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equation for an axial crack inside a cylinder, such as Kiefner's equation, has been widely applied. 
However, the following implicit assumptions notably exist when applying the equation to planar flaws 
in situations with non-planar flaws. 
1） The fracture mode of the non-planar flaw under consideration is identical to that of the crack. 

2） The effect of the circumferential angle of a flaw on the internal burst pressure, which is not 
considered for an axial crack, is small or negligible. 
However, the experimental results from the systematic burst tests for carbon steel pipes with artificial 
wall-thinned flaws examined in this paper showed that these implicit assumptions may be incorrect. In 
addition, a simulation of this effect was conducted using a large strain elastic-plastic Finite Element 
Analysis (FEA) model. 
The observed effects demonstrate that the burst pressure predicted for a crack with identical ligament 
thickness decreases with an increase in the circumferential angle of a flaw, so that the effect of the 
circumferential angle of a flaw on the internal burst pressure should be taken into consideration when 
evaluating internal burst pressure. 
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Abstract 

This paper examines the effect of the circumferential angle of a flaw  on the internal burst pressure 

pf of pipes with artificial wall-thinned flaws. 

The effect of  has conventionally been regarded as unimportant in the evaluation of the pf of 

wall-thinned straight pipes. Therefore, a burst pressure equation for an axial crack inside a cylinder (Fig. 

1, left), such as Kiefner’s equation (Kiefner et al., 1973), has been widely applied (ANSI/ASME B31.G., 

1991; Hasegawa et al., 2011). However, the following implicit assumptions notably exist when applying 

the equation to planar flaws in situations with non-planar flaws. 

1) The fracture mode of the non-planar flaw under consideration is identical to that of the crack. 

2) The effect of  on pf, which is not considered for an axial crack, is small or negligible. 

However, the experimental results from the systematic burst tests for carbon steel pipes with 

artificial wall-thinned flaws examined in this paper showed that these implicit assumptions may be 
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incorrect. In this paper the experimental results are evaluated in further detail. The purpose of the 

evaluation was to clarify the effect of  on pf. Specifically, the significance of the flaw configuration 

(axial length z and wall-thinning ratio t1/t) was studied for its effects on  and pf. In addition, a 

simulation of this effect was conducted using a large strain elastic-plastic Finite Element Analysis (FEA) 

model. 

As observed from the experimental results,  tended to affect pf in cases with large z, and t1/t was 

also correlated with a decrease in pf with an increase in . These tendencies were successfully simulated 

by the large strain elastic-plastic FEA model.  

The observed effects demonstrate that the burst pressure predicted for a crack with identical ligament 

thickness decreases with an increase in , so that the effect of  on pf should be taken into consideration 

when evaluating pf. 

 

Key words: burst pressure, circumferential flaw length, wall-thinned pipes, Finite Element Analysis 

(FEA), fracture criterion, size effect 
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1.   Introduction 

A burst pressure equation for an axial crack inside a cylinder (Fig. 1, left), such as Kiefner’s 

equation (Kiefner et al., 1973), is widely used (ANSI/ASME B31.G., 1991; Hasegawa et al., 2011) 

when evaluating the internal burst pressure of wall-thinned straight pipes. This engineering approach 

may be acceptable because the burst pressure of a crack (planar flaw) would likely yield a 

conservative estimate for flaws (non-planar flaw) in wall-thinned pipes. However, the following 

implicit assumptions exist when applying the equation for planar flaws to situations with non-planar 

flaws. 

1） The fracture mode of the non-planar flaw under consideration is identical to that of the 

crack. 

2） The effect on the burst pressure of the circumferential angle  (shown in Fig. 1) of the 

non-planar flaw (which is not considered for an axial crack) is small or negligible.  

With regards to fracture mode, the possibility of circumferential cracking cannot be overlooked 

because circumferential groove-like non-planar flaws have been observed in the circumferential 

weld line of a pipe due to Flow Accelerated Corrosion (FAC) (Duan et al., 2009). 

The effect of the circumferential angle  on the burst pressure pf has been studied by Netto et al. 

(2005) and Oh et al. (2006). Using large strain elastic-plastic Finite Element Analysis (FEA), they 

showed that values of  within a certain range (Netto: 0.03 ≤ /2 ≤ 0.05, Oh: 0.02 ≤ /2 ≤ 0.08; 
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groove-like flaws) do not affect pf. Oh et al. verified their FEA results by experiments. However, the 

range of  considered by this group was limited, so their examination regarding the effect of  on pf 

is not necessarily sufficient to cover all cases. 

Based on the above-mentioned observations, this paper addresses the effect of  on pf 

specifically, and the purpose of this investigation is to clarify the effect of  on pf. For this purpose, 

systematic burst tests were conducted on carbon steel pipes with artificial wall-thinned flaws. Finally, 

a large strain FEA was conducted for the cases corresponding to non-planar flaws ( was beyond the 

range in Netto et al. or Oh et al.’s work) to simulate and verify the experimental results.  

 

2. Experiment 

2.1 Burst test system 

A diagram of the burst test system is shown in Fig. 2. All tests were conducted at room 

temperature. In the tests, an internal pressure p was applied by gradually injecting water into the pipe 

using a hydro pump. 

The test specimen configuration is shown in Fig. 3. The dimensions of the artificial flaw and 

burst pressure pf for each test specimen with a nominal outer diameter 107.1 mm (100A) are shown 

in Table 1. The burst pressure pf was defined as the average pressure attained during the 2 seconds 

surrounding the observed maximum value, measured at intervals of 0.01 seconds. The specimen 
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material was carbon steel of type JIS (Japanese Industrial Standards) STPT 370. The chemical 

compositions and tensile strengths of the specimens are shown in Table 2. 

 

2.2 Experimental results 

First, the effect of the circumferential angle of the non-planar flaw ( in Fig. 1, left) on the burst 

pressure, which is not considered for an axial crack, was evaluated. To this end, the burst pressure pf 

obtained from the current experiment was compared with p1 in Figs. 4 and 5. 
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Here, Ri is the inner radius of the sound cylinder, t1 is the flaw ligament thickness, and f is the flow 

stress defined as an average of the nominal tensile stress B0 and the nominal yield stress y0. 

Equation (1) gives a burst pressure for the cylinders with a wall thickness of t1, and p1 is the internal 

pressure when the elastic-perfectly plastic material reaches the fully plastic state for a material with 

yield strength f (Hill, R., 1950). The definitions of eq and zeq in Figs. 4 and 5 are as follows. 
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Here, eq was defined as the value at which the area of a rectangle with sides eq and (t-t1) is 

equivalent to the value of the actual area of the cross section of a flaw. zeq in Eq. (3) is similar, as 

well. 

Fig. 4 shows the case of pf/p1 with t1/t = 0.5. This figure demonstrates that pf is affected by eq. 

The value of pf decreased with an increase in eq when z was large enough (z ≥ 100 mm). For 

example, the decrease in pf is approximately 40% for z ≥ 100 mm, and pf was nearly identical to p1 

when eq/2 = 1. Thus, pf/p1 is approximately 1 when z and eq are large. In contrast, when eq and 

z → 0, it appears that pf/p1 → t/t1 = 2. That is, it is predicted that the burst pressures are close to pf 

in pipes of wall thickness t when eq and z → 0, and they are equal to pf in pipes of wall thickness t1 

when z and  are great. This effect of  on pf means that the strength decreases with an increase in , 

so the effect of  on pf should be taken into consideration. However, the effect of  on pf decreases 

with a decrease in z, and this effect was small when z ≤ 50 mm. 

Figure 5 shows pf/p1 for the cases where t1/t = 0.75, 0.5, and 0.25 with z = 50 mm. According to 

Fig. 5, the effect of  on pf is small (approximately 10%) in cases where t1/t = 0.75 and 0.5 with z = 

50 mm. In contrast, the effect of  on pf is large (approximately 30%) for t1/t = 0.25 when z is 50 

mm. Therefore, clearly both z and t1/t are correlated with a result of pf decreasing as  increases. 
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In summary, from the experimental results,  tended to affect pf for the cases with large z, and 

t1/t was also correlated with a decrease in pf as  increased. 

 

3. Finite element analysis 

The MARC finite element code was used for the large strain elastic-plastic FEA model. In this 

analysis, the pipes for the FEA model are chosen specifically to examine the effect of  on pf: 

1） To validate the FEA results; the experimental results and the FEA results were compared 

(p
FEA

/pf of 9 analysis cases shown in Table 3). 

2） To reproduce the effect of pf decreasing with the increase of ; values of pf are compared for 

/2 = 1/12 and 1 (p
FEA

/p1 of 10 analysis cases shown in Table 4). 

3） To reproduce the effect of pf decreasing with the increase of  and affected by t1/t; pipes with 

/2 = 1/12, 1 and z = 50 mm in t1/t = 0.75, 0.5, 0.25 are chosen (p
FEA

/p1 of 6 analysis cases 

shown in Table 5).  

Note that /2 ≥ 1/12 was chosen to consider the effect of  on pf for cases of non-planar flaws. 

Three-dimensional models of the pipes with the flaws shown in Tables 3 through 5 and in Fig. 3 

were developed using the MARC software, including models with mesh refinement in the 

wall-thinned zone. In each case, one quarter of the specimen was modeled because of symmetry 

conditions, as shown in Fig. 6. All models used 20-node brick elements. The number of elements and 
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nodes range from 17,660 elements/85,840 nodes to 23,650 elements/111,181 nodes. The material 

behavior was assumed to be governed by the J2-incremental theory of plasticity, the isotropic 

hardening rule and Prandtl-Ruess flow theory. The Newton-Raphson iterative method was used for 

nonlinear convergence. The Young’s modulus E was equal to 206 GPa, and the Poisson’s ratio  was 

0.3. The true stress t -true strain (plastic) t curve used in the large strain FEA is shown in Fig. 7. 

The values of t and t shown in Fig. 7 were evaluated under the assumption of constant volume, 

such that t =n (1+n) and t = ln (1+n), where n is the nominal stress, and n is the nominal strain 

obtained from a tensile test for heat ID b in Table 2. 

The boundary conditions are shown in Fig. 6. The load (up to the internal pressure, at which the 

outer surface circumferential stress of the sound cylinder reached 0.2y0) was applied via an even 

incremental loading procedure of approximately 10 steps. After this loading, MARC’s automatic 

load-stepping option was applied up to p
FEA

 under the restriction that the strain increment in a given 

load increment was less than 2% of the previous total strain. In addition, MARC’s “follower force” 

option was specified to ensure that the geometric non-linear effects were included, and therefore, the 

internal pressure was always applied perpendicularly to the current (deformed) inner surface of the 

cylinder. The internal pressure p and thrust stress m = p49.55
2
/{(56.15

2
-49.55

2
)} = 3.52p MPa 

were also applied on the cylinder end. Here, the internal pressure at which the Von Mises stress 

exceeded the true tensile stress B throughout the ligament thickness in the flaw center, shown in Fig. 
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6 (b) as “evaluated line,” was designated as p
FEA

. 

Figure 8 shows the typical Von Mises stress distribution at p
FEA

 for the cases with flaws z = 50 

mm and /2 = 1/12. In Fig. 8, the zones where the Von Mises stress exceed the true tensile stress B 

= 543 MPa are colored gray. As shown in this figure, the pressure at which the gray zone penetrated 

the wall-thickness in the flaw center was defined as the predicted burst pressure p
FEA

, and p
FEA

 

values for all cases are summarized in Tables 3 through 5. 

 

3.1 FEA results: Validation 

According to the 9 analysis cases shown in Table 3, the discrepancies between p
FEA

 and pf are 

small (approximately -8 % to +8 %). In Fig. 9, p
FEA

/pf is plotted for t1/t = 0.75, 0.5, and 0.25 with 

/2 = 1 (that is, the 9 cases in Table 3) to examine the relationship between the flaw configuration 

and calculation accuracy.  

It can be observed from Fig. 9 that the value of p
FEA

 is non-conservative for t1/t = 0.75 and 0.25, and 

conservative for t1/t = 0.5. This means that the pf prediction accuracy was similar for the same values 

of t1/t, even though z changed. Specifically, in the case of t1/t = 0.75, p
FEA

/pf is approximately 1.08 

(the range of zeq is 80 to 160 mm). In the case of t1/t = 0.25, p
FEA

/pf is approximately 1.00 (the range 

of zeq is 130 to 180 mm). In the case of t1/t = 0.5, p
FEA

/pf is 0.92 to 1.00 (the range of zeq is 70 to 

170 mm). 
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With regards to these discrepancies in pf and p
FEA

, one cause might be the difference in the flaw 

ligament thickness between the designed value (value in FEA) t1 and the measured value t1measured. In 

the case of t1/t = 0.25, where p
FEA

/pf is approximately 1.00, t1/t1measured is smaller than 1 (t1/t1measured is 

approximately 0.95). In addition, in the case of t1/t = 0.5, p
FEA

/pf increased from 0.92 to 1.02, though 

t1/t1measured decreased from 1.01 to 0.95. Thus, the cause is not clear, which is an issue that should be 

resolved in future work. However, the discrepancy between pf and p
FEA

 was approximately 10% 

overall, and it was concluded that the pf prediction of the FEA model was satisfactory. 

 

3.2 FEA results: The effect of  on p
FEA

 

Next, from the results of the 10 analysis cases shown in Table 4, p
FEA

 values corresponding to 

the cases in Fig. 4 were plotted with solid marks in Fig. 10 by comparing the two p
FEA

s for the cases 

of /2 = 1/12 and 1. As observed in Fig. 10, the decrease in burst pressure with the increase in  as 

predicted by FEA was approximately 8% for the case of z = 50 mm and approximately 15% for z = 

145 mm. Similarly, when the decreased burst pressure pf for /2 = 1/12 and 1 was interpolated from 

the experimental results, the value was approximately 7% for z = 50 mm and approximately 20% 

for z = 145 mm. Thus, the effect of pf decreasing as  increased was confirmed not only by 

experiment (pf), but also by the FEA (p
FEA

) model. 
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3.3 FEA results: The effect of t1/t for p
FEA

 

Finally, an attempt was made to reproduce the observation that a decrease in pf with an increase 

of  is affected by t1/t. As mentioned above, according to Fig. 5, the effect of  on pf is small 

(approximately 10%) when t1/t = 0.75 and 0.5 and z is 50 mm. However, the effect of  on pf is 

considerable (approximately 30%) when t1/t = 0.25 and z is 50 mm. 

The elastic-plastic FEA simulations were performed for this purpose, as shown in Table 5. p
FEA

 

and p1 were compared in the normalized form in Fig. 11. Figure 11 shows the cases for pf/p1 with and 

p
FEA

/p1 for z = 50 mm, with t1/t = 0.75, 0.5, and 0.25. In Fig. 11, open and closed marks represent 

the cases of pf/p1 and p
FEA

/p1, respectively. 

In the cases of t1/t = 0.75 when z is 50 mm, the effect of  on p
FEA

 is small (approximately 5%) 

for the range of /2 = 1/12 to 1. In contrast, in the cases of t1/t = 0.25 when z is 50 mm, the effect 

of  on p
FEA

 in the same range of  is large (approximately 20 %). Similarly, when the decrease in 

burst pressure pf for /2 = 1/12 and 1 was interpolated from the experimental results, the value was 

approximately 7% for t1/t = 0.50 and approximately 27% for t1/t = 0.25. Therefore, it is clear that t1/t 

correlated with a decrease in burst pressure as increases, which was confirmed not only by 

experiment (pf) but also by FEA (p
FEA

) in Fig. 11.  

In summary, from the large strain elastic-plastic FEA results, trends in the experimental results 

(that is,  tended to affect pf for the cases with larger z, and t1/t was also correlated with a decrease 
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in pf with the increase of ) were successfully simulated.  

 

3.4 FEA results: The relationship between internal pressure and radial displacement 

A theoretical equation for radial displacement at radius r in the elastic region (c < r ≤ R0) of an 

elastic-perfectly plastic sound cylinder under internal pressure is known to be as follows (Allan F. B., 

2009): 
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Here, c is the position of the elastic-plastic boundary and pc was defined as follows: 

 

   iy0 /log3/2 Rcppc                         (5) 

 

Considering that the burst pressure of the elastic-perfectly plastic cylinder pcf is defined as p for c → Ro, 

i.e., ur| r = Ro → ∞, ur at the outer surface of the flaw center, uro was focused as follows. 

For reference, two sound cylinders with Ro = 53.55 mm, an axial length of 170 mm and 

thicknesses of 2 and 4 mm were analyzed. The deformation of the two sound cylinders and 

wall-thinned pipes with t1/t = 0.5 up to p
FEA

 are compared in Fig. 12. As designated in Fig. 12, uro 
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was plotted for p in Fig. 13. Here, the maximum p of wall-thinned pipes was p
FEA

.  

Interestingly, in spite of partial wall-thinning, a characteristic of uro → ∞ was confirmed in Fig. 

13 for the value near p
FEA

. For the FEA results of /2 = 1, these results were similar to the results 

for a sound cylinder with t = 2 mm (that is t1 in wall-thinned pipes). In contrast, regarding FEA 

results of /2 = 1/12 (that is  → 0), these results seemed to approach a result in a sound cylinder 

with t = 4 mm (that is t in wall-thinned pipes). The above seemed to show the mechanism for how  

affected pf. In addition, regarding the FEA results for /2 = 1, the effect of z on internal pressure in 

uro → ∞ was large, and these results were similar to the result of a sound cylinder with t = 2 mm 

(that is, t1 in wall-thinned pipes) when z was large. In contrast, regarding the FEA results of /2 = 

1/12 (that is,  → 0), the effect of z on internal pressure in uro → ∞ was small compared to when 

/2 = 1. The above analysis showed the effect of  on decreasing pf with a decrease in z. From the 

above observations, it seems reasonable to estimate the upper bound of the effect of  on pf as (t/t1 - 1). 

 

4. Discussion 

It may be more effective to define p
FEA as the pressure when accumulated strain first reaches 

failure strain, such as the approach shown by Oh et al. (2006). However, as Oh et al. themselves 

admit, “the failure criterion based on failure strain suggests that failure is governed by global plastic 

instability, and thus these experimental data in a corrosion defect (that is non-planar flaw) are not 
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appropriate to validate the present approach”. The FEA model in this paper was a pipe with a modified 

non-planar flaw, and the maximum Von Mises strain in p
FEA

 was approximately 20%, which was 

considerably smaller than the failure strain. Therefore, the failure criterion based on the failure strain 

was thought to be inappropriate to apply to the case considered in this paper. Another piece of 

evidence suggesting that this might be inappropriate was that collapse occurred before burst, as 

demonstrated in Fig. 13. In addition, p
FEA

 obtained by the B-based failure criterion, was very close to the 

pressure from uro → ∞. Considering that the p
FEA

 obtained for a case pf of tested specimens was close to 

the experimental result pf, and p
FEA

 seemed to simulate the pressure corresponding to collapse, it seems 

that using p
FEA

 is acceptable for cases without experimental results. 

 

5. Conclusion 

In this paper, the effect of the circumferential angle  on the burst pressure pf was confirmed 

experimentally using the burst test and numerically via a large strain elastic-plastic FEA simulation. 

From the experimental results,  tended to affect pf for cases with large z, and additionally, t1/t was 

correlated with a decrease in pf accompanied by an increase of . These tendencies were successfully 

simulated by the elastic-plastic FEA model. The effect was as large as 30 % in the case of t1/t = 0.25 

and 40 % in the case of z = 145. The mechanism how  affected pf was explained as the upper 

bound FEA pressure (at which collapse is observed) for a flaw with small  was close to that of a 
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sound cylinder with thickness t, and the value for large  was close to that of a sound cylinder with t1. 

From the above observations, it seems reasonable to estimate the upper bound of the effect of  on pf as 

(t/t1 - 1). This effect means that the burst pressure predicted for a crack with identical ligament 

thickness decreases with an increase in , such that the effect of  on pf should be taken into 

consideration in evaluating pf. 
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Nomenclature 

a: depth of a constant-depth axial crack 

p: internal pressure 

p1: internal burst pressure predicted for a sound cylinder with thickness t1; Eq. (1) 

p
FEA

: internal burst pressure predicted by FEA 

pf: internal burst pressure 

t: wall thickness of a pipe 

t1: flaw ligament thickness 

t1Measured: flaw ligament thickness; measured 

ur: radial displacement; Eq. (4) 

uro: ur at the outer surface of the flaw center 

Do: outer diameter of a pipe 

E: Young’s modulus 

Ri: inner radius of a pipe 

Rm: mean radius of a pipe 

Ro: outer radius of a pipe 

z: axial length of a planar or a non-planar flaw 

zeq: equivalent z; Eq. (2) 
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F0: elongation 

n, t: nominal and true strain 

: Poisson’s ratio 

: circumferential angle of a non-planar flaw 

eq: equivalent ; Eq. (3) 

B: true tensile stress 

B0: nominal tensile stress 

f: flow stress 

n, t: nominal and true stress 

m: thrust stress 

y0: nominal yield stress 
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Table 1 Dimensions of the artificial flaws and experimental data 

/2 eq/2 t1/t 
t1Measured 

(mm) 
z 

(mm) 

zeq 

(mm) 

pf 

(MPa) 
pf/p1 

Fracture 

mode 
Ser.# 

Heat ID. 

in Table. 2 

1 1 0.75 2.97 145 156.34 26.58 1.00 axial 07-01 b 

1 1 0.75 2.99 100 111.34 27.62 1.03 axial 07-02 b 

1 1 0.75 2.96 95 106.34 27.76 1.05 axial 07-03 b 

1 1 0.75 2.95 85 96.34 27.88 1.06 axial 07-04 b 

1 1 0.75 2.90 75 86.34 28.17 1.09 axial 07-05 b 

1 1 0.75 2.96 50 61.34 30.25 1.14 axial 07-06 b 

1 1 0.50 2.00 145 167.69 16.50 0.94 axial 06-01 a 

1 1 0.50 2.01 145 167.69 16.48 0.94 axial 06-02 a 

1 1 0.50 1.94 145 167.69 16.44 0.97 axial 06-03 a 

1 1 0.50 2.02 145 167.69 18.42 1.02 axial 07-07 b 

1 1 0.50 2.03 145 167.69 19.00 1.05 axial 07-08 b 

1 1 0.50 2.02 145 167.69 20.23 1.12 axial 07-09 b 

1 1 0.50 1.99 100 122.69 18.35 1.05 axial 06-04 a 

1 1 0.50 2.03 100 122.69 21.04 1.16 axial 07-10 b 

1 1 0.50 1.99 80 102.69 21.01 1.18 axial 07-11 b 

1 1 0.50 2.07 70 92.69 22.99 1.24 axial 07-12 b 

1 1 0.50 1.98 60 82.69 22.69 1.28 axial 07-13 b 

1 1 0.50 1.96 50 72.69 22.33 1.30 circ. 06-05 a 

1 1 0.50 2.00 50 72.69 22.17 1.27 circ. 06-06 a 

1 1 0.50 1.98 50 72.69 26.51 1.50 circ. 07-14 b 

1 1 0.50 1.95 6 6 40.42 2.17 Guillotine 08-04 d 

1 1 0.50 - 1 1 40.08 2.10 Guillotine 08-02 d 

1 1 0.25 1.05 145 179.03 9.39 1.00 axial 07-15 b 

1 1 0.25 1.06 100 134.03 10.49 1.11 axial 07-16 b 

1 1 0.25 1.02 60 94.03 13.32 1.46 circ. 07-17 b 

1 1 0.25 1.04 50 84.03 14.12 1.52 circ. 07-18 b 

1 1 0.25 0.95 40 74.03 14.43 1.70 circ. 07-19 b 

2/3 0.737 0.50 2.44 145 167.69 22.62 1.03 axial 07-34 c 

2/3 0.737 0.50 2.20 100 122.69 21.78 1.11 axial 07-35 b 

2/3 0.737 0.50 2.12 50 72.69 26.39 1.39 axial 07-36 b 

1/3 0.403 0.50 2.30 145 167.69 22.85 1.10 axial 07-31 c 

1/3 0.403 0.50 2.21 100 122.69 23.60 1.19 axial 07-32 b 

1/3 0.403 0.50 2.12 50 72.69 27.01 1.33 axial 07-33 d 

1/6 0.237 0.50 2.24 100 122.69 23.17 1.08 axial 07-26 d 

1/6 0.237 0.50 2.05 50 72.69 26.25 1.34 axial 07-27 d 

1/6 0.237 0.50 2.17 6 6 40.46 1.95 axial 08-03 d 

1/6 0.237 0.50 - 1 1 38.82 2.03 circ. 08-01 d 

0.019 0.019 0.50 2.04 145 167.69 25.53 1.31 axial 08-10 d 

0.019 0.019 0.50 2.03 100 122.69 26.07 1.34 axial 08-08 d 

0.003 0.003 0.50 - 145 167.69 25.41 1.33 axial 08-09 d 

0.003 0.003 0.50 - 100 122.69 25.76 1.35 axial 08-07 d 

0.003 0.003 0.50 - 50 72.69 26.90 1.41 axial 08-05 d 

0.003 0.003 0.75 2.99 50 61.34 35.24 1.23 axial 08-12 d 

0.003 0.003 0.25 0.98 50 84.03 18.70 2.00 axial 08-11 d 

0 0 1 3.96 0 0 34.44 0.97 axial 07-25 b 
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Table 2 Chemical composition and tensile strength of the specimens (JIS STPT 370) 

Heat ID. C Si Mn P S y0 

(MPa) 

B0 

(MPa) 

f  

(MPa) 

F0 

Specified < 0.25 0.10–0.35 0.30–0.90 < 0.035 < 0.035 > 215 > 370 – > 0.30 

a 0.15 0.19 0.48 0.017 0.008 311 441 376 0.38 

b 0.17 0.20 0.67 0.017 0.007 316 452 383.5 0.34 

c 0.20 0.22 0.55 0.023 0.010 310 465 387.5 0.42 

d 0.22 0.19 0.69 0.015 0.002 333 487 410 0.38 

 

Table 3 FEA results: Validation   

/2 t1/t 
t1Measured 

(mm) 
t1/t1Measured 

z 

(mm) 

zeq 

(mm) 

pf 

(MPa) 
p

FEA
 

(MPa) 
p

FEA
/pf Ser.# 

1 0.75 2.97 1.01 145 156.3 26.58 28.56 1.07 07-01 

1 0.75 2.99 1.00 100 111.3 27.62 29.67 1.07 07-02 

1 0.75 2.96 1.01 50 61.3 30.25 32.34 1.07 07-06 

1 0.50 2.03 0.99 145 167.7 19.00 19.09 1.00 07-07 

1 0.50 2.03 0.99 100 122.7 21.04 20.44 0.97 07-10 

1 0.50 1.98 1.01 50 72.7 26.51 24.48 0.92 07-14 

1 0.25 1.05 0.95 145 179.0 9.39 9.57 1.02 07-15 

1 0.25 1.06 0.94 100 134.0 10.49 10.45 1.00 07-16 

1 0.25 1.04 0.96 50 84.0 14.12 13.77 0.98 07-18 

 

Table 4 FEA results: The effect of  on p
FEA

   

/2 eq/2 t1/t 
z 

(mm) 

zeq 

(mm) 

p
FEA

 

(MPa) 
p

FEA
/p1   

Heat ID. 

in Table. 2 

1 1 0.50 145 167.7 19.09 1.07 b 

4/6 0.70 0.50 145 167.7 19.84 1.11 b 

3/6 0.54 0.50 145 167.7 20.30 1.14 b 

2/6 0.37 0.50 145 167.7 20.80 1.16 b 

1/6 0.20 0.50 145 167.7 21.59 1.21 b 

1/12 0.12 0.50 145 167.7 21.76 1.22 b 

1 1 0.50 100 122.7 20.44 1.14 b 

1/12 0.12 0.50 100 122.7 22.97 1.29 b 

1 1 0.50 50 72.7 24.43 1.37 b 

1/12 0.12 0.50 50 72.7 26.57 1.49 b 

 

Table 5 FEA results: The effect of t1/t for p
FEA

   

/2 eq/2 t1/t 
z 

(mm) 

zeq 

(mm) 

p
FEA

 

(MPa) 
p

FEA
/p1   

Heat ID. 

in Table. 2 

1 1 0.75 50 61.3 32.34 1.15 b 

1/12 0.10 0.75 50 61.3 34.02 1.21 b 

1 1 0.50 50 72.7 24.43 1.37 b 

1/12 0.12 0.50 50 72.7 26.57 1.49 b 

1 1 0.25 50 84.0 13.77 1.46 b 

1/12 0.14 0.25 50 84.0 16.29 1.73 b 
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Fig. 1  Axial planar flaw and non-planar flaws 

(axially and circumferentially in length) in a cylinder 
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Fig. 2 Wall-thinned pipe burst test system diagram 
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Fig. 3 Test specimen configuration (Unit: mm) 
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Fig. 4 Effect of flaw configuration on burst pressure (t1/t = 0.5)  
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Fig. 5 Effect of flaw configuration on burst pressure (z = 50 mm)  
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Fig. 6 Wall-thinned straight pipe specimen and boundary condition 
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Fig. 7 True stress–true strain curve 
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Fig. 8 Von Mises stress distribution (case with flaw of z = 50 mm, /2 = 1/12) 
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Fig. 9 Validation of FEA results (/2 = 1) 
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Fig. 10 Effect of  on pf by FEA (t1/t = 0.5)   
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Fig. 11 Effect of t1/t for pFEA 
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Fig. 12 Deformed pipes at pFEA 
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Fig. 13 Radial deformation at the outer surface of the flaw center 
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