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Abstract. A major problem with Artificial Bee Colony (ABC) algorithm is its
premature convergence to local optima, which originates from lack of explora-
tive search capability of the algorithm. This paper introduces ABC with Im-
proved Explorations (ABC-IX), a novel algorithm that modifies both the selec-
tion and perturbation operations of the basic ABC algorithm in an explorative
way. Unlike the basic ABC algorithm, ABC-IX employs a probabilistic, explor-
ative selection scheme based on simulated annealing which can accept both bet-
ter and worse candidate solutions. ABC-IX also maintains a self-adaptive per-
turbation rate, separately for each candidate solution, to promote more explora-
tions. ABC-IX is tested on a number of benchmark problems for numerical op-
timization and compared with several recent variants of ABC. Results show that
ABC-IX often outperforms the other ABC-variants on most of the problems.
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1 Introduction

The Artificial Bee Colony (ABC) algorithm [1] is a recently introduced swarm intelli-
gence algorithm inspired by the intelligent food foraging behavior of honey bees.
ABC and its variants have frequently showed superior performance in comparison to
many other existing evolutionary and swarm intelligence algorithms [2]. Over the last
few years, ABC has been successfully applied to wide and diverse range of problems,
such as numerical optimization, discrete optimization, multi-objective optimization,
machine learning, design of IIR filters, PID controller, software testing and so on [3].

In comparison to other greedy and local search based algorithms, ABC is more re-
silient against local optima, because the population of candidate solutions provides an
advantage of preserving diversity and continuing explorations of the search space.
However, from practical experiences, it is often found that the evolving population of



candidate solutions loses its diversity and explorative capability too soon and the
solutions prematurely get trapped around the locally optimal points of the fitness
landscape. Another problem often found with ABC is the fitness stagnation, where the
population of solutions stops progressing towards the global optimum for no apparent
reason, even without converging to some local optima [4]. The risk of fitness stagna-
tion and premature convergence usually depends on the mix of explorative and ex-
ploitative operations during the search. Similar to other population based metaheuris-
tic algorithms, ABC drives its search towards global optimum with two operators –
perturbation and selection. The perturbation operation is generally responsible for
explorations of different regions of the search space by random alteration of the exist-
ing candidate solutions, while the fitness based selection operation of ABC performs
the exploitation of the search regions explored so far.

There exist a number of recent works (e.g. [5-8]) that attempt to alter the explora-
tive and/or exploitative properties of the standard ABC algorithm to avoid premature
convergence and fitness stagnation. However, most of them focus on altering the
perturbation operation only. In the literature, not much has been reported to improve
the greedy fitness-based selection procedure of ABC. Our proposed algorithm – ABC
with Improved Explorations (ABC-IX) alters both the selection and perturbation op-
erations of the standard ABC algorithm to increase the explorative capacity of both
the operations. A detailed description of both the improvements by ABC-IX is pre-
sented in section 3. Increased explorations can spread the population across more
search regions allowing more possible trial solutions to be produced, which make
ABC-IX robust against fitness stagnation and premature convergence.

The rest of this paper is organized as follows. Section 2 describes the standard
ABC algorithm with its pseudocode. Section 3 presents the proposed algorithm –
ABC-IX and explains the improvements on the selection and perturbation operations
along with their pseudocode. Section 4 provides details of the benchmark problems,
parameter settings of the algorithms, comparison of their results and experiments on
ABC-IX to investigate its improvements. Finally, section 5 concludes with a few new
directions for further study with ABC-IX.

2 Artificial bee colony (ABC) algorithm

The ABC algorithm mimics the food foraging behavior of honey bees with three
groups of bees that are found in nature, i.e. employed, onlooker and scout bees. A bee
working to forage a particular food source (i.e., candidate solution) previously visited
by itself and searching only around its vicinity is called an employed bee. Onlooker
bees randomly pick and follow any of the employed bees. The probability of picking
an employed bee is proportional to the quality of its food source. Scout bees perform
random explorations of the search space to find new food sources. Suppose xi is a
food source currently being visited by an employed bee. The bee employs (1) to
search around the neighborhood of xi in order to produce a new, trial food source vi.= + φ − (1)



Here, ∈ {1, 2, … , } and ∈ {1, 2, … , } are randomly picked indices, D is the
dimensionality of the problem, SN is the number of food positions, φij is a uniform
random value produced from [-1, 1]. If vi has better ‘fitness’ than the old food source
position xi, then xi is replaced by vi. Else, vi is discarded. With f being the function to
be minimized, ABC computes the ‘fitness’ of a candidate solution, say xi, using (2).( ) = 1 1 + ( )⁄ , if ( ) ≥ 01 + | ( )| otherwise (2)

An onlooker bee randomly picks an employed bee xi to follow and forages around
the vicinity of its food source. The probability pi that a food source xi would be picked
by an onlooker bee is computed using (3), which makes the probability pi proportional
to ( ). This ensures that a more promising solution xi with high fitness value
is often foraged and exploited more intensively by (1) than relatively less fit solutions.= ( ) ∑ ( )⁄ (3)

If a particular food source position xi has not been improved over the last limit
cycles, then it is abandoned and the bee employed to xi now becomes a scout bee that
is placed at random across the search space using (4), where = 1, 2, … , and[ , ] is the search space along the j-th dimension.= + (0,1) ∗ ( − ) (4)

Fig. 1. Pseudocode for the standard Artificial Bee Colony (ABC) algorithm

3 ABC algorithm with improved explorations (ABC-IX)

The proposed algorithm – ABC-IX differs from the standard ABC algorithm in two
important ways. First, ABC accepts a newly produced solution vi only if vi has higher
fitness value than the original solution xi (Fig. 1, steps 5,9). This exploitative selection

Algorithm: Artificial Bee Colony (ABC) Algorithm1: Initialize a population of SN food source positions (i.e., candidate solutions) xi, for i = 1, 2, …, SN.Each xi is a vector of D parameters: xi = [xi1, xi2, …, xiD]T2: Evaluate the fitness of each food source positions using (2)3: repeat4: Perturb each food position xi to produce a new position vi using (1)5: Evaluate each new solution vi using (2). If vi is better than xi, then accept vi to replace xi6. Calculate the probability pi associated with each food source position xi using (3)7: For each onlooker bee, assign it to a food source xi, proportionally based on the probability pi8: Produce new food position vi by perturbing the food source xi of each onlooker bee using (1)9: Evaluate each new solution vi by (2). If vi is better than xi, then accept vi to replace xi10: If a food source has not improved during the last limit cycles, then abandon it and replace itwith a new randomly placed scout bee with its food source xi produced by (4).11: Memorize the best food source position found so far12: Set cycle counter C = C + 113: until C = Maximum cycle number (MCN)14: return the best food source position (i.e., candidate solution) found so far



Fig. 2. Pseudocode for simulated annealing (SA) based probabilistic selection scheme (on the
left) and perturbation with self-adaptive perturbation rate (on the right) for ABC-IX

Fig. 3. Pseudocode for ABC-IX. Steps that differ from the ABC algorithm are marked with ‘*’

scheme denies any possible downhill movement and allows only uphill steps in the
fitness landscape, which may lead to local optima. In contrast, ABC-IX promotes
more search space explorations by probabilistically allowing some downhill steps
using a simulated annealing-based selection scheme (Fig. 2). Second, ABC perturbs
only a single parameter of each existing solution xi which usually produces the new
solution vi in the neighborhood of xi, which is exploitative. In contrast, ABC-IX can
perturb any number of parameters of xi by introducing a self-adaptive perturbation
rate for each individual solution xi, which is addressed as q[xi] (Fig. 2). The value of
q[xi] is self-adapted gradually, cycle by cycle, separately for each xi. Fig. 3 presents

Algorithm: Simulated Annealing (SA)based Probabilistic SelectionScheme for ABC-IX
input: Two candidate solutions xi and vi

output: Either of xi and vi, selected tobe included into the population
begin

if fitness(vi) ≥ fitness (xi) then
return vi

else∆ = ( ) − ( )
if rand(0,1) ≤ exp(−∆ ⁄ ) then

return vi
endif

endif
return xi

end

Algorithm: Perturbation by ABC-IX
input: An existing candidate solution xi
output: Perturbed candidate solution vi
begin

vi = xi
if rand(0,1) ≤ t then

q[vi] = qmin + (1.0 – qmin) ∗ rand(0,1)
else

q[vi] = q[xi]
endif
for j = 1 to D do

if rand(0,1) ≤ q[vi] then
k= rand{1, 2, …, SN}
φij=rand(-1,1)
vij = xij + φij ∗ (xkj – xij)

endif
enddo
return vi

end

Algorithm: Artificial Bee Colony Algorithm with Improved Explorations (ABC-IX)1: Initialize the population of SN food source positions (i.e., candidate solutions) xi, for i = 1, 2, …, SN.Each xi is a vector of D parameters: xi = [xi1, xi2, …, xiD]T2: Evaluate the fitness of each food source positions using (2)3: repeat4*: Perturb each food source xi to produce a new food vi using the pseudocode for perturbation in Fig. 25*: Evaluate each new solution vi by (2). Select either xi or vi by SA-based probabilistic selection (Fig. 2)6: Calculate the probability pi associated with each food source position xi using (3)7: For each onlooker bee, assign it to a food source xi, proportionally based on the probability pi8*: Produce vi by perturbing the food position xi of each onlooker bee with the perturbation code (Fig. 2)9*: Evaluate each new solution vi by (2). Select either xi or vi by SA-based probabilistic selection (Fig. 2)10: If a food source has not improved during the last limit cycles, then abandon it and replace it with anew, randomly placed scout bee with its food source xi produced by (4).11: Memorize the best food source position found so far12*: Set cycle counter C = C + 1 and system temperature T = α * T13: until C = Maximum cycle number (MCN)14: return the best food source position (i.e., candidate solution) found so far



the pseudocode for ABC-IX, which differs from ABC in how the existing solutions
are perturbed (steps 4, 8) and how the new solutions are selected into the population
(steps 5, 9). They are further elaborated in the following paragraphs.

3.1 Simulated annealing (SA) based probabilistic selection

SA accepts both better and worse new solutions, but the probability of accepting a
worse new solution is reduced over time, depending on a gradually decreasing control
parameter T (i.e. temperature, from the analogy to the real annealing procedure in
metallurgy). Given an initial candidate solution xi, SA randomly perturbs xi to pro-
duce yi in the neighborhood of xi. The change ∆E of the objective function value,∆ = ( ) − ( ). If yi is better than xi (i.e. ∆ < 0), SA accepts yi as its cur-
rent state and discards xi. If yi is worse (i.e. ∆ > 0), SA may still accept yi, but only

with probability =
∆

. SA usually starts with a high initial temperature T0 to ensure
high degree of initial explorations by frequently accepting worse solutions (larger T

makes ∆ → 0, thus probability
∆ → 1). As T gradually decreases, SA becomes

increasingly exploitative, accepting better solutions only. The SA-based probabilistic
selection scheme (Fig. 2) improves the explorative capacity of ABC-IX, because it
can now accept both better and worse solutions to be more resilient against local op-
tima. T is gradually decreased by the exponential cooling schedule: ( + 1) = α ∗( ). We used α = 0.99. The initial temperature T0 is set to 50 times of the difference
of fitness values of the best and the worst solutions of the first generation.

3.2 Self-adaptive perturbation rate

ABC perturbs only a single, random parameter of the existing solutions using (1).
This allows search along a single dimension at a time, which may be suitable for sep-
arable problems, but is inappropriate for non-separable problems. In contrast, ABC-
IX can perturb any number of parameters allowing search along any possible direc-
tion. For every candidate solution xi, ABC-IX separately maintains and adapts a con-
trol parameter q[xi], which denotes the probability of each parameter of xi to be per-
turbed by the perturbation operation. Note that, in the pseudocode (Fig. 2), the value
of q[xi] is perturbed first, with probability t, using (5), before perturbing any parame-
ter of xi to produce vi. This perturbed value q[vi] is then used as the perturbation rate
(PR) when producing vi from xi. A better value of PR is supposed to lead towards
better offspring solution vi, which is more likely to survive than xi and produce better,
new trial solutions and hence, propagate the better values of the PR. Thus the gradual
self-adaptation towards better, more effective PR values takes place across the popu-
lation. We have used t = 0.10, qmax = 1.0 and qmin = 1/D.
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4 Experimental studies

ABC-IX is evaluated using a suite of 13 standard benchmark problems [9] for numer-
ical optimization and compared with some recent variants of the ABC algorithm. For
page limit, the benchmark suite functions are not presented here, but they can be read-
ily found as f1−f13 in [9]. These functions have been widely used in many recent stud-
ies on evolutionary and swarm intelligence algorithms. The suite contains both uni-
modal (f1−f7) and multimodal (f8−f13) functions. A function is called multimodal if it
has multiple local optima. To optimize such a function, the search algorithm must
possess both exploitative and explorative properties so that it can explore the locally
optimal points without being trapped anywhere and thus keep exploring further for
better unvisited search regions. Some of the multimodal functions can have hundreds
of local minima, even when the dimensionality is just two or three (e.g., Griewank
function f11). Number of local optima usually increases exponentially with the number
of dimensions, which often makes their minimization extremely difficult.

ABC-IX has been compared with the standard ABC algorithm and some other
ABC variants [5-8] that try to alter the explorative/exploitative properties of ABC,
such as ABC with self-adaptive mutation (ABC-SAM) [5], cooperative ABC (CABC)
[6], ABC with diversity strategy (DABC) [7] and global best guided ABC [8]. On
each function, ABC-IX has made 30 independent runs and the mean of the best results
are presented in Tables 1–5. At first, ABC-IX is compared with the basic ABC [1]
and ABC-SAM [5] in Table 1 with SN = 50, maximum no. of function evaluations FE
= 100,000, no. of employed and onlooker bees = S 2⁄ , no. of scout bees = 1 and
limit = 100. Table 1 shows that ABC-IX outperforms both ABC and ABC-SAM on
most of the functions. In comparison to ABC, ABC-IX performs either better (on 11
out of the 13 functions) or at least equally well (f6 and f13). The other algorithm,
ABC-SAM performs better than ABC-IX on one function only (f8), while ABC-IX
performs better on as many as 11 other functions. ABC-SAM performs better than the
basic ABC, because it uses two different distributions, one exploitative and the other
explorative, ensuring both explorations and exploitations. But it still uses an exploita-
tive, fitness-based selection, which may be the reason that the more explorative ABC-
IX often outperforms it. Fig. 4 shows that ABC-IX starts with more explorations and
hence, reduced convergence speed than ABC, but gradually ABC-IX becomes more
exploitative and achieves higher convergence speed. For f9, the basic ABC is trapped
during the last half of its execution, while ABC-IX shows no sign of stagnation.

In Table 2, ABC-IX is compared with two cooperative ABC variants – CABC_S
and CABC_H [6]. Both the variants enforce more explorations by decomposing the
search space and using multiple bee colonies to explore the multiple subspaces. For
comparison, ABC-IX is implemented with the same settings [6]. Results show that
ABC_IX outperforms CABC on four out of the six functions, while the CABC vari-
ants perform better on the remaining two functions only.

The next two comparisons of ABC-IX are with DABC [7] and GABC [8]. DABC
tries to ensure more search space explorations by preserving more population diversi-
ty, while GABC alters the basic perturbation formula (1) in an exploitative way by
using the global best solution found so far. ABC-IX is re-implemented with the same



settings as suggested in [7] and [8]. Tables 3-4 show that ABC-IX often outperforms
DABC (2 out of 4 functions) and GABC (4 out of 5 functions). The reason may be
that GABC is too exploitative, while DABC uses a naïve strategy of repeated switch-
ing that may cause frequent oscillations between exploitations and explorations.

For more investigations, we have designed two more variants of ABC – ABC-
SimAn and ABC-SAD. ABC-SimAn includes the simulated annealing based selection
but excludes the self-adaptive perturbation. In contrast, ABC-SAD includes the self-
adaptive perturbation, but does not use the explorative simulated annealing based
selection. Both of them are tested on the six multimodal functions f8–f13 with SN =
100 and MCN = 1000. Results (Table 5) show that both ABC-SimAn and ABC-SAD
outperform the basic ABC on most (5 out of 6) of the functions. This indicates the
necessity of more explorations. Furthermore, ABC-IX, which combines both the ex-
plorative techniques, outperforms both ABC-SimAn and ABC-SAD on all the func-
tions, which indicates that the synergy and interaction between the explorative selec-
tion and perturbation operations can be further useful to improve the results.

5 Suggestions for further study

There may be several future research directions suggested by this study. Firstly, ABC-
IX uses a simple exponential cooling schedule for the system temperature T. A more
sophisticated cooling strategy (e.g., a strategy parameterized by the population diver-
sity or current explorative/exploitative requirement) may be more effective. Secondly,
ABC-IX concentrates only on the explorative capacity of the algorithm. Putting some
emphasis to control the exploitations may further improve the results. Thirdly, the
quality of the final solution might be improved further by using an efficient and ex-
ploitative local searcher. Finally, ABC-IX has been applied mainly on continuous
optimization problems. It would be interesting to study how well ABC-IX performs
on many other existing problems, especially the discrete and real world ones.

Table 1. Comparison of ABC [1], ABC-SAM
[5] and ABC-IX. Boldface font marks the best
performance for each function.

No ABC ABC-SAM ABC-IX
f1 3.58E-11 4.18E-14
f2 1.04E-14 2.47E-08
f3 2.75E-10 3.95E-12
f4 9.37E+00 1.69E+01
f5 2.75E+00 4.27E-02
f6

f7 8.61E-13 3.66E-16
f8 3.49E+02 1.56E+02
f9 5.79E-15 1.26E-16
f10 3.08E-06 9.26E-08
f11 4.35E-08 8.36E-10
f12 5.82E-08 2.78E-12
f13 2.96E-01

Table 2. Comparison of CABC variants [6]
and ABC-IX. Best results are in boldface font.

No CABC_S CABC_H ABC-IX
f1 3.30E-19 5.92E-18
f5 6.33E+00 4.80E-01
f8 1.86E-01
f9 3.86E-52
f10 1.83E-14 8.35E-15
f11 4.42E-02 7.96E-03

Table 3. Comparison between DABC [7] and
ABC-IX. Best results are in boldface font.

No DABC ABC-IX
f1 1.08E-16
f5

f9 4.29E-73
f11 1.11E-16
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Fig. 4. Convergence of ABC and ABC-IX for the functions f2 and f9. The vertical axis shows the
function value, while the horizontal axis is the number of function evaluations.

Table 5. Comparison of ABC [1], ABC-SimAn,
ABC-SAD and ABC-IX. Best results  in bold.

No ABC ABC-
SimAn ABC-SAD ABC-IX

f8 7.52E+02 5.29E+02 8.90E+01
f9 5.02E-14 2.53E-17 6.85E-18
f10 3.04E-07 8.50E-09 8.37E-10
f11 9.84E-10 1.91E-19 3.78E-19
f12 7.18E-10 7.55E-14 5.09E-14
f13 2.63E-03 2.64E-03 2.63E-03

Table 4. Comparison between GABC [8]
and ABC-IX. Best results are shown in
boldface font.

No D GABC ABC-IX
f1 30 4.17E-16
f5 2 2.93E-03
f9 30 9.47E-15
f10 30 3.21E-14
f11 30 2.96E-17


