), number of individuals in the population. Divergence rate (DR), percentage of the best global 
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solution found used as a pattern to construct the new population in the restart stage. The values are 

in [0, 1]. Difference threshold (D), degree of maximum similarity allowed between two individuals 

in the population in the crossover process. The values range of D is [0, L/2], where L is the length 

of the individual. Best individuals (M), number of best individuals considered when the weakest 

population is reinitialized in order to increase diversity. 

The learning process of MFs works based on the real coded CHC algorithm. Extend the classical 

binary coded CHC algorithms to deal with real coded chromosomes that increase the coarseness of 

the search space. New real coded extension process maintains existing basis as much as possible. 

The main genetic operations of real coded CHC algorithm are same as the classical binary coded 

CHC algorithms [97].     

In both cases, the elitist selection and the restart are exactly the same. The incest prevention 

mechanism works with a different crossover rate. The detailed description of incest prevention 

mechanism is in [97]. Incest prevention mechanism recombination of between two parents is only 

performed if the distance between two parents is not very similar, i.e. if the distance between them 

is higher than a parameter d, the incest threshold. 

4.3.3.5 BLX-a crossover operator 

For real coded CHC algorithms, the BLX-  crossover is considered instead of the HUX one [19].  

In the following, we describe the BLX-  crossover operator in detail. The parameter  is used to 

make this crossover as disruptive as desired. Let ),.......,( 11

2

1

11 ncccC   and ),.......,( 22

2

2

11 ncccC   be 

two real-coded parents to be crossed where n is the function dimensionality. This crossover 

generates an offspring ).........,,( 321 nooooO  where each io is generated randomly within the 

following specified interval: ] ,[ maxmin  ICIC   where ),min( 21

min ii CCC  , 

),max( 21

max ii CCC  and minmax CCI  .  

4.4 Simulation Results and Discussions 

In this section, simulation results are presented in order to illustrate the effectiveness of the 

proposed control algorithms. 

4.4.1 Application to the control of Two degree of freedom Inverted Pendulum 

Being an under-actuated mechanical system that is inherently open loop and unstable with highly 

non-linear dynamics, the inverted pendulum systems are a perfect test-bed for the design of a wide 

range of classical and contemporary control techniques. However, their nonlinear dynamics present 

a challenging control problem, since traditional linear control approaches do not easily apply.  
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Fig. 4.6. Cart-pole typed inverted pendulum system 

This control application is a popular demonstration of using feedback control to stabilize an open-

loop unstable system with fewer control inputs than the degrees of freedom. The cart-pole task 

involves a balancing pole hinged to a motion less cart that travels left or right along a straight 

bounded track as shown in Fig. 4.6.  The pole is free to rotate only in the vertical plane of the cart 

and track. There are no sidelong resultant forces on the pole and it remains balanced as shown in 

Fig. 4.7.  

Fig. 4.7. Equilibrium Points 

The control objective is to apply a sequence of left or right forces of fixed magnitude to the wheeled 

cart so that it swings up the pendulum from its natural pendant position and stabilizes in the inverted 

position, once it reaches the upright equilibrium point (Fig. 4.7). The cart must also be homed to a 

reference position on the rail. The force F [-10, 10] newton’s is applied to the cart and a zero 

magnitude force is not permitted. The total kinetic energy of the system is simply the sum of the 

kinetic energies of each mass. The kinetic energy TC of the cart is 

2)(
2

1
xMTc
                                                                        (4.1) 

The pole can move in both the horizontal and vertical directions. So the kinetic energy Tp of the 

pole is 

))()((
2

1 2
2

2
2 zxmTp                                                        (4.2) 

From the free bodied diagram 2x and 2z are equal to 

)(sin2 Lxx                                                                    (4.3) 

)(cos2 Lz                                                                         (4.4) 
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))((cos2   Lxx                                                               (4.5) 

))((sin2   Lz                                                                   (4.6) 

The total kinetic energy, T, of the system is equal to the  

pc TTT                                                                       (4.7) 

Substitute Eq. (4.1), (4.2), (4.5) and (4.6) in (4.7)  

))()(cos()(
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2

1
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2

1 2222   xmLmLxmxMT                                              (4.8) 

The potential energy, E of the system is stored in the pendulum so 

2mgzE                                                                                (4.9) 

 Substitute Eq. (4.4) in (4.9) 

)(cosmgLE                                                       (4.10) 

The Lagrangian function is 

ETP                                                                             (4.11) 
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1 222  mgLmLxmLxmMP                                (4.12) 

The state space variables of the system are x and  , so the lagrange equations are 
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The dynamics of the cart-pole system are modeled as follows by solving Eq. (4.13) and (4.14). 

21 xx                                                                     (4.15) 

)cos)((

))(cos))(cos(sin)(sin)((

1
2

1
2
2111

2
xmmML

FxxxxmLxgmM
x




                    (4.16) 

43 xx                                                                     (4.17) 
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               (4.18) 

Let the four state variables are 

θ1 x ; angle of the pole with respect to the vertical axis. 

θ2
x ; angular velocity of the pole with respect to the vertical axis. 

xx 3 ; position of the cart. 

xx 4 ; velocity of the cart. 

F1= Force applied to control the inverted pendulum angle. 

F2= Force applied to control the inverted pendulum cart. 

 F=F1+F2; Total Force applied to control the inverted pendulum.   
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Fig. 4.8. Fuzzy Logic Control Loop with 625 fuzzy rules 

4.4.2 Automatic Design of FLCs of two degrees of freedom inverted pendulum 

The main purpose of the fuzzy logic control of the system is to reset the pendulum angle θ and cart 

position x from every position to the desired one, specified in our case by TTx ]0,0[],[  . If each 

state variable i is divided into ni =5 linguistic terms then the number of rules is 5
4
 =625 fuzzy rules. 

The general structure of the rule is 

)(F and )(FThen            

)B is ( and )B is (  )  (  )  ( 

2211
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i
121

ii

ii
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In this case we applied GA as a successful optimization method which has been shown effective in 

improving the tuning the parameters and learning the fuzzy rule. The fuzzy logic control loop is 

shown in Fig. 4.8. The details of simulation results are presented in Fig. 4.9 to validate the model in 

Fig. 4.8.  The first one (Fig. 4.9) depicts the evolution of pendulum angle θ for different initial 

condition varying between -40
0
 and +40

0 
: }15  ,25  ,30  ,35 ,15- ,2530- ,35{θ(0) 0000000  . 

And x(0) is to fixed 0
0
. The second one (Fig. 10) is the evolution of x, θ(0)  is fixed to 0

0
. 

In this case, our proposed algorithms generate a relative large rule base (625 fuzzy rules).  If we 

choose the less number of linguistic levels (fuzzy sets) for each state variable then the rule base size 

is reduced. But this less number of fuzzy sets selections will affect the simulation performance. 
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(b) 

 

Fig. 4.9. (a) Evolution of pendulum angle θ for different initial condition varying between -400 and +400 while 

using 625 rules (b) Pendulum cart position is little bit swing up and stabilizing. 

 
(a) 

 
(b) 

Fig. 4.10. (a)  Evolution of pendulum cart position x for different initial condition varying between -3m and +3m while using 

625 rules (b) Pendulum angle is little bit swing up and finally stabilizing. 

4.4.3 Genetic Reduction of Rule base of FLCs 

In order to solve the rule explosion problem we apply our genetic rule base reduction technique, and 

then it takes 187 instead of 625 rules for the control of two degrees inverted pendulum. The first one 

(Fig. 4.11) depicts the evolution of pendulum angle θ for different initial condition varying between 
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-40
0
 and +40

0 
: }15  ,25  ,30  ,35 ,15- ,2530- ,35{θ(0) 0000000  . And x(0) is to fixed 0

0
. The 

second one (Fig. 12) is the evolution of x, θ(0)  is fixed to 0
0
. 

 
(a) 

 
(b) 

Fig. 4.11. (a) Evolution of pendulum angle θ for different initial condition varying between -400 and +400 while using 187 

rules (b) Pendulum cart position is little bit swing up and stabilizing. 
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(a) 

 
(b) 

Fig. 4.12. (a)Evolution of pendulum cart position x for different initial condition varying between -3m and +3m while using 

625 rules (b) Pendulum angle is little bit swing up and finally stabilizing. 

 

4.4.4 Genetic Reduction of Rule base with decoupling approach of FLCs 

To solve this explosion of fuzzy rules, at first, we decompose a complex single-block fuzzy 

controller (Fig. 4.8) into a decoupled FLCs depicted in Fig. 4.13. In this case one can consider the 

pendulum cart and rod independent from the other, yielding smaller automatic designed fuzzy logic 

controllers, FLC1 and FLC2. Here, FLC1 is applied to control the pendulum angle and FLC2 is used 

to control the pendulum cart.  

 

-10

-8

-6

-4

-2

0

2

4

6

8

0 20 40 60 80 100

P
e
n
d
u
lu

m
 A

n
g
le

 i
n

 D
e
g
re

e
 

Time Step (10 Time Steps=1 Sec) 

-3

-2

-1

0

1

2

3

0 20 40 60 80 100

P
e
n
d
u
lu

m
 C

a
rt

 P
o
s
it
io

n
 i
n

 M
e
te

r 

Time Step (10 Time Step=1 Sec) 



OPTIMIZE FUZZY SYSTEM WITH RULE BASE REDUCTION 

53 

 

 

 

Table 4.3. REDUCED RULE BASE WITH 16 RULES FOR FLC1 

Table 4.4.  REDUCED RULE BASE WITH 14 RULES FOR FLC2 
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le
 N

o
.   

Antecedents 

 

Consequents 

R1 If x=NL and x =NH Then F2=ZE 

R2 If x =ZE and x =NH Then F2=NL 

R3 If x =PL and x =NH Then F2=PH 

R4 If x =NH and x =NL Then F2=ZE 

R5 If x =ZE and x =NL Then F2=NH 

R6 If x =NH and x =ZE Then F2=NL 

R7 If x =NL and x =ZE Then F2=ZE 

R8 If x =ZE and x =ZE Then F2=PL 

R9 If x =PL and x =ZE Then F2=ZE 

R10 If x =PH and x =ZE Then F2=NH 

R11 If x =NL and x =PL Then F2=NL 

R12 If x =ZE and x =PL Then F2=ZE 

R13 If x =PL and x =PL Then F2=ZE 

R14 If x =ZE and x =PH Then F2=PH 

 

 

R
u

le
 N

o
. 

  

Antecedents 

 

Consequents 

R1 If θ=NL and θ =NH Then F1=ZE 

R2 If θ =ZE and θ =NH Then F1=NH 

R3 If θ =PL and θ =NH Then F1=NL 

R4 If θ =PH and θ =NH Then F1=ZE 

R5 If θ =NH and θ =NL Then F1=PH 

R6 If θ =NL and θ =NL Then F1=ZE 

R7 If θ =ZE and θ =NL Then F1=NH 

R8 If θ =NL and θ =ZE Then F1=PL 

R9 If θ =ZE and θ =ZE Then F1=PH 

R10 If θ =PL and θ =ZE Then F1=ZE 

R11 If θ =PH and θ =ZE Then F1=NH 

R12 If θ =NL and θ =PL Then F1=ZE 

R13 If θ =ZE and θ =PL Then F1=NH 

R14 If θ =PL and θ =PL Then F1=ZE 

R15 If θ =ZE and θ =PL Then F1=PL 

R16 If θ =NL and θ =PL Then F1=ZE 

 

 



OPTIMIZE FUZZY SYSTEM WITH RULE BASE REDUCTION 

 

 54 

Fuzzy control method is a good controller for controlling the single-input-single-output (SISO) 

system. It means that only one input could be controlled by a fuzzy controller in a time. However, 

the Fuzzy alone cannot be used successfully to control the cart's pendulum and the pendulum’s 

angle in the same time. The results display that the cart moves in the negative direction with a 

constant velocity when an impulse force is applied to move it. However, in this study, by applying 2 

fuzzy controllers for the system, the inverted pendulum was stabilized successfully. ‘fuzzy 

controller 1- FLC1’ and ‘fuzzy controller 2- FLC2’ were used to control the angle of the pendulum 

and the position of the cart respectively. As a conclusion, the linear model of inverted pendulum 

system can be stabilized successfully by applying two fuzzy controllers simultaneously if they are 

tuned properly. Both of the controllers were tuned simultaneously so that the control variable of the 

controllers is appropriately determined. The control variables (F1 and F2) were summed together to 

become a force (F) to the system. 

Thus, the task of fuzzy logic control is similar to that in the previous section: moving from every 

position to a given final one given by 00dx  for the first sub controller (FLC1) and 0

d 0θ    for 

the second one (FLC2). Our proposed genetic learning and reducing technique is applied for 

generating and reducing the two fuzzy rule bases, one for controlling the pendulum cart and another 

one for the controlling the pendulum angle.  For FLC1 the fuzzy control rule base with 16 rules can 

be represented as a linguistic matrix shown in table 4.3 where the input variables θ,  θ


 and output 

variable F1 with the linguistic level sets {NH: Negative High, NL: Negative Low, ZE: Zero, PL: 

Positive Low, PH: Positive High}, {NH, NL, ZE, PL, PH} and {NH, NL, ZE, PL, PH} respectively. 

For FLC2 the fuzzy control rule base with 14 rules can be represented as a linguistic matrix shown 

in table 4.4 where the input variables x, x and output variable F2 with the same linguistic level sets 

as FLC1. 

 

 

Fig. 4.13. Decoupled  Fuzzy Logic Control Loop 

The rule base can be established on a two dimensional space like Table 4.3 and Table 4.4. It is seen 

that the total number of rules is greatly reduced compared with conventional FLCs described in the 

previous section. In other words, a conventional fuzzy system has four states to be controlled and 

the range of each state variable is divided into five fuzzy sets. The number of rules forming the 

knowledge database is 5
4
 =625. With the present decoupled method, only two variables need to be 

fuzzified, and only (16+14)=30 rules are necessary to establish the knowledge database. 
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Referring to the previous section, we have shown that the obtained fuzzy rule base with 625 rules 

for the conventional controller and obtained fuzzy rule base with 30 rules for the decoupled 

controller. In this section, we apply our genetic reduction technique to reduce the obtained rule base.  

The resulted fuzzy rule base contains 16 rules to control the pendulum angle and 14 rules to control 

the pendulum cart. 

 
(a) 

 
(b) 

 

Fig. 4.14. (a) Evolution of pendulum angle θ for different initial condition varying between -400 and +400 while x(0) is fixed 

0 but (b) Pendulum cart position is little bit swing up after the stabilization for all cases. 

The details of simulation results are presented in Fig.4.14 to validate our control algorithm for 

learning and reducing and get the optimal fuzzy model in Fig. 4.13.  Figure 4.14 depicts the 

evolution of pendulum angle θ for different initial condition varying between -40
0
 and + 40

0
: 

}15  ,25  ,30  ,35 ,15- ,2530- ,35{θ(0) 0000000  . And x(0) is to fixed 0. In this case, the initial 

pendulum angle is positively or negatively big, and the pendulum cart position stands up 

( 0x(0)  ), the fuzzy logic controller starts the pendulum angle control first. The pendulum angle is 

moved toward the desired direction such that the pendulum cart is swing up in a little bit and the 

pendulum system is completely stabilized within few seconds. 

The second one (Fig. 4.15) is the evolution of cart position x for different initial condition varying 

between +3m and -3m while θ(0)  is fixed to 0
0
. Since at the control beginning the cart position is 

big and the pendulum stands up, the fuzzy logic controller starts the cart position control first. The 

cart is moved further toward the desired direction ( 0dx m) such that the pendulum angle is 

inclined to about 
07θ  . After that, the pendulum angular control takes the highest priority order 
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over the pendulum cart position control, and the fuzzy logic controller moves the cart towards the 

desired position so that the pendulum angle is rotated towards the upright position. As a result the 

inverted pendulum system is completely stabilized within some 4.2 (42 time steps) seconds. 

 
(a) 

 
(b) 

Fig. 4.15. (a) Evolution of pendulum cart position x for different initial condition varying between -3m and +3m while  θ(0)

is fixed 0 but (b) Pendulum angle is little bit swing up and finally stabilizing. 

We evaluate the proposed control algorithms by using its error rate. For quantifying the errors, we 

use three different performance criteria to analyze the rise time, the oscillation behavior and the 

behavior at the end of transition period. These three criteria are: Integral of Square Error 

 



0

2
)( dtetISE Integral of the Absolute value of the Error 




0

))(( dtteIAE and Integral of the 

Time multiplied by Square Error  



0

2
)( dtettITSE . Figure 16 show the oscillation, a rise time 

and errors at the end of transition period that the system using our control algorithms.  
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(a) (b) 

 
(c) 

 

Fig. 4.16. Various error values of the tuned FLCs with reduced rule base for the initial pendulum angle θ =0.1 rad while x(0) 

is fixed to 0 (a) Integral of square Error (ISE): Rise time of the system response is short. (b) Integral of the absolute Error 

(IAE): The system is less oscillatory for the tuned FLC before becoming stable. (c) Integral of the time multiplied by square 

error (ITSE): The error at the end of transition period is less important for the tuned FLC 

4.4.5 Generalization ability of proposed controller 

In order to illustrate the generalization ability of the proposed controller, the pendulum length is 

changed while the other parameters remained fixed.   Figure 4.17 shows the simulation results 

where the pendulum length is 0.2m. Since the pendulum length is rather short, a little amount of cart 

oscillate can cause the pendulum to rotate because the pendulum has high natural frequency. 

Therefore, even though pendulum cart tends to oscillate a little, the pendulum is balancing upright 

in a short period of time. The complete successful stabilization time in this case is 4.2 secs.    
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(a) 

 
(b) 

Fig. 4.17. Control result of pendulum (a) angle θ for different initial condition varying between -400 and +400 while x(0) is 

fixed 0 (b) pendulum cart when pendulum length is 0.2 m 

When the pendulum length is long, the pendulum has the small natural frequency of oscillation and 

a big momentum. In this situation, the cart has to move for a long distance for balancing the 

pendulum. Figure 4.18 shows an example where the pendulum length is 2.2m. The complete swing 

up and successful stabilization time in this case is 8.2 sec. 

 

-40

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100
P

e
n
d
u
lu

m
 A

n
g
le

 i
n

 d
e
g
re

e
 

Time Step 

-3

-2

-1

0

1

2

3

0 20 40 60 80 100

P
e
n
d
u
lu

m
 c

a
rt

 i
n

 m
e
te

r 

Time Step (10 time step= 1 Sec) 



OPTIMIZE FUZZY SYSTEM WITH RULE BASE REDUCTION 

59 

 

 

 
(a) 

 
 (b) 

Fig. 4.18. (a) Evolution of pendulum angle θ for different initial condition varying between -400 and +400 while x(0) is 

fixed 0 but (b) Pendulum cart position is swing up and finally stabilized. 
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(a) 

 
(b) 

Fig. 4.19. (a) Evolution of pendulum cart position x for different initial condition varying between -3m and +3m while  θ(0)

is fixed 0 but (b) Pendulum angle is little bit swing up and finally stabilizing when the pendulum length is 2.2m 

From Figs. 4.18 - 4.19 it is shown that control results changes due to the pendulum length. When 

the pendulum length is short, the pendulum balanced smoothly within a short period of time with 

small cart oscillation. When the pendulum length is long enough, the pendulum balanced smoothly 

within a long period of time with large cart oscillation.      

4.4.6 Evaluating our study 

In order to evaluate our new genetic reduction and learning based control algorithm, we compare it 

against well-known reinforcement learning method called SANE (Symbiotic, Adaptive Neuro-

Evolution) [98] and other existing methods [99]-[103]. The control system for cart-pole inverted 

system is swing up and stabilized within a few seconds or time steps in several studies including 

[93]. The closer observation of the study in [98] reveals that the pendulum angle is swing up and 

stabilized within 46 time steps for the best case and 4461 for the worst cases from initial pole angles 

±15
0
 degrees and random cart positions ±2.4 meters. For the same initial condition, the number of 

time steps required to stabilize the cart-pole system is 31 for best case and 2123 is for the worst case 

while using our control algorithm and reduced rule base.  

Since most of the classical fuzzy system technique will cause the exponential increase in 

complexity, Horikawa et al. [104], Lin and Lee [105], Partricar and Provence[106] and Takagi and 
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Hayashi [103] proposed a methods incorporating neural network into Fuzzy system. In comparison 

with the fuzzy-neural hierarchical controller [99], it took more than 12.0 s to realize asymptotic 

stabilization with some offset left when the pendulum angle is 30
0
.  Kawaji [100] found in his 

proposed technique that it was difficult to achieve complete successful stabilization even after 20.0 

s. Kyung and Lee [101] presented a fuzzy controller, whose rule base was derived from three neural 

networks. Although the fuzzy controller can stabilize an inverted pendulum system in about 8.0s, it 

needs 396 rules. Sakai and Takahama [103] applied a nonlinear optimization method to train a fuzzy 

controller for stabilization. However, the controller spent more than 200.0 s on stabilizing an 

inverted pendulum system. Pan [102] presented an optimal and robust variable structure systems 

controller and his controller needed about 8.0 s to finish complete successful stabilization. On the 

other hand the proposed fuzzy controller build by the optimal number of fuzzy rules can stabilize 

completely a wide range of the inverted pendulum systems with 9.0 s. In future, we will compare it 

against the well-known traditional controllers, proportional derivative (PD) and proportional 

integral derivative (PID) controllers.  

4.5 Conclusions 

This study presents the automatic design method to construct the optimal fuzzy logic controller 

including the genetic rule base learning and reduction technique in order to realize the optimal 

control of nonlinear systems. The main contributions of our study are as follows: Firstly, the 

proposed control algorithm is able to automatically generate the fuzzy sets and secondly, the 

automatic rule generation and genetic rule base size reduction schema at the same time. Thirdly, 

rule base size reduction method use in proposed decoupling approach and its application to two 

degrees of freedom inverted pendulum. The advantage of using this decoupled control architecture 

and rule base reduction technique  is that the number of rules used in the fuzzy knowledge base has 

been reduced substantially also. Simulation results are given illustrating the efficient use of the 

proposed algorithm and a comparison with an existing controller was made to show the 

effectiveness of the method. 
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5.1 Introduction 

During the design of fuzzy logic controllers (FLCs) one of the most important factors is how to 

reduce the number of involved fuzzy control rules and their corresponding computation 

requirements. The size of the rule base increases exponentially with the number of input variables 

and their corresponding linguistic variables [107]. If )....... , ,( 21 nxxx  is the inputs variables and 

)....... , ,( 21 nIII are their corresponding number of linguistic terms then the number of candidate 

rules is nIIIIr .......321  .      

Many researchers have already observed this difficulty and various approaches have been 

investigated to overcome the problem. One approach is to reduce the number of fuzzy sets (MFs) 

that each input involve. However, this may reduce the accuracy and efficiency of the system [6].  As 

an alternative, the number of rules in the rule base can also be trimmed if it is known that some 

rules are never used [108]. In certain circumstances, the rule base size reduction process to design 

FLCs yields unsatisfactory results [109]. The most obvious is to limit the number of inputs that the 

system is using. Again, this may reduce the accuracy of the system, give the unsatisfactory 

performance and in many cases, render the system being modeled unusable. Another most 

important idea of using hierarchical structure in designing a FLCs has been investigated [110]-[112] 

also. Raju and Zhou presented a layer based hierarchical fuzzy control system in [110]-[111] where 

they used fixed hierarchical structure. Their hierarchical controller works from layer to layer where 

the most important systems variables are selected for the first layer, the next most important 

variables for the second layer and so on. Yager [112] presented a hierarchical control structure 

called hierarchical prioritized structure (HPS) where more specific fuzzy rules to override the more 

general ones. Chung el al. [113] has presented a hierarchical fuzzy controller to reduce the fuzzy 

rule base. In their work computational time is related to the number of layer due to the fuzzification 

and defuzzification is performed at every layer.  

On the other hand, a number of researcher focuses on automatically finding the proper structure and 

parameters of fuzzy logic system using evolutionary programming (EA) [114], genetic algorithm 

(GA) [115]-[116] and tabu search [117] and so on.  Karr, Freeman, and Meredith proposed a 

combination of fuzzy logic and a GA [118]. A GA finds fuzzy rules using the payoff for the 

success/failure of its actions. A GA was applied to identification of the hierarchical structure of the 

fuzzy model [119] from given input-output pairs of data. Matsushita, et al.[120]  and Furuhashi, et 

al. [120] have applied a GA to selection of input variables in hierarchical models. This method is 

very effective in the case where the plant has a strong nonlinearity. Increasingly, genetic algorithms 

(GAs) are used to optimize the parameters of fuzzy logic controllers (FLCs). Although GAs 
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provides a systematic design approach, the optimization process is generally performed off-line 

using a plant model.  

 

 

Fig. 5.1. The Trailer-Cab System 

But the key factors to ensure successful HFLC design includes identifying and characterizing 

suitable hierarchical structure, selecting the inputs for each fuzzy sub-model of hierarchical fuzzy 

model, and optimizing the parameters of antecedent and consequent for a fuzzy model. This study 

presents a new systematic technique for designing a hierarchical fuzzy model. In our proposed 

method, evolutionary mechanism is used in two phases simultaneously: first phase involves identify 

the optimal hierarchical structure using the genetic programming (GP), while the second phase 

performs an optimal tuning of antecedent and consequent parameters of fuzzy control rules and their 

corresponding MFs. The fine tuning of the antecedents and consequents rule’s parameters and their 

corresponding MF’s parameters encoded in the structure is accomplished using genetic algorithm 

(GA).The main idea of this paper is in the usage of evolutionary mechanism for selecting the fuzzy 

sets and for constructing a hierarchical architecture of fuzzy model automatically. This study 

differences between the previous approaches lie mainly adaptive selection of hierarchical 

architecture through genetic programming (GP). Comparing to the existing controllers our main 

objective is not the reduction of inputs (existing backing up a truck controller ignore one inputs, 

y,[3]), but the simplest possible controller with the lowest possible number of fuzzy rules. 

5.2 Problem Statement: Trailer-And-CAB 

The trailer-and-cab reverse parking control problem is a standard test application for complex 

control approaches, with its complexity originating from the non-linear nature of the problem. In the 

majority of control approaches, the primary objective is to back up a simulated trailer-and-cab to a 

loading dock in planner parking lot as first as possible, depicted in Fig. 5.1. The four state variables 

y xt  and , , c exactly determine the trailer-and-cab position. The angle t  specifies the angle of 

the trailer with the horizontal. The cab part is characterized by angle c  between its onward 

direction and x-axis and its dimensions are 2×2m. The coordinate pair ),( yx specifies the position 

of the rear center of the trailer in the plane. Length and width of the trailer are 4 and 2 meters, 

respectively.  

The current implementation of the trailer-and-cab controller uses the following set of dynamic 

equations: 
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 and r is the distance covered by the wheels of cab part in one time 

step (0.1s), cl is the length of cab and tl is the length of trailer. The goal is to make the trailer arrive 

at the loading dock at a right angle )90( 0t  and to align the position ),( yx of the trailer with the 

desired loading dock ),( ff yx and the trailer with cab is allowed to move backward by some fixed 

distance b at every stage. The loading zone corresponded to the plane    50,10050,0   and 

),( ff yx  equaled (0, 0).  At every stage our proposed approach should produce the output angle   

and angle t  of the trailer with horizontal that backs up the trailer to the loading dock from any 

initial state. The control goal is to synthesize a fuzzy controller: 

),,,( ctyxf    

In the trailer-and-cab driving state, one condition that the angle between the trailer and cab must not 

exceed a predefined threshold during the riding. The jackknife phenomenon occurs when reaching 

this threshold value regardless of the turning angle.  The turning angle is the angle between the 

trailer and the cab increases whenever driving backward.  

The variable ranges were as follows: 
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5.3 Hierarchical fuzzy system: Architectute Design and Methodology 

5.3.1 Hierarchical Fuzzy System 

A Hierarchical Fuzzy Systems (H-FS) not only provide a more complex and flexible architecture for 

modelling nonlinear systems, but can also consequently relax the rule explosion phenomenon.  Fig. 

5.2 depicts the typical structure of hierarchical fuzzy system where the input variables are put into a 

collection of low-dimensional fuzzy logic units (FLUs) and the outputs of the FLUs are used as the 

input variables for the FLUs in the next layer. According to them, the number of fuzzy rules that are 

employed in the hierarchical fuzzy system (HFS) is shown to be proportional to the number of input 

variables. In the hierarchical architecture, the number of rules will increase linearly whereas it is 

exponential in conventional counterpart. In hierarchical fuzzy systems the number of rules is altered 

by decomposing the fuzzy system to a set of simpler fuzzy subsystem connected in a hierarchical 

manner as shown in Fig. 5.2. Its main objective is to implement the equivalent control functionality 

with layer based hierarchical architecture of simple fuzzy controller. The simple fuzzy controllers 

involve lower number input variables which lead to a smaller number of fuzzy rules.   
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5.3.1.1 Structure Identification  

To define the structure of hierarchical controller i.e., number of sub-controller, how the sub-

controllers are connected to each other, define the number of inputs for each sub controller are very 

difficult task for designing a hierarchical fuzzy system. In this study we automatically generate the 

hierarchical structure through genetic programing (GP).  

Fig. 5.2. Typical Tree and their corresponding Hierarchical Architecture  

5.3.1.2 Genetic Modeling of Hierarchical Structure  

Genetic programming is a powerful search technique which belongs to the class of the evolutionary 

algorithms. Inspired by the darwin's theory, these algorithm works by simulating the evolution of 

structures by means of fitness-based natural selection and genetic operators, such as reproduction, 

crossover and mutation. In GP individuals are computer programs, generally represented as trees. In 

this work, the trees represent a fuzzy controller, in which hierarchical structure, encoded into trees, 

as illustrated in Fig. 5.2. 

Fig. 5.3. Optimal Hierarchical Fuzzy Logic Architecture for trailer-and-cab 

 

5.3.1.3 Encoding  

A tree structure based encoding schema is used for identify the hierarchical optimal structure of 

hierarchical fuzzy system. Figure 5.2 shows the hierarchical tree schemas are encoded into their 

corresponding hierarchical fuzzy system. The tree encoded into individual is (1, 2, 3, x1, x2, x3, x4) 

of GP represents a potential architecture of  hierarchical fuzzy logic controller (HFLC) where 

(1,2,3) are non-leaf nodes define the sub-model and  (x1, x2, x3, x4) are leaf nodes define the input 

variables. Then the optimized tree through GP is decoded into hierarchical architecture.  
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In a HFLC structure the most influential parameters are chosen as the system variables in the first 

level, the next most important parameters are chosen as the system variables in the second level, and 

so on.  In this hierarchy, the first level gives an approximate output which is then modified by the 

second level rule set. This procedure can be repeated in succeeding levels of hierarchy. The number 

of rules in a complete rule set is reduced towards a linear function of the number of variables by the 

hierarchy. The conventional fuzzy logic controller knowledge-based control - would presently fail 

because there is no explicit knowledge on how to drive the trailer-and-cab and thus we cannot 

synthesize the controller function. In this way,   decomposing this control tasks into several parts 

that could logically designed through hierarchical architecture. Figure 5.3 shows the automatically 

selected smaller size hierarchical architecture for the trailer-and-cab controller. 

 

Now we describe how the above hierarchical controller works. The sub controller, SC-1, takes 

position coordinates (x, y) as its inputs and determines the expected trailer angle, '

t , for this 

position. The second fuzzy logic controller, SC-2, in the hierarchical architecture creates a mapping

'' )( cttt   . Because the input of the fuzzy logic controller (SC-2) the error of the trailer 

angle; it can be regarded as a proportional controller that determines the angle difference of cab and 

trailer parts that is necessary to obtain the expected angle of the trailer. Finally, SC-3 is used to 

determine the appropriate steering angle, i.e., generate the control action.   

In this section, we describe an illustrative example through the Fig. 5.3 to show how the overall 

output of the hierarchical fuzzy model is computed. The overall output of hierarchical fuzzy model 

is calculated from layer to layer.  Assume that each input variable domain is divided into two 

intervals depending on the fuzzy set distribution; a particular input value belongs to two consecutive 

fuzzy sets. In this paper, it is proposed to use gaussian/triangular membership functions is defined 

by 
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Fig. 5.4. Sub-chromosome coding schema for SC-1  

In our proposed hierarchical model, the output 
'
tiy 

 
of the sub model (SC-1) unit of first layer is 

computed. Assume that the input space of x and y divided into two non-equal intervals and can be 

represented by two fuzzy sets 1211  , AA
 
and 2221  , BB

, respectively. The consequent parameters of a 

MF
1
 …… MF

k
 

x 

m
k
 σ

k
 

MF
1
 …… MF

k
 

y 

m
k
 σ

k
 

R
1
 …… R

n
 

Rule Base 

C
1
 …… C

k
 

Consequents 

Sub-Chromosome for SC-1 



 ADAPTIVE HIERARCHICAL FUZZY SYSTEM 

 

 68 

rule base are 
210  , , ijijij ccc

where i=1,2 and j=1,2 respectively. Therefore, the structure of fuzzy control 

rules of this sub model is as follows:  

2 ,1  2 ,1  

         :

210

21

 jandiforycxccy

ThenBisyandAisxifR

ijijijij

jiij

 

The sub model 1 output can be calculated as follows: 
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yx
jBiAij   for i=1, 2 and j=1, 2. 

Secondly, the overall output of the second fuzzy model (SC-2) is computed. It has also two inputs 

,t and  '

t  , the output of the first sub model (SC-1). The used fuzzy sets for variables are: 

  and  , , , , 323122211211 BBBBBB , respectively.  The parameters in the consequent parts in the rule base 

are 
3210  and , , , ijijijij dddd  (i=1, 2 and j=1, 2).  

The complete rule base of the sub model (SC-2) is described as follows:  

2 ,1  2 ,1  )(
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The overall output of the sub-model (SC-2) is determined by the following equation: 
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Fig. 5.5. The HFLC and Evolutionary cycle for optimization 
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In this way, the final control action θ can be calculated. In a traditional FLC, all the rules are used 

in a single step, when calculating the output of the controller. In our proposed hierarchical approach, 

the system input variables and consequent rules are divided into several levels in such a way that the 

most influential variables are chosen in the first level, the next most important variables are chosen 

in the second level, and so on. On the other hand, the output variable of each level is selected as the 

input variable in the following level.  

5.3.2 Optimization of Fuzzy sub controllers/models 

After selecting the appropriate hierarchical architecture, number of sub-controllers with their 

corresponding input variables through the evolutionary mechanism. Then tune the antecedents and 

consequents parameters of fuzzy control rules with their corresponding MFs of each sub-controller 

through GA. 

5.3.2.1 Coding of Rule base and their Corresponding MFs  

The coding scheme allows a flexible representation of fuzzy rules and their corresponding MFs in a 

genetic string. The consequent parameters of each rule base and their corresponding MFs are coded 

as real numbers as shown in Fig. 5.4. 

5.3.3 Number of Rules Determination 

For multi-level hierarchical control architecture with L levels of rules, n system variables, m fuzzy 

sets per variable and kn
 variables (including the output variable in the previous level) in the k

th
 

level of the hierarchy, the total number of rules is determined as follows: 
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Lnnnn .......321 
, the total number of rules is determined as follows:  

Nm
N

Nn
T *1

1















 

with LnnnN  ........21   

In our proposed hierarchical approach, we have shown that the number of rules in a complete rule 

base is a linear function of the number of variables while in a conventional one it is an exponential 

function of number of variables.    

5.3.4 Evolutionary Mechanism 

In this section, an automatic design method for hierarchical fuzzy controllers is presented. The 

hierarchical structure is created and optimizes if-then rule’s parameters for creating a compact fuzzy 

rule base of fuzzy models. The rule parameters encoded in the structure is accomplished using 

evolutionary algorithm. GAs[95] has been used as an adaptive technique to search for the optimum 

parameters for fuzzy membership functions and/or to match the suitable consequent fuzzy sets to 

rule premises (optimization of rules).  

Initially, the GP starts with a randomly generated hierarchical architecture and GAs starts with a 

randomly generated fuzzy control rules and their corresponding membership functions, then GP 
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tries to improve the hierarchical architecture and GA further tries to fine tunes the fuzzy control 

rules and their corresponding membership functions.  GP then goes back to improve the hierarchical 

architecture structure and the GAs goes back to improve the fuzzy control rules parameters with 

their corresponding membership functions. This procedure continues until a satisfactory optimum 

results for designing a hierarchical fuzzy controllers with hierarchical architecture is found or a 

termination criterion is met. 

In this paper, we use general GP algorithms for hierarchical structure identification but use real 

coded GA [95] for optimizing the sub-controllers. The GA[95] is a nontraditional genetic algorithm 

which combines a conservative selection strategy that always preserves the best individuals found 

so far with a radical, highly disruptive recombination operator that produces offsprings that are 

maximally different from both parents. This GAs presents a good trade-off between exploration and 

exploitation, being a good choice in problems with complex search spaces. 

The design procedure of the evolutionary hierarchical fuzzy system, as shown in Fig. 5.5, may be 

carried out as follows: 

5.3.4.1 Initialization 

All the individuals (GP and GA) in populations are initialized. At the start of the process, the initial 

populations comprise a set of individuals that are scattered widely throughout the search space 

through randomly initialization. Thus, the use of heuristic knowledge is minimized.  

5.3.4.2 Evolution of Control performance 

Individuals are evaluated. Each individual of GP in the population decides a hierarchical 

architecture and parallel each individual of GA in the population decides a combination of the fuzzy 

control rules and their associated MFs. A model is identified using only the decided parameters 

through the individual.   

A fitness function is used for the evaluation of the individual. In this study, the evaluation is 

performed through weighted sum of position and angle errors. Trailer-and-cab only moves with a 

fixed speed 2 m/s. Backing of the trailer with cab is considered successful if the following criterion 

(3) is met: 

60 tc   

To evaluate the performance of a hierarchical fuzzy system we use a weighted sum of position and 

angle errors, trajectory and docking errors given below.  The weighted sum of position and angle 

errors is as follows:  

 0267.0 yxc  

where 
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Where 
fT

is the duration of the backing. 

After each individual is evaluated and associated with its fitness, the current population undergoes 

the reproduction process to create the next generation of the population. 
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Generally, the overall fitness of the next generation population improves. After the evaluation of 

control performance of the initial randomly generated population i.e. the potential solution of each 

sub-controller, the GP and GAs begins the creation of the new generation i.e., new hierarchal FLCs 

generation. The chromosomes of the current population are merged with the offspring population 

obtained from it. Then the best individuals are selected to take part in the population of next new 

population. 

5.3.4.3 Evaluation, reproduction, crossover, and mutation 

Each population generated in this manner then goes through a series of evaluation, reproduction, 

crossover, and mutation. 

The design procedure is stopped when the termination condition is reached. Otherwise, the 

procedure from (1)-(5) in Fig. 5.5 is repeated. After the evolution process, the generated final 

population would consist of highly fit parameters that can provide good optimal solutions. In this 

manner, the evolutionary hierarchical fuzzy model with small size hierarchical architecture is 

obtained.  

Table 5.1. (a) FUZZY RULE MATRIX FOR SC-1 (b) FUZZY RULE MATRIX FOR SC-2 

(c) FUZZY RULE MATRIX FOR SC-3 

TABLE 5.1 (a).  

'

t  
x 

LE LC CE RC RE 

y 

LE 1LB 2VE 3RU 4VE 5RB 

LC 6LU 7ZE 8RB 9RU 10LU 

CE 11VE 12VE 13LU 14RU 15VE 

RC 16VE 17LB 18LU 19LB 20RB 

RE 21RU 22RB 23VE 24VE 25LB 

Linguistic Level- LE: Left End, LC: Left Corner, CE: 

Center, RC: Right Corner, RE: Right  End 

 

TABLE 5.1 (b).  
 

'

c  
'

t  

LB LU VE RU RB 

 

 

t
 
 

LB 1ZE 2PO 3PO 4ZE 5NE 

LU 6PO 7NE 8PO 9ZE 10NE 

VE 11NE 12ZE 13ZE 14NE 15PO 

RU 16ZE 17ZE 18ZE 19PO 20NE 

RB 21PO 22NE 23ZE 24ZE 25PO 

Linguistic Level: LB: Left Below, LU: Left Upper, 

VE: Vertical, RU: Right Upper, RB: Right Below 

 
TABLE 5.1 (c)  

θ  '

c  

NE ZE PO 

c  
NE VE LB RU 

ZE RB VE VE 

PO VE LU RB 

Linguistic Level: NE: Negative, 

ZE: Zero, PO: Positive 
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5.4 Simulation Results And Discussion 

In order to test the designed hierarchical fuzzy logic controller, the trailer with cab is backed up to 

the loading dock from several different initial states. The selection of initial positions covers the 

whole loading zone and includes some really difficult starting states for all the given initial states 

the proposed approach converges to some fuzzy control rules. The following are fuzzy control rules 

for sub controllers Table 5.1(a), 5.1(b), 5.1(c).) The corresponding control surface of the fuzzy rule 

matrix for the sub-controller 1(SC-1) with two input variables x and y and an output variable 
'

t   is 

shown in Fig. 5.6.  

 

Fig. 5.6. The corresponding control surface of the fuzzy rule matrix for the sub-controller (SC-1) 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.7. Generated Optimal Fuzzy sets for the SC-1 

For building the proposed fuzzy sub controller-1, (SC-1), optimize the 5 fuzzy sets for the input 

variable x, y and output variable 
'
t  through GA as shown in Fig. 5.7. In this study, we select mixed 
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type of MFs where some fuzzy sets are triangular and some are gaussian to get the better 

performance. In the same way build the sub-controler-2 (SC-2) and 3 (SC-3) but their number of 

fuzzy sets for the input variables ( 5 and 3  c ) are different. 

Some interesting backing trajectories are shown in Figs. 5.8. In this case the initial states being 

sampled from: }40,20{x , }50,50{y , }90,90{ 00t  }3030{ 00 c and }0{ 0d . 

Actually more tests also show the control results are successful and our method is encouraging. In 

Figure 5.9 we show the control action   generated by our proposed hierarchical fuzzy controller for 

trajectories initial states ),,,(
ct

yx  : )10,90,50 ,20( 00  and )10 ,90 ,50 ,20( 00 . In this figures, 

we can see that the control action using our proposed hierarchical fuzzy controller is smoother.  

 

 
Fig. 5.8. The trajectories of the back of the trailer-cab while being backed up from the eight corners used to compute fitness 

during evolution. The dashed lines correspond to t  = -900 and the solid lines correspond to t = 900. 
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(b)  

Fig. 5.9. Control action θ for trajectory initial state ),,,( ctyx   (a) )10,90,50 ,20( 00  (b) )10 ,90 ,50 ,20( 00
 

From the experimental studies we show that our control algorithm converges faster and reach the 

parking space relatively quickly and efficiently measured by the docking error and trajectory error. 

The trajectory error is the ratio of the distance of the actual trajectory of the trailer-and-cab robot 

divided by the straight distance from initial state to final state.  

state final  tostate initial from distanceStraight 

Trajecory  Actual of Distance
Error Trajectory   

The docking error is the Euclidean distance between desired final state ],,[ ddd yx  and actual final 

state ],,[ ddd yx  . 

222 )()()(Error Docking fdfdfd yyxx  
 

Figure 5.10 shows the trajectory error for the eight different initial states where the trajectory error 

is depends on the t  whether it is positive or negative. 

 
Fig. 5.10. Trajectory Error of the back of the trailer-cab while being backed up from the eight corners. 

Figure 5.11 shows the docking error and εc for the eight different initial states. 
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Fig. 5.11. Docking Error and εc of the back of the cab-trailer while being backed up from the eight corners 

5.5 Conclusions 

This paper presents a representation and computation of hierarchical fuzzy logic controller for the 

classical trailer with cab reverse parking control problem. The GP employed to identify the optimal 

hierarchical architecture, selection of input variables for each sub-controller and fuzzy control rule 

parameters with their corresponding membership functions were optimized through the 

nontraditional GAs and these tasks were successfully achieved.  The proposed method 

automatically generates more precise and concise small sized hierarchical controller than the one by 

the conventional method. Each sub-controller in the hierarchical fuzzy logic controller has a smaller 

number of input variables with the lowest possible number of fuzzy rules. Therefore, it does not 

need many data as well as control rules for the description of the input-output relationships i.e., 

number of fuzzy rules in the subspace. Simulation results are shown that generated small size 

hierarchical controller, have small number of rules, are effective and converge faster to identify the 

nonlinear system and demonstrate the effective use of the proposed control algorithms.    
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6.1 Introduction 

For most fuzzy logic control problems, the most important issue is to determine the parameters that 

define the type-2 MFs. Because of this, the type-2 MFs optimization problems can be converted to 

parameter optimization problems.  These parameters are generally based on the expert KB that is 

derived from heuristic knowledge of experienced control engineers and/or generated automatically. 

Mendel [36] and Hagras [122] have shown that the type-1 fuzzy logic systems (FLSs) may be 

unable to model and minimize the effect of uncertainties that prevails’ in the real world 

applications. One restriction is that a type-1 fuzzy set is certain in the logic where the membership 

grade for each input is a crisp value. On the other hand, interval type-2 FLCs (that use interval type-

2 fuzzy sets, characterized by fuzzy MFs) can handle the uncertainties.   

GA was used by Martínez [123] in optimization of type-2 FLC. He applied GA to design FLC for 

the control of the perturbed autonomous wheeled mobile robot. Melin and Castillo [124] proposed a 

method based on type-2 fuzzy sets and neural networks called neuro-fuzzy to learn the parameters 

of the fuzzy system for intelligent control of nonlinear dynamic plants. Tan [125] used GA to 

optimize the parameters of FLCs. His proposed approach used mixed (type-1 and type-2) fuzzy sets 

for real time control. 

In this study, quantum optimization can be regarded as a new optimization tool that can be used to 

overcome the limitations of trial and error approach as it is a quantum computing technique and 

finds the optimal solutions effectively and efficiently by combinatorial searching the large and 

complex solution space. So, QGA can be employed as a powerful search method to perform tasks 

such as generation of fuzzy rule base (RB), optimization of fuzzy RB, generation of MFs, and 

tuning of MFs types.  

 

6.2 System Definition 

A mobile robot has to move from an initial position to the target (dock) by avoiding collisions with 

a single stationary obstacle in optimal path. It may have to move along a straight path or take a turn 

depending on the current situations in order to generate a collision-free path. The problem is taken 

from [75]. Figure 6.1 depicts the simulated geometry for the robot and loading dock schematically, 

in which mobile robot is moving among single stationary obstacles, in the same workspace. The 

control system must find incrementally a path to the loading dock, independently of the initial 

position of the robot. 

The path planning of the mobile robot is determined by the three input variables x, y and  , 

(considered as a point mass),  where x and y are the cartesian co-ordinates of the mobile robot and 

is the robot direction angle relative to the horizontal axis x. The output variable is the control 

steering signal . Thus controller is a function of state variables 
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),,(  yxf  

As a first investigation, let us assume that there exists enough clearance between the robot, the walls 

and the obstacle in the workspace so that we can ignore the y-position co-ordinate of the robot. The 

co-ordinate y will be re-introduced into the discussion shortly and simplifying the controller 

function to: 

),(  xf  

The state spaces of two inputs are 
00 295115   & 1000  x , and one output   within [-40

0
, 

40
0
]. At every stage, the simulated mobile robot only moved forward until it hits the border of the 

loading dock. The final states ),( ffx  will be equal or close to (10, 90
0
).  The robot kinematics 

model is described by the following dynamic equations.  
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Where l is the length of the robot, we assume l=4. Eq. (1) will be used to derive the next state when 

present state and control are given.  

 

 

Fig. 6.1. Mobile Robot and loading dock illustration 

This experiment should be considered as an example of highly nonlinear complex problems. For 

obvious reasons such controller does not perform very well if the distance between the truck 

position and the loading dock is small. 

6.3  Hybrid Q-Fuzzy Controller: Design And Methodology 

QGA is a probability optimization algorithm based on the concept of the quantum computing. In 

quantum computing, the smallest unit of information is called Q-bit. A Q-bit can be represented as   

    〉     〉  ( 
 
) 

Where α
2
 +β

2 
=1. |α|

2 
indicates the probability of finding the Q-bit in “0” state and |β|

2 
indicates the 

probability of finding the Q-bit in “1” state. A Q-bit may be in “1” state, in “0” state or in a linear 

superposition of the two states. 

A Q-bit individual as a string of m Q-bits is defined as  

 

 

Loading Dock 

Workspace 

Obstacle 

 
θ 

 
θrobot 

robot 

(x,y) 

Rear 

Front 
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[
         

         
] 

Where |αi|
2
 +|βi|

2 
=1, i = 1, 2, 3…..m. A Q-gate which is a quantum mutation gate is used to speed 

up the convergence. It is defined as: 

 (      [
   (        (    
   (       (    

] 

where Δθi, i = 1, 2, 3…., m, is the rotation angle of a Q-bit towards the “0” state or “1” state 

depending on its sign. After applying Q-gate, the Q-bit should satisfy the normalization condition 

|α΄|
2
 + |β΄|

2 
= 1, where |α΄|

2
 and |β΄|

2 
are the values of updated Q-bit.    

 

Fig. 6.2. Integration of type-2 FLCs and QGA 

A quantum-type-2 fuzzy system depict in Fig. 6.2 is a fuzzy system that uses QGA to determine 

type- 2 fuzzy sets and fuzzy control rules. In this paper, we employed QGA to optimize the 

parameters of the MFs of Type-2 FLC; we consider using Gaussian Interval Type-2 MFs to each 

one of our three variables. At the same time, we also employed QGA for the selection and definition 

of RB of type-2 FLC. 

Fig. 6.3. QGA coding schema of type-2 FLC 

6.3.1 Encoding 

Two input variable x, and one output variable θ are used to produce fuzzy rules and their 

corresponding MFs. For this reason these variables are encoded in a chromosome of QGA. The 

domains for x,   and    are divided into   5, 7 and 7 regions respectively. The linguistic terms 

(MFs) for each of the input and output variables are used to describe them. The rule base contains 
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total 35 rules. Each rule includes the real value of x, and θ. Each variable (input and output) is 

divided into three parts: center (m), lower MFs width (σL), and upper MFs  width (σU). So the rule 

base looks like (Fig. 6.3):   

An important characteristic of fuzzy models, FM, is the partitioning of the input and output space of 

system variables (input, output) into fuzzy regions using fuzzy sets. The range of   is divided into 

five non-uniform intervals [0, 32.5], [32.5, 47.5], [47.5, 52.5], [52.5, 67.5], and [67.5, 100] and they 

are represented by five linguistic terms LE, LC, CE, RC and RE respectively [31]. The range of   is 

divided into seven non-uniform regions [-115, -27.5], [-27.5, 46], [46, 86.5],[86.5, 98.5] , [98.5, 

146], [146,   216], [216, 295] and  then they are represented by seven linguistic terms NL, NM, NS, 

ZE, PS, PM, and PL     respectively. Similarly seven divided regions of the range of θ, [-40, -28], [-

28, -12.5], [-12.5, -2.5], [-2.5, 2.5], [2.5, 12.5], [12.5, 28], [28, 40] are represented by linguistic 

terms NB, NM, NS, ZE, PS, PM and PB [125].     

In this study five and seven gaussian type-2 fuzzy sets were used to partition the input spaces x and 


 
respectively and seven gaussian type-2 fuzzy sets for output spaces [125]. The rule base, then, 

contains thirty-five (7×5) rules to account for every possible combination of input fuzzy sets. The 

fuzzy control if then rules are of the form: If x is ({LE, LC, CE, RC, and RE}) and is ({NL, NM, 

NS, ZE, PS, PM, and PL}) then   is ({NB, NM, NS, ZE, PS, PM, and PB}), output is one of the 

type-2 fuzzy sets used to partition the output space. 315 genes are used to represent the rule set. 

Therefore, we need to encode a total of 315 parameters for each individual of our population. In 

order to make this encoding schema we design a chromosome of 315 consecutive real genes. Figure 

6.3 show a schematic of the chromosome structure to our quantum-type-2 FLS optimization 

approach. 

 6.3.2 Real Coded Quantum Genetic Algorithm  

 In this paper, real coded quantum genetic algorithm (RCQGA) is used as an optimization process.  

6.3.2.1 Representation  

Each individual is represented by real coded triploid chromosome which can be defined as follows: 

(

           
                   
                

               

) 

where (Ri αi  βi)
T
, i =1, 2…. n is the i

th  
allele of real coded triploid chromosome and     is the i

th
 rule 

in fuzzy rule base. (αi, βi)
T
   is a pair of probability amplitudes of one quantum bit and satisfies 

normalization condition |α|
2
+|β|

2 
= 1, n is the length of real-coded triploid chromosome which is 35. 

Table 6.1. OPTIMIZED MFS PARAMETERS (OPTIMAL SOLUTION) 

 

MFs of x 

 
LE LC CE RC RE 

m σU σL m σU σL m σU σL M σU σL m σU σL 

10.31 34.1 21.1 
30.
7 

31.8 26.8 51.2 20.1 10.2 61.69 41.8 29.3 94.2 57.3 64.1 

MFS  OF    

NL NM NS ZE PS PM PL 

m σU σL m σU σL m σU σL m σU σL m σU σL m σU σL m σU σL 

-90.81 94.17 84.21 2.16 189.5 171.3 75.5 135.9 92.60 90.8 122.1 98.12 145.1 74.28 51.2 182.3 83.00 44.28 252.4 135.4 96.4 

MFs of θ 

NB NM NS ZE PS PM PB 

m σU σL m σU σL m σU σL m σU σL m σU σL m σU σL m σU σL 

-38.16 22.1 16.1 -25.22 22.8 11.1 -8.5 25.1 20.7 2.1 17.1 13.1 12.28 16.15 8.16 24.16 27.14 16.39 36.17 19.13 8.16 
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6.3.2.2 Mutation 

Gaussian Mutation operator is applied to update population at each generation. The      allele is 

randomly selected from   
 , t

th
 generation j

th
 population, and the centers (c) of the input-output 

variables in the rule of the selected allele are changed as follows: 

     =     + (           ) N (0, (    
  2

)                           (6.1) 

where     and     are respectively upper and lower bound of the regions in which    lies.        

may not be within the limit so it is clipped to keep it within the region of    . The center of   is 

considered always the whole range of  .  N (0, (    
  2

) denotes the Gaussian distribution of mean 0 

and variance (    
 )

2
. The value of variance (    

  2
 is either      

    or      
    /5 based on “Fine Search” 

or “Coarse Search” to be implemented [32]. The width (  ) of each center is updated as follows: 

   {
   (                    (          

   (                                                      
 

where   is the uniformly distributed random number in the range [0, 1]. The pair probability 

amplitudes of the     allele is updated by the quantum rotation gate (QRG) as follows 

(
    

   

    
   )=(

   (     
         (     

  

   (     
            (     

  
) (

    
 

    
 )                        (6.2)     

Here       
  is rotation angle of Q-bit and it is calculated as follows, 

     
 = sgn (    

      
 )    exp(

     
  

     
      

 )                          (6.3)       

Where    is the initial rotation angle,    is the scale parameter. These control the rotation angle and 

increase the speed of convergence, the sign sgn (.) determines the direction of the rotation angle. 

Table 6.2. CONTROL RULE MATRIX 

6.3.2.3  Discrete Crossover (DC) and Elitism 

DC is performed repeatedly after a fixed number of generations and it expands the search space to 

find the suitable steering angle   with respect to input variables with minimized trajectory error 

(fitness value). The elitism technique is used to ensure that the rule base with best fitness value will 

not be lost.  

6.3.2.4  RCQEA procedure 

Step1: Initialization: A Population of N individuals   ={  
      

      
 } is initialized by randomly 

chosen real numbers, where   
  is an individual.  

θ 
 

NL NM NS ZE PS PM PL 

 

 

x 

LE 1NL 2ZE 3PB 4NM 5ZE 6NB 7PS 

LC 8PM 9NL 10NS 11NM 12ZE 13PB 14NB 

CE 15NM 16PM 17NL 18ZE 19PS 20NM 21NS 

RC 22ZE 23PB 24ZE 25PM 26ZE 27NS 28NM 

RI 29NS 30PB 31NM 32PL 33PS 34ZE 35ZE 
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Step2: Decode and Evaluation: At each generation t RCQGA maintains a population of real-coded 

triploid chromosome. A rule     
  in   

  contains nine values, center (m), lower MFs and upper MFs 

for each of three variables (    and  ). Decode the every chromosome into RB and MFs for the 

construction of interval type-2 FLC and the constructed FLC is executed on the robot until it 

reaches the goal position or near to the goal position. Each potential solution (FLC) is evaluated and 

assigned a fitness value according to its performance to the problem. The fitness value for each 

chromosome is defined as the trajectory error which is defined as follows:  

position) final position, nitialDistance(i

   
/

TrajectoryRobotofLengh
FitnessTrajectory   

Step3: Recombination: Apply mutation and discrete crossover operator to chromosomes and 

generate new chromosomes as well as new generation. Check the termination condition and go to 

step 2 if the termination condition is true otherwise go to step 4. 

Step4: Stop: The best fitted chromosome is kept and solution has been achieved. 

  
(a) LE of x (b) CE of x 

  
(c) NL of  (d) PM of  

 
 

(e) NB of  θ (f) PS of θ 

Fig. 6.4. Tuned Gaussian Type-2 Fuzzy sets 

6.4 Simulation Results and Evaluation 

To evaluate the accuracy of the proposed system, we have carried out a series of 

experiments which the controller were evolved in our simulated arena. The average optimal means 

and standard deviations of MFs for x, , and   are shown in table 6.1. The generated optimal 

control rule base (after the conversion from optimal parameter to linguistic form) also shown in 

table 6.2. 
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Table 6.3. FIVE INITIAL POSITIONS (x, y, ) AND THEIR STEPS OF RESULT 

We have obtained the fuzzy control rules from the best chromosomes of QGA after 100 generations. 

Figures 6.4(a)-6.4(f) shows an example of tuned type-2 fuzzy sets for the efficient design of interval 

type-2 FLC. Figure 6.6 shows the times for the mobile robot to reach the goal position in 5 different 

initial conditions and their trajectories are plotted in Fig.6.5. Table 6.3 shows the five initial 

conditions for ),,( yx with their steps.  

 
(a) 

 
(b) 

Fig. 6.5. (a) Show robot trajectories avoiding stationary obstacle (cross-hatched circle) via T1QFLC, and (b) Show via 

interval T2QFLC, all from 5 different initial conditions 
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Fig. 6.6. Show the total steps to reach goal position by 5 different initial cases 

6.4.1 Two goal Seeking Technique 

This study presents an evolutionary strategy based fuzzy controller for autonomous robot navigation 

in which a robot find its path and avoid any collision with obstacles. The evolutionary strategy 

based controller is represented by the coordination between two tasks: the one for reaching the 

target point and the other for fixed obstacle avoidance. To tackle these two tasks, we divide the 

interval of definition of y into just two regions - below and above the obstacle - with overlapping 

membership functions. In below the obstacle, the fuzzy controller works as an obstacle avoidance 

controller that decides for the robot how to avoid the fixed obstacle. In above the obstacle, the 

controller works as goal seeking controller. Each bit-string will now consist of 70 rules; 35 rules are 

used for obstacle avoidance controller and another 35 rules is used for goal seeking controller. 

Given the fixed obstacle position, the obstacle avoidance controller first consider two optional goal 

position, one is left and another one is right of the obstacle. When the robot is reach to the one the 

optimal goal which is the close to the robot, the goal seeking controller is activated and finally the 

robot reach to the goal position. 

    

6.4.2 Evaluating the work 

The mobile robot/truck is a classical control problem that is generally used as well-known 

benchmark problem for the evaluation of new control algorithms and as such it has been well 

analyzed [75][3]. The graph of in Figures 6.5, 6.6, 6.7 and 6.8 shows the performance comparison 

with QGA evolved type-1 FLC (T1QFLC), neural coded type-1 FLCs, traditional type-1 FLC and 

T2QFLC. From Figure 6.5, 6.6, 6.7, 6.8 and table 6.3 and table 6.4, it is obvious that the 

performances of T2GFLC are better than those in T1QFLC, neural type-1 and traditional type-1 

FLCs. It not only takes less steps to arrive the goal position using interval T2QFLC, but also it 

shows the smoother trajectories (shown in Fig. 6.5 and Fig. 6.7).  
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Fig. 6.7. Evaluation T2QFLC with other methods 

Recently Li and Li in [3] have presented the fuzzy control system based on a hybrid clustering 

method and neural network. In their work, a two-stage technique, structure identification step and 

parameter identification step, are used for the constructing fuzzy logic control system. The 

clustering method is proposed to construct an initial fuzzy model to determine the number of fuzzy 

rules from the intuitionistic-desired trajectories. The clusters are automatically generated and the 

data are appropriately classified through clustering method. Then neural network is applied to 

obtain a more precise fuzzy model in the parameter identification for the truck/mobile robot control. 

The clustering method (off-line approach) is one of the most promising techniques when 

input/output samples are available for the system. It is not possible however to generate initial fuzzy 

model without such type of input output data.    

Table 6.4. TRAJECTORY STEPS FOR DIFFERENT VALUES OF   WITH SAME  (X, Y) COORDINATE 

  

The number of steps of trajectories depends on the physical orientation of the robot. We also 

analyse and compare the robot trajectories with other existing methods for different values of  . The 

number of steps of trajectories of the robot known as truck from given positions to back up to the 

loading zone controlled by the neural fuzzy system [3], traditional fuzzy system [3] and T2QFLC 

are given in IV. 

It has been found that the QGA based system evolves to optimal type-2 MFs and RB after some 

generations. An example of the best fitness quantum genetic progress is presented in Fig. 6.8 which 

demonstrations the performance of the best chromosome found so far against the number of 

generations.   
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Fig. 6.8. Shows the results of Best fitness trajectory errors in T1QFLC and T2QFLC 

6.5 Conclusions 

This paper has revealed the possibility of using QGA based adaptive architecture to evolve the type-

2 MFs and their corresponding rule set parameters of interval type-2 FLCs. We have shown that 

T2QFLC is an adaptive model that is able to tune MFs parameters and establish a reliable fuzzy 

control rules aimed at mobile robot control in real world unstructured environments. The type-2 

based control architecture could cope with the unstructured noisy environments and achieved a 

superior control performance that outperformed the QGA evolved type-1 FLCs, traditional type-1 

FLCs and neural coded FLCs. 
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7.1 Summary 

In this thesis, we have developed several optimization, learning, tuning and rule base size reduction 

algorithms for both type-1 and type-2 fuzzy logic controllers (FLCs), which are an emerging 

research area. In order to show the usefulness of the developed methods several benchmark control 

applications, including backing up a truck, trailer-and-cab, nonlinear motion control of 

nonholonomic robots and two degrees of freedom inverted pendulum have been illustrated.    

In chapter 1, we have demonstrated some motivation and detail contribution of this thesis. In this 

thesis, we have focused four main contributions, firstly, to automatically generate fuzzy knowledge 

base components through the newly developed hybrid genetic algorithms. Secondly, a rule base 

reduction and tuning algorithm is proposed as a design tool for the knowledge-based fuzzy 

controller. Thirdly, an efficient tool is proposed for automatically build the hierarchical fuzzy 

systems to deal with the rule explosion problem. Fourthly, we proposed a bio inspired optimization 

methods used in the design of type-2 fuzzy systems which are relatively novel models of 

imprecision. In the designing phase, the use of bio-inspired optimization methods has helped in the 

complex task of finding the appropriate parameter values and structure of the fuzzy systems.    

Chapter 3 illustrated the difficulties of finding or optimizing the fuzzy knowledge base components 

in the FLCs. The topic is one of the major concerns in the development of FLCs. This chapter 

presents new hybrid (binary and real coded coupled) GAs to automatically generate the FKB for 

building the optimal FLCs with different tradeoffs between complexity and accuracy. The main 

novelty of the algorithm is that rules and their corresponding MFs type are learning and selecting 

concurrently. Selection of optimal MFs type for each rule individually is another novelty for 

designing adaptive FLCs also. For this concurrent learning process, HGAs is employed in two 

simultaneous phases; the first one, referred in this paper as real phase, used for the selection and 

definition of fuzzy control rules as well as  adjustment of MFs shape while the second one, binary 

phase, used for the selection of optimum MFs type of each rule. The suggested method can deal 

with mixed MFs type (i.e., fuzzy sets) for fuzzy rule base. It is shown that the proposed HGAs can 

generate comprehensible and reliable fuzzy rules and at the same time select the optimal MFs 

(fuzzy sets) for each rule separately. The HGAs allows one to improve the FKB performance in 

terms of accuracy and simplicity by learning both parts concurrently.  

Chapter 4 illustrated the Rule base size reduction technique that can be important for fuzzy systems 

in those cases where the fuzzy system needs to be implemented in real time. In this study, Firstly, an 
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adaptive learning method is developed for tuning the MFs parameters. Secondly, develop an 

automatic rule generating and reducing mechanism, which is capable of generating a rule base and 

reduce the rule base size i.e., finding the optimal number of rules for building the fuzzy controller to 

maximize the FLCs performance. The main advantages of the proposed method is that redundant, 

irrelevant and erroneous rules are removed by setting their all consequent weight factors to zero, 

merging the conflicting rules that have the same antecedents value during the learning process. The 

final rule base usually contains the much fewer rules than the initial one and thus improving the 

computational efficiency and interpretability of the fuzzy models. In this way we simply obtained 

fuzzy controllers to enhance the model interpretability while maintaining satisfactory accuracy.   

Chapter 5 illustrated a method is described for the automatic design of an HFLC using an 

evolutionary algorithm. In our proposed method, evolutionary mechanism is used in two stages 

simultaneously: first stage involves identify the optimal hierarchical structure using the genetic 

programming (GP), while the second stage performs an optimal tuning of antecedent and 

consequent parameters of fuzzy control rules and their corresponding MFs. The fine tuning of the 

antecedents and consequents rule’s parameters and their corresponding MF’s parameters encoded in 

the structure is accomplished using genetic algorithm (GA).The main idea of this paper is in the 

usage of evolutionary mechanism for selecting the fuzzy sets and for constructing a hierarchical 

architecture of fuzzy model automatically. This study differences between the previous approaches 

lie mainly adaptive selection of hierarchical architecture through genetic programming (GP). 

Chapter 6 illustrated bio inspired optimization method for designing type-2 fuzzy systems. Quantum 

genetic algorithm is employed as an optimization tool to tune type-2 fuzzy sets and rule sets 

simultaneously for effective design of interval type-2 FLCs. The type-2 FLCs exhibit better 

performance for compensating the large amount of uncertainties with severe nonlinearities.   

7.2 Future Works 

Although we have contributed only a little in the progressing research of fuzzy logic, there are 

several interesting scopes of further development which we list below:   

 

 The research work is to be extended by embedding rule base size reduction technique in 

the proposed hierarchical architecture. In this case orthogonal transformation is used to 

determine the importance order of rules and cut the undesired and conflicting rules.  

 This study also extended through the parallel implementation of the proposed algorithm 

that may be used to reduce the computation time of the proposed method. In order to 

validate the proposed control algorithms, we will compare it against the well-known 

traditional controllers, proportional derivative (PD) and proportional integral derivative 

(PID) controllers. Finally, apply the proposed method applied to more complex real world 

applications including intelligent control of a robotic arm in the presence of moving 

obstacle, the path planning problem for multiple mobile robots with more than one 

obstacles either moving or fixed in the workspace.  

 This study work is to be extended to use of evolutionary strategies to develop an adaptive 

fuzzy logic controller and more thorough comparisons of adaptive FLCs with a standard 

PID controller. This study work is also to be extended to intelligent control of a mobile 

robot, truck-trailer controller and control of a robotic arm in the presence of moving or 

fixed single or multiple obstacles. 
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