Orbit decomposition of Jordan matrix algebras of order three under the automorphism groups

Akihiro Nishio and Osami Yasukura

Abstract

* Abstract. The orbit decomposition is given under the automorphism group on the real split Jordan algebra of all hermitian matrices of order three corresponding to any real split composition algebra, or the automorphism group on the complexification, explicitly, in terms of the cross product of H. Freudenthal and the characteristic polynomial.

0 . Introduction.

Let \mathcal{J}^{\prime} be a split exceptional simple Jordan algebra over a field \mathbb{F} of characteristic not two, that is, the set of all hermitian matrices of order three whose elements are split octonions over \mathbb{F} with the Jordan product. And let G^{\prime} be the automorphism group of \mathcal{J}^{\prime}. N. Jacobson [16, p.389, Theorem 10] found that $X, Y \in \mathcal{J}^{\prime}$ are in the same G^{\prime}-orbit if and only if X, Y admit the same minimal polynomial and the same generic minimal polynomial, by imbedding a generating subalgebra with the identity element E in terms of the Jordan product into a special Jordan algebra. When $\mathbb{F}=\mathbb{R}$, the field of all real numbers, some elements of \mathcal{J}^{\prime} are not diagonalizable under the action of $G^{\prime}=F_{4(4)}$, since \mathcal{J}^{\prime} admits a G^{\prime}-invariant non-defnite \mathbb{R}-bilinear form such that the restriction to the subspace of all diagonal elements is positive-definite [19, Theorem 2], although every element of \mathcal{J}^{\prime} is diagonalizable under the action of a linear group $E_{6(6)}$ containing $F_{4(4)}$ on \mathcal{J}^{\prime} by [15] (cf. [17]) or under the action of the maximal compact subgroup $S p(4) / \mathbb{Z}_{2}$ of $E_{6(6)}$ on \mathcal{J}^{\prime} given by [22].

This paper presents a concrete orbit decomposition under the automorphism group on a real split Jordan algebra of all hermitian matrices of order

[^0]three corresponding to any real split composition algebra, or the complexification of it, that is special or exceptional as a Jordan algebra. As a result, $X, Y \in \mathcal{J}^{\prime}$ are in the same G^{\prime}-orbit if and only if X, Y admit the same dimension of the generating subspace with E by the cross product [8] and the same characteristic polynomial, which gives a simplification for N. Jacobson [16]'s polynomial invariants on G^{\prime}-orbits when $\mathbb{F}=\mathbb{R}$ or the field of all complex numbers \mathbb{C}. To state the main results more precisely, let us give the precise notations:

Put $\mathbb{F}:=\mathbb{R}$ or \mathbb{C}. Let V be an \mathbb{F}-linear space, and $\operatorname{End}_{\mathbb{F}}(V)\left(\right.$ or $\left.\mathrm{GL}_{\mathbb{F}}(V)\right)$ denote the set of all \mathbb{F}-linear endomorphisms (resp. automorphims) on V. For a mapping $f: V \rightarrow V$ and $c \in \mathbb{F}$, put $V_{f, c}:=\{v \in V \mid f(v)=c v\}$ and $V_{f, 1}:=V_{f}$. For a subgroup G of $\operatorname{GL}_{\mathbb{F}}(V)$, let G° be the identity connected component of G. For $v \in V$ and a mapping $\phi: V \rightarrow V$, put $\mathcal{O}_{G}(v):=$ $\{\alpha(v) \mid \alpha \in G\}, G_{v}:=\{\alpha \in G \mid \alpha(v)=v\}$ and $G^{\phi}:=\{\alpha \in G \mid \phi \circ \alpha=\alpha \circ \phi\}$. For a subset W of V, put $G_{W}:=\{\alpha \in G \mid\{\alpha w \mid w \in W\}=W\}$. For positive integers n, m, let $M(n, m ; V)$ be the set of all $n \times m$-matrices with entries in V. Put $V^{n}:=M(n, 1 ; V), V_{m}:=M(1, m ; V)$ and $M_{n}(V):=M(n, n ; V)$. Since V can be considered as an \mathbb{R}-linear space, the complexification is defined as $V^{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}=V \oplus \sqrt{-1} V$ with an \mathbb{R}-linear conjugation: $\tau: V^{\mathbb{C}} \rightarrow$ $V^{\mathbb{C}} ; v_{1}+\sqrt{-1} v_{2} \mapsto v_{1}-\sqrt{-1} v_{2}\left(v_{1}, v_{2} \in V\right)$. For any $\alpha \in \operatorname{End}_{\mathbb{R}}(V)$, put $\alpha^{\mathbb{C}}: V^{\mathbb{C}} \longrightarrow V^{\mathbb{C}} ; v_{1}+\sqrt{-1} v_{2} \mapsto\left(\alpha v_{1}\right)+\sqrt{-1}\left(\alpha v_{2}\right)$ such that $\alpha^{\mathbb{C}} \tau=\tau \alpha^{\mathbb{C}}$, which is identified with $\alpha \in \operatorname{End}_{\mathbb{R}}(V): \alpha=\alpha^{\mathbb{C}}$.

By W.R. Hamilton, the quaternions is defined as an \mathbb{R}-algebra $\mathbb{H}:=$ $\oplus_{i=0}^{3} \mathbb{R} e_{i}$ given as $e_{0} e_{i}=e_{i} e_{0}=e_{i}, e_{i}^{2}=-e_{0}(i \in\{1,2,3\}) ; e_{k} e_{k+1}=$ $-e_{k+1} e_{k}=e_{k+2}$ (where $k, k+1, k+2 \in\{1,2,3\}$ are counted modulo 3) with the unit element $1:=e_{0}$ and the conjugation $\overline{\sum_{i=0}^{3} x_{i} e_{i}}=x_{0} e_{0}-\sum_{k=1}^{3} x_{k} e_{k}$, which contains the complex numbers $\mathbb{C}:=\mathbb{R} e_{0} \oplus \mathbb{R} e_{1}$ and the real numbers $\mathbb{R}:=\mathbb{R} e_{0}$ as \mathbb{R}-subalgebras. By A. Cayley and J.T. Graves, the octanions is defined as a non-associative \mathbb{R}-algebra $\boldsymbol{O}:=\mathbb{H} \oplus \mathbb{H} e_{4}$ given as follows [4]:

$$
\left(x \oplus y e_{4}\right)\left(x^{\prime} \oplus y^{\prime} e_{4}\right):=\left(x x^{\prime}-\overline{y^{\prime}} y\right) \oplus\left(y \overline{x^{\prime}}+y^{\prime} x\right) e_{4}
$$

with the \mathbb{R}-linear basis $\left\{e_{i} \mid i=0,1,2,3,4,5,6,7\right\}$, where the numbering is given as $e_{5}:=e_{1} e_{4}, e_{6}:=-e_{2} e_{4}, e_{7}:=e_{3} e_{4}$ after [26, p.127], [5, p.20] or [20]. Put $\boldsymbol{H}:=\mathbb{C} \oplus \mathbb{C} e_{4}$ and $\boldsymbol{C}:=\mathbb{R} \oplus \mathbb{R} e_{4}$. For $K:=\boldsymbol{O}, \boldsymbol{H}, \boldsymbol{C}, \mathbb{R}$, put $d_{K}:=\operatorname{dim}_{\mathbb{R}} K$. And put $\sqrt{-1}:=e_{0} \otimes e_{1} \in K^{\mathbb{C}}:=K \otimes_{\mathbb{R}} \mathbb{C}$ with the identification $K=K \otimes e_{0} \subset K^{\mathbb{C}}$. Then $K^{\mathbb{C}}=K \oplus \sqrt{-1} K$ is split (i.e. nondivision) as a \mathbb{C}-algebra with $\tau: K^{\mathbb{C}} \rightarrow K^{\mathbb{C}} ; x+\sqrt{-1} y \mapsto x-\sqrt{-1} y(x, y \in K)$
as the complex conjugation with respect to the real form K. Put

$$
\begin{aligned}
& \gamma: \boldsymbol{O}^{\mathbb{C}} \longrightarrow \boldsymbol{O}^{\mathbb{C}} ; \sum_{i=0}^{7} x_{i} e_{i} \mapsto \sum_{i=0}^{3} x_{i} e_{i}-\sum_{i=4}^{7} x_{i} e_{i} ; \text { and } \\
& \epsilon: \boldsymbol{O}^{\mathbb{C}} \longrightarrow \boldsymbol{O}^{\mathbb{C}} ; x:=\sum_{i=0}^{7} x_{i} e_{i} \mapsto \bar{x}:=x_{0}-\sum_{i=1}^{7} x_{i} e_{i}
\end{aligned}
$$

as \mathbb{C}-linear conjugations with respect to $\mathbb{H}^{\mathbb{C}}$ and $\mathbb{R}^{\mathbb{C}}$, respectively. And a \mathbb{C} bilinear form are defined on $\boldsymbol{O}^{\mathbb{C}}$ as $(x \mid y):=(x \bar{y}+\bar{x} \bar{y}) / 2=\sum_{i=0}^{7} x_{i} y_{i} \in \mathbb{C}$. The restrictions of γ, ϵ and $(x \mid y)$ on $K^{\mathbb{C}}$ are also well-defined and denoted by the same letters. Then $K^{\mathbb{C}}$ is a composition \mathbb{C}-algebra with respect to the norm form given by $N(x):=(x \mid x)\left[5, \S\right.$ I.3], because of $N\left(\left(x \oplus y e_{4}\right)\left(x^{\prime} \oplus y^{\prime} e_{4}\right)\right)-$ $N\left(x \oplus y e_{4}\right) N\left(x^{\prime} \oplus y^{\prime} e_{4}\right)=2\left\{\left(y \overline{x^{\prime}} \mid y^{\prime} x\right)-\left(x x^{\prime} \mid \overline{y^{\prime}} y\right)\right\}=2\left(\overline{y^{\prime}}\left(y \overline{x^{\prime}}\right)-\left(\overline{y^{\prime}} y\right) \overline{x^{\prime}} \mid x\right)=0$ since $\mathbb{H}^{\mathbb{C}}$ is an associative composition algebra with respect to $N[3, \S 6.4]$. And $K=\left(K^{\mathbb{C}}\right)_{\tau}$ is a division composition \mathbb{R}-algebra with the norm form $N(x)$ such that $a^{-1}=\bar{a} / N(a)$ for $a \neq 0$.

Put $K^{\prime}:=\left(K^{\mathbb{C}}\right)_{\tau \gamma}$ as a composition \mathbb{R}-algebra with the norm form $N(x)$ such that $\left(K^{\prime}\right)_{\gamma}=K_{\gamma}=\left(K^{\prime}\right)_{\tau}=K^{\prime} \cap K$. Precisely, $\boldsymbol{O}^{\prime}=\left\{\sum_{i=0}^{3} x_{i} e_{i}+\right.$ $\left.\sum_{i=4}^{7} x_{i} \sqrt{-1} e_{i} \mid x_{i} \in \mathbb{R}\right\}$ is the \mathbb{R}-algebra of the split-octanions containing the \mathbb{R}-subalgebra $\boldsymbol{H}^{\prime}=\left\{\sum_{i=0}^{1} x_{i} e_{i}+\sum_{i=4}^{5} x_{i} \sqrt{-1} e_{i} \mid x_{i} \in \mathbb{R}\right\}$ of the splitquaternions and the \mathbb{R}-subalgebra $\boldsymbol{C}^{\prime}=\left\{x_{0}+x_{4} \sqrt{-1} e_{4} \mid x_{i} \in \mathbb{R}\right\}$ of the split-complex numbers such that $\boldsymbol{O}^{\prime} \cap \boldsymbol{O}=\mathbb{H}, \boldsymbol{H}^{\prime} \cap \boldsymbol{H}=\mathbb{C}$ and $\boldsymbol{C}^{\prime} \cap \boldsymbol{C}=\mathbb{R}$. Then $K^{\prime \mathbb{C}}=K^{\prime} \oplus \sqrt{-1} K^{\prime}=K^{\mathbb{C}}$ as a \mathbb{C}-subalgebra of $\boldsymbol{O}^{\mathbb{C}}$.

Put $\tilde{K}:=K, K^{\prime}\left(\right.$ or $\left.K^{\prime \mathbb{C}}, K^{\mathbb{C}}\right)$ with $\mathbb{F}:=\mathbb{R}($ resp. $\mathbb{C})$ and $d_{\tilde{K}}:=\operatorname{dim}_{\mathbb{F}} \tilde{K}$. For $A \in M_{n}(\tilde{K})$ with the (i, j)-entry $a_{i j} \in \tilde{K}$, let ${ }^{t} A, \tau A, \epsilon A \in M_{n}(\tilde{K})$ be the transposed, τ-conjugate, ϵ-conjugate matrix of A such that the (i, j)-entry is equal to $a_{j i}, \tau\left(a_{i j}\right), \epsilon\left(a_{i j}\right)$, respectively, with the $\operatorname{trace} \operatorname{tr}(A):=\sum_{i=1}^{n} a_{i i} \in \mathbb{F}$, and the adjoint matrix $A^{*}:={ }^{t}(\epsilon A) \in M_{n}(\tilde{K})$. Let denote the set of all hermitian matrices of order three corresponding to \tilde{K} as follows:

$$
\mathcal{J}_{3}(\tilde{K}):=\left\{X \in M_{3}(\tilde{K}) \mid X^{*}=X\right\}
$$

with an \mathbb{F}-bilinear Jordan algebraic product $X \circ Y:=\frac{1}{2}(X Y+Y X)$, the identity element $E:=\operatorname{diag}(1,1,1)$ and an \mathbb{F}-bilinear symmetric form $(X \mid Y):=$ $\operatorname{tr}(X \circ Y) \in \mathbb{F}$. After H. Freudenthal [8] (cf. [7, (7.5.1)], [25], [14], [16, p.232, (47)], [28]), the cross product on $\mathcal{J}_{3}(K)$ is defined as follows:

$$
X \times Y:=X \circ Y-\frac{1}{2}(\operatorname{tr}(X) Y+\operatorname{tr}(Y) X-(\operatorname{tr}(X) \operatorname{tr}(Y)-(X \mid Y)) E)
$$

with $X^{\times 2}:=X \times X$ as well as an \mathbb{F}-trilinear form $(X|Y| Z):=(X \times Y \mid Z)$ and the determinant $\operatorname{det}(X):=\frac{1}{3}(X|X| X) \in \mathbb{F}$ on $\mathcal{J}_{3}(K)$ (cf. [9, p.163]). Put $E_{i}:=\operatorname{diag}\left(\delta_{i 1}, \delta_{i 2}, \delta_{i 3}\right)$ for $i \in\{1,2,3\}$ with the Kronecker's delta $\delta_{i j}$. For $x \in \tilde{K}$, put

$$
F_{1}(x):=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & x \\
0 & \bar{x} & 0
\end{array}\right), F_{2}(x):=\left(\begin{array}{ccc}
0 & 0 & \bar{x} \\
0 & 0 & 0 \\
x & 0 & 0
\end{array}\right), F_{3}(x):=\left(\begin{array}{ccc}
0 & x & 0 \\
\bar{x} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

For $x \in K^{\mathbb{C}}=\mathbb{R}^{\mathbb{C}}, \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}$ or $\boldsymbol{O}^{\mathbb{C}}$, put $M_{1}(x), M_{23}(x) \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right)$ such as

$$
M_{1}(x):=(x \mid 1)\left(E_{2}-E_{3}\right)+F_{1}(\sqrt{-1} x), \quad M_{23}(x):=F_{2}(\sqrt{-1} \bar{x})+F_{3}(x)
$$

with $M_{1}:=M_{1}(1), M_{23}:=M_{23}(1)$. For $x \in K^{\prime}=\boldsymbol{C}^{\prime}, \boldsymbol{H}^{\prime}$ or \boldsymbol{O}^{\prime}, put $M_{1^{\prime}}(x), M_{2^{\prime} 3}(x) \in \mathcal{J}_{3}\left(K^{\prime}\right)$ such as
$M_{1^{\prime}}(x):=(x \mid 1)\left(E_{2}-E_{3}\right)+F_{1}\left(\sqrt{-1} e_{4} x\right), \quad M_{2^{\prime} 3}(x):=F_{2}\left(-\sqrt{-1} e_{4} \bar{x}\right)+F_{3}(x)$
with $M_{1^{\prime}}:=M_{1^{\prime}}(1), M_{2^{\prime} 3}:=M_{2^{\prime} 3}(1)$. For $x \in \tilde{K}$, let denote

$$
\begin{aligned}
& \tilde{M}_{1}(x):=M_{1}(x)\left(\text { when } \tilde{K}=K^{\mathbb{C}}\right) \text { or } M_{1^{\prime}}(x)\left(\text { when } \tilde{K}=K^{\prime}\right), \\
& \tilde{M}_{23}(x):=M_{23}(x)\left(\text { when } \tilde{K}=K^{\mathbb{C}}\right) \text { or } M_{2^{\prime} 3}(x)\left(\text { when } \tilde{K}=K^{\prime}\right) ; \\
& \tilde{M}_{1}:=M_{1}\left(\text { when } \tilde{K}=K^{\mathbb{C}}\right) \text { or } M_{1^{\prime}}\left(\text { when } \tilde{K}=K^{\prime}\right), \\
& \tilde{M}_{23}:=M_{23}\left(\text { when } \tilde{K}=K^{\mathbb{C}}\right) \text { or } M_{2^{\prime} 3}\left(\text { when } \tilde{K}=K^{\prime}\right) .
\end{aligned}
$$

And denote

$$
\begin{aligned}
& \mathcal{P}_{2}(\tilde{K}):=\left\{X \in \mathcal{J}_{3}(\tilde{K}) \mid X^{\times 2}=0, \operatorname{tr}(X)=1\right\}, \\
& \left.\mathcal{J}_{3}(\tilde{K})\right)_{0}:=\left\{X \in \mathcal{J}_{3}(\tilde{K}) \mid \operatorname{tr}(X)=0\right\}, \\
& \mathcal{M}_{1}(\tilde{K}):=\left\{X \in \mathcal{J}_{3}(\tilde{K})_{0} \mid X \neq 0, X^{\times 2}=0\right\}, \\
& \mathcal{M}_{23}(\tilde{K}):=\left\{X \in \mathcal{J}_{3}(\tilde{K})_{0} \mid X^{\times 2} \neq 0, \operatorname{tr}\left(X^{\times 2}\right)=\operatorname{det}(X)=0\right\} .
\end{aligned}
$$

When $\tilde{K}=K, \mathcal{P}_{2}(\tilde{K})$ has a structure of Moufang projective plane $[9$, p.162, 4.6, 4.7], the algebraization method of which motivates to define the cross product on $\mathcal{J}_{3}(\tilde{K})$ for any \tilde{K}. The automorphism group of $\mathcal{J}_{3}(\tilde{K})$ with respect to the \mathbb{F}-bilinear Jordan product $X \circ Y$ is denoted as follows:

$$
G(\tilde{K}):=\operatorname{Aut}\left(\mathcal{J}_{3}(\tilde{K})\right)=\left\{\alpha \in G L_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\}
$$

which is a complex (resp. compact; real split) simple Lie group of type $\left(F_{4}\right)$ (resp. $\left.\left(F_{4(-52)}\right) ;\left(F_{4(4)}\right)\right)$ when $\tilde{K}=\boldsymbol{O}^{\prime \mathbb{C}}=\boldsymbol{O}^{\mathbb{C}}$ (resp. $\left.\boldsymbol{O} ; \boldsymbol{O}^{\prime}\right)$ by C. Chevalley and R.D. Schafer [2] (resp. [7], [9, p.161], [20, p.206, (2), (3)]; [29]). When $K=\mathbb{R}, \boldsymbol{C}$ or \boldsymbol{H}, the group $G(\tilde{K})$ is a simple Lie group of type $\left(A_{1}\right),\left(A_{2}\right)$ or $\left(C_{3}\right)$, respectively (cf. [9, p.165]). Put $\gamma: \mathcal{J}_{3}(\tilde{K}) \longrightarrow \mathcal{J}_{3}(\tilde{K}) ; X \mapsto \gamma X$ such that $\gamma X:=\sum_{i=1}^{3}\left(\xi_{i} E_{i}+F_{i}\left(\gamma x_{i}\right)\right)$ for $X=\sum_{i=1}^{3}\left(\xi_{i} E_{i}+F_{i}\left(x_{i}\right)\right) \in \mathcal{J}_{3}(\tilde{K})$. Put $\tau: \mathcal{J}_{3}(\tilde{K}) \longrightarrow \mathcal{J}_{3}(\tilde{K}) ; X \mapsto \tau X$ such as $\tau X:=\sum_{i=1}^{3}\left(\left(\tau \xi_{i}\right) E_{i}+F_{i}\left(\tau x_{i}\right)\right)$. Then $\tau \in G L_{\mathbb{R}}\left(\mathcal{J}_{3}(\tilde{K})\right)$ such that $\tau(X \circ Y)=(\tau X) \circ(\tau Y), \tau(X \times Y)=(\tau X) \times(\tau Y)$, $\operatorname{tr}(\tau X)=\tau(\operatorname{tr}(X)),(\tau X \mid \tau Y)=\tau(X \mid Y)$ and $\operatorname{det}(\tau X)=\tau(\operatorname{det} X)$, and that $\tau^{2}=\operatorname{id}, \mathcal{J}_{3}(\tilde{K})=\mathcal{J}_{3}(\tilde{K})_{\tau} \oplus \mathcal{J}_{3}(\tilde{K})_{-\tau}$ and $\mathcal{J}_{3}\left(K^{\mathbb{C}}\right)_{-\tau}=\sqrt{-1} \mathcal{J}_{3}(K)$, so that $G(K) \equiv\left\{\alpha^{\mathbb{C}} \mid \alpha \in G(K)\right\}=G\left(K^{\mathbb{C}}\right)^{\tau}$.

For $X \in \mathcal{J}_{3}(\tilde{K})$ and the indeterminate λ, put $\varphi_{X}(\lambda):=\lambda E-X$. Then the characteristic polynomial of X is defined as the polynomial $\Phi_{X}(\lambda):=$ $\operatorname{det}\left(\varphi_{X}(\lambda)\right)$ of λ with degree 3 and the derivative $\Phi_{X}^{\prime}(\lambda)$ is $\frac{d}{d \lambda} \Phi_{X}(\lambda)$, so that $\Phi_{X}(\lambda) \equiv\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right)$ with some $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$. In this case, the set $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ is said to be the characteristic roots of X. Put $\Lambda_{X}:=$ $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\} \subset \mathbb{C}$ with $\# \Lambda_{X} \in\{1,2,3\}$ and $V_{X}:=\left\{a X^{\times 2}+b X+c E \mid a, b, c \in\right.$ $\mathbb{F}\}$ with $v_{X}:=\operatorname{dim} V_{X} \in\{1,2.3\}$.

Proposition 0.1. Let \tilde{K} be K, K^{\prime} or $K^{\mathbb{C}}$ with $K=\mathbb{R}, \boldsymbol{C}, \boldsymbol{H}$ or \boldsymbol{O}.
(1) $G(\tilde{K}) \subseteq\left\{\alpha \in \mathrm{GL}_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right) \mid \operatorname{tr}(\alpha X)=\operatorname{tr}(X), \alpha E=E\right\}$. And

$$
\begin{aligned}
G(\tilde{K}) & =\left\{\alpha \in \operatorname{GL}_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right) \mid \operatorname{det}(\alpha X)=\operatorname{det}(X), \alpha E=E\right\} \\
& =\left\{\alpha \in \operatorname{GL}_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right) \mid \Phi_{\alpha X}(\lambda)=\Phi_{X}(\lambda)\right\} \\
& =\left\{\alpha \in \operatorname{GL}_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right) \mid \operatorname{det}(\alpha X)=\operatorname{det}(X),(\alpha X \mid \alpha Y)=(X \mid Y)\right\} \\
& =\left\{\alpha \in \operatorname{GL}_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right) \mid \alpha(X \times Y)=(\alpha X) \times(\alpha Y)\right\} .
\end{aligned}
$$

Especially, $\Lambda_{\alpha X}=\Lambda_{X}$ and $v_{\alpha X}=v_{X}$ for all $X \in \mathcal{J}_{3}(\tilde{K})$ and $\alpha \in G(\tilde{K})$.
(2) $G(\tilde{K})^{\tau}$ is a maximal compact subgroup of $G(\tilde{K})$. And $\gamma \in G(\tilde{K})_{E_{1}, E_{2}, E_{3}}^{\tau}$.
(3) $\mathcal{P}_{2}(\tilde{K})=\mathcal{O}_{G(\tilde{K})^{\circ}}\left(E_{1}\right)$,
(4) Assume that $\tilde{K} \neq K$, i.e., $\tilde{K}=\boldsymbol{R}^{\mathbb{C}}, \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}, \boldsymbol{O}^{\mathbb{C}} ; \boldsymbol{C}^{\prime}, \boldsymbol{H}^{\prime}$ or \boldsymbol{O}^{\prime}. Then:
(i) $\mathcal{M}_{1}(\tilde{K})=\mathcal{O}_{G(\tilde{K})^{\circ}}\left(\tilde{M}_{1}\right)$,
(ii) $\mathcal{M}_{23}(\tilde{K})=\mathcal{O}_{G(\tilde{K})^{\circ}}\left(\tilde{M}_{23}\right)$.

Theorem 0.2. Let $K^{\mathbb{C}}$ be $\mathbb{R}^{\mathbb{C}}, \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}$ or $\boldsymbol{O}^{\mathbb{C}}$. Then the orbit decomposition of $\mathcal{J}_{3}\left(K^{\mathbb{C}}\right)$ over $G\left(K^{\mathbb{C}}\right)$ or $G\left(K^{\mathbb{C}}\right)^{\circ}$ is given as follows:
(1) Take $X \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right)$. Then $\# \Lambda_{X}=3,2$ or 1 .
(i) Assume that $\# \Lambda_{X}=3$ with $\Lambda_{X}=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$. Then $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in$ $\mathcal{O}_{G\left(K^{\mathrm{C}}\right)^{\circ}}(X)$ with $v_{X}=3$.
(ii) Assume that $\# \Lambda_{X}=2$ with $\Lambda_{X}=\left\{\lambda_{1}, \lambda_{2}\right\}$ such that $\Phi_{X}^{\prime}\left(\lambda_{2}\right)=0$. Then $v_{X}=2$ or 3 . Moreover:
(ii-1) $v_{X}=2$ iff $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}\right) \in \mathcal{O}_{G\left(K^{\mathrm{C}}\right)^{\circ}}(X)$; and
(ii-2) $v_{X}=3$ iff $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}\right)+M_{1} \in \mathcal{O}_{G\left(K^{\mathrm{C}}\right)^{\circ}}(X)$.
(iii) Assume that $\# \Lambda_{X}=1$ with $\Lambda_{X}=\left\{\lambda_{1}\right\}$. Then:
(iii-1) $v_{X}=1$ iff $\lambda_{1} E \in \mathcal{O}_{G\left(K^{\mathrm{C}}\right)^{\circ}}(X)$;
(iii-2) $v_{X}=2$ iff $\lambda_{1} E+M_{1} \in \mathcal{O}_{G\left(K^{\mathrm{C}}\right)^{\circ}}(X)$; and
(iii-3) $v_{X}=3$ iff $\lambda_{1} E+M_{23} \in \mathcal{O}_{G\left(K^{\mathrm{C}}\right)^{\circ}}(X)$.
(2) For $X, Y \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right), \mathcal{O}_{G\left(K^{\mathrm{C}}\right)}(X)=\mathcal{O}_{G\left(K^{\mathrm{C}}\right)}{ }^{\circ}(Y)$ iff $\Lambda_{X}=\Lambda_{Y}$ and $v_{X}=$ v_{Y}. For any $X \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right), \mathcal{O}(X):=\mathcal{O}_{G\left(K^{\mathbb{C}}\right)^{\circ}}(X)=\mathcal{O}_{G\left(K^{\mathrm{C}}\right)}(X)$ and $\mathcal{O}(X) \cap$ $\mathcal{J}_{3}\left(\mathbb{R}^{\mathbb{C}}\right) \neq \emptyset$.

Theorem 0.3. Let K^{\prime} be $\boldsymbol{C}^{\prime}, \boldsymbol{H}^{\prime}$ or \boldsymbol{O}^{\prime}. Then the orbit decomposition of $\mathcal{J}_{3}\left(K^{\prime}\right)$ over $G\left(K^{\prime}\right)$ or $G\left(K^{\prime}\right)^{\circ}$ is given as follows:
(1) Take $X \in \mathcal{J}_{3}\left(K^{\prime}\right)$. Then $\# \Lambda_{X}=3,2$ or 1 .
(i) Assume that $\# \Lambda_{X}=3$. Then $v_{X}=3$. And $\Lambda_{X}=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ for some $\lambda_{1} \in \mathbb{R}$ and $\lambda_{2}, \lambda_{3} \in \mathbb{C}$ such that $\Lambda_{X} \subset \mathbb{R}$ or $\left\{\lambda_{2}, \lambda_{3}\right\}=\{p \pm q \sqrt{-1}\}$ with some $p \in \mathbb{R}$ and $q \in \mathbb{R} \backslash\{0\}$. Moreover:
(i-1) If $\Lambda_{X} \subset \mathbb{R}$ with $\lambda_{1}>\lambda_{2}>\lambda_{3}$, then $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathcal{O}_{G\left(K^{\prime}\right)^{\circ}}(X)$; and
(i-2) If $\left\{\lambda_{2}, \lambda_{3}\right\}=\{p \pm q \sqrt{-1}\}$ with some $p, q \in \mathbb{R}$ such that $q>0$, then $\operatorname{diag}\left(\lambda_{1}, p, p\right)+F_{1}\left(q \sqrt{-1} e_{4}\right) \in \mathcal{O}_{G\left(K^{\prime}\right)^{\circ}}(X)$.
(ii) Assume that $\# \Lambda_{X}=2$ with $\Lambda_{X}=\left\{\lambda_{1}, \lambda_{2}\right\}$ such that $\Phi_{X}^{\prime}\left(\lambda_{2}\right)=0$. Then $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $v_{X}=2$ or 3 . Moreover:
(ii-1) $v_{X}=2$ iff $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}\right) \in \mathcal{O}_{G\left(K^{\prime}\right)^{\circ}}(X)$; and
(ii-2) $v_{X}=3$ iff $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}\right)+M_{1^{\prime}} \in \mathcal{O}_{G\left(K^{\prime}\right)^{\circ}}(X)$.
(iii) Assume that $\# \Lambda_{X}=1$ with $\Lambda_{X}=\left\{\lambda_{1}\right\}$. Then $\lambda_{1} \in \mathbb{R}$. Moreover:
(iii-1) $v_{X}=1$ iff $\lambda_{1} E \in \mathcal{O}_{G\left(K^{\prime}\right)^{\circ}}(X)$;
(iii-2) $v_{X}=2$ iff $\lambda_{1} E+M_{1^{\prime}} \in \mathcal{O}_{G\left(K^{\prime}\right)}(X)$; and
(iii-3) $v_{X}=3$ iff $\lambda_{1} E+M_{2^{\prime} 3} \in \mathcal{O}_{G\left(K^{\prime}\right)^{\circ}}(X)$.
(2) For $X, Y \in \mathcal{J}_{3}\left(K^{\prime}\right), \mathcal{O}_{G\left(K^{\mathrm{C}}\right)}{ }^{\circ}(X)=\mathcal{O}_{G\left(K^{\mathrm{C}}\right)^{\circ}}(Y)$ iff $\Lambda_{X}=\Lambda_{Y}$ and $v_{X}=$ v_{Y}. For any $X \in \mathcal{J}_{3}\left(K^{\prime}\right), \mathcal{O}(X):=\mathcal{O}_{G\left(K^{\prime}\right)^{\circ}}(X)=\mathcal{O}_{G\left(K^{\prime}\right)}(X)$ and $\mathcal{O}(X) \cap$ $\mathcal{J}_{3}\left(\boldsymbol{C}^{\prime}\right) \neq \emptyset$.

By Proposition 0.1 (1), Λ_{X} and v_{X} are invariants on $\mathcal{O}_{G(\tilde{K})}(X)$, so that the Theorems 0.2 (2) and 0.3 (2) follow from Theorems 0.2 (1) and 0.3 (1), respectively. Hence, this paper is concentrated in proving Theorems 0.2 (1) and 0.3 (1) with Proposition 0.1.

Note that the second equality of Propositoin 0.1 (1) was obtained by N. Jacobson [13, Lemma 1] in a more general setting (cf. [24, p.159, Proposition 5.9.4, $\S 5.10]$). In $\S 1$, by Lemma 1.2, it appears that the characteristic polynomial $\Phi_{X}(\lambda)$ of X equals the generic minimal polynomial of X defined by N. Jacobson [16, p. 358 (5)]. By Lemma 1.6 (3), it appears that v_{X} equals the degree of N. Jacobson [16, p.389, Theorem 10]'s minimal polynomial for $X \in \mathcal{J}_{3}(\tilde{K})$ with respect to the Jordan product.

Contents

1. Preliminaries and Proposition 0.1 (1) and (2).
2. Proposition 0.1 (3) and (4) (i).
3. Theorems 0.2 and 0.3 in (1) (i, ii).
4. Proposition 0.1 (4) (ii) and Theorems 0.2 and 0.3 in (1) (iii). Acknowledgement.
Reference.

1. Preliminaries and Proposition 0.1 (1) and (2).

Let $i, i+1, i+2 \in\{1,2,3\}$ be the indices counted modulo 3. Then

$$
\begin{aligned}
& \begin{cases}E_{i} \circ E_{i}=E_{i}, & E_{i} \circ E_{i+1}=0, \\
E_{i} \circ F_{i}(x)=0, & E_{i} \circ F_{j}(x)=\frac{1}{2} F_{j}(x)(i \neq j), \\
F_{i}(x) \circ F_{i}(y)=(x \mid y)\left(E_{i+1}+E_{i+2}\right), & F_{i}(x) \circ F_{i+1}(y)=\frac{1}{2} F_{i+2}(\overline{x y}) ;\end{cases} \\
& \begin{cases}E_{i} \times E_{i}=0, & E_{i} \times E_{i+1}=\frac{1}{2} E_{i+2}, \\
E_{i} \times F_{i}(x)=-\frac{1}{2} F_{i}(x), & E_{i} \times F_{j}(x)=0(i \neq j), \\
F_{i}(x) \times F_{i}(y)=-(x \mid y) E_{i}, & F_{i}(x) \times F_{i+1}(y)=\frac{1}{2} F_{i+2}(\overline{x y})\end{cases}
\end{aligned}
$$

for any $x, y \in \tilde{K}$. And

$$
\begin{aligned}
& M_{1}(x) \times M_{1}(y)=\sqrt{-1}\{(x \mid 1)(y \mid 1)-(x \mid y)\} E_{1}, \\
& M_{1}(x) \times M_{23}(y)=-\frac{1}{2}\left\{F_{2}(\sqrt{-1}(\bar{x}-(x \mid 1)) \bar{y})+F_{3}(y(\bar{x}-(x \mid 1)))\right\}, \\
& M_{23}(x) \times M_{23}(y)=(x \mid y) M_{1}, M_{1}=M_{23}^{\times 2} ; \text { and } \\
& M_{1^{\prime}}(x) \times M_{1^{\prime}}(y)=\{(x \mid y)-(x \mid 1)(y \mid 1)\} E_{1}, \\
& M_{1^{\prime}}(x) \times M_{2^{\prime} 3}(y)=\frac{1}{2}\left\{F_{2}\left(-\left(\bar{x} \sqrt{-1} e_{4}\right) \bar{y}+(x \mid 1) \sqrt{-1} e_{4} \bar{y}\right)\right. \\
& \left.\quad+F_{3}\left(-\left(y \sqrt{-1} e_{4}\right)\left(\bar{x} \sqrt{-1} e_{4}\right)+(x \mid 1) y\right)\right\}, \\
& M_{23^{\prime}}(x) \times M_{23^{\prime}}(y)=(x \mid y) M_{1^{\prime}}, \quad M_{1^{\prime}}=M_{2^{\prime} 3}^{\times 2} .
\end{aligned}
$$

Let denote $\mathbb{X}(r ; x):=\sum_{i=1}^{3} r_{i} E_{i}+\sum_{i=1}^{3} F_{i}\left(x_{i}\right)$ for any $r=\left(r_{1}, r_{2}, r_{3}\right) \in \mathbb{F}_{3}$ and $x=\left(x_{1}, x_{2}, x_{3}\right) \in \tilde{K}_{3}$. If $Y=\mathbb{X}(r ; x) \in \mathcal{J}_{3}(\tilde{K})$, put $(Y)_{E_{i}}:=\left(Y \mid E_{i}\right)=r_{i}$ and $(Y)_{F_{i}}:=\left(Y \mid F_{i}(1)\right) / 2=x_{i}$.

Lemma 1.1. (1) Let $i, i+1, i+2 \in\{1,2,3\}$ be counted modulo 3. Then

$$
\begin{aligned}
& \begin{array}{r}
\mathbb{X}(r ; x) \times \mathbb{X}(s ; y)=\frac{1}{2} \sum_{i=1}^{3}\left\{\left(r_{i+1} s_{i+2}+s_{i+1} r_{i+2}-2\left(x_{i} \mid y_{i}\right)\right) E_{i}\right. \\
\left.\quad+F_{i}\left(\overline{x_{i+1} y_{i+2}+y_{i+1} x_{i+2}}-r_{i} y_{i}-s_{i} x_{i}\right)\right\} ;
\end{array} \\
& \begin{aligned}
(\mathbb{X}(r ; x) \mid \mathbb{X}(s ; y))=\sum_{i=1}^{3}\left(r_{i} s_{i}+2\left(x_{i} \mid y_{i}\right)\right) ;
\end{aligned} \\
& \begin{aligned}
(\mathbb{X}(r ; x)|\mathbb{X}(s ; y)| \mathbb{X}(u ; z))=(\mathbb{X}(r ; x) \mid \mathbb{X}(s ; y) \times \mathbb{X}(u ; z))
\end{aligned} \\
& =\sum_{i=1}^{3}\left\{\frac{r_{i}}{2}\left(s_{i+1} u_{i+2}+u_{i+1} s_{i+2}\right)+\left(\overline{x_{i}} \mid y_{i+1} z_{i+2}+z_{i+1} y_{i+2}\right)\right. \\
& \\
& \left.\quad-r_{i}\left(y_{i} \mid z_{i}\right)-s_{i}\left(z_{i} \mid x_{i}\right)-u_{i}\left(y_{i} \mid x_{i}\right)\right\} ;
\end{aligned} \quad \begin{array}{r}
\operatorname{det}(\mathbb{X}(r ; x))=r_{1} r_{2} r_{3}+2\left(\overline{x_{i}} \mid x_{i+1} x_{i+2}\right)-\sum_{j=1}^{3} r_{j} N\left(x_{j}\right) \text { for } i \in\{1,2,3\} .
\end{array}
$$

(2) For $X, Y, Z \in \mathcal{J}_{3}(\tilde{K})$, all of $X \circ Y,(X \mid Y), X \times Y,(X \circ Y \mid Z)$ and $(X|Y| Z)$ are symmetric. And $(X \mid Y)$ is non-degenerate.
(3) $2 E \times X=\operatorname{tr}(X) E-X=\varphi_{X}(\operatorname{tr}(X))$. Especially, $E^{\times 2}=E$ and $2 E \times X^{\times 2}=\operatorname{tr}\left(X^{\times 2}\right) E-X^{\times 2}=\varphi_{X^{\times 2}}\left(\operatorname{tr}\left(X^{\times 2}\right)\right)$.
(4) $(X|Y| E)=\operatorname{tr}(X \times Y)=\frac{1}{2}(\operatorname{tr}(X) \operatorname{tr}(Y)-(X \mid Y))$.

Proof. (1) follows from the definitions except the 3rd equality, which is proved by [5, p.15, 3.5 (7)] as follows:

$$
\begin{aligned}
& (\mathbb{X}(r ; x)|\mathbb{X}(s ; y)| \mathbb{X}(u ; z))=\sum_{i=1}^{3}\left\{u_{i}\left(r_{i+1} s_{i+2}+s_{i+1} r_{i+2}\right) / 2\right. \\
+ & \left.\left(\overline{z_{i}} \mid x_{i+1} y_{i+2}+y_{i+1} x_{i+2}\right)-u_{i}\left(x_{i} \mid y_{i}\right)-r_{i}\left(y_{i} \mid z_{i}\right)-s_{i}\left(x_{i} \mid z_{i}\right)\right\} \\
= & \sum_{i=1}^{3}\left\{\left(u_{i+2} r_{i+3} s_{i+4}+u_{i+1} s_{i+2} r_{i+3}\right) / 2\right. \\
+ & \left.\left(\overline{x_{i+3}} \overline{z_{i+2}} \mid y_{i+4}\right)+\left(\overline{z_{i+1}} \overline{x_{i+3}} \mid y_{i+2}\right)-u_{i}\left(x_{i} \mid y_{i}\right)-r_{i}\left(y_{i} \mid z_{i}\right)-s_{i}\left(x_{i} \mid z_{i}\right)\right\} \\
= & \sum_{i=1}^{3}\left\{r_{i}\left(s_{i+1} u_{i+2}+u_{i+1} s_{i+2}\right) / 2+\left(\overline{x_{i}} \mid y_{i+1} z_{i+2}+z_{i+1} y_{i+2}\right)\right. \\
- & \left.r_{i}\left(y_{i} \mid z_{i}\right)-s_{i}\left(z_{i} \mid x_{i}\right)-u_{i}\left(y_{i} \mid x_{i}\right)\right\} \\
= & (\mathbb{X}(r ; x) \mid \mathbb{X}(s ; y) \times \mathbb{X}(u ; z)) .
\end{aligned}
$$

(2) follows from the definitions or (1). (3) follows from direct computations.
(4) follows from the definitions of $(X|Y| Z)$ and $X \times Y$.

For $X \in \mathcal{J}_{3}(\tilde{K})$, put $\Delta_{X}(\lambda):=-\frac{1}{2}\left\{3 \lambda^{2}-2 \operatorname{tr}(X) \lambda+\operatorname{tr}(X)^{2}-2(X \mid X)\right\}$, which values in \mathbb{F} (or \mathbb{C}) if $\lambda \in \mathbb{F}$ (resp. \mathbb{C}).

Lemma 1.2. (1) $\Phi_{X}(\lambda)=\lambda^{3}-\operatorname{tr}(X) \lambda^{2}+\operatorname{tr}\left(X^{\times 2}\right) \lambda-\operatorname{det}(X)$ with $\mathbb{F} \ni$ $\operatorname{tr}(X)=\lambda_{1}+\lambda_{2}+\lambda_{3}, \operatorname{tr}\left(X^{\times 2}\right)=\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{2}, \operatorname{det}(X)=\lambda_{1} \lambda_{2} \lambda_{3}$ if $\Lambda_{X}=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\} \subset \mathbb{C}$ for $X \in \mathcal{J}_{3}(\tilde{K})$.
(2) $\Phi_{X}^{\prime}(\lambda)=3 \lambda^{2}-2 \operatorname{tr}(X) \lambda+\operatorname{tr}\left(X^{\times 2}\right)=\operatorname{tr}\left(\varphi_{X}(\lambda)^{\times 2}\right)=-2 \Delta_{X}(\lambda)-$ $\frac{1}{2}\left\{\operatorname{tr}(X)^{2}-3(X \mid X)\right\}$.
(3)Put $\mathcal{M}(\tilde{K}):=\left\{X \in \mathcal{J}_{3}(\tilde{K})_{0} \mid X \neq 0, \Phi_{X}(\lambda)=\lambda^{3}\right\}$. Then $\mathcal{M}(\tilde{K})=$ $\left\{X \in \mathcal{J}_{3}(\tilde{K})_{0} \mid X \neq 0, \operatorname{tr}\left(X^{\times 2}\right)=\operatorname{det}(X)=0\right\}=\mathcal{M}_{1}(\tilde{K}) \cup \mathcal{M}_{23}(\tilde{K})$ with $\mathcal{M}_{1}(\tilde{K}) \cap \mathcal{M}_{23}(\tilde{K})=\emptyset$. And $\left\{X \in \mathcal{J}_{3}(\tilde{K}) \mid \# \Lambda_{X}=1\right\}=\mathbb{F} E \oplus(\{0\} \cup \mathcal{M}(\tilde{K}))$.

Proof. (1) $\Phi_{X}(\lambda)=\frac{1}{3}(\lambda E-X|\lambda E-X| \lambda E-X)$, which equals the required one by Lemma $1.1(2,3)$ and $\Phi_{X}(\lambda) \equiv\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right)$.
(2) The first equality folllows from (1). By Lemma 1.1 (3), $\varphi_{X}(\lambda)^{\times 2}=$ $(\lambda E-X)^{\times 2}=\lambda^{2} E-(\operatorname{tr}(X) E-X) \lambda+X^{\times 2}$, so that $\operatorname{tr}\left(\varphi_{X}(\lambda)^{\times 2}\right)=3 \lambda^{2}-$ $2 \operatorname{tr}(X) \lambda+\operatorname{tr}\left(X^{\times 2}\right)$. And $3 \lambda^{2}-2 \operatorname{tr}(X) \lambda+\operatorname{tr}\left(X^{\times 2}\right)=-2 \Delta_{X}(\lambda)-\frac{1}{2}\left\{\operatorname{tr}(X)^{2}-\right.$ $3(X \mid X)\}$ by the second equality of Lemma 1.1 (4).
(3) The first claim follows from (1). For $X \in \mathcal{J}_{3}(\tilde{K})$, put $X_{0}:=X-$ $\frac{1}{3} \operatorname{tr}(X) E \in \mathcal{J}_{3}(\tilde{K})_{0}$. Then $X=\frac{1}{3} \operatorname{tr}(X) E+X_{0}$, so that $\mathcal{J}_{3}(\tilde{K})=\mathbb{F} E \oplus \mathcal{J}_{3}(\tilde{K})_{0}$. If $\Phi_{X}(\lambda)=\Pi_{i=1}^{3}\left(\lambda-\lambda_{i}\right)$, then $\Phi_{X_{0}}(\lambda)=\operatorname{det}\left(\left(\lambda+\frac{1}{3} \operatorname{tr}(X)\right) E-X\right)=\Pi_{i=1}^{3}(\lambda+$ $\left.\frac{1}{3} \operatorname{tr}(X)-\lambda_{i}\right)$, so that $\Phi_{X_{0}}(\lambda)=\lambda^{3} \Leftrightarrow \frac{1}{3} \operatorname{tr}(X)-\lambda_{i}=0(i=1,2,3) \Leftrightarrow$ $\lambda_{1}=\lambda_{2}=\lambda_{3} \Leftrightarrow \# \Lambda_{X}=1$, because of $\operatorname{tr}(X)=\sum_{i=1}^{3} \lambda_{i}$ by (1). Hence, $\left\{X \in \mathcal{J}_{3}(\tilde{K}) \mid \# \Lambda_{X}=1\right\}=\mathbb{F} E \oplus(\{0\} \cup \mathcal{M}(\tilde{K}))$.

Let V be an \mathbb{F}-algebra with the multiplication $x y$ of $x, y \in V$. For $x \in V$, put an \mathbb{F}-linear endomorphism on $V, L_{x}: V \rightarrow V ; y \mapsto x y$, as the left translation by x. And put the automorphism group of V as follows:

$$
\operatorname{Aut}(V):=\left\{\alpha \in G L_{\mathbb{F}}(V) \mid \alpha(x y)=(\alpha x)(\alpha y) ; x, y \in V\right\}
$$

Lemma 1.3. (1) Let V be an \mathbb{F}-algbra. Assume that $\alpha \in \operatorname{Aut}(V)$. Then $\operatorname{trace}\left(L_{(\alpha x)}\right)=\operatorname{trace}\left(L_{x}\right), \operatorname{det}\left(L_{(\alpha x)}\right)=\operatorname{det}\left(L_{x}\right)$ for all $x \in V$. If moreover V admits the identity element e, then $\alpha e=e$.
(2) Let L_{X}° and L_{X}^{\times}be the left translations by $X \in \mathcal{J}_{3}(\tilde{K})$ on $\mathcal{J}_{3}(\tilde{K})$ with respect to the product \circ and the cross product \times, respectively. Then $\operatorname{trace}\left(L_{X}^{\circ}\right)=\left(d_{K}+1\right) \operatorname{tr}(X)$ and $\operatorname{trace}\left(L_{X}^{\times}\right)=\frac{-1}{2} d_{K} \operatorname{tr}(X)$.

Proof. (1) For $x, y \in V$ and $\alpha \in G(V), L_{(\alpha x)} y=(\alpha x) y=\alpha\left(x\left(\alpha^{-1} y\right)\right)=$ $\left(\alpha L_{x} \alpha^{-1}\right) y$, i.e. $L_{(\alpha x)}=\alpha L_{x} \alpha^{-1}$, so that $\operatorname{trace}\left(L_{(\alpha x)}\right)=\operatorname{trace}\left(L_{x}\right)$ and $\operatorname{det}\left(L_{(\alpha x)}\right)=\operatorname{det}\left(L_{x}\right)$ as an \mathbb{F}-linear endomorphism on V. Assume that $e x=$ $x e=x$ for any $x \in V$. Take $\alpha \in \operatorname{Aut}(V)$. Then $(\alpha e)(\alpha x)=(\alpha x)(\alpha e)=\alpha x$, so that $(\alpha e) y=y(\alpha e)=y$ for all $y \in V$. In particular, $\alpha e=(\alpha e) e=e$.
(2) $\left\{E_{i}, F_{i}\left(e_{j} / \sqrt{2}\right) \mid i=1,2,3 ; j=0, \cdots, d_{K}-1\right\}$ forms an orthonormal basis of $\left(\mathcal{J}_{3}\left(K^{\mathbb{C}}\right),(* \mid *)\right)$ by Lemma 1.1 (1). And L_{X}° and L_{X}^{\times}can be identified with a \mathbb{C}-linear endomorphism on $\mathcal{J}_{3}\left(K^{\mathbb{C}}\right)=\mathcal{J}_{3}(\tilde{K})$ or $\mathbb{C} \otimes \mathcal{J}_{3}(\tilde{K})$. By Lemma $1.1(1,2), \operatorname{trace}\left(L_{X}^{\circ}\right)=\sum_{i=1}^{3}\left\{\left(X \circ E_{i} \mid E_{i}\right)+\frac{1}{2} \sum_{j=0}^{d_{K}-1}\left(X \circ F_{i}\left(e_{j}\right) \mid F_{i}\left(e_{j}\right)\right)\right\}=$ $\sum_{i=1}^{3}\left\{\left(X \mid E_{i} \circ E_{i}\right)+\frac{1}{2} \sum_{j=0}^{d_{K}-1}\left(X \mid F_{i}\left(e_{j}\right) \circ F_{i}\left(e_{j}\right)\right)\right\}=\sum_{i=1}^{3}$ $\left\{\left(X \mid E_{i}\right)+\frac{1}{2} \sum_{j=0}^{d_{K}-1}\left(X \mid E_{i+1}+E_{i+2}\right)\right\}=\left(d_{K}+1\right) \operatorname{tr}(X) ;$ and $\operatorname{trace}\left(L_{X}^{\times}\right)=$ $\sum_{i=1}^{3}\left\{\left(X \times E_{i}, E_{i}\right)+\frac{1}{2} \sum_{j=0}^{d_{K}-1}\left(X \times F_{i}\left(e_{j}\right) \mid F_{i}\left(e_{j}\right)\right)\right\}=\sum_{i=1}^{3}\left\{\left(X \mid E_{i} \times E_{i}\right)+\right.$ $\left.\frac{1}{2} \sum_{j=0}^{d_{K}-1}\left(X \mid F_{i}\left(e_{j}\right) \times F_{i}\left(e_{j}\right)\right)\right\}=\sum_{i=1}^{3} \frac{1}{2} \sum_{j=0}^{d_{K}-1}\left(X \mid-E_{i}\right)=\frac{-1}{2} d_{K} \operatorname{tr}(X)$.

Proof of Proposition 0.1 (1). The first claim follows from Lemma 1.3 (1)(2). For the second claim, since $\operatorname{det}(X)$ is defined by $X \circ X, \operatorname{tr}(X)$ and E, the first equality is recognized as the inclusion \subseteq. $\operatorname{By} \Phi_{X}(\lambda)=\operatorname{det}(\lambda E-X)$, the 2nd equality is recognized as the inclusion \subseteq. By Lemmas 1.1 (4) and 1.2 (1), the 3rd equality is recognized as the inclusion \subseteq. By polarizing $3 \operatorname{det}(X)=(X|X| X)$ with Lemma 1.1 (2), the 4th equality is recognized as the inclusion \subseteq. Assume that $\alpha \in \mathrm{GL}_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right)$ and $(\alpha X) \times(\alpha Y)=\alpha(X \times Y)$ for all $X, Y \in \mathcal{J}_{3}(\tilde{K})$. By Lemma 1.3, $\operatorname{tr}(\alpha X)=\operatorname{tr}(X)$. By Lemma 1.1 (4), $(X \mid Y)=\operatorname{tr}(X) \operatorname{tr}(Y)-2 \operatorname{tr}(X \times Y)$, so that $(\alpha X \mid \alpha Y)=(X \mid Y)$. By the definition of $\times,(X \circ Y \mid Z)=(X \times Y \mid Z)+(\operatorname{tr}(X)(Y \mid Z)+\operatorname{tr}(Y)(X \mid Z)-$ $(\operatorname{tr}(X) \operatorname{tr}(Y)-(X \mid Y)) \operatorname{tr}(Z)) / 2$, so that $((\alpha X) \circ(\alpha Y) \mid \alpha Z)=(X \circ Y \mid Z)$ for all $X, Y, Z \in \mathcal{J}_{3}(\tilde{K})$. By Lemma $1.1(2), \alpha^{-1}((\alpha X) \circ(\alpha Y))=X \circ Y$, that is, $\alpha \in G(\tilde{K})$. Hence, all of the equations of the second claim follow. The last claim follows from these equations.

Proof of Proposition 0.1 (2). Note that $\tau \gamma=\gamma \tau, \gamma E_{i}=E_{i}, \gamma E=E$ and $\operatorname{det}(\gamma \mathbb{X}(r ; x))=\operatorname{det}(\mathbb{X}(r ; x))$ by Lemma 1.1 (1), so that $\gamma \in G(\tilde{K})_{E_{1}, E_{2}, E_{3}}^{\tau}$. By Proposition 0.1 (1), the last claim follows. For the first claim, put $<$ $X \mid Y>:=(\tau X \mid Y) \in \mathbb{F}$ for $X, Y \in \mathcal{J}_{3}(\tilde{K})$, which defines a positive-definite symmetric (or hermitian) 2-form on $\mathcal{J}_{3}\left(K^{\prime}\right)$ (resp. $\mathcal{J}_{3}\left(K^{\mathbb{C}}\right)$) over \mathbb{R} (resp.
$\mathbb{C})$ by Lemma 1.1 (1). For $\alpha \in G(\tilde{K}), \alpha^{*} \in G L_{F}\left(\mathcal{J}_{3}(\tilde{K})\right)$ is defined such that $\langle\alpha X \mid Y\rangle=<X\left|\alpha^{*} Y\right\rangle$ for all $X, Y \in \mathcal{J}_{3}(\tilde{K})$. By (1), $\left\langle X \mid \alpha^{*} Y\right\rangle=$ $(\tau \alpha X \mid Y)=\tau(\alpha X \mid \tau Y)=\tau\left(X \mid \alpha^{-1} \tau Y\right)=<X \mid \tau \alpha^{-1} \tau Y>$, so that $\alpha^{*}=$ $\tau \alpha^{-1} \tau \in G(\tilde{K})$ because of (1) by $\operatorname{det}\left(\alpha^{*} X\right)=\tau \operatorname{det}\left(\alpha^{-1} \tau X\right)=\tau^{2} \operatorname{det}(X)=$ $\operatorname{det}(X)$ and $\alpha^{*} E=\tau \alpha^{-1} \tau E=E$. Then $G(\tilde{K}) \cong G(\tilde{K})^{\tau} \times \boldsymbol{R}$ as a polar decomposition of C. Chevalley [1, p.201] (resp. [12, p.450, Lemma 2.3]), so that $G(\tilde{K})^{\tau}$ is a maximal compact subgroup of $G(\tilde{K})$.

For $i \in\{1,2,3\}$ and $a \in \tilde{K}$, put $B_{i}(a): \mathcal{J}_{3}(\tilde{K}) \longrightarrow \mathcal{J}_{3}(\tilde{K}) ; \mathbb{X}(r ; x) \mapsto$ $\mathbb{X}(s ; y)$ such that $s_{i}:=0, s_{i+1}:=2\left(a \mid x_{i}\right), s_{i+2}:=-2\left(a \mid x_{i}\right), y_{i}:=-\left(r_{i+1}-\right.$ $\left.r_{i+2}\right) a, y_{i+1}:=-\overline{x_{i+2} a}, y_{i+2}:=\overline{a x_{i+1}}$, where $i, i+1, i+2 \in\{1,2,3\}$ are counted modulo 3. Then $\exp \left(t B_{i}(a)\right) \in\left(G(\tilde{K})_{E_{i}}\right)^{\circ}$ for $t \in \mathbb{F}$. In fact, $s_{i}=$ $s_{i+1}=s_{i+2}=y_{i}=y_{i+1}=y_{i+2}=0$ if $\mathbb{X}(r ; x)=E_{i}$ or E. Put $X=\mathbb{X}(r ; x)$. By Lemma 1.1 (1), $\left(B_{i}(a) X|X| X\right)=\left(B_{i}(a) X \mid X^{\times 2}\right)=2\left\{\left(a \mid x_{i}\right)\left(r_{i+2} r_{i}-\right.\right.$ $\left.N\left(x_{i+1}\right)-r_{i} r_{i+1}+N\left(x_{i+2}\right)\right)-\left(r_{i+1}-r_{i+2}\right)\left(a \mid \overline{x_{i+1} x_{i+2}}-r_{i} x_{i}\right)-\left(\overline{x_{i+2}} \mid \overline{x_{i+2} x_{i}}-\right.$ $\left.\left.r_{i+1} x_{i+1}\right)+\left(\overline{a x_{i+1}} \mid \overline{x_{i} x_{i+1}}-r_{i+2} x_{i+2}\right)\right\}=0$, so that $\exp \left(t B_{i}(a)\right) \in\left(G(K)_{E_{i}}\right)^{\circ}$ for all $t \in \mathbb{F}$ by Proposition 0.1 (1), as required. Note that $B_{i}(a)$ is nothing but \tilde{A}_{i}^{a} given in H. Freudenthal [7, (5.1.1)].

For $\nu \in\{1, \sqrt{-1}\}$, put $C_{\nu}(t):=\left(e^{\nu t}+e^{-\nu t}\right) / 2, S_{\nu}(t):=\left(e^{\nu t}-e^{-\nu t}\right) /(2 \nu)$ as \mathbb{F}-valued functions of $t \in \mathbb{F}$. Then $\left(C_{\nu}(t), S_{\nu}(t)\right)=(\cosh (t), \sinh (t))$ or $(\cos (t), \sin (t))$ if $\nu=1$ or $\sqrt{-1}$, respectively. Note that

$$
\begin{aligned}
& \tau C_{\nu}(t)=C_{\nu}(\tau t), \tau S_{\nu}(t)=S_{\nu}(\tau t) \\
& C_{\nu}\left(t_{1}\right) C_{\nu}\left(t_{2}\right)+\nu^{2} S_{\nu}\left(t_{1}\right) S_{\nu}\left(t_{2}\right)=C_{\nu}\left(t_{1}+t_{2}\right) \\
& C_{\nu}^{\prime}(t)=\nu^{2} S_{\nu}(t), S_{\nu}^{\prime}(t)=C_{\nu}(t) \\
& S_{\nu}\left(t_{1}\right) C_{\nu}\left(t_{2}\right)+C_{\nu}\left(t_{1}\right) S_{\nu}\left(t_{2}\right)=S_{\nu}\left(t_{1}+t_{2}\right) \\
& C_{\nu}^{\prime}(0)=0, S_{\nu}^{\prime}(0)=1, C_{\nu}(2 t)=1+2 \nu^{2} S_{\nu}^{2}(t)
\end{aligned}
$$

For $i \in\{1,2,3\}, t \in \mathbb{F}, a \in \tilde{K}$ and $\nu \in\{1, \sqrt{-1}\}$, put $\beta_{i}(t ; a, \nu)$: $\mathcal{J}_{3}(\tilde{K}) \longrightarrow \mathcal{J}_{3}(\tilde{K}) ; \mathbb{X}(r ; x) \mapsto \mathbb{X}(s ; y)$ such that

$$
\left\{\begin{aligned}
s_{i} & :=r_{i}, \\
s_{i+1} & :=\frac{r_{i+1}+r_{i+2}}{r_{i+1}}+\frac{r_{i+1}-r_{i+2}}{r_{\nu}}(2 t)+\left(a \mid x_{i}\right) S_{\nu}(2 t), \\
s_{i+2} & :=\frac{r_{i+1}+r_{i+2}-\frac{r_{i+1}-r_{i+2}}{2} C_{\nu}(2 t)-\left(a \mid x_{i}\right) S_{\nu}(2 t),}{y_{i}} \\
y_{i} & :=x_{i}-a \frac{r_{i+1}-r_{i+2}}{2} S_{\nu}(2 t)-2 a\left(a \mid x_{i}\right) S_{\nu}^{2}(t), \\
y_{i+1} & :=x_{i+1} C_{\nu}(t)-\overline{x_{i+2} a} S_{\nu}(t), \\
y_{i+2} & :=x_{i+2} C_{\nu}(t)+\overline{a x_{i+1}} S_{\nu}(t) .
\end{aligned}\right.
$$

For $c \in \mathbb{F}$, put $\mathcal{S}_{1}(c, \tilde{K}):=\{x \in \tilde{K} \mid N(x)=c\}$, which is said to be a generalized sphere [11, p.42, (3.7)] of first kind over \mathbb{F}.

Lemma 1.4. (1) (i) Assume that $i \in\{1,2,3\}, \nu \in\{1, \sqrt{-1}\}$ and $a \in$ $\mathcal{S}_{1}\left(-\nu^{2}, \tilde{K}\right)$. Then $\beta_{i}(t ; a, \nu)=\exp \left(t B_{i}(a)\right) \in\left(G(\tilde{K})_{E_{i}}\right)^{\circ}$ for $t \in \mathbb{F}$ such that $\beta_{i}(t ; a, \nu) \tau=\tau \beta_{i}(\tau t ; \tau a, \nu)$ for all $t \in \mathbb{F}$. Especially, $\sigma_{i}:=\beta_{i}(\pi ; 1, \sqrt{-1}) \in$ $\left(\left(G(\tilde{K})_{E_{i}}^{\tau}\right)^{\circ}\right)_{E_{i+1}, E_{i+2}}$.
(ii) For $i \in\{1,2,3\}$, put $\hat{\beta}_{i}:=\beta_{i}\left(\frac{\pi}{2} ; 1, \sqrt{-1}\right)$. Then $\hat{\beta}_{i} \in\left(G(\tilde{K})_{E_{i}}^{\tau}\right)^{\circ}$ such that $\hat{\beta}_{i} X=r_{i} E_{i}+r_{i+2} E_{i+1}+r_{i+1} E_{i+2}+F_{i}\left(-\overline{x_{i}}\right)+F_{i+1}\left(-\overline{x_{i+2}}\right)+F_{i+2}\left(\overline{x_{i+1}}\right)$ if $X=\mathbb{X}(r ; x) \in \mathcal{J}_{3}(\tilde{K})$. Especially, for any permutation $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ of the triplet $(1,2,3)$, there exists $\hat{\beta} \in\left(G(\tilde{K})^{\tau}\right)^{\circ}$ such that $\hat{\beta}\left(\sum_{j=1}^{3} r_{j} E_{j}\right)=$ $\sum_{j=1}^{3} r_{\mu_{j}} E_{\mu_{j}}$ for all $r_{i} \in \mathbb{F}(i=1,2,3)$.
(iii) Put $B_{23}:=B_{2}(\sqrt{-1})-B_{3}(1), B_{23^{\prime}}:=B_{2}(1)-B_{3}\left(\sqrt{-1} e_{4}\right), B_{2^{\prime} 3}:=$ $B_{2}\left(-\sqrt{-1} e_{4}\right)-B_{3}(1), \beta_{23}(t):=\exp \left(t B_{23}\right), \beta_{23^{\prime}}(t):=\exp \left(t B_{23^{\prime}}\right), \beta_{2^{\prime} 3}(t):=$ $\exp \left(t B_{2^{\prime} 3}\right)$. Then $\beta_{23}(t) \in\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{M_{1}}$ and $\beta_{23}(t) M_{23}(x)=2 t(x \mid 1) M_{1}+$ $M_{23}(x)\left(x \in K^{\mathbb{C}}, t \in \mathbb{C}\right)$. And $\beta_{23^{\prime}}(t), \beta_{2^{\prime} 3}(t) \in\left(G\left(K^{\prime}\right)^{\circ}\right)_{M_{1^{\prime}}}$ such that $\beta_{23^{\prime}}(t) M_{2^{\prime} 3}(x)=2 t\left(\sqrt{-1} e_{4} \mid x\right) M_{1^{\prime}}+M_{2^{\prime} 3}(x), \beta_{2^{\prime} 3}(t) M_{2^{\prime} 3}(x)=2 t(1 \mid x) M_{1^{\prime}}+$ $M_{2^{\prime} 3}(x)\left(x \in K^{\prime}, t \in \mathbb{R}\right)$.
(2) (i) Let $\mathcal{S}_{1}(1, \tilde{K})^{\circ}$ be the connected component of $\mathcal{S}_{1}(1, \tilde{K})$ containing $1=e_{0}$ in \tilde{K}. And $O(\tilde{K}):=\left\{\alpha \in G L_{F}(\tilde{K}) \mid N(\alpha x)=N(x)\right\}$. Then $\mathcal{S}_{1}(1, \tilde{K})=\mathcal{O}_{O(\tilde{K})}\left(e_{0}\right)=\mathcal{S}_{1}(1, \tilde{K})^{\circ} \cup\left(-\mathcal{S}_{1}(1, \tilde{K})^{\circ}\right)$. Especially, $\mathcal{S}_{1}(1, \tilde{K})=$ $\mathcal{S}_{1}(1, \tilde{K})^{\circ}=-\mathcal{S}_{1}(1, \tilde{K})^{\circ}$ when $\tilde{K}=\boldsymbol{H}^{\prime}, \boldsymbol{O}^{\prime} ; \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}, \boldsymbol{O}^{\mathbb{C}}$.
(ii) For $a \in \mathcal{S}_{1}(1, \tilde{K})$ and $i \in\{1,2,3\}$, put $\delta_{i}(a) \in \operatorname{End}_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right)$ with $\mathbb{X}(s ; y):=\delta_{i}(a) \mathbb{X}(r ; x)$ such that $s_{i}:=r_{i}, s_{i+1}:=r_{i+1}, s_{i+2}:=r_{i+2}, y_{i}:=$ $a x_{i} a, y_{i+1}:=\bar{a} x_{i+1}, y_{i+2}:=x_{i+2} \bar{a}$. Then $\delta_{i}(a) \in\left(\left(G(\tilde{K})_{E_{i}}\right)^{\circ}\right)_{E_{i+1}, E_{i+2}}$ such that $\delta_{i}(a) \sigma_{i}=\sigma_{i} \delta_{i}(a)=\delta_{i}(-a)$ and $\delta_{i}(a) \tau=\tau \delta_{i}(\tau a)$. Especially, $\delta_{i}(a) \in$ $\left(G(\tilde{K})_{E_{1}, E_{2}, E_{3}}\right)^{\circ}$ when $\tilde{K}=\boldsymbol{H}^{\prime}, \boldsymbol{O}^{\prime} ; \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}, \boldsymbol{O}^{\mathbb{C}}$.
(iii) Assume that $d_{\tilde{K}} \leqq 4$. For $a \in \mathcal{S}_{1}(1, \tilde{K})$ and $i \in\{1,2,3\}$, put $\beta_{i}(a) \in \operatorname{End}_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right)$ with $\mathbb{X}(s ; y):=\beta_{i}(a) \mathbb{X}(r ; x)$ such that $s_{i}:=r_{i}, s_{i+1}:=$ $r_{i+1}, s_{i+2}:=r_{i+2}, y_{i}:=a x_{i} \bar{a}, y_{i+1}:=a x_{i+1}, y_{i+2}:=x_{i+2} \bar{a}$. Then $\beta_{i}(a) \in$ $\left(\left(G(\tilde{K})_{E_{i}}\right)^{\circ}\right)_{E_{i+1}, E_{i+2}, F_{i}(1)}$ such that $\beta_{i}(a) \sigma_{i}=\sigma_{i} \beta_{i}(a)=\beta_{i}(-a)$. Especially, $\beta_{i}(a) \in\left(G(\tilde{K})_{E_{1}, E_{2}, E_{3}, F_{1}(1)}\right)^{\circ}$ when $\tilde{K}=\boldsymbol{H}^{\prime} ; \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}$.

Proof. (1) (i) Put $\mathbb{X}(u ; z):=\frac{d}{d t} \beta_{i}(t ; a, \nu) \mathbb{X}(r ; x)-B_{i}(a) \mathbb{X}(r ; x)$. Then $u_{i}=z_{i}=0, u_{i+1}=\left(\nu^{2}+N(a)\right)\left(\left(r_{i+1}-r_{i+2}\right) S_{\nu}(2 t)+4\left(a, x_{i}\right) S_{\nu}^{2}(t)\right)=0=$ $-u_{i+2}, z_{i+1}=\left(\nu^{2}+N(a)\right) x_{i+1} S_{\nu}(t)=0, z_{i+2}=\left(\nu^{2}+N(a)\right) x_{i+2} S_{\nu}(t)=$ 0 , i.e. $\frac{d}{d t} \beta_{i}(t ; a, \nu) \mathbb{X}(r ; x)=B_{i}(a) \mathbb{X}(r ; x)(t \in \mathbb{F})$ with $\beta_{i}(0 ; a, \nu) \mathbb{X}(r ; x)=$
$\mathbb{X}(r ; x)$. Hence, $\beta_{i}(t ; a, \nu)=\exp \left(t B_{i}(a)\right)$, so that $\beta_{i}(t ; a, \nu) \in\left(G(\tilde{K})_{E_{i}}\right)^{\circ}$ and $\beta_{i}(t ; a, \nu) \tau=\exp \left(t B_{i}(a)\right) \tau=\tau \exp \left((\tau t) B_{i}(\tau a)\right)=\tau \beta_{i}(t ; a, \nu)$ for all $t \in \mathbb{F}$. Especially, $\sigma_{i}(t):=\beta_{i}(\pi t ; 1, \sqrt{-1}) \in\left(G(\tilde{K})_{E_{i}}^{\tau}\right)^{\circ}$ for all $t \in \mathbb{R}$ such that $\sigma_{i}=\sigma_{i}(1), \sigma_{i} E_{i+1}=E_{i+1}, \sigma_{i} E_{i+2}=E_{i+2}$.
(ii) The first claim follows from (i), so that the second claim follows.
(iii) For $a, b \in K^{\mathbb{C}},\left(B_{2}(a)-B_{3}(b)\right) M_{1}=M_{23}(-\sqrt{-1} \bar{a}-b)$. Then $B_{23} M_{1}=0$ by $a=\sqrt{-1}$ and $b=1$. For $x \in K^{\mathbb{C}},\left(B_{2}(a)-B_{3}(b)\right) M_{23}(x)=$ $\mathbb{X}(-2((a \mid \sqrt{-1} \bar{x})+(b \mid x)), 2(b \mid x), 2(a \mid \sqrt{-1} \bar{x}) ; \overline{a x}+\sqrt{-1} \bar{b} x, 0,0)$. In particular, $B_{23} M_{23}(x)=2(1 \mid x) M_{1}$. Hence, $\beta_{23}(t) \in\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{M_{1}}$ and $\beta_{23}(t) M_{23}(x)=$ $2 t(1 \mid x) M_{1}+M_{23}(x)$ for $x \in K^{\mathbb{C}}$ and $t \in \mathbb{C}$. For $a, b \in K^{\prime},\left(B_{2}(a)-\right.$ $\left.B_{3}(b)\right) M_{1^{\prime}}=M_{2^{\prime} 3}\left(\bar{a} \sqrt{-1} e_{4}-b\right)$. Then $B_{23^{\prime}} M_{1^{\prime}}=B_{2^{\prime} 3} M_{1^{\prime}}=0$ by $b=$ $\bar{a} \sqrt{-1} e_{4}$ with $(a, b)=\left(1, \sqrt{-1} e_{4}\right),\left(-\sqrt{-1} e_{4}, 1\right)$. For $x \in K^{\prime},\left(B_{2}(a)-\right.$ $\left.B_{3}(b)\right) M_{2^{\prime} 3}(x)=\mathbb{X}\left(-2\left(\left(a \mid-\sqrt{-1} e_{4} \bar{x}\right)+(b \mid x)\right), 2(b \mid x), 2\left(a \mid-\sqrt{-1} e_{4} \bar{x}\right) ; \overline{a x}-\right.$ $\left.\overline{\left(\sqrt{-1} e_{4} \bar{x}\right) b}, 0,0\right)$, so that $B_{23^{\prime}} M_{2^{\prime} 3}(x)=2\left(\sqrt{-1} e_{4} \mid x\right) E_{2}-2\left(1 \mid \sqrt{-1} e_{4} \bar{x}\right) E_{3}+$ $F_{1}\left(\bar{x}+\sqrt{-1} e_{4}\left(x \sqrt{-1} e_{4}\right)\right)$ and $B_{2^{\prime} 3} M_{2^{\prime} 3}(x)=2(1 \mid x) M_{1^{\prime}}$. Put $x=p+q \sqrt{-1} e_{4}$ with $p, q \in \boldsymbol{H}$, so that $\bar{x}=\bar{p}-q \sqrt{-1} e_{4}$. Then $\left(\sqrt{-1} e_{4}\right)\left(x \sqrt{-1} e_{4}\right)=$ $\bar{p}+\bar{q} \sqrt{-1} e_{4}, \bar{x}-\sqrt{-1} e_{4}\left(x \sqrt{-1} e_{4}\right)=-(q+\bar{q}) \sqrt{-1} e_{4}=2\left(\sqrt{-1} e_{4} \mid x\right) \sqrt{-1} e_{4}$. And $B_{23^{\prime}} M_{2^{\prime} 3}(x)=2\left(\sqrt{-1} e_{4} \mid x\right) M_{1^{\prime}}$. Hence, $\beta_{23^{\prime}}(t), \beta_{2^{\prime} 3}(t) \in\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{M_{1^{\prime}}}$ such that $\beta_{23^{\prime}}(t) M_{2^{\prime} 3}(x)=2 t\left(\sqrt{-1} e_{4} \mid x\right) M_{1^{\prime}}+M_{2^{\prime} 3}(x)$ and $\beta_{2^{\prime} 3}(t) M_{2^{\prime} 3}(x)=$ $2 t(1 \mid x) M_{1^{\prime}}+M_{2^{\prime} 3}(x)$ for $x \in K^{\prime}$ and $t \in \mathbb{R}$.
(2) (i) Since \tilde{K} is a composition algebra, $L_{a} \in O(\tilde{K})$ for all $a \in \mathcal{S}_{1}(\tilde{\tilde{K}}, \tilde{K})$. Hence, $\mathcal{S}_{1}(1, \tilde{K})=\left\{L_{a}\left(e_{0}\right) \mid a \in \mathcal{S}_{1}(1, \tilde{K})\right\}=\mathcal{O}_{O(\tilde{K})}\left(e_{0}\right)$. Put $S O(\tilde{K}):=$ $\{\alpha \in O(\tilde{K}) \mid \operatorname{det}(\alpha)=1\}$. When $d_{\tilde{K}}=1: \mathcal{S}_{1}(1, \tilde{K})=\left\{ \pm e_{0}\right\}, \mathcal{S}_{1}(1, \tilde{K})^{\circ}=$ $\left\{e_{0}\right\}, \mathcal{S}_{1}(1, \tilde{K})=\mathcal{S}_{1}(1, \tilde{K})^{\circ} \cup\left(-\mathcal{S}_{1}(1, \tilde{K})^{\circ}\right)$. When $d_{\tilde{K}}=2,4,8: O(\tilde{K})=$ $S O(\tilde{K}) \cup S O(\tilde{K}) \epsilon$ with $\epsilon\left(e_{0}\right)=e_{0}, S O(\tilde{K})=-S O(\tilde{K})$, so that $\mathcal{S}_{1}(1, \tilde{K})=$ $\mathcal{O}_{S O(\tilde{K})}\left(e_{0}\right)=-\mathcal{O}_{S O(\tilde{K})}\left(e_{0}\right)=-\mathcal{S}_{1}(1, \tilde{K})$. Since $S O\left(K^{\mathbb{C}}\right)$ is connected,

$$
\mathcal{S}_{1}\left(1, K^{\mathbb{C}}\right)^{\circ}=\mathcal{S}_{1}\left(1, K^{\mathbb{C}}\right)=-\mathcal{S}_{1}\left(1, K^{\mathbb{C}}\right)^{\circ} .
$$

And $M_{d_{K^{\prime}}}(\mathbb{R}) \supseteqq S O\left(K^{\prime}\right) \cong S\left(O\left(d_{K^{\prime}} / 2\right) \times O\left(d_{K^{\prime}} / 2\right)\right) \times \mathbb{R}^{\left(d_{K^{\prime}} / 2\right)^{2}}$. Put

$$
1_{n}:=\operatorname{diag}(1, \cdots, 1), 1_{n}^{\prime}:=\operatorname{diag}\left(1_{n-1},-1\right) \in M_{n}\left(K^{\prime}\right) .
$$

When $d_{K^{\prime}} / 2=2,4, S O\left(K^{\prime}\right)$ admits just four connected components contain$\operatorname{ing} \operatorname{id}_{K^{\prime}}, \operatorname{diag}\left(1_{d_{K^{\prime}} / 2}^{\prime}, 1_{d_{K^{\prime}} / 2}\right), \operatorname{diag}\left(1_{d_{K^{\prime}} / 2}, 1_{d_{K^{\prime}} / 2}^{\prime}\right), \operatorname{diag}\left(1_{d_{K^{\prime}} / 2}^{\prime}, 1_{d_{K^{\prime}} / 2}^{\prime}\right)$, so that $\mathcal{S}_{1}\left(1, K^{\prime}\right)=\mathcal{O}_{S O\left(K^{\prime}\right)}\left(e_{0}\right)=\mathcal{O}_{S O\left(K^{\prime}\right)^{\circ}}\left(e_{0}\right)=\mathcal{S}_{1}\left(1, K^{\prime}\right)^{\circ}$.
(ii) For $a \in \mathcal{S}_{1}(1, \tilde{K}), \delta_{i}(a) \in G L_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right)_{E_{1}, E_{2}, E_{3}}$ with $\delta_{i}(a)^{-1}=\delta_{i}(\bar{a})$, $\delta_{i}(a) \tau=\tau \delta_{i}(\tau a)$ and $\delta_{i}(a) E=E$. By Lemma $1.1(1), \operatorname{det}\left(\delta_{i}(a) \mathbb{X}(r ; x)\right)=$
$r_{1} r_{2} r_{3}+2\left(\overline{a x_{i}} \bar{a} \mid\left(\bar{a} x_{i+1}\right)\left(x_{i+2} \bar{a}\right)\right)-r_{i} N\left(a x_{i} a\right)-r_{i+1} N\left(\bar{a} x_{i+1}\right)-r_{i+2} N\left(x_{i+2} \bar{a}\right)=$ $r_{1} r_{2} r_{3}+\left(2\left(\bar{x}_{i} \mid x_{i+1} x_{i+2}\right)-r_{i} N\left(x_{i}\right)\right) N(a)^{2}-\left(r_{i+1} N\left(x_{i+1}\right)+r_{i+2} N\left(x_{i+2}\right)\right) N(a)$ $=\operatorname{det}(\mathbb{X}(r ; x))$. By Proposition $0.1(1), \delta_{i}(a) \in\left(G(\tilde{K})_{E_{1}, E_{2}, E_{3}}\right)^{\circ}$ for $a \in$ $\mathcal{S}_{1}(1, \tilde{K})^{\circ}$. And $\delta_{i}(-a)=\sigma_{i} \delta_{i}(a)=\delta_{i}(a) \sigma_{i}$ with $\sigma_{i} \in\left(\left(G(\tilde{K})_{E_{i}}\right)^{\circ}\right)_{E_{i+1}, E_{i+2}}$ by (1)(i). By (i), $\left\{\delta_{i}(a) \mid \underset{\tilde{K}}{ } \in \mathcal{S}_{1}(1, \tilde{K})\right\}=\left\{\delta_{i}(a), \delta_{i}(-a) \mid a \in \mathcal{S}_{1}(1, \tilde{K})^{\circ}\right\}=$ $\left.\left\{\delta_{i}(a), \delta_{i}(a) \sigma_{i} \mid a \in \mathcal{S}_{1}(1, \tilde{K})^{\circ}\right\} \subseteq\left(G(\tilde{K})_{E_{i}}\right)^{\circ}\right)_{E_{i+2}, E_{i+3}}$. By the last claim of (i), $\left\{\delta_{i}(a) \mid a \in \mathcal{S}_{1}(1, \tilde{K})\right\}=\left\{\delta_{i}(a) \mid a \in \mathcal{S}_{1}(1, \tilde{K})^{\circ}\right\} \subseteq\left(G(\tilde{K})_{E_{1}, E_{2}, E_{3}}\right)^{\circ}$ when $\tilde{K}=\boldsymbol{H}^{\prime}, \boldsymbol{O}^{\prime} ; \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}, \boldsymbol{O}^{\mathbb{C}}$.
(iii) \tilde{K} is associative by $d_{\tilde{K}} \leqq 4$. Hence, $G L_{\mathbb{F}}\left(\mathcal{J}_{3}(\tilde{K})\right)_{E_{1}, E_{2}, E_{3}, F_{i}(1)} \ni$ $\beta_{i}(a)$ is well-defined such that $\beta_{i}(a)^{-1}=\delta_{i}(\bar{a}), \beta_{i}(a) \tau=\tau \beta_{i}(\tau a), \beta_{i}(a) E=$ E. Then $\operatorname{det}\left(\beta_{i}(a) \mathbb{X}(r ; x)\right)=r_{1} r_{2} r_{3}+2\left(\overline{a x_{i} \bar{a}} \mid\left(a x_{i+1}\right)\left(x_{i+2} \bar{a}\right)\right)-r_{i} N\left(a x_{i} \bar{a}\right)-$ $r_{i+1} N\left(a x_{i+1}\right)-r_{i+2} N\left(x_{i+2} \bar{a}\right)=r_{1} r_{2} r_{3}+\left(2\left(\bar{x}_{i} \mid x_{i+1} x_{i+2}\right)-r_{i} N\left(x_{i}\right)\right) N(a)^{2}-$ $\left(r_{i+1} N\left(x_{i+1}\right)-r_{i+2} N\left(x_{i+2}\right)\right) N(a)=\operatorname{det}(\mathbb{X}(r ; x))$ by Lemma 1.1 (1). Because of Proposition $0.1(1), \beta_{i}(a) \in\left(G(\tilde{K})_{E_{1}, E_{2}, E_{3}, F_{1}(1)}\right)^{\circ}$ for $a \in \mathcal{S}_{1}(1, \tilde{K})^{\circ}$. $\operatorname{By}(1)(\mathrm{i}), \sigma_{i} \in\left(\left(G(\tilde{K})_{E_{i}}\right)^{\circ}\right)_{E_{i+1}, E_{i+2}}$ with $\beta_{i}(-a)=\sigma_{i} \beta_{i}(a)=\beta_{i}(a) \sigma_{i}$. By virtue of (i), $\left\{\beta_{i}(a) \mid a \in \mathcal{S}_{1}(1, \tilde{K})\right\}=\left\{\beta_{i}(a), \beta_{i}(-a) \mid a \in \mathcal{S}_{1}(1, \tilde{K})^{\circ}\right\}=$ $\left\{\beta_{i}(a), \beta_{i}(a) \sigma_{i} \mid a \in \mathcal{S}_{1}(1, \tilde{K})^{\circ}\right\}$ is contained in $\left.\left(G(\tilde{K})_{E_{i}}\right)^{\circ}\right)_{E_{i+2}, E_{i+3}, F_{i}(1)}$. By the last claim of (i), $\left\{\beta_{i}(a) \mid a \in \mathcal{S}_{1}(1, \tilde{K})\right\}=\left\{\beta_{i}(a) \mid a \in \mathcal{S}_{1}(1, \tilde{K})^{\circ}\right\}$ is contained in $\left(G(\tilde{K})_{E_{1}, E_{2}, E_{3}, F_{i}(1)}\right)^{\circ}$ when $\tilde{K}=\boldsymbol{H}^{\prime} ; \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}$ with $d_{\tilde{K}} \leqq 4$.

Put $G_{J}\left(\tilde{K}_{\tau}\right):=\left\{\beta_{j}(t ; a, \sqrt{-1}) \mid j \in J, t \in \mathbb{R}, a \in \tilde{K}_{\tau}, N(a)=1\right\}$ for any subset $J \subseteq\{1,2,3\}$. By Lemma 1.4 (1) (i), $G_{J}\left(\tilde{K}_{\tau}\right) \subset\left(G(\tilde{K})^{\tau}\right)^{\circ}$. By Proposition 0.1 (2), $G(\tilde{K})^{\tau}$ and the identity connected component $\left(G(\tilde{K})^{\tau}\right)^{\circ}$ are compact.

Lemma 1.5. (1) For any $X \in \mathcal{J}_{3}(\tilde{K})_{\tau}$ and any closed subgroup H of $G(\tilde{K})^{\tau}$ such that $G_{J}\left(\tilde{K}_{\tau}\right) \subseteq H$ with some $J \subseteq\{1,2,3\}$,

$$
\mathcal{O}_{H}(X) \cap\left\{Y \in \mathcal{J}_{3}(\tilde{K}) \mid\left(Y \mid F_{j}(x)\right)=0\left(j \in J, x \in \tilde{K}_{\tau}\right)\right\} \neq \emptyset .
$$

(2) $\mathcal{O}_{\left(G(\tilde{K})^{\tau}\right)^{\circ}}(X) \cap\left\{\operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right) \mid r_{i} \in \mathbb{R}(i=1,2,3)\right\} \neq \emptyset$ for any $X \in \mathcal{J}_{3}(\tilde{K})_{\tau}$, where $\left\{r_{1}, r_{2}, r_{3}\right\}=\Lambda_{X}$ iff $\operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right) \in \mathcal{O}_{\left(G(\tilde{K})^{\tau}\right)^{\circ}}(X)$.
(3) $\mathcal{O}_{G(K)^{\circ}}(X) \cap\left\{Y+\sqrt{-1} \operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right) \mid Y \in \mathcal{J}_{3}(K), \quad r_{i} \in \mathbb{R}(i=\right.$ $1,2,3)\} \neq \emptyset$ for any $X \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right)$.
(4) $\mathcal{O}_{\left(G\left(K^{\prime}\right)^{\tau}\right)^{\circ}}(X) \cap\left\{\mathbb{X}(s ; y) \mid s_{i} \in \mathbb{R}, \quad y_{i}=\sqrt{-1} p_{i} e_{4}, \quad p_{i} \in K \cap K^{\prime}(i=\right.$ $1,2,3)\} \neq \emptyset$ for any $X \in \mathcal{J}_{3}\left(K^{\prime}\right)$.

Proof. (1) (cf. [27, 3.3]): Since the closed subgroup H of the compact group $G(\tilde{K})^{\tau}$ is compact, the orbit $\mathcal{O}_{H}(X)$ is compact, which is contained in $\mathcal{J}_{3}(\tilde{K})_{\tau}$ if $X \in \mathcal{J}_{3}(\tilde{K})_{\tau}$. Put $\phi: \mathcal{J}_{3}(\tilde{K})_{\tau} \longrightarrow \mathbb{R} ; \mathbb{X}(r ; x) \mapsto \sum_{j=1}^{3} r_{j}^{2}$, which is a continuous \mathbb{R}-valued function admitting a maximal point $\mathbb{X}(r ; x) \in \mathcal{O}_{H}(X)$. Suppose that $\left(\mathbb{X}(r, x) \mid F_{j}(q)\right) \neq 0$ for some $j \in J$ and $q \in \tilde{K}_{\tau}$. By Lemma 1.1 (1), $2\left(x_{j} \mid q\right) \neq 0$. Since $(x \mid y)$ is non-degenerate on \tilde{K} and $\tilde{K}_{\tau}, \tilde{K}=\tilde{K}_{\tau} \oplus \tilde{K}_{\tau}^{\perp}$ for $\tilde{K}_{\tau}^{\perp}:=\left\{x \in \tilde{K} \mid(x \mid y)=0\left(y \in \tilde{K}_{\tau}\right)\right\}$, so that $x_{j}=y_{j}+y_{j}^{\perp}$ for some $y_{j} \in \tilde{K}_{\tau}$ and $y_{j}^{\perp} \in \tilde{K}_{\tau}^{\perp}$. Then $\left(y_{j} \mid q\right)=\left(x_{j} \mid q\right) \neq 0$, so that $y_{j} \neq 0$ and $\left(y_{j} \mid y_{j}\right)=\left(\tau y_{j} \mid y_{j}\right)>0$. Put $a:=y_{j} / \sqrt{\left(y_{j} \mid y_{j}\right)} \in \tilde{K}_{\tau}$, so that $(a \mid a)=1$. By Lemma 1.4 (1) (i), $\beta_{j}(t ; a, \sqrt{-1}) \in G_{J}\left(\tilde{K}_{\tau}\right) \subseteq H$. Put $\varepsilon:=\left(a \mid x_{j}\right)=\left(a \mid y_{j}\right)=$ $\sqrt{\left(y_{j} \mid y_{j}\right)}>0, s_{j}^{ \pm}:=\left(r_{j+1} \pm r_{j+2}\right) / 2 \in \mathbb{R}$ and $Y(t):=\beta_{j}(t ; a, \sqrt{-1}) \mathbb{X}(r ; x) \in$ $\mathcal{J}_{3}(\tilde{K})_{\tau}$. Then $\phi(Y(t))=r_{j}^{2}+\sum_{ \pm}\left(s_{j}^{+} \pm\left(s_{j}^{-} \cos (2 t)+\varepsilon \sin (2 t)\right)\right)^{2}=r_{j}^{2}+$ $2\left(s_{j}^{+}\right)^{2}+2\left(s_{j}^{-} \cos (2 t)+\varepsilon \sin (2 t)\right)^{2}=r_{j}^{2}+2\left(s_{j}^{+}\right)^{2}+2\left(\left(s_{j}^{-}\right)^{2}+\varepsilon^{2}\right) \cos (2 t+\theta)$ for some constant θ of t determined by s_{j}^{-}and $\varepsilon>0$. Hence, $\phi\left(Y\left(\frac{-\theta}{2}\right)\right)=$ $r_{j}^{2}+r_{j+1}^{2}+r_{j+2}^{2}+2 \varepsilon^{2}=\phi(\mathbb{X}(r ; x))+2 \varepsilon^{2} \geqq \phi\left(Y\left(\frac{-\theta}{2}\right)\right)+2 \varepsilon^{2}$ by the maximality of $\phi(\mathbb{X}(r ; x))$, which gives $\varepsilon=0$, a contradiction.
(2) Take $X \in \mathcal{J}_{3}(\tilde{K})_{\tau}$. By (1) on $H:=\left(G(\tilde{K})^{\tau}\right)^{\circ} \supseteqq G_{\{1,2,3\}}\left(\tilde{K}_{\tau}\right)$, there exists $\beta \in H$ such that $\left(\beta X, F_{i}(x)\right)=0\left(x \in \tilde{K}_{\tau} ; i=1,2,3\right)$, so that $\beta X=\operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right)$ for some $r_{i} \in \mathbb{R}(i=1,2,3)$. In this case, $\Phi_{X}(\lambda)=\Phi_{\operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right)}(\lambda)=\Pi_{i=1}^{3}\left(\lambda-r_{i}\right)$, so that $\left\{r_{1}, r_{2}, r_{3}\right\}=\Lambda_{X}$. Conversely if $\left\{r_{1}, r_{2}, r_{3}\right\}=\Lambda_{X}$, then $\operatorname{diag}\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{O}_{\left(G(\tilde{K})^{\tau}\right)^{\circ}}(X)$ for some $\left\{s_{1}, s_{2}, s_{3}\right\}=\Lambda_{X}$, so that $\operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right) \in \mathcal{O}_{\left(G(\tilde{K})^{\tau}\right)^{\circ}}(X)$ by Lemma 1.4 (1) (ii).
(3) Take $X \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right)$. Then $X=X_{1}+\sqrt{-1} X_{2}$ for some $X_{i} \in \mathcal{J}_{3}(K)=$ $\mathcal{J}_{3}\left(K^{\mathbb{C}}\right)_{\tau}(i=1,2)$. By (2), there exist $\beta \in\left(G\left(K^{\mathbb{C}}\right)^{\tau}\right)^{\circ}=G(K)^{\circ}$ and $\left\{r_{1}, r_{2}, r_{3}\right\} \subset \mathbb{R}$ such that $\beta X_{2}=\operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right)$, so that $\beta X=\beta X_{1}+$ $\sqrt{-1} \beta X_{2}$ has the required form with $\beta X_{1} \in \mathcal{J}_{3}(K)$.
(4) Take $X \in \mathcal{J}_{3}\left(K^{\prime}\right)$. Then $X=X_{+}+X_{-}$for some $X_{ \pm} \in \mathcal{J}_{3}\left(K^{\prime}\right)_{ \pm \tau}$. By (1) on $H:=\left(G\left(K^{\prime}\right)^{\tau}\right)^{\circ} \supseteqq G_{\{1,2,3\}}\left(\tilde{K}_{\tau}\right)$, there exists $\beta \in H$ such that $\beta X_{+}=\operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right)$ for some $r_{i} \in \mathbb{R}$. Then $\beta X=\beta X_{+}+\beta X_{-}$has the required form because of $\beta X_{-} \in \mathcal{J}_{3}\left(K^{\prime}\right)_{-\tau}=\left\{\mathbb{X}(0 ; y) \mid y_{i}=\sqrt{-1} p_{i} e_{4} ; p_{i} \in\right.$ $\left.K \cap K^{\prime}(i=1,2,3)\right\}$.

Lemma 1.6. (1) For a positive integer m, let $f\left(X_{1}, \cdots, X_{m}\right)$ be a $\mathcal{J}_{3}(\tilde{K})$ valued polynomial of E and $X_{1}, \cdots X_{m} \in \mathcal{J}_{3}(\tilde{K})$ with respect to \circ, \times and the scalar multiples of $\operatorname{tr}\left(X_{i}\right),\left(X_{i} \mid X_{j}\right)$, $\operatorname{det}\left(X_{i}\right)$ and $\left(X_{i}\left|X_{j}\right| X_{k}\right)$ for $i, j, k \in$ $\{1, \cdots, m\}$. Assume that $f\left(X_{1}, X_{2}, \cdots, X_{m}\right)=0$ for any $X_{2}, \cdots X_{m} \in$
$\mathcal{J}_{3}(K)$ and all diagonal forms X_{1} in $\mathcal{J}_{3}(\mathbb{R})$. Then
$f\left(X_{1}, \cdots, X_{m}\right)=0$ for all $X_{1}, \cdots X_{m} \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right)$.
(2) Assume that $X, Y \in \mathcal{J}_{3}(\tilde{K})$. Then:
(i) $X \circ((X \circ X) \circ Y)=(X \circ X) \circ(X \circ Y)$;
(ii) $X^{\times 2} \circ X=\operatorname{det}(X) E,\left(X^{\times 2}\right)^{\times 2}=\operatorname{det}(X) X$;
(iii) $X^{\times 2} \times X=-\frac{1}{2}\left\{\operatorname{tr}(X) X^{\times 2}+\operatorname{tr}\left(X^{\times 2}\right) X-\left(\operatorname{tr}\left(X^{\times 2}\right) \operatorname{tr}(X)-\operatorname{det}(X)\right) E\right\}$.
(3) V_{X} is the minimal subspace over \mathbb{F} generated by X and E under the cross product. Especially, $\varphi_{X}(\lambda)^{\times 2} \in V_{X}$ for all $\lambda \in \mathbb{F}$.
(4) $\left(\varphi_{X}\left(\lambda_{1}\right)^{\times 2}\right)^{\times 2}=0$ if $X \in \mathcal{J}_{3}(\tilde{K})$ and $\lambda_{1} \in \mathbb{C}$ with $\Phi_{X}\left(\lambda_{1}\right)=0$.
(5) $\mathcal{M}_{23}(\tilde{K})=\left\{X \in \mathcal{J}_{3}(\tilde{K})_{0} \mid X^{\times 2} \neq 0, \operatorname{tr}\left(X^{\times 2}\right)=0,\left(X^{\times 2}\right)^{\times 2}=0\right\}$ and $\left\{X^{\times 2} \mid X \in \mathcal{M}_{23}(\tilde{K})\right\} \subseteq \mathcal{M}_{1}(\tilde{K})$.

Proof. (1) (cf. [7, p.42], [28, p.74, ८ौ.2-4], [6, p.91, Corollary V.2.6]): By Lemma 1.5 (2), any $X_{1} \in \mathcal{J}_{3}(K)$ admits some $\beta \in G(K)=G\left(K^{\mathbb{C}}\right)^{\tau}$ such that βX_{1} is a diagonal form in $\mathcal{J}_{3}(\mathbb{R})$. Then $f\left(\beta X_{1}, X_{2}, \cdots, X_{m}\right)=0$ for any $X_{i} \in \mathcal{J}_{3}(K)$ with $i \in\{2, \cdots, m\}$. By Proposition $0.1, \beta$ preserves \circ, \times, $\operatorname{tr}(*),(* \mid *), \operatorname{det}(*),(*|*| *)$ and E, so that $f\left(X_{1}, \beta^{-1} X_{2} \cdots, \beta^{-1} X_{m}\right)=0$ for all $X_{i} \in \mathcal{J}_{3}(K)(i=2, \cdots, m)$. Hence, $f\left(X_{1}, \cdots, X_{m}\right)=0$ for all $X_{i} \in \mathcal{J}_{3}(K)(i=1, \cdots, m)$. Since this formula consists of some polynomial equations on the \mathbb{R}-coefficients of each matrix entry of X_{i} 's with respect to the \mathbb{R}-basis $\left\{e_{j}\right\}$ of K, the formula holds on $\mathcal{J}_{3}\left(K^{\mathbb{C}}\right)=\mathcal{J}_{3}(K) \otimes_{\mathbb{R}} \mathbb{C}$.
(2) The formulas in (i) and (ii) are polynomials of X, Y and E with respect to $\circ, \times, \operatorname{tr}(*),(* \mid *)$, $\operatorname{det}(*),(*|*| *)$. If X is a diagonal form in $\mathcal{J}_{3}(\mathbb{R})$, the formulas can be checked by Lemma 1.1 (1), easily. By (1), the formulas (i) and (ii) hold for any $X, Y \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right)$. Hence, they hold for any $X, Y \in \mathcal{J}_{3}(\tilde{K}) \subseteq \mathcal{J}_{3}\left(K^{\mathbb{C}}\right.$. The formula (iii) follows from the first formula of (ii) and the definition of cross product with $\left(X^{\times 2} \mid X\right)=3 \operatorname{det}(X)$.
(3) follows from the formulas in (ii), (iii) and Lemma 1.1 (3).
(4) $\left(\varphi_{X}\left(\lambda_{1}\right)^{\times 2}\right)^{\times 2}=\operatorname{det}\left(\varphi_{X}\left(\lambda_{1}\right)\right) \varphi_{X}\left(\lambda_{1}\right)=\Phi_{X}\left(\lambda_{1}\right) \varphi_{X}\left(\lambda_{1}\right)=0$ by the second formula of (ii) in (2).
(5) By (2) (ii), $\left(X^{\times 2}\right)^{\times 2}=\operatorname{det}(X) X$, so that $\left(X^{\times 2}\right)^{\times 2}=0$ if and only if $\operatorname{det}(X)=0$, which gives the results.

The formula (i) of Lemma 1.6 (2) implies that $\left(\mathcal{J}_{3}(\tilde{K}), \circ\right)$ is a Jordan algebra over \mathbb{F}, which is also reduced simple in the sense of N. Jacobson $[16$, Chapters IV, IX], where $\mathcal{J}_{3}(\tilde{K})$ is called split iff \tilde{K} is split (i.e. non-division), that is the case when $\tilde{K}=K^{\prime}$ or $K^{\prime \mathbb{C}}$.

Proof of "Proposition 0.1 (3) when $\tilde{K}=K "(c f,[7],[27,4.1$ Proposition]). Take any $X \in \mathcal{P}_{2}(K) \subset \mathcal{J}_{3}(K)=\mathcal{J}_{3}\left(K^{\mathbb{C}}\right)^{\tau}$. By Lemma 1.5 (2) with $\tilde{K}=K^{\mathbb{C}}$, there exists $\alpha \in G(K)^{\circ}=\left(G\left(K^{\mathbb{C}}\right)^{\tau}\right)^{\circ}$ such that $\alpha X=\operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right)$ for some $r_{1}, r_{2}, r_{3} \in \boldsymbol{R}$. By $\operatorname{tr}(\alpha X)=1$ and $(\alpha X)^{\times 2}=0, r_{1}+r_{2}+r_{3}=1$ and $r_{2} r_{3}=r_{3} r_{1}=r_{1} r_{2}=0$, so that $\left(r_{1}, r_{2}, r_{3}\right)=(1,0,0),(0,1,0),(0,0,1)$. By Lemma 1.4 (1) (ii), there exists $\hat{\beta} \in\left(G\left(K^{\mathbb{C}}\right)^{\tau}\right)^{\circ}=G(K)^{\circ}$ such that $\hat{\beta}(\alpha X)=E_{1}$.
H. Freudenthal $[7,5.1]$ gave the diagonalization theorem on $\mathcal{J}_{3}(\boldsymbol{O})$ with the action of $\{\alpha \in G(\boldsymbol{O}) \mid \operatorname{tr}(\alpha X)=\operatorname{tr}(X)\}$ (cf. [27, 3.3 Theorem], [20, p.206, Lemma 1], [23, Proposition 1.4], [6, p.90, Theorem V.2.5]), which is developing to Lemma $1.5(2)$ for $\tilde{K}=\boldsymbol{O}^{\mathbb{C}}$ with $\mathcal{J}_{3}(\tilde{K})_{\tau}=\mathcal{J}_{3}\left(\boldsymbol{O}^{\mathbb{C}}\right)_{\tau}=\mathcal{J}_{3}(\boldsymbol{O})$ under the action of $G(\tilde{K})^{\tau}=G\left(\boldsymbol{O}^{\mathbb{C}}\right)^{\tau} \cong G(\boldsymbol{O})=$: F_{4}. I. Yokota [27, 4.2 and 6.4 Theorems] proved the connectedness and the simply connectedness of F_{4} by the diagonalization theorem of H. Freudenthal (cf. [18, Appendix], [20, p.210, Theorem 3], [10, p.175, Proposition 1.4]). O. Shukuzawa \& I. Yokota [22, p.3, Remark] (cf. [29, p.63, Theorem 9; p.54, Remark]) proved the connectedness of $F_{4}^{\prime}:=G\left(\boldsymbol{O}^{\prime}\right)$ by showing the first formula of Proposition 0.1 (1) by virtue of Hamilton-Cayley formula on $\mathcal{J}_{3}\left(\boldsymbol{O}^{\prime}\right)$ given as the first formula of Lemma 1.6(2)(ii) (cf. [24, p.119, Proposition 5.1.5], [11, Lemma 14.96]). Because of $F_{4}^{\mathbb{C}} \cong\left(F_{4}^{\mathbb{C}}\right)^{\tau} \times \mathbb{R}^{52}$ with $\left(F_{4}^{\mathbb{C}}\right)^{\tau}=F_{4}$ [30, Theorem 2.2.2] (cf. Proposition $0.1(2)), F_{4}^{\mathbb{C}}:=G\left(\boldsymbol{O}^{\mathbb{C}}\right)$ is connected and simply connected, so that $F_{4}^{\prime}=\left(F_{4}^{\mathbb{C}}\right)^{\tau \gamma}$ is again proved to be connected by virtue of a theorem of P.K. Rasevskii [21].
2. Proposition 0.1 (3) and (4) (i).

Assume that $\tilde{K}=K^{\prime}$ or $K^{\mathbb{C}}$ with $K^{\prime}=\boldsymbol{C}^{\prime}, \boldsymbol{H}^{\prime}$ or \boldsymbol{O}^{\prime}; and $K^{\mathbb{C}}=$ $\mathbb{R}^{\mathbb{C}}, \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}$ or $\boldsymbol{O}^{\mathbb{C}}$. And put $\sigma:=\sigma_{1}$ defined in Lemma 1.4 (1) (i) such that $\sigma^{2}=\operatorname{id}_{\mathcal{J}_{3}(\tilde{K})}$. Then $\mathcal{J}_{3}(\tilde{K})=\mathcal{J}_{3}(\tilde{K})_{\sigma} \oplus \mathcal{J}_{3}(\tilde{K})_{-\sigma}, \mathcal{J}_{3}(\tilde{K})_{\sigma}=\left\{\sum_{i=1}^{3} r_{i} E_{i}+\right.$ $\left.F_{1}\left(x_{1}\right) \mid r_{i} \in \mathbb{F}, x_{1} \in \tilde{K}\right\}$ such that $\mathcal{J}_{3}(\tilde{K})_{-\sigma}=\left\{F_{2}\left(x_{2}\right)+F_{3}\left(x_{3}\right) \mid x_{2}, x_{3} \in\right.$ $\tilde{K}\}=\left\{X \in \mathcal{J}_{3}(\tilde{K}) \mid(X, Y)=0\left(Y \in \mathcal{J}_{3}(\tilde{K})_{\sigma}\right)\right\}$. And $\mathcal{J}_{3}(\tilde{K})_{\sigma}=\mathbb{F} E_{1} \oplus \mathcal{J}_{2}(\tilde{K})$ with $\mathcal{J}_{2}(\tilde{K}):=\left\{\sum_{i=2}^{3} r_{i} E_{i}+F_{1}\left(x_{1}\right) \mid r_{i} \in \mathbb{F}, x_{1} \in \tilde{K}\right\}$. By Lemma 1.1 (1), $\mathcal{J}_{3}(\tilde{K})_{L_{2 E_{1}}^{\times}}=\left\{r\left(E_{2}+E_{3}\right) \mid r \in \mathbb{F}\right\}$ and $\mathcal{J}_{3}(\tilde{K})_{-L_{2 E_{1}}^{\times}}=\left\{r\left(E_{2}-E_{3}\right)+F_{1}(x) \mid r \in\right.$ $\mathbb{F}, x \in \tilde{K}\}$, so that $\mathcal{J}_{2}(\tilde{K})=\mathcal{J}_{3}(\tilde{K})_{L_{2 E_{1}}^{\times}} \oplus \mathcal{J}_{3}(\tilde{K})_{-L_{2 E_{1}}^{\times}}$.

Lemma 2.1. (1) $G(\tilde{K})_{E_{1}}=G(\tilde{K})_{E_{1}, E_{2}+E_{3}, \mathcal{J}_{3}(\tilde{K})_{ \pm L_{2 E_{1}}^{\times}}, \mathcal{J}_{2}(\tilde{K}), \mathcal{J}_{3}(\tilde{K})_{ \pm \sigma}}$.
(2) (i) $\left\{\mathbb{X}\left(\left(X \mid E_{1}\right), s_{2}, s_{3} ; 0,0,0\right) \mid s_{2}, s_{3} \in \mathbb{R} ; s_{2} \geqq s_{3}\right\} \cap \mathcal{O}_{\left(G(K)_{E_{1}}\right)^{\circ}}(X) \neq \emptyset$ and $\left\{\mathbb{X}\left(\left(X \mid E_{1}\right), t_{2}, t_{3} ; u, 0,0\right) \mid t_{2}, t_{3}, u \in \mathbb{R} ; u \geqq 0\right\} \cap \mathcal{O}_{\left(\left(G(K)_{E_{3}}\right)^{\circ}\right)_{E_{1}, E_{2}}}(X) \neq \emptyset$ if $X \in \mathcal{J}_{3}(K)_{\sigma}$.
(ii) $\left\{\mathbb{X}\left(\left(X \mid E_{1}\right), s_{2}, s_{3} ; u \sqrt{-1} e_{4}, 0,0\right) \mid s_{2}, s_{3}, u \in \mathbb{R} ; u \geqq 0, s_{2} \geqq s_{3}\right\} \cap$ $\mathcal{O}_{\left(G\left(K^{\prime}\right)^{\circ}\right)_{E_{1}}^{\tau_{1}}}(X) \neq \emptyset$ if $X \in \mathcal{J}_{3}\left(K^{\prime}\right)_{\sigma}$.
(iii) $\left\{\mathbb{X}\left(\left(X \mid E_{1}\right), t_{2}+\sqrt{-1} s_{2}, t_{3}+\sqrt{-1} s_{3} ; u, 0,0\right) \mid t_{2}, t_{3}, s_{2}, s_{3}, u \in \mathbb{R} ; u \geqq\right.$ $\left.0, s_{2} \geqq s_{3}\right\} \cap \mathcal{O}_{\left(G(K)^{\circ}\right)_{E_{1}}}(X) \neq \emptyset$ if $X \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right)_{\sigma}$.

Proof. (1) For $\alpha \in G(\tilde{K})_{E_{1}}$, one has that $\alpha\left(E_{2}+E_{3}\right)=\alpha\left(E-E_{1}\right)=\alpha E-$ $\alpha E_{1}=E-E_{1}=E_{2}+E_{3}$ and $\alpha \mathcal{J}_{3}(\tilde{K})_{ \pm L_{2 E_{1}}}=\mathcal{J}_{3}(\tilde{K})_{ \pm L_{2 E_{1}}^{\times}}$since α preserves \times by Proposition $0.1(1)$, so that $\alpha \mathcal{J}_{2}(\tilde{K})=\mathcal{J}_{2}(\tilde{K}), \alpha \mathcal{J}_{3}(\tilde{K})_{\sigma}=\mathcal{J}_{3}(\tilde{K})_{\sigma}$ and $\alpha \mathcal{J}_{3}(\tilde{K})_{-\sigma}=\mathcal{J}_{3}(\tilde{K})_{-\sigma}$ because of the orthogonal direct-sum decompositions of them and that α preserves $(* \mid *)$ on $\mathcal{J}_{3}(\tilde{K})$ by Proposition 0.1 (1).
(2) (i) Take any $X \in \mathcal{J}_{3}(K)_{\sigma}$. Then there exist $r_{i} \in \mathbb{R}$ and $x_{1} \in K$ such that $X=\mathbb{X}\left(r_{1}, r_{2}, r_{3} ; x_{1}, 0,0\right)$. By Lemmas 1.4 (1) and 1.5 (1) with $\tilde{K}=K=$ $K_{\tau}, F=\mathbb{R}$ and $H:=\left(G(K)_{E_{1}}\right)^{\circ} \supseteqq G_{J}(K)$ with $J=\{1\}$, there exists $\alpha \in H$ such that $(\alpha X)_{F_{1}}=0$. By (1), $\alpha X \in \mathcal{J}_{3}(K)_{\sigma}$, so that αX is diagonal with $s_{i}:=\left(\alpha X \mid E_{i}\right) \in \mathbb{R}(i=1,2,3)$ such that $s_{1}=\left(\alpha X \mid \alpha E_{1}\right)=\left(X \mid E_{1}\right)=r_{1}$. If $s_{2} \geqq s_{3}$, then αX gives an element of the left-handed set of the first formula. If $s_{2}<s_{3}$, put $\alpha_{1}:=\hat{\beta}_{1} \alpha$ with $\hat{\beta}_{1} \in\left(G(K)_{E_{1}}\right)^{\circ}$ given in Lemma 1.4 (1) (ii), so that $\alpha_{1} X$ gives an element of the left-handed set of the first formula. Hence, follows the first formula.

If $x_{1}=0$, then X gives an element of the left-handed side of the second formula with $u=0 \in \mathbb{R}$. If $x_{1} \neq 0$, put $a:=x_{1} / \sqrt{\left(x_{1} \mid x_{1}\right)} \in \mathcal{S}_{1}(1, K)$, so that $\delta_{3}(a) \in\left(\left(G(K)_{E_{3}}\right)^{\circ}\right)_{E_{1}, E_{2}}$ in Lemma 1.4 (2) (ii) such that $\delta_{3}(a) X=$ $\mathbb{X}\left(r_{1}, r_{2}, r_{3} ; u, 0,0\right)$ with $u:=\sqrt{\left(x_{1} \mid x_{1}\right)}>0$, which gives an element of the left-handed side of the second formula. Hence, follows the second formula.
(ii) Take any $X \in \mathcal{J}_{3}\left(K^{\prime}\right)_{\sigma}$. By Lemmas 1.4 (1) and 1.5 (1) with $\tilde{K}=K^{\prime}$ and $H:=\left(G\left(K^{\prime}\right)_{E_{1}}^{\tau}\right)^{\circ} \supseteqq G_{J}\left(K_{\tau}^{\prime}\right)$ with $J=\{1\}$, there exists $\beta \in H$ such that $\left(\beta X \mid F_{1}(x)\right)=0$ for all $x \in K_{\tau}^{\prime}=K \cap K^{\prime}$. By (1), $\beta X \in \mathcal{J}_{3}\left(K^{\prime}\right)_{\sigma}$. Hence, $\beta X=\mathbb{X}\left(\left(X \mid E_{1}\right), s_{2}, s_{3} ; \sqrt{-1} q e_{4}, 0,0\right)$ for some $q \in K \cap K^{\prime}$. Put $\alpha_{1}:=\beta$ (if $s_{2} \geqq s_{3}$) or $\hat{\beta}_{1} \beta$ (if $s_{2}<s_{3}$), so that $\alpha_{1} \in H$ by Lemma 1.4 (1) (ii). Then $\alpha_{1} X=\mathbb{X}\left(\left(X \mid E_{1}\right), s_{2}, s_{3} ; \sqrt{-1} q e_{4}, 0,0\right)$ for some $q \in K \cap K^{\prime}, s_{2}, s_{3} \in \mathbb{R}$ with $s_{2} \geqq s_{3}$. Put $\alpha:=\alpha_{1}$ (if $q=0$) or $\delta_{3}(a) \beta$ for $a:=q / \sqrt{(q \mid q)} \in K_{\tau}^{\prime}$ with $N(a)=1$ (if $q \neq 0$), where $\delta_{3}(a) \in\left(\left(G\left(K^{\prime}\right)_{E_{3}}\right)^{\circ}\right)_{E_{1}, E_{2}}^{\tau} \subseteq\left(G\left(K^{\prime}\right)^{\circ}\right)_{E_{1}}^{\tau}$ by Lemma 1.4 (2) (ii). Then $\alpha X=\mathbb{X}\left(\left(X \mid E_{1}\right), s_{2}, s_{3} ; \sqrt{-1} u e_{4}, 0,0\right)$ with $u:=\sqrt{N(q)} \geqq 0$, which is an element of the left-handed set.
(iii) Take any $X \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right)_{\sigma}$. Then $X=X_{1}+\sqrt{-1} X_{2}$ for some $X_{i} \in$ $\mathcal{J}_{3}(K)_{\sigma}(i=1,2)$. By (i), there exist $\alpha_{1} \in\left(G(K)_{E_{1}}\right)^{\circ}$ such that $\alpha_{1}\left(X_{2}\right)=$ $\mathbb{X}\left(\left(X_{2} \mid E_{1}\right), s_{2}, s_{3} ; 0,0,0\right)$ for some $s_{2}, s_{3} \in \mathbb{R}$ with $s_{2} \geqq s_{3}$. Because of $\mathcal{J}_{3}(K)_{\sigma} \ni \alpha_{1}\left(X_{1}\right)=\mathbb{X}\left(\left(X_{1} \mid E_{1}\right), t_{2}, t_{3} ; x, 0,0\right)$ for some $t_{2}, t_{3} \in \mathbb{R}$ and $x \in K$, so that $\alpha_{1}(X)=\mathbb{X}\left(\left(X \mid E_{1}\right), t_{2}+\sqrt{-1} s_{2}, t_{3}+\sqrt{-1} s_{3} ; x, 0,0\right)$. Put $\alpha:=\alpha_{1}$ (if $x=0$) or $\delta_{3}(a) \alpha_{1}$ with $a:=x / \sqrt{(x \mid x)} \in \mathcal{S}_{1}(1, K)$ (if $x \neq 0$), where $\delta_{3}(a) \in\left(\left(G(K)_{E_{3}}\right)^{\circ}\right)_{E_{1}, E_{2}}$ by Lemma 1.4 (2) (ii). Then $\alpha \in\left(G(K)^{\circ}\right)_{E_{1}}$ and $\alpha X=\mathbb{X}\left(\left(X \mid E_{1}\right), t_{2}+\sqrt{-1} s_{2}, t_{3}+\sqrt{-1} s_{3} ; u, 0,0\right)$ with $u:=\sqrt{(x \mid x)} \geqq 0$, which is an element of the left-handed set.

For $c \in \mathbb{F}$, put $\mathcal{S}_{2}(c, \tilde{K}):=\left\{W \in \mathcal{J}_{3}(\tilde{K})_{-L_{2 E_{1}}^{\times}} \mid(W \mid W)=c, W \neq\right.$ $0\}$, which is said to be a generalized sphere of second kind over \mathbb{F}. Then $G(\tilde{K})_{E_{1}}=\cap_{c \in \mathbb{F}} G(\tilde{K})_{E_{1}, \mathcal{S}_{2}(c, \tilde{K})}$.

Lemma 2.2. (1) $\mathcal{J}_{3}\left(K^{\prime}\right)_{-L_{2 E_{1}}^{\times}}=\left(\cup_{c \in \mathbb{R}} \mathcal{S}_{2}\left(c, K^{\prime}\right)\right) \cup\{0\}$ such that
(i-1) $\mathcal{S}_{2}\left(c, K^{\prime}\right)=\mathcal{O}_{\left(G\left(K^{\prime}\right)^{\circ}\right)_{E_{1}}}\left(\sqrt{\frac{c}{2}}\left(E_{2}-E_{3}\right)\right)$ for $c>0$;
(i-2) $\mathcal{S}_{2}\left(c, K^{\prime}\right)=\mathcal{O}_{\left(G\left(K^{\prime}\right)^{\circ}\right)_{E_{1}}}\left(\sqrt{\frac{-c}{2}} F_{1}\left(\sqrt{-1} e_{4}\right)\right)$ for $c<0$;
(ii) $\mathcal{S}_{2}\left(0, K^{\prime}\right)=\mathcal{O}_{\left(G\left(K^{\prime}\right)^{\circ}\right)_{E_{1}}}\left(M_{1^{\prime}}\right)$; and
(iii) $\{0\}=\mathcal{O}_{\left(G\left(K^{\prime}\right)^{\circ}\right)_{E_{1}}}(0)$.
(2) $\mathcal{J}_{3}\left(K^{\mathbb{C}}\right)_{-L_{2 E_{1}}^{\times}}=\left(\cup_{c \in \mathbb{C}} \mathcal{S}_{2}\left(c, K^{\mathbb{C}}\right)\right) \cup\{0\}$ such that
(i) $\mathcal{S}_{2}\left(c, K^{\mathbb{C}}\right)=\mathcal{O}_{\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{E_{1}}}\left(\sqrt{\frac{c}{2}}\left(E_{2}-E_{3}\right)\right)$ for $c \in \mathbb{C} \backslash\{0\}$;
(ii) $\mathcal{S}_{2}\left(0, K^{\mathbb{C}}\right)=\mathcal{O}_{\left(G\left(K^{\mathrm{C}}\right)^{\circ}\right)_{E_{1}}}\left(M_{1}\right)$; and
(iii) $\{0\}=\mathcal{O}_{\left(G\left(K^{\mathrm{C}}\right)^{\circ}\right)_{E_{1}}}(0)$.

Proof. (1) For $W \in \mathcal{J}_{3}\left(K^{\prime}\right)_{-L_{2 E_{1}}^{\times}}$, put $c:=(W \mid W) \in \mathbb{R}$. By Lemma 2.1 (1) and (2) (ii), $\alpha W=\mathbb{X}\left(0, s,-s ; u \sqrt{-1} e_{4}, 0,0\right)$ for some $s \geqq 0, u \geqq 0$ and $\alpha \in\left(G\left(K^{\prime}\right)^{\circ}\right)_{E_{1}}^{\tau}$. Then $c=(\alpha W \mid \alpha W)=2\left(s^{2}-u^{2}\right)$. For $t \in \mathbb{R}$, put $\mathbb{X}(r ; x):=\beta_{1}\left(t ; \sqrt{-1} e_{4}, 1\right)(\alpha W)$, so that $r_{1}=x_{2}=x_{3}=0, r_{2}=-r_{3}=$ $\cosh (2 t)(s-u \tanh (2 t))$ and $x_{1}=v \sqrt{-1} e_{4}$ with $v:=\cosh (2 t)(u-s \tanh (2 t))$.
(i-1) If $c>0$, then $s>u \geqq 0$ and $|u / s|<1$, so that $\tanh (2 t)=u / s$ for some $t \in \mathbb{R}$ such that $v=0$ and $r_{2}=\cosh (2 t)\left(s^{2}-u^{2}\right) / s>0$. In this case, $\mathbb{X}(r ; x)=r_{2}\left(E_{2}-E_{3}\right)$ with $c=(W \mid W)=(\mathbb{X}(r ; x) \mid \mathbb{X}(r ; x))=2\left(r_{2}\right)^{2}$, so that $\mathbb{X}(r ; x)=\sqrt{\frac{c}{2}}\left(E_{2}-E_{3}\right) \in \mathcal{S}_{2}\left(c, K^{\prime}\right)$.
(i-2) If $c<0$, then $u>s \geqq 0$ and $|s / u|<1$, so that $\tanh (2 t)=s / u$ for some $t \in \mathbb{R}$ such that $r_{2}=0$ and $v=\cosh (2 t)\left(u^{2}-s^{2}\right) / u>0$. In this case,
$\mathbb{X}(r ; x)=v F_{1}\left(\sqrt{-1} e_{4}\right)$ with $c=(W \mid W)=(\mathbb{X}(r ; x) \mid \mathbb{X}(r ; x))=-2 v^{2}$, so that $\mathbb{X}(r ; x)=\sqrt{\frac{-c}{2}} F_{1}\left(\sqrt{-1} e_{4}\right) \in \mathcal{S}_{2}\left(c, K^{\prime}\right)$.
(ii, iii) If $c=0$, then $s^{2}-u^{2}=c / 2=0$, so that $s=u \geqq 0$ and $r_{2}=v=u e^{-2 t}$. When $u \neq 0: u>0$ and $u e^{-2 t}=1$ for some $t \in \mathbb{R}$. In this case, $\left.\mathbb{X}(r ; x)=E_{2}-E_{3}+F_{1}\left(\sqrt{-1} e_{4}\right)\right)=M_{1^{\prime}} \in \mathcal{S}_{2}\left(0, K^{\prime}\right)$. When $u=0$: $r_{2}=v=u=0$ and $\mathbb{X}(r ; x)=0 \in\{0\}$.
(2) For $W \in \mathcal{J}_{3}\left(K^{\mathbb{C}}\right)_{-L_{2 E_{1}}}$, put $c:=(W \mid W) \in \mathbb{C}$. By Lemma 2.1 (1) and (2) (iii), $\alpha W=\mathbb{X}\left(0, t_{2}+s_{2} \sqrt{-1},-t_{2}-s_{2} \sqrt{-1} ; u, 0,0\right)$ for some $t_{2}, s_{2}, u \in \mathbb{R}$ with $s_{2}, u \geqq 0$ and some $\alpha \in\left(G(K)_{E_{1}}\right)^{\circ} \subseteq\left(G\left(K^{\mathbb{C}}\right)_{E_{1}}\right)^{\circ}$. Then $c=(\alpha W \mid \alpha W)=2\left(\left(t_{2}+s_{2} \sqrt{-1}\right)^{2}+u^{2}\right)$. For $t \in \mathbb{R}$, put $\mathbb{X}(r ; x):=$ $\beta_{1}(t ; 1, \sqrt{-1})(\alpha W)$ with $\beta_{1}(t ; 1, \sqrt{-1}) \in\left(G(K)_{E_{1}}\right)^{\circ} \subseteq\left(G\left(K^{\mathbb{C}}\right)_{E_{1}}\right)^{\circ}$, so that $r_{1}=x_{2}=x_{3}=0, r_{2}=-r_{3}=\left(t_{2}+s_{2} \sqrt{-1}\right) \cos (2 t)+u \sin (2 t)$ and $x_{1}=u \cos (2 t)-\left(t_{2}+s_{2} \sqrt{-1}\right) \sin (2 t)$.
(i) If $c \neq 0$, then $\left(t_{2}+\left(s_{2}+u\right) \sqrt{-1}\right)\left(t_{2}+\left(s_{2}-u\right) \sqrt{-1}\right)=c / 2 \neq 0$, so that $e^{\sqrt{-14 t}}=\left(t_{2}+\left(s_{2}+u\right) \sqrt{-1}\right) /\left(t_{2}+\left(s_{2}-u\right) \sqrt{-1}\right) \neq 0$ for some $t \in \mathbb{C}$, and that $x_{1}=u\left(e^{\sqrt{-12 t}}+e^{-\sqrt{-12 t}}\right) / 2-\left(t_{2}+s_{2} \sqrt{-1}\right)\left(e^{\sqrt{-12 t}}-e^{-\sqrt{-12 t}}\right) /(2 \sqrt{-1})=$ $\frac{\sqrt{-1}}{2}\left\{\left(t_{2}+\left(s_{2}-u\right) \sqrt{-1}\right) e^{\sqrt{-12 t}}-\left(t_{2}+\left(s_{2}+u\right) \sqrt{-1}\right) e^{-\sqrt{-12 t}}\right\}=0$. In this case, $\mathbb{X}(r ; x)=r_{2}\left(E_{2}-E_{3}\right)$ with $c=(\mathbb{X}(r ; x) \mid \mathbb{X}(r ; x))=2\left(r_{2}\right)^{2}$, so that $\mathbb{X}(r ; x)=\sqrt{\frac{c}{2}}\left(E_{2}-E_{3}\right) \in \mathcal{S}_{2}\left(c, K^{\mathbb{C}}\right)$.
(ii, iii) If $c=0$, then $t_{2}^{2}-s_{2}^{2}+u^{2}+2 t_{2} s_{2} \sqrt{-1}=c / 2=0$, so that $t_{2} s_{2}=0$. When $s_{2}=0: t_{2}=u=0$, so that $\mathbb{X}(r ; x)=0 \in\{0\}$. When $s_{2} \neq 0: t_{2}=0$, $u=s_{2}>0, r_{2}=-r_{3}=\sqrt{-1} u e^{-2 t \sqrt{-1}}, x_{1}=u e^{-2 t \sqrt{-1}}$. There exists $t \in \mathbb{C}$ such that $\sqrt{-1} u e^{-2 t \sqrt{-1}}=1$, so that $\mathbb{X}(r ; x)=E_{2}-E_{3}+F_{1}(\sqrt{-1})=M_{1} \in$ $\mathcal{S}_{2}\left(0, K^{\mathbb{C}}\right)$.

Lemma 2.3. (1) If $Y=\mathbb{X}(r ; x) \in \mathcal{J}_{2}(\tilde{K})$, then $\operatorname{tr}(Y)=r_{2}+r_{3}$, $\operatorname{det}\left(E_{1}+\right.$ $Y)=r_{2} r_{3}-N\left(x_{1}\right)$ and $Y^{\times 2}=\operatorname{det}\left(E_{1}+Y\right) E_{1}$.
(2) For any $X \in \mathcal{J}_{3}(\tilde{K})_{\sigma}$, there exists $Y \in \mathcal{J}_{2}(\tilde{K})$ such that $X=$ $\left(X \mid E_{1}\right) E_{1}+Y$ and that $Y=\frac{\operatorname{tr}(Y)}{2}\left(E_{2}+E_{3}\right)+W$ for some $W \in \mathcal{J}_{3}(\tilde{K})_{-L_{2 E_{1}}^{\times}}$ such that $(W, W)=\frac{1}{2}\left(\operatorname{tr}(Y)^{2}-4 \operatorname{det}\left(E_{1}+Y\right)\right)$. In this case, put $\Psi_{Y}(\lambda):=$ $\lambda^{2}-\operatorname{tr}(Y) \lambda+\operatorname{det}\left(E_{1}+Y\right) \equiv\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right)$ with some $\lambda_{2}, \lambda_{3} \in \mathbb{C}$. Then $\Phi_{X}(\lambda)=\left(\lambda-\left(X \mid E_{1}\right)\right) \Psi_{Y}(\lambda)$ and $2(W, W)=\left(\lambda_{2}-\lambda_{3}\right)^{2}$.
(3) $\mathcal{O}_{\left(G(\tilde{K})^{\tau}\right)^{\circ}}(X) \cap \mathcal{J}_{2}(\tilde{K}) \neq \emptyset$ if $X \in \mathcal{J}_{3}(\tilde{K})$ with $X^{\times 2}=0$.

Proof. (1) By Lemma 1.1, one has the first and the second equations. And $Y^{\times 2}=\frac{1}{2}\left(2 r_{2} r_{3}-2 N\left(x_{1}\right)\right) E_{1}=\operatorname{det}\left(E_{1}+Y\right) E_{1}$.
(2) Take $X:=\mathbb{X}\left(r_{1}, r_{2}, r_{3} ; x_{1}, 0,0\right) \in \mathcal{J}_{3}(\tilde{K})_{\sigma}$. Put

$$
Y:=\mathbb{X}\left(0, r_{2}, r_{3} ; x_{1}, 0,0\right), W:=\frac{r_{2}-r_{3}}{2}\left(E_{2}-E_{3}\right)+F_{1}\left(x_{1}\right) \in \mathcal{J}_{2}(\tilde{K}) .
$$

Then $X=r_{1} E_{1}+Y, Y=\frac{r_{2}+r_{3}}{2}\left(E_{2}+E_{3}\right)+W ; \operatorname{tr}(Y)=r_{2}+r_{3}, \operatorname{det}\left(E_{1}+Y\right)=$ $r_{2} r_{3}-N\left(x_{1}\right)$ and $(W \mid W)=\frac{\left(r_{2}-r_{3}\right)^{2}}{2}+2 N\left(x_{1}\right)=\frac{1}{2}\left(\operatorname{tr}(Y)^{2}-4 \operatorname{det}\left(E_{1}+Y\right)\right)$. By Lemma 1.1 (1), $\varphi_{X}(\lambda)=\left(\lambda-r_{1}\right)\left(\lambda-r_{2}\right)\left(\lambda-r_{3}\right)-\left(\lambda-r_{1}\right) N\left(x_{1}\right)=$ $\left(\lambda-r_{1}\right)\left(\lambda^{2}-\left(r_{2}+r_{3}\right) \lambda+\left(r_{2} r_{3}-N\left(x_{1}\right)\right)\right)=\left(\lambda-r_{1}\right) \Psi_{Y}(\lambda)$. Because of $\Psi_{Y}(\lambda) \equiv\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right)$, one has that $\operatorname{tr}(Y)=\lambda_{2}+\lambda_{3}, \operatorname{det}\left(E_{1}+Y\right)=\lambda_{2} \lambda_{3}$, so that $2(W, W)=\left(\lambda_{2}+\lambda_{3}\right)^{2}-4 \lambda_{2} \lambda_{3}=\left(\lambda_{2}-\lambda_{3}\right)^{2}$.
(3) Take $X \in \mathcal{J}_{3}(\tilde{K})$ with $X^{\times 2}=0$. (i) When $\tilde{K}=K^{\prime}$: By Lemma 1.5 (4), $\alpha X=\sum_{i=1}^{3}\left(s_{i} E_{i}+F_{i}\left(p_{i} \sqrt{-1} e_{4}\right)\right)$ for some $p_{i} \in K \cap K^{\prime}, s_{i} \in \mathbb{R}$ and $\alpha \in\left(G\left(K^{\prime}\right)^{\tau}\right)^{\circ}$, so that $0=\alpha\left(X^{\times 2}\right)=(\alpha X)^{\times 2}=\sum_{i=1}^{3}\left(s_{i+1} s_{i+2}+2 N\left(p_{i}\right)\right) E_{i}+$ $\sum_{i=1}^{3} F_{i}\left(\overline{p_{i+1} p_{i+2}}-s_{i} p_{i} \sqrt{-1} e_{4}\right)$, that is, $s_{i+1} s_{i+2}+2 N\left(p_{i}\right)=\overline{p_{i+1}} p_{i+2}=s_{i} p_{i}=$ 0 for all $i \in\{1,2,3\}$. (Case 1) When $p_{i}=0$ for all $i: 0=s_{2} s_{3}=s_{3} s_{1}=s_{1} s_{2}$, so that $\alpha X=s_{i} E_{i}$ for some i. If $i=2$ or 3 , then $\alpha X \in \mathcal{J}_{2}\left(K^{\prime}\right)$. If $i=1$, then $\hat{\beta}_{3}(\alpha X)=s_{1} E_{2} \in \mathcal{J}_{2}\left(K^{\prime}\right)$ by $\hat{\beta}_{3} \in\left(G\left(K^{\prime}\right)^{\tau}\right)^{\circ}$ defined in Lemma 1.4 (1) (ii). (Case 2) When $p_{i} \neq 0$ for some $i: p_{i+1}=p_{i+2}=0$ and $s_{i}=0$. If $i=1$, then $\alpha X \in \mathcal{J}_{2}\left(K^{\prime}\right)$. If $i=2$, then $\hat{\beta}_{3}(\alpha X) \in \mathcal{J}_{2}\left(K^{\prime}\right)$. If $i=3$, then $\hat{\beta}_{2}(\alpha X) \in \mathcal{J}_{2}\left(K^{\prime}\right)$ by $\hat{\beta}_{2} \in\left(G\left(K^{\prime}\right)^{\tau}\right)^{\circ}$ defined in Lemma 1.4 (1) (ii).
(ii) When $\tilde{K}=K^{\mathbb{C}}: \alpha X=Y+\sqrt{-1} \operatorname{diag}\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}\right)$ for some $r_{i}^{\prime} \in \mathbb{R}(i=$ 1,2,3), $Y \in \mathcal{J}_{3}(K)$, and $\alpha \in G(K)^{\circ}=\left(G\left(K^{\mathbb{C}}\right)^{\tau}\right)^{\circ}$ by Lemma 1.5 (3). Putting $Y=\mathbb{X}(r ; x), s_{i}:=r_{i}+\sqrt{-1} r_{i}^{\prime} \in \mathbb{C}$, one has $0=(\alpha X)^{\times 2}=\sum_{i=1}^{3}\left\{\left(s_{i+1} s_{i+2}-\right.\right.$ $\left.\left.2 N\left(x_{i}\right)\right) E_{i}+F_{i}\left(\overline{x_{i+1} x_{i+2}}-s_{i} x_{i}\right)\right\}$, that is, $0=r_{i}^{\prime} x_{i}=\overline{x_{i+1} x_{i+2}}-r_{i} x_{i}=$ $s_{i+1} s_{i+2}-2 N\left(x_{i}\right)$ for all $i \in\{1,2,3\}$. Then (Case 1) $x_{i}=0$ for all i, (Case 2) $x_{i} \neq 0, x_{i+1}=x_{i+2}=0$ for some i, (Case 3) $x_{i} \neq 0, x_{i+1} \neq 0, x_{i+2}=0$ for some i; or (Case 4) $x_{i} \neq 0$ for all i. In (Case 1), $0=s_{i+1} s_{i+2}$ for all i, so that $\alpha X=s_{i} E_{i}$ for some i. If $i=2$ or 3 , then $\alpha X \in \mathcal{J}_{2}\left(K^{\mathbb{C}}\right)$. If $i=1$, then $\hat{\beta}_{3}(\alpha X)=s_{1} E_{2} \in \mathcal{J}_{2}\left(K^{\mathbb{C}}\right)$ by $\hat{\beta}_{3} \in\left(G\left(K^{\mathbb{C}}\right)^{\tau}\right)^{\circ}$ defined in Lemma 1.4 (1) (ii). In (Case 2), $0=r_{i}^{\prime}=r_{i}$, so that $\alpha X=s_{i+1} E_{i+1}+s_{i+2} E_{i+2}+F_{i}\left(x_{i}\right)$ and that $\hat{\beta}_{k}(\alpha X) \in \mathcal{J}_{2}\left(K^{\mathbb{C}}\right)$ for some $\hat{\beta}_{k} \in\left(G\left(K^{\mathbb{C}}\right)^{\tau}\right)^{\circ}$ defined in Lemma 1.4 (1) (ii). In (Case 3), $0=r_{i}^{\prime}=r_{i}=r_{i+1}^{\prime}=r_{i+1}=N\left(x_{i}\right)=N\left(x_{i+1}\right)$, so that $\alpha X=s_{i+2} E_{i+2}$ and that $\hat{\beta}_{k}(\alpha X) \in \mathcal{J}_{2}\left(K^{\mathbb{C}}\right)$ for some $\hat{\beta}_{k} \in\left(G\left(K^{\mathbb{C}}\right)^{\tau}\right)^{\circ}$ defined in Lemma 1.4 (1) (ii). In (Case 4), $r_{i}^{\prime}=0$ for all i, so that $\alpha X \in \mathcal{J}_{3}(K)$ and that $\alpha_{1}(\alpha X)$ is diagonal for some $\alpha_{1} \in G(K)^{\circ}$ by Lemma 1.5 (2). Then $\left.\beta\left(\alpha_{1}(\alpha X)\right)\right) \in \mathcal{J}_{2}\left(K^{\mathbb{C}}\right)$ for some $\beta \in\left(G\left(K^{\mathbb{C}}\right)^{\tau}\right)^{\circ}$ by the argument on (Case 1).

Proof of Proposition 0.1 (3) when $\tilde{K} \neq K$. Take any $X \in \mathcal{P}_{2}(\tilde{K})$. By (3), $\alpha_{1} X \in \mathcal{J}_{2}(\tilde{K})$ for some $\alpha_{1} \in\left(G(\tilde{K})^{\tau}\right)^{\circ}$. By (1), $\operatorname{det}\left(E_{1}+\alpha_{1} X\right) E_{1}=$ $\left(\alpha_{1} X\right)^{\times 2}=\alpha\left(X^{\times 2}\right)=0$, i.e. $\operatorname{det}\left(E_{1}+\alpha_{1} X\right)=0$. By (2), $\alpha_{1} X=\frac{\operatorname{tr}\left(\alpha_{1} X\right)}{2}\left(E_{2}+\right.$ $\left.E_{3}\right)+W=\frac{1}{2}\left(E_{2}+E_{3}\right)+W$ for some $W \in \mathcal{J}_{3}(\tilde{K})_{-L_{2 E_{1}}^{\times}}$such that $(W \mid W)=$ $\frac{1}{2}\left(\operatorname{tr}\left(\alpha_{1} X\right)^{2}-4 \operatorname{det}\left(E_{1}+\alpha_{1} X\right)\right)=\frac{1}{2}$, so that $W \in \mathcal{S}_{2}(1 / \sqrt{2}, \tilde{K})$. By Lemma $2.2(1)(2), \alpha_{2} W=\frac{1}{2}\left(E_{2}-E_{3}\right) \in \mathcal{S}_{2}(1 / \sqrt{2}, \tilde{K})$ for some $\alpha_{2} \in\left(G(\tilde{K})_{E_{1}}\right)^{\circ}$. Then $\alpha_{2}\left(\alpha_{1} X\right)=\frac{1}{2}\left(E_{2}+E_{3}\right)+\frac{1}{2}\left(E_{2}-E_{3}\right)=E_{2}$ by Lemma 2.1 (1). By $\hat{\beta}_{3} \in\left(G(\tilde{K})_{E_{3}}^{\tau}\right)^{\circ}$ defined in Lemma 1.4 (1) (ii), $\hat{\beta}_{3}\left(\alpha_{2}\left(\alpha_{1} X\right)\right)=E_{1}$, where $\hat{\beta}_{3} \alpha_{2} \alpha_{1} \in G(\tilde{K})^{\circ}$.

Proof of Proposition 0.1 (4) (i). Take any $X \in \mathcal{M}_{1}(\tilde{K})$ defined in Lemma 1.6 (5). By (3), $0 \neq \alpha X \in \mathcal{J}_{2}(\tilde{K})$ for some $\alpha \in\left(G(\tilde{K})^{\tau}\right)^{\circ}$ with $\operatorname{tr}(\alpha X)=$ $\operatorname{tr}(X)=0$. In this case, by (2), $\alpha X=\frac{\operatorname{tr}(\alpha X)}{2}\left(E_{2}+E_{3}\right)+W=W$ for some $W \in \mathcal{J}_{3}(\tilde{K})_{-L_{2 E_{1}}^{\times}}$. And $(\alpha X \mid \alpha X)=(X \mid X)=(X \circ X \mid E)=-2(X \times X \mid E)=$ $-2 \operatorname{tr}\left(X^{\times 2}\right)=0$ by Lemma 1.1 (4). Hence, $\alpha X \in \mathcal{S}_{2}(0, \tilde{K})$. By Lemma 2.2 (1) (ii) or (2) (ii), there exists $\beta \in\left(G(\tilde{K})^{\circ}\right)_{E_{1}}$ such that $\beta(\alpha X)=M_{1^{\prime}}$ (when $\tilde{K}=K^{\prime}$) or M_{1} (when $\tilde{K}=K^{\mathbb{C}}$).

3. Theorems 0.2 and 0.3 in (1) (i, ii).

Assume that $X \in \mathcal{J}_{3}(\tilde{K})$ admits a characteristic root $\lambda_{1} \in \mathbb{F}$ of multiplicity 1 . Then $0 \neq \Phi_{X}^{\prime}\left(\lambda_{1}\right)=\operatorname{tr}\left(\varphi_{X}\left(\lambda_{1}\right)^{\times 2}\right)$ by Lemma 1.2 (2), so that

$$
E_{X, \lambda_{1}}:=\frac{1}{\operatorname{tr}\left(\varphi_{X}\left(\lambda_{1}\right)\right)} \varphi_{X}\left(\lambda_{1}\right)^{\times 2} \in V_{X}
$$

is well-defined. Put $W_{X, \lambda_{1}}:=X-\lambda_{1} E_{X, \lambda_{1}}-\frac{\operatorname{tr}(X)-\lambda_{1}}{2} \varphi_{E_{X, \lambda_{1}}}(1) \in V_{X}$. Then

$$
X=\lambda_{1} E_{X, \lambda_{1}}+\frac{\operatorname{tr}(X)-\lambda_{1}}{2} \varphi_{E_{X, \lambda_{1}}}(1)+W_{X, \lambda_{1}} .
$$

Lemma 3.1. Assume that $X \in \mathcal{J}_{3}(\tilde{K})$ admits a characteristic root $\lambda_{1} \in \mathbb{F}$ of multiplicity 1. Then:
(1) $V_{X} \cap \mathcal{P}_{2}(\tilde{K}) \ni E_{X, \lambda_{1}} \neq 0, \varphi_{E_{X, \lambda_{1}}}(1) \neq 0, E_{X, \lambda_{1}}^{\times 2}=0,2 E_{X, \lambda_{1}} \times$ $\varphi_{E_{X, \lambda_{1}}}(1)=\varphi_{E_{X, \lambda_{1}}}(1), \varphi_{E_{X, \lambda_{1}}}(1)^{\times 2}=E_{X, \lambda_{1}}, 2 E_{X, \lambda_{1}} \times W_{X, \lambda_{1}}=-W_{X, \lambda_{1}} ;$
(2) $V_{X}=\mathbb{F} E_{X, \lambda_{1}} \oplus \mathbb{F} \varphi_{E_{X, \lambda_{1}}}$ (1) $\oplus \mathbb{F} W_{X, \lambda_{1}}$ such that $v_{X}=2\left(\right.$ if $W_{X, \lambda_{1}}=$ 0) or $v_{X}=3$ (if $W_{X, \lambda_{1}} \neq 0$) with $\left(E_{X, \lambda_{1}} \mid \varphi_{E_{X, \lambda_{1}}}(1)\right)=\left(E_{X, \lambda_{1}} \mid W_{X, \lambda_{1}}\right)=$ $\left(\varphi_{E_{X, \lambda_{1}}}(1) \mid W_{X, \lambda_{1}}\right)=0,\left(E_{X, \lambda_{1}} \mid E_{X, \lambda_{1}}\right)=1$,
$\left(\varphi_{E_{X, \lambda_{1}}}(1) \mid \varphi_{E_{X, \lambda_{1}}}(1)\right)=2$ and $\left(W_{X, \lambda_{1}} \mid W_{X, \lambda_{1}}\right)=\Delta_{X}\left(\lambda_{1}\right)$.
Proof. (1) Put $Z:=\varphi_{X}\left(\lambda_{1}\right)$ and $Y:=Z^{\times 2}$, so that $Y^{\times 2}=0$ by Lemma 1.6 (4). Then $E_{X, \lambda_{1}}=\frac{1}{\operatorname{tr}(Y)} Y, \operatorname{tr}\left(E_{X, \lambda_{1}}\right)=1$ and $E_{X, \lambda_{1}}^{\times 2}=0$, so that $E_{X, \lambda_{1}} \in$ $\mathcal{P}_{2}(\tilde{K}) \cap V_{X}$. Note that $\operatorname{tr}\left(\varphi_{E_{X, \lambda_{1}}}(1)\right)=\operatorname{tr}(E)-\operatorname{tr}\left(E_{X, \lambda_{1}}\right)=3-1=2 \neq 0$, so that $\varphi_{E_{X, \lambda_{1}}}(1) \neq 0$. By Lemma 1.1 (3), $2 E_{X, \lambda_{1}} \times \varphi_{E_{X, \lambda_{1}}}(1)=2 E_{X, \lambda_{1}} \times(E-$ $\left.E_{X, \lambda_{1}}\right)=2 E_{X, \lambda_{1}} \times E=\operatorname{tr}\left(E_{X, \lambda_{1}}\right) E-E_{X, \lambda_{1}}=\varphi_{E_{X, \lambda_{1}}}(1)$ and $\varphi_{E_{X, \lambda_{1}}}(1)^{\times 2}=$ $\left(E-E_{X, \lambda_{1}}\right)^{\times 2}=E^{\times 2}-2 E \times E_{X, \lambda_{1}}=E-\varphi_{E_{X, \lambda_{1}}}(1)=E_{X, \lambda_{1}}$. By direct compuations, $W_{X, \lambda_{1}}=\frac{\operatorname{tr}(Z)}{2} \varphi_{E_{X, \lambda_{1}}}(1)-Z$. By Lemma 1.6 (2) (iii) and $\operatorname{det}(Z)=0$, $2 E_{X, \lambda_{1}} \times Z=\frac{2}{\operatorname{tr}(Y)} Z^{\times 2} \times Z=\frac{2}{\operatorname{tr}(Y)} \frac{-1}{2}(\operatorname{tr}(Z) Y+\operatorname{tr}(Y) Z-\operatorname{tr}(Y) \operatorname{tr}(Z) E+$ $\operatorname{det}(Z) E)=-\operatorname{tr}(Z) E_{X, \lambda_{1}}-Z+\operatorname{tr}(Z) E=-Z+\operatorname{tr}(Z) \varphi_{E_{X, \lambda_{1}}}(1)$. Hence, $2 E_{X, \lambda_{1}} \times W_{\lambda_{1}}=\frac{\operatorname{tr}(Z)}{2} \varphi_{E_{X, \lambda_{1}}}(1)+Z-\operatorname{tr}(Z) \varphi_{E_{X, \lambda_{1}}}(1)=Z-\frac{\operatorname{tr}(Z)}{2} \varphi_{E_{X, \lambda_{1}}}(1)=$ $-W_{X, \lambda_{1}}$.
(2) Since V_{X} is spanned by $E, X, X^{\times 2}, v_{X}:=\operatorname{dim}_{\mathbb{F}} V_{X} \leqq 3$. If $W_{X, \lambda_{1}} \neq$ 0 , then $E_{X, \lambda_{1}}, \varphi_{E_{X, \lambda_{1}}}(1), W_{X, \lambda_{1}}$ are eigen-vectors of $L_{2 E_{X, \lambda_{1}}}^{\times}$with different eigen-values $0,1,-1$, i.e. $v_{X}=3$. If $W_{X, \lambda_{1}}=0$, then $X=\lambda_{1} E_{X, \lambda_{1}}+$ $\frac{\operatorname{tr}(X)-\lambda_{1}}{2} \varphi_{E_{X, \lambda_{1}}}(1)$ and $X^{\times 2}=\frac{\lambda_{1}\left(\operatorname{tr}(X)-\lambda_{1}\right)}{2} \varphi_{E_{X, \lambda_{1}}}(1)+\left(\frac{\operatorname{tr}(X)-\lambda_{1}}{2}\right)^{2} E_{X, \lambda_{1}}$, so that V_{X} is spanned by $E_{X, \lambda_{1}}$ and $\varphi_{E_{X, \lambda_{1}}}(1)=E-E_{X, \lambda_{1}}$, i.e. $v_{X}=2$. By Lemmas 1.1 (2) and 1.6 (3), $L_{2 E_{X, \lambda_{1}}}^{\times}$is a symmetric \mathbb{F}-linear transformation on $\left(V_{X},(* \mid *)\right)$, so that $E_{X, \lambda_{1}}, \varphi_{E_{X, \lambda_{1}}}(1), W_{X, \lambda_{1}}$ are orthogonal as zero or eigenvectors of $L_{2 E_{X, \lambda_{1}}}^{\times}$with the different eigen-values. By (1) and Lemma 1.1 (4), $0=2 \operatorname{tr}\left(E_{X, \lambda_{1}}^{\times 1}\right)=\operatorname{tr}\left(E_{X, \lambda_{1}}\right)^{2}-\left(E_{X, \lambda_{1}} \mid E_{X, \lambda_{1}}\right)=1-\left(E_{X, \lambda_{1}} \mid E_{X, \lambda_{1}}\right)$, so that $\left(E_{X, \lambda_{1}} \mid E_{X, \lambda_{1}}\right)=1$ and $\left(\varphi_{E_{X, \lambda_{1}}}(1) \mid \varphi_{E_{X, \lambda_{1}}}(1)\right)=(E \mid E)-2\left(E \mid E_{X, \lambda_{1}}\right)+$ $\left(E_{X, \lambda_{1}} \mid E_{X, \lambda_{1}}\right)=3-2 \operatorname{tr}\left(E_{X, \lambda_{1}}\right)+1=2$. Because of the orthogonality in (1), $\left(X \mid E_{X, \lambda_{1}}\right)=\lambda_{1},\left(X \mid \varphi_{E_{X, \lambda_{1}}}(1)\right)=\operatorname{tr}(X)-\lambda_{1}$ and $\left(W_{X, \lambda_{1}} \mid W_{X, \lambda_{1}}\right)=$ $(X \mid X)+\lambda_{1}^{2}+\frac{\left(\operatorname{tr}(X)-\lambda_{1}\right)^{2}}{2}-2 \lambda_{1}\left(X \mid E_{X, \lambda_{1}}\right)-\left(\operatorname{tr}(X)-\lambda_{1}\right)\left(X \mid \varphi_{E_{X, \lambda_{1}}}(1)\right)=(X \mid X)-$ $\frac{3}{2} \lambda_{1}^{2}+\operatorname{tr}(X) \lambda_{1}-\frac{1}{2} \operatorname{tr}(X)^{2}=\Delta_{X}\left(\lambda_{1}\right)$.

Note that $\Delta_{X}\left(\lambda_{1}\right)=-\frac{1}{2}\left\{3 \lambda_{1}^{2}-2 \operatorname{tr}(X) \lambda_{1}+\operatorname{tr}(X)^{2}-2(X \mid X)\right\} \in \mathbb{F}$ is an invariant on $\mathcal{O}_{G(\tilde{K})}(X)$ if $\lambda_{1} \in \mathbb{F}$ is a characteristic root of multiplicity 1 for $X \in \mathcal{J}_{3}(\tilde{K})$.

Lemma 3.2. Assume that $X \in \mathcal{J}_{3}(\tilde{K})$ admits an eigen-value $\lambda_{1} \in \mathbb{F}$ of multiplicity 1. Put $\Phi_{X}(\lambda) \equiv \Pi_{i=1}^{3}\left(\lambda-\lambda_{i}\right)$ for some $\lambda_{2}, \lambda_{3} \in \mathbb{C}$ with $\lambda_{1} \neq$
λ_{2}, λ_{3}. Then $\mathcal{O}_{G(\tilde{K})^{\circ}} \ni \lambda_{1} E_{1}+\frac{1}{2}\left(\operatorname{tr}(X)-\lambda_{1}\right)\left(E-E_{1}\right)+W$ for $W \in \mathcal{J}_{3}(\tilde{K})_{-L_{2 E_{1}}^{\times}}$ such that $(W \mid W)=\Delta_{X}\left(\lambda_{1}\right)=\left(\lambda_{2}-\lambda_{3}\right)^{2} / 2$ given by Λ_{X} and v_{X} as follows:
(1) When $\tilde{K}=K^{\prime}$ with $\mathbb{F}=\mathbb{R}$:
(i-1) $W=\frac{\sqrt{\Delta_{X}\left(\lambda_{1}\right)}}{\sqrt{2}}\left(E_{2}-E_{3}\right)$ with $\# \Lambda_{X}=v_{X}=3$ if $\Delta_{X}\left(\lambda_{1}\right)>0$;
(i-2) $W=\frac{\sqrt{-\Delta_{X}\left(\lambda_{1}\right)}}{\sqrt{2}} F_{1}\left(\sqrt{-1} e_{4}\right)$ with $\# \Lambda_{X}=v_{X}=3$ if $\Delta_{X}\left(\lambda_{1}\right)<0$;
(ii) $W=M_{1^{\prime}}$ if $\Delta_{X}\left(\lambda_{1}\right)=0$ with $v_{X}=3$;
(iii) $W=0$ if $\Delta_{X}\left(\lambda_{1}\right)=0$ with $v_{X}=2$.
(2) When $\tilde{K}=K^{\mathbb{C}}$ with $\mathbb{F}=\mathbb{C}$:
(i) $W=\frac{w}{\sqrt{2}}\left(E_{2}-E_{3}\right)$ for any $w \in \mathbb{C}$ such that $w^{2}=\Delta_{X}\left(\lambda_{1}\right)$ with $\# \Lambda_{X}=$ $v_{X}=3$ if $0 \neq \Delta_{X}\left(\lambda_{1}\right) \in \mathbb{C}$;
(ii) $W=M_{1}$ if $\Delta_{X}\left(\lambda_{1}\right)=0$ with $v_{X}=3$;
(iii) $W=0$ if $\Delta_{X}\left(\lambda_{1}\right)=0$ with $v_{X}=2$.

Proof. By Lemma 3.1 (1) and Proposition 0.1 (3), $\alpha E_{X, \lambda_{1}}=E_{1}$ for some $\alpha \in G(\tilde{K})^{\circ}$, so that $\alpha \varphi_{E_{X, \lambda_{1}}}(1)=\alpha\left(E-E_{X, \lambda_{1}}\right)=E-E_{1}$. Put $W^{\prime}:=\alpha W_{X, \lambda_{1}}$. Then $\alpha X=\lambda_{1} E_{1}+\frac{\operatorname{tr}(X)-\lambda_{1}}{2}\left(E-E_{1}\right)+W^{\prime}$ with $\Phi_{\alpha X}(\lambda)=$ $\Pi_{i=1}^{3}\left(\lambda-\lambda_{i}\right)$. And $2 E_{1} \times W^{\prime}=\alpha\left(2 E_{X, \lambda_{1}} \times W_{X, \lambda_{1}}\right)=-\alpha W_{X, \lambda_{1}}=-W^{\prime}$ by Lemma 3.1 (1), i.e. $W^{\prime} \in \mathcal{J}_{3}(\tilde{K})_{-L_{2 E_{1}}} \subset \mathcal{J}_{3}(\tilde{K})_{\sigma}$. By Lemmas 3.1 (2) and 2.3 (2), $\Delta_{X}\left(\lambda_{1}\right)=\left(W_{X, \lambda_{1}} \mid W_{X, \lambda_{1}}\right)=\left(W^{\prime} \mid W^{\prime}\right)=\left(\lambda_{2}-\lambda_{3}\right)^{2} / 2$, which is determined by Λ_{X}, so that $W^{\prime} \in \mathcal{S}\left(\Delta_{X}\left(\lambda_{1}\right)\right) \cup\{0\}$. Note that $W^{\prime}=0$ (or $W^{\prime} \neq 0$) iff $W_{X, \lambda_{1}}=0$ (resp. $W_{X, \lambda_{1}} \neq 0$) iff $v_{X}=2$ (resp. $v_{X}=3$) by Lemma 3.1 (2). If $\Delta_{X}\left(\lambda_{1}\right) \neq 0$, then $\left(W^{\prime} \mid W^{\prime}\right) \neq 0$, so that $W^{\prime} \neq 0$ and $\lambda_{2} \neq \lambda_{3}$, i.e. $v_{X}=\# \Lambda_{X}=3$: By Lemma 2.2 (1) (i-1, 2) or (2) (i), $W:=\beta W^{\prime}$ is given as (1) (i-1,2) or (2) (i) for some $\beta \in\left(G(\tilde{K})_{E_{1}}\right)^{\circ}$, so that $\beta(\alpha X)=\lambda_{1} \beta E_{1}+\frac{\operatorname{tr}(X)-\lambda_{1}}{2} \beta\left(E-E_{1}\right)+W=\lambda_{1} E_{1}+\frac{\operatorname{tr}(X)-\lambda_{1}}{2}\left(E-E_{1}\right)+W$. If $\Delta_{X}\left(\lambda_{1}\right)=0$, then $\left(W^{\prime} \mid W^{\prime}\right)=0$, so that $W^{\prime} \in \mathcal{S}_{2}(0, \tilde{K}) \cup\{0\}$: By Lemma 2.2 (1) (ii, iii) or (2) (ii, iii), $W:=\beta W^{\prime}$ is given as (1) (ii, iii) or (2) (ii, iii) for some $\beta \in\left(G(\tilde{K})_{E_{1}}\right)^{\circ}$, so that $\beta(\alpha X)=\lambda_{1} \beta E_{1}+\frac{\operatorname{tr}(X)-\lambda_{1}}{2} \beta\left(E-E_{1}\right)+W=$ $\lambda_{1} E_{1}+\frac{\operatorname{tr}(X)-\lambda_{1}}{2}\left(E-E_{1}\right)+W$.

Proof of Theorems 0.2 and 0.3 in (1) (i, ii). Let $X \in \mathcal{J}_{3}(\tilde{K})$ be such as $\# \Lambda_{X} \neq 1$, that is, X admits no characteristic root of multiplicity 3. Since the degree of $\Phi_{X}(\lambda)$ equals $3=1+1+1=1+2$, there exists a characteristic root $\mu_{1} \in \mathbb{C}$ of multiplicity 1 . If $\mathbb{F} \ni \mu_{1}$, put $\lambda_{1}:=\mu_{1}$. If $\mathbb{F} \not \ni \mu_{1}$, then
$\mathbb{F}=\mathbb{R} \not \nexists \mu_{1}$, so that $\Phi_{X}(\lambda)=\left(\lambda-\mu_{1}\right)\left(\lambda-\overline{\mu_{1}}\right)\left(\lambda-\nu_{1}\right)$ for some $\nu_{1} \in \mathbb{R}$. In this case, put $\lambda_{1}:=\nu_{1}$. In all cases, put $\Lambda_{X}=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ with $\# \Lambda_{X}=3$ or 2 such that $\Phi_{X}^{\prime}\left(\lambda_{1}\right) \neq 0$ and $\operatorname{tr}(X)=\sum_{i=1}^{3} \lambda_{i}$, so that $\Delta_{X}\left(\lambda_{1}\right)=\left(\lambda_{2}-\lambda_{3}\right)^{2} / 2$ by Lemmas 3.1 (2) and 2.3 (2). By Lemma 3.2 (2) (if $K=K^{\mathbb{C}}$) or (1) (if $\left.\tilde{K}=K^{\prime}\right), \alpha X=\lambda_{1} E_{1}+\frac{\operatorname{tr}(X)-\lambda_{1}}{2}\left(E-E_{1}\right)+W$ for some $W \in \mathcal{J}_{3}(\tilde{K})_{-L_{2 E_{1}}}$ and $\alpha \in G(\tilde{K})^{\circ}$.
(0.2.1) When $\mathbb{F}=\mathbb{C}: \tilde{K}=K^{\mathbb{C}}=\mathbb{R}^{\mathbb{C}}, \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}$ or $\boldsymbol{O}^{\mathbb{C}}$.
(0.2.1.i) The case of $\# \Lambda_{X}=3$: Put $w:=\left(\lambda_{2}-\lambda_{3}\right) / \sqrt{2}$. Then $\lambda_{2} \neq \lambda_{3}$. And $\Delta_{X}\left(\lambda_{1}\right)=w^{2} \neq 0$. By Lemma 3.2 (2) (i), $v_{X}=3$ and $\alpha X=\lambda_{1} E_{1}+$ $\frac{\operatorname{tr}(X)-\lambda_{1}}{2}\left(E-E_{1}\right)+\frac{w}{\sqrt{2}}\left(E_{2}-E_{3}\right)=\lambda_{1} E_{1}+\frac{\lambda_{2}+\lambda_{3}}{2}\left(E_{2}+E_{3}\right)+\frac{\lambda_{2}-\lambda_{3}}{2}\left(E_{2}-E_{3}\right)=$ $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.
(0.2.1.ii) The case of $\# \Lambda_{X}=2: \lambda_{2}=\lambda_{3}$ and $\Delta_{X}\left(\lambda_{1}\right)=0$.
(0.2.1.ii-1) When $v_{X}=2$: By Lemma 3.2 (2) (iii), $\alpha X=\lambda_{1} E_{1}+\lambda_{2}\left(E_{2}+\right.$ $\left.E_{3}\right)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}\right)$.
(0.2.1.ii-2) When $v_{X}=3$: By Lemma 3.2 (2) (ii), $\alpha X=\lambda_{1} E_{1}+\lambda_{2}\left(E_{2}+\right.$ $\left.E_{3}\right)+M_{1}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}\right)+M_{1}$.
(0.3.1) When $\mathbb{F}=\mathbb{R}: \tilde{K}=K^{\prime}=\boldsymbol{C}^{\prime}, \boldsymbol{H}^{\prime}$ or \boldsymbol{O}^{\prime}. And $\lambda_{1} \in \mathbb{R}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$.
(0.3.1.i) The case of $\# \Lambda_{X}=3$:
(0.3.1.i-1) When $\Lambda_{X} \subset \mathbb{R}$: It can be assumed that $\lambda_{1}>\lambda_{2}>\lambda_{3}$ by translation if necessary. Then $\Delta_{X}\left(\lambda_{1}\right)>0$. By Lemma 3.2 (1) (i-1), $v_{X}=3$ and $\alpha X=\lambda_{1} E_{1}+\frac{\lambda_{2}+\lambda_{3}}{2}\left(E_{2}+E_{3}\right)+\frac{\lambda_{2}-\lambda_{3}}{2}\left(E_{2}-E_{3}\right)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.
(0.3.1.i-2) When $\Lambda_{X} \not \subset \mathbb{R}:\left\{\lambda_{2}, \lambda_{3}\right\}=\{p \pm q \sqrt{-1}\}$ for some $p, q \in \mathbb{R}$ with $q>0$. And $\Delta_{X}\left(\lambda_{1}\right)=-2 q^{2}<0$. By Lemma 3.2 (1) (i-2), $\alpha X=$ $\lambda_{1} E_{1}+p\left(E_{2}+E_{3}\right)+q F_{1}\left(\sqrt{-1} e_{4}\right)=\operatorname{diag}\left(\lambda_{1}, p, p\right)+F_{1}\left(q \sqrt{-1} e_{4}\right)$.
(0.3.1.ii) The case of $\# \Lambda_{X}=2: \Lambda_{X}=\left\{\lambda_{1}, \lambda_{2}\right\}$ with $\Phi_{X}^{\prime}\left(\lambda_{2}\right)=0$. Then $\lambda_{2}=\frac{1}{2}\left(\operatorname{tr}(X)-\lambda_{1}\right) \in \mathbb{R}$ and $\Delta_{X}\left(\lambda_{1}\right)=0$.
(0.3.1.ii-1) When $v_{X}=2$: By Lemma 3.2 (1) (iii), $\alpha X=\lambda_{1} E_{1}+\lambda_{2}\left(E_{2}+\right.$ $\left.E_{3}\right)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}\right)$.
(0.3.1.ii-2) When $v_{X}=3$: By Lemma 3.2 (1) (ii), $\alpha X=\lambda_{1} E_{1}+\lambda_{2}\left(E_{2}+\right.$ $\left.E_{3}\right)+M_{1^{\prime}}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{2}\right)+M_{1^{\prime}}$.

4. Proposition 0.1 (4) and Theorems 0.2 and 0.3 in (1) (iii).

Assume that $\tilde{K} \neq K$, i.e., $\tilde{K}=\boldsymbol{R}^{\mathbb{C}}, \boldsymbol{C}^{\mathbb{C}}, \boldsymbol{H}^{\mathbb{C}}, \boldsymbol{O}^{\mathbb{C}} ; \boldsymbol{C}^{\prime}, \boldsymbol{H}^{\prime}$ or \boldsymbol{O}^{\prime}. Put $\mathcal{N}_{1}(\tilde{K}):=\left(\mathcal{J}_{3}(\tilde{K})_{0}\right)_{L_{\tilde{M}_{1}}, 0}$ and $\mathcal{N}_{2}(\tilde{K}):=\left\{X \in \mathcal{J}_{3}(\tilde{K})_{0} \mid X^{\times 2}=\tilde{M}_{1}\right\}$.

Lemma 4.1. (1) $\mathcal{N}_{2}(\tilde{K}) \subseteq \mathcal{N}_{1}(\tilde{K})$.
(2) $\mathcal{N}_{1}(\tilde{K})=\left\{\tilde{M}_{1}(x)+\tilde{M}_{23}(y) \mid x, y \in \tilde{K}\right\}$;
(3) $\mathcal{N}_{2}(\tilde{K})=\left\{s \tilde{M}_{1}+\tilde{M}_{23}(y) \mid s \in \mathbb{F}, y \in \mathcal{S}_{1}(1, \tilde{K})\right\}$;

Proof. (1) Take $X \in \mathcal{N}_{2}(\tilde{K})$. Then $\operatorname{tr}(X)=0$ and $\operatorname{tr}\left(X^{\times 2}\right)=\operatorname{tr}\left(\tilde{M}_{1}\right)=0$. By Lemma 1.6 (2) (ii), $\operatorname{det}(X) X=\left(X^{\times 2}\right)^{\times 2}=\tilde{M}_{1}^{\times 2}=0$, so that $\operatorname{det}(X)=0$. By Lemma 1.6 (2) (iii), $X \times \tilde{M}_{1}=X \times\left(X^{\times 2}\right)=-\frac{1}{2}\left(\operatorname{tr}(X) X^{\times 2}+\operatorname{tr}\left(X^{\times 2}\right) X-\right.$ $\left.\left(\operatorname{tr}(X) \operatorname{tr}\left(X^{\times 2}\right)-\operatorname{det}(X)\right) E\right)=0$, as required.
(2) (i) Take $X=\mathbb{X}(r ; x) \in \mathcal{N}_{1}\left(K^{\mathbb{C}}\right)$. Then $r_{1}+r_{2}+r_{3}=0$ and that $0=2 M_{1} \times X=2 \mathbb{X}(0,1,-1 ; \sqrt{-1}, 0,0) \times \mathbb{X}(r ; x)=\left(r_{3}-r_{2}-2\left(\sqrt{-1} \mid x_{1}\right)\right) E_{1}-$ $r_{1} E_{2}+r_{1} E_{3}+F_{1}\left(-\sqrt{-1} r_{1}\right)+F_{2}\left(\sqrt{-1} \overline{x_{3}}-x_{2}\right)+F_{3}\left(\sqrt{-1} \overline{x_{2}}+x_{3}\right)$ by Lemma 1.1 (1), that is, $x_{2}=\sqrt{-1} \overline{x_{3}}, r_{1}=0, r_{2}=-r_{3}=-\left(\sqrt{-1} \mid x_{1}\right)=\left(1 \mid-\sqrt{-1} x_{1}\right)$ with $x_{1}=\sqrt{-1}\left(-\sqrt{-1} x_{1}\right)$, so that $X=M_{1}\left(-\sqrt{-1} x_{1}\right)+M_{23}\left(x_{3}\right)$.
(ii) Take $X=\mathbb{X}(r ; x) \in \mathcal{N}_{2}\left(K^{\prime}\right)$. Then $r_{1}+r_{2}+r_{3}=0$ and that $0=$ $2 M_{1^{\prime}} \times X=2 \mathbb{X}\left(0,1,-1 ; \sqrt{-1} e_{4}, 0,0\right) \times \mathbb{X}(r ; x)=\left(r_{3}-r_{2}-2\left(\sqrt{-1} e_{4} \mid x_{1}\right)\right) E_{1}-$ $r_{1} E_{2}+r_{1} E_{3}+F_{1}\left(-r_{1} \sqrt{-1} e_{4}\right)+F_{2}\left(-\sqrt{-1} e_{4} \overline{x_{3}}-x_{2}\right)+F_{3}\left(-\overline{x_{2}} \sqrt{-1} e_{4}+x_{3}\right)$ by Lemma 1.1 (1), that is, $x_{2}=-\sqrt{-1} e_{4} \overline{x_{3}}, r_{1}=0, r_{2}=-r_{3}=-\left(\sqrt{-1} e_{4} \mid x_{1}\right)=$ $\left(1 \mid \sqrt{-1} e_{4} x_{1}\right)$ with $x_{1}=\left(\sqrt{-1} e_{4}\right)^{2} x_{1}=\sqrt{-1} e_{4}\left(\sqrt{-1} e_{4} x_{1}\right)$, so that $X=$ $M_{1^{\prime}}\left(\sqrt{-1} e_{4} x_{1}\right)+M_{2^{\prime} 3}\left(x_{3}\right)$.
(3) (i) Take $X \in \mathcal{N}_{2}\left(K^{\mathbb{C}}\right)$. By (1), $X \in \mathcal{N}_{1}\left(K^{\mathbb{C}}\right)$. By (2), $X=M_{1}\left(x_{1}\right)+$ $M_{23}\left(x_{3}\right)$ for some $x_{1}, x_{3} \in K^{\mathbb{C}}$, so that $X^{\times 2}=M_{1}\left(x_{1}\right)^{\times 2}+2 M_{1}\left(x_{1}\right) \times M_{23}\left(x_{3}\right)+$ $M_{23}\left(x_{3}\right)^{\times 2}=\sqrt{-1}\left\{\left(x_{1} \mid 1\right)^{2}-N\left(x_{1}\right)\right\} E_{1}-F_{2}\left(\sqrt{-1}\left(\overline{x_{1}}-\left(x_{1} \mid 1\right)\right) \overline{x_{3}}\right)-F_{3}\left(x_{3}\left(\overline{x_{1}}-\right.\right.$ $\left.\left.\left(x_{1} \mid 1\right)\right)\right)+N\left(x_{3}\right) M_{1}$. Hence, $X^{\times 2}=M_{1}$ iff $N\left(x_{3}\right)=1$ and $\overline{x_{1}}=\left(x_{1} \mid 1\right) \in \mathbb{R}^{\mathbb{C}}$, i.e. $\left(x_{1}, x_{3}\right)=(s, x)$ for some $(s, x) \in \mathbb{R}^{\mathbb{C}} \times \mathcal{S}_{1}\left(1, K^{\mathbb{C}}\right)$.
(ii) Take $X \in \mathcal{N}_{2}\left(K^{\prime}\right)$. By (1), $X \in \mathcal{N}_{1}\left(K^{\prime}\right)$. By (2), $X=M_{1^{\prime}}\left(x_{1}\right)+$ $M_{2^{\prime} 3}\left(x_{3}\right)$ for some $x_{1}, x_{3} \in K^{\prime}$, so that $X^{\times 2}=M_{1^{\prime}}\left(x_{1}\right)^{\times 2}+2 M_{1^{\prime}}\left(x_{1}\right) \times$ $M_{2^{\prime} 3}\left(x_{3}\right)+M_{2^{\prime} 3}\left(x_{3}\right)^{\times 2}=\left(N\left(x_{1}\right)-\left(x_{1} \mid 1\right)^{2}\right) E_{1}-F_{2}\left(\left(\left(\overline{x_{1}}-\left(x_{1} \mid 1\right)\right) \sqrt{-1} e_{4}\right) \overline{x_{3}}\right)+$ $F_{3}\left(-\left(x_{3} \sqrt{-1} e_{4}\right)\left(\overline{x_{1}} \sqrt{-1} e_{4}\right)+\left(x_{1} \mid 1\right) x_{3}\right)+N\left(x_{3}\right) M_{1^{\prime}}$. Hence, $X^{\times 2}=M_{1^{\prime}}$ iff $N\left(x_{3}\right)=1$ and $x_{1} \in \boldsymbol{R}$, as required.

Lemma 4.2. $\mathcal{N}_{2}(\tilde{K})=\mathcal{O}_{\left(G(\tilde{K})^{\circ}\right)_{M_{1}}}\left(\tilde{M}_{23}\right)$.
Proof. (1) Take any $X \in \mathcal{N}_{2}\left(K^{\mathbb{C}}\right)$. By Lemma 4.1 (3), $X=s M_{1}+M_{23}(x)$ for some $s \in \mathbb{R}^{\mathbb{C}}$ and $x \in \mathcal{S}_{1}\left(1, K^{\mathbb{C}}\right)$. Put $x=\sum_{i=0}^{d_{K}-1} \xi_{i} e_{i}$ with $\xi_{i} \in \mathbb{R}^{\mathbb{C}}$ and $x_{v}:=\sum_{i=1}^{d_{K}-1} \xi_{i} e_{i}$ such that $\overline{x_{v}}=-x_{v}$.
(Case 1) When $\xi_{0}=0$: By $x_{v}=x \in \mathcal{S}_{1}\left(1, K^{\mathbb{C}}\right), x x=-x \bar{x}=-1$. By Lemma 1.4 (2) (ii), $\delta_{1}(x) X=s\left(E_{2}-E_{3}-F_{1}(\sqrt{-1})\right)-F_{2}(\sqrt{-1})+F_{3}(1)$, so that $\sigma_{3} \delta_{1}(x) X=s M_{1}+M_{23}$. By Lemma 1.4 (1) (iii), $\beta_{23}(t)\left(\sigma_{3} \delta_{1}(x) X\right)=$
$(2 t+s) M_{1}+M_{23}=M_{23}$ if $t=-s / 2$ with $\beta_{23}(-s / 2) \in\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{M_{1}}$ and $\left(\beta_{23}(-s / 2) \sigma_{3} \delta_{1}(x)\right) M_{1}=\beta_{23}(-s / 2)\left(M_{1}\right)=M_{1}$, as required.
(Case 2) When $\xi_{0} \neq 0$: Put $Y:=\beta_{23}\left(-s /\left(2 \xi_{0}\right)\right) X$ with $\beta_{23}\left(-s /\left(2 \xi_{0}\right)\right) \in$ $\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{M_{1}}$. By Lemma 1.4 (1) (iii), $Y=M_{23}(x)$.
(i) When $x_{v}=0$: $\xi_{0}^{2}=(x \mid x)-\left(x_{v} \mid x_{v}\right)=1-0=1, x=\xi_{0}= \pm 1$ and $Y=$ $M_{23}(\pm 1)= \pm M_{23}$, so that $Y=M_{23}$ or $\sigma_{1} Y=M_{23}$ with $\sigma_{1} \in\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{M_{1}}$.
(ii) When $x_{v} \neq 0$ with $d_{K} \geqq 4$: Then $d_{K}-1 \geqq 3$. If $\xi_{1}^{2}+\xi_{j}^{2}=0$ for all $j \in\left\{2, \cdots, d_{K}-1\right\}$ and $\xi_{2}^{2}+\xi_{3}^{2}=0$, then $-\xi_{1}^{2}=\xi_{2}^{2}=\xi_{3}^{2}=\cdots=$ $\xi_{d_{K}-1}^{2}=0$, that is, $x_{v}=0$, a contradiction. Hence, $\xi_{i}^{2}+\xi_{j}^{2} \neq 0$ for some $i, j \in\left\{1, \cdots, d_{K}-1\right\}$ with $i \neq j$. Take $c \in \mathbb{R}^{\mathbb{C}}$ such that $c^{2}=\xi_{i}^{2}+\xi_{j}^{2}$. Put $a:=\left(\xi_{j} e_{i}-\xi_{i} e_{j}\right) / c$, so that $-\bar{a}=a \in \mathcal{S}_{1}\left(1, K^{\mathbb{C}}\right)$ and $(a \mid x)=0$. Put $y:=x \bar{a}$. Then $(y \mid 1)=(a \mid x)=0$ and $\sigma_{3} \delta_{1}^{a} Y=F_{2}(\sqrt{-1} \bar{y})+F_{3}(y)$ with $\sigma_{3} \delta_{1}^{a} \in\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{M_{1}}$. According to the (Case 1), $\beta\left(\sigma_{3} \delta_{1}^{a} Y\right)=M_{23}$ for some $\beta \in\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{M_{1}}$.
(iii) When $x_{v} \neq 0$ with $d_{K} \leqq 4$: By Lemma 1.4 (2) (iii), $\beta_{1}(x) Y=M_{23}$ with $\beta_{1}(x) \in\left(G\left(K^{\mathbb{C}}\right)^{\circ}\right)_{M_{1}}$.
(2) Take any $X \in \mathcal{N}_{2}\left(K^{\prime}\right)$. Then $X=s M_{1^{\prime}}+M_{2^{\prime} 3}(x)$ for some $s \in \mathbb{R}$ and $x \in \mathcal{S}_{1}\left(1, K^{\prime}\right)$ by Lemma 4.1 (3). Take $p, q \in K_{\tau}^{\prime}$ such that $x=p+q \sqrt{-1} e_{4}$, so that $\bar{p} p-\bar{q} q=N(x)=1$. Note that $\sqrt{-1} e_{4} x=\bar{q}+\bar{p} \sqrt{-1} e_{4}$, and that $x\left(\sqrt{-1} e_{4} x\right)=\left(p+q \sqrt{-1} e_{4}\right)\left(\bar{q}+\bar{p} \sqrt{-1} e_{4}\right)=p(q+\bar{q})+\left(q^{2}+\bar{p} p\right) \sqrt{-1} e_{4}$.
(Case 1) When $\left(\sqrt{-1} e_{4} x \mid 1\right)=0$: Then $q+\bar{q}=2(\bar{q} \mid 1)=0$. By $q=-\bar{q}$, $q^{2}+\bar{p} p=\bar{p} p-\bar{q} q=1$, so that $x\left(\sqrt{-1} e_{4} x\right)=\sqrt{-1} e_{4}$ and $\bar{x} \sqrt{-1} e_{4} \bar{x}=$ $\overline{-x \sqrt{-1} e_{4} x}=-\overline{\sqrt{-1} e_{4}}=\sqrt{-1} e_{4}$. By Lemma 1.4 (2) (ii), $\delta_{1}(x) M_{1^{\prime}}=E_{2}-$ $E_{3}+F_{1}\left(x \sqrt{-1} e_{4} x\right)=M_{1^{\prime}}$ and $\delta_{1}(x) X=s M_{1^{\prime}}+F_{2}\left(-\bar{x} \sqrt{-1} e_{4} \bar{x}\right)+F_{3}(x \bar{x})=$ $s M_{1^{\prime}}+M_{2^{\prime} 3}$. By Lemma 1.4 (1) (iii), $\beta_{2^{\prime} 3}(-s / 2)\left(s M_{1^{\prime}}+M_{2^{\prime} 3}\right)=M_{2^{\prime} 3}$ with $\beta_{23^{\prime}}(t) \in\left(G\left(K^{\prime}\right)^{\circ}\right)_{M_{1^{\prime}}}$.
(Case 2) When $\left(\sqrt{-1} e_{4} x \mid 1\right) \neq 0$: Then $\left(\sqrt{-1} e_{4} \mid x\right)=-\left(1 \mid \sqrt{-1} e_{4} x\right) \neq 0$. By Lemma 1.4 (1) (iii), $\beta_{23^{\prime}}\left(-s /\left(2\left(\sqrt{-1} e_{4} \mid x\right)\right)\right) X=M_{2^{\prime} 3}(x)$ with $\beta_{2^{\prime} 3}(t) \in$ $\left(G\left(K^{\prime}\right)^{\circ}\right)_{M_{1^{\prime}}}$. Note that $q+\bar{q}=2\left(\sqrt{-1} e_{4} \mid x\right) \neq 0$, so that $q \in K_{\tau}^{\prime}$ and $q \neq 0$.
(i) When $d_{K^{\prime}} \geqq 4$: By $\operatorname{dim}_{\boldsymbol{R}}^{K_{\tau}^{\prime}}=d_{K^{\prime}} / 2 \geqq 2$, there exists $q_{1} \in K_{\tau}^{\prime}$ such that $\left(\bar{q} \mid q_{1}\right)=0$, so that $\left(\sqrt{-1} e_{4}\left(x \overline{q_{1}}\right) \mid 1\right)=-\left(x \overline{q_{1}} \mid \sqrt{-1} e_{4}\right)=-\left(\overline{q_{1}} \mid \bar{x} \sqrt{-1} e_{4}\right)=$ $\left(q_{1} \mid \sqrt{-1} e_{4} x\right)=\left(q_{1} \mid \bar{q}\right)=0$. Put $a:=q_{1} / \sqrt{N\left(q_{1}\right)} \in \mathcal{S}_{1}\left(1, K^{\prime}\right)$. Because of $\left(\sqrt{-1} e_{4} a \mid 1\right)=0, \delta_{1}(a) M_{1^{\prime}}=M_{1^{\prime}}$ as well as (Case 1), so that $\mathcal{N}_{2}\left(K^{\prime}\right) \ni$ $\delta_{1}(a) M_{2^{\prime} 3}(x)=M_{2^{\prime} 3}(x \bar{a})$ with $x \bar{a} \in \mathcal{S}_{1}\left(1, K^{\prime}\right)$ such that $\left(\sqrt{-1} e_{4}(x \bar{a}) \mid 1\right)=0$. Then $\delta_{1}(a) M_{1^{\prime}}=M_{1^{\prime}}$ and $\delta_{1}(x \bar{a}) M_{2^{\prime} 3}(x \bar{a})=M_{2^{\prime} 3}$ as well as (Case 1).
(ii) When $d_{K^{\prime}} \leqq 2$: Then $K^{\prime}=\boldsymbol{C}^{\prime}$, so that $x \in \mathcal{S}_{1}\left(1, \boldsymbol{C}^{\prime}\right)$. By Lemma 1.4 (2) (iii), $\beta_{1}(x) \in\left(G\left(\boldsymbol{C}^{\prime}\right)^{\circ}\right)_{M_{1^{\prime}}}$ such that $\beta_{1}(x) M_{2^{\prime} 3}(x)=M_{2^{\prime} 3}$.

Proof of Proposition 0.1 (4) (ii). Take any $X \in \mathcal{M}_{23}(\tilde{K})$. By Lemma 1.6 (5), $X^{\times 2} \in \mathcal{M}_{1}(\tilde{K})$. By Proposition 0.1 (4) (i), there exists $\alpha \in G(\tilde{K})^{\circ}$ such that $\tilde{M}_{1}=\alpha\left(X^{\times 2}\right)=(\alpha X)^{\times 2}$, so that $\alpha X \in \mathcal{N}_{2}(\tilde{K})$. By Lemma 4.2, there exists $\beta \in\left(G(\tilde{K})^{\circ}\right)_{\tilde{M}_{1}}$ such that $\beta(\alpha X)=\tilde{M}_{23}$, as required.

Proof of Theorems 0.2 and 0.3 in (1) (iii). Take any $X \in \mathcal{J}_{3}(\tilde{K})$ with $\# \Lambda_{X}=1$ such as $\Lambda_{X}=\left\{\lambda_{1}\right\}$. By Lemmas 1.2 (1) and (3), $X=\lambda_{1} E+X_{0}$ with some $X_{0} \in\{0\} \cup \mathcal{M}_{1}(\tilde{K}) \cup \mathcal{M}_{23}(\tilde{K})$.
(iii-1) When $X_{0}=0: X=\lambda E$ and $v_{X}=\operatorname{dim}_{\mathbb{F}} V_{X}=\operatorname{dim}_{\mathbb{F}}\left\{a X^{\times}+b X+\right.$ $c E \mid a, b, c \in \mathbb{F}\}=\operatorname{dim}_{\mathbb{F}}\{c E \mid c \in \mathbb{F}\}=1$.
(iii-2) When $X_{0} \in \mathcal{M}_{1}(\tilde{K})$: By Proposition 0.1 (4) (i), there exists $\alpha \in$ $G(\tilde{K})^{\circ}$ such that $\alpha X=\lambda_{1} E+\tilde{M}_{1}$. By Lemma 1.1 (3) with $\tilde{M}_{1}^{\times 2}=\operatorname{tr}\left(\tilde{M}_{1}\right)=$ 0 , one has that $(\alpha X)^{\times 2}=\lambda_{1}^{2} E-\lambda_{1} \tilde{M}_{1}$, so that $v_{X}=\operatorname{dim}_{\tilde{F}}\left\{a(\alpha X)^{\times 2}+b \alpha X+\right.$ $c E \mid a, b, c \in \mathbb{F}\}=\operatorname{dim}_{\mathbb{F}}\left\{\left(a \lambda_{1}^{2}+b \lambda_{1}+c\right) E+\left(b-a \lambda_{1}\right) \tilde{M}_{1} \mid a, b, c \in \mathbb{F}\right\}=2$.
(iii-3) When $X_{0} \in \mathcal{M}_{23}(\tilde{K})$: By Proposition 0.1 (4) (ii), there exists $\alpha \in G(\tilde{K})^{\circ}$ such that $\alpha X=\lambda_{1} E+\tilde{M}_{23}$. By Lemma 1.1 (3) with $\tilde{M}_{23}^{\times 2}=\tilde{M}_{1}$ and $\operatorname{tr}\left(\tilde{M}_{23}\right)=0$, one has that $(\alpha X)^{\times 2}=\lambda_{1}^{2} E-\lambda_{1} \tilde{M}_{23}+\tilde{M}_{1}$, so that $v_{X}=$ $\operatorname{dim}_{\mathbb{F}}\left\{a(\alpha X)^{\times 2}+b \alpha X+c E \mid a, b, c \in \mathbb{F}\right\}=\operatorname{dim}_{\mathbb{F}}\left\{\left(a \lambda_{1}^{2}+b \lambda_{1}+c\right) E+(b-\right.$ $\left.\left.a \lambda_{1}\right) \tilde{M}_{23}+a \tilde{M}_{1} \mid a, b, c \in \mathbb{F}\right\}=3$.

Acknowledgements. The authors are grateful to Prof. Ichiro Yokota for introducing them to a comprehensive study program on explicit realizations of the identity connected component of exceptional simple Lie groups and their subgroups. The authors are also grateful to the anonymous referee for the helpful comment to revise the manuscript.

References

[1] C. Chevalley, Theory of Lie Groups, Princeton UP, 1946.
[2] C. Chevalley and R.D. Schafer, The exceptional simple Lie algebras F_{4} and E_{6}, Proc. Nat. Acad. Sci. U.S. 36 (1950), 137-141.
[3] J.H. Conway and D.A. Smith, On Quaternions and Octanions: Their Geometry, Arithmetic and Symmetry, A.K.Peters, Ltd, 2003.
[4] L.E. Dickson, On quaternions and their generalizations and the history of the eight square theorem, Annals of Math. 20 (1919), 155-171, 297.
[5] D. Drucker, Exceptional Lie Algebras and the Structures of Hermitian Symmetric Spaces, Memoirs of the AMS 208, 1978, AMS.
[6] J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Oxford UP, New York, 1994.
[7] H. Freudenthal, Oktaven, Ausnahmergruppen und Oktavengeometrie, Math. Inst. Rijksuniv. te Utrecht, 1951; (a reprint with corrections, 1960) $=$ Geometriae Dedicata 19-1 (1985), 7-63.
[8] H. Freudenthal, Zur ebenen Oktavengeometrie, Nedel. Akad. Wetensch. Proc. Ser. A. $56=$ Indag. Math. 15 (1953), 195-200,
[9] H. Freudenthal, Lie groups in the foundations of geometry, Adv. Math. 1 (1964), 145-190.
[10] V.V. Gorbatsevich, A.L. Onishchik, E.B. Vinberg, Structure of Lie Groups and Lie Algebras III, Encyclopedia of Math. Sci. 41, Springer-Verlag, 1994. (Translated from the Russian edition (1990, Moscow) by V. Minachin)
[11] F. Reese Harvey, Spinors and Calibrations, Academic Press, 1990.
[12] S. Helgason, Differential Geometry, Lie Groups, and Symmmetric Spaces, Academic Press, New York 1978.
[13] N. Jacobson, Some groups of transformations defined by Jordan algebras, I, J. Reine Angew. Math. 201(1959), 178195.
[14] N. Jacobson, Cayley Planes, Mimeographed notes, Yale Univ., New Haven, Conn., 1960.
[15] N. Jacobson, Some groups of transformations defined by Jordan algebras, III, J. Reine Angew. Math. 207(1961), 6185.
[16] N. Jacobson, Structure and Representations of Jordan Algebras, AMS Colloquim Pub. Vol XXXIV, 1968.
[17] S. Krutelevich, On a canonical form of a 3×3 Hermitian matrix over the ring of integral split octonions, J.Algebra 253 (2002), 276-295.
[18] Y. Matsushima, Some remarks on the exceptional simple Lie group F_{4}, Nagoya Math. J. 4 (1954), 83-88.
[19] T. Miyasaka and I. Yokota, Constructive diagonalization of an element X of the Jordan algebra \mathcal{J} by the exceptional group F_{4}, Bull. Fac. Edu \& Human Sci. Yamanashi Univ. 2-2 (2001), 7-10.
[20] S. Murakami, Exceptional simple Lie groups and related topics in recent differential geometry, Differential Geometry and Topology, LNM 1369(1989), Springer, 183-221.
[21] P.K. Rasevskir, A theorem on the connectedness of a subgroup of a simply connected Lie group commuting with any of its automorphisms, Trans. Moscow Math. Soc. 30 (1974), 1-24.
[22] O. Shukuzawa and I. Yokota, Non-compact simple Lie groups $E_{6(6)}$ of type E_{6}, J. Fac. Sci. Shinshu Univ. 14-1 (1979), 1-13.
[23] O. Shukuzawa, Explicit classification of orbits in Jordan algebra and Freudenthal vector space over the exceptional Lie groups, Comm. in Algebra 34 (2006), 197-217.
[24] T.A. Springer and F.D. Veldkamp, Octonions, Jordan algebras and Exceptional Groups, Springer-Verlag, 2000.
[25] I. Yokota, Embeddings of projective spaces into elliptic projective Lie groups, Proc. Japan Acad. 35-6 (1959), 281283.
[26] I. Yokota, Representation rings of group G_{2}, J. Fac. Sci. Shinshu Univ. 2-2 (1967), 125-138.
[27] I. Yoкотa, Exceptional Lie group F_{4} and its representation rings, J. Fac. Sci. Shinshu Univ. 3-1 (1968), 35-60.
[28] I. Yокота, On a non compact simple Lie group $F_{4,1}$ of type F_{4}, J. Fac. Sci. Shinshu Univ. 10-2 (1975), 71-80.
[29] I. Yокота, Non-compact simple Lie group $F_{4,2}$ of type F_{4}, J. Fac. Sci. Shinshu Univ. 12 (1977), 53-64.
[30] I. Yoкота, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G=G_{2}$. F_{4} and E_{6}, Tsukuba J. Math. 14-1 (1990), 185-223.

Graduate School of Engineering,
University of Fukui,
Fukui-shi, 910-8507, Japan

[^0]: *2010 Mathematics Subject Classification. Primary 17C30; Secondary 20G41, 57S20.

