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∗ Abstract. The orbit decomposition is given under the automorphism
group on the real split Jordan algebra of all hermitian matrices of order three
corresponding to any real split composition algebra, or the automorphism
group on the complexification, explicitly, in terms of the cross product of
H. Freudenthal and the characteristic polynomial.

0. Introduction.

Let J ′ be a split exceptional simple Jordan algebra over a field F of
characteristic not two, that is, the set of all hermitian matrices of order three
whose elements are split octonions over F with the Jordan product. And let
G′ be the automorphism group of J ′. N. Jacobson [16, p.389, Theorem 10]
found that X, Y ∈ J ′ are in the same G′-orbit if and only if X,Y admit
the same minimal polynomial and the same generic minimal polynomial, by
imbedding a generating subalgebra with the identity element E in terms of
the Jordan product into a special Jordan algebra. When F = R, the field of
all real numbers, some elements of J ′ are not diagonalizable under the action
of G′ = F4(4), since J ′ admits a G′-invariant non-defnite R-bilinear form such
that the restriction to the subspace of all diagonal elements is positive-definite
[19, Theorem 2], although every element of J ′ is diagonalizable under the
action of a linear group E6(6) containing F4(4) on J ′ by [15] (cf. [17]) or under
the action of the maximal compact subgroup Sp(4)/Z2 of E6(6) on J ′ given
by [22].

This paper presents a concrete orbit decomposition under the automor-
phism group on a real split Jordan algebra of all hermitian matrices of order
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three corresponding to any real split composition algebra, or the complexifi-
cation of it, that is special or exceptional as a Jordan algebra. As a result,
X, Y ∈ J ′ are in the same G′-orbit if and only if X,Y admit the same dimen-
sion of the generating subspace with E by the cross product [8] and the same
characteristic polynomial, which gives a simplification for N. Jacobson [16]’s
polynomial invariants on G′-orbits when F = R or the field of all complex
numbers C. To state the main results more precisely, let us give the precise
notations:

Put F := R or C. Let V be an F-linear space, and EndF(V ) (or GLF(V ))
denote the set of all F-linear endomorphisms (resp. automorphims) on V .
For a mapping f : V → V and c ∈ F, put Vf,c := {v ∈ V | f(v) = cv} and
Vf,1 := Vf . For a subgroup G of GLF(V ), let G◦ be the identity connected
component of G. For v ∈ V and a mapping ϕ : V → V , put OG(v) :=
{α(v)| α ∈ G}, Gv := {α ∈ G| α(v) = v} and Gϕ := {α ∈ G| ϕ ◦ α = α ◦ ϕ}.
For a subset W of V , put GW := {α ∈ G| {αw| w ∈ W} = W}. For positive
integers n,m, letM(n,m;V ) be the set of all n×m-matrices with entries in V .
Put V n := M(n, 1;V ), Vm := M(1,m;V ) and Mn(V ) := M(n, n;V ). Since
V can be considered as an R-linear space, the complexification is defined
as V C := V ⊗R C = V ⊕

√
−1V with an R-linear conjugation: τ : V C →

V C; v1 +
√
−1v2 7→ v1 −

√
−1v2 (v1, v2 ∈ V ). For any α ∈ EndR(V ), put

αC : V C −→ V C; v1 +
√
−1v2 7→ (αv1) +

√
−1(αv2) such that αCτ = ταC,

which is identified with α ∈ EndR(V ): α = αC.
By W.R. Hamilton, the quaternions is defined as an R-algebra H :=

⊕3
i=0Rei given as e0ei = eie0 = ei, e2i = −e0 (i ∈ {1, 2, 3}); ekek+1 =

−ek+1ek = ek+2 (where k, k+1, k+2 ∈ {1, 2, 3} are counted modulo 3) with

the unit element 1 := e0 and the conjugation
∑3

i=0 xiei = x0e0 −
∑3

k=1 xkek,
which contains the complex numbers C := Re0 ⊕ Re1 and the real numbers
R := Re0 as R-subalgebras. By A. Cayley and J.T. Graves, the octanions is
defined as a non-associative R-algebra O := H⊕He4 given as follows [4]:

(x⊕ ye4)(x
′ ⊕ y′e4) := (xx′ − y′y)⊕ (yx′ + y′x)e4

with the R-linear basis {ei| i = 0, 1, 2, 3, 4, 5, 6, 7}, where the numbering
is given as e5 := e1e4, e6 := −e2e4, e7 := e3e4 after [26, p.127], [5, p.20]
or [20]. Put H := C ⊕ Ce4 and C := R ⊕ Re4. For K := O,H ,C,R,
put dK := dimRK. And put

√
−1 := e0 ⊗ e1 ∈ KC := K ⊗R C with the

identification K = K ⊗ e0 ⊂ KC. Then KC = K ⊕
√
−1K is split (i.e. non-

division) as a C-algebra with τ : KC → KC; x+
√
−1y 7→ x−

√
−1y (x, y ∈ K)
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as the complex conjugation with respect to the real form K. Put

γ : OC −→ OC;
7∑

i=0

xiei 7→
3∑

i=0

xiei −
7∑

i=4

xiei; and

ϵ : OC −→ OC;x :=
7∑

i=0

xiei 7→ x̄ := x0 −
7∑

i=1

xiei

as C-linear conjugations with respect to HC and RC, respectively. And a C-
bilinear form are defined onOC as (x|y) := (xȳ+xȳ)/2 =

∑7
i=0 xiyi ∈ C. The

restrictions of γ, ϵ and (x|y) on KC are also well-defined and denoted by the
same letters. Then KC is a composition C-algebra with respect to the norm
form given by N(x) := (x|x) [5, §I.3], because of N((x ⊕ ye4)(x

′ ⊕ y′e4)) −
N(x⊕ye4)N(x′⊕y′e4) = 2{(yx′|y′x)−(xx′|y′y)} = 2(y′(yx′)−(y′y)x′| x) = 0
since HC is an associative composition algebra with respect to N [3, §6.4].
And K = (KC)τ is a division composition R-algebra with the norm form
N(x) such that a−1 = ā/N(a) for a ̸= 0.

Put K ′ := (KC)τγ as a composition R-algebra with the norm form N(x)
such that (K ′)γ = Kγ = (K ′)τ = K ′ ∩ K. Precisely, O′ = {

∑3
i=0 xiei +∑7

i=4 xi

√
−1ei| xi ∈ R} is the R-algebra of the split-octanions containing

the R-subalgebra H ′ = {
∑1

i=0 xiei +
∑5

i=4 xi

√
−1ei| xi ∈ R} of the split-

quaternions and the R-subalgebra C ′ = {x0 + x4

√
−1e4| xi ∈ R} of the

split-complex numbers such that O′ ∩O = H, H ′ ∩H = C and C ′ ∩C = R.
Then K ′C = K ′ ⊕

√
−1K ′ = KC as a C-subalgebra of OC.

Put K̃ := K,K ′ (or K ′C, KC) with F := R (resp. C) and dK̃ := dimFK̃.
For A ∈ Mn(K̃) with the (i, j)-entry aij ∈ K̃, let tA, τA, ϵA ∈ Mn(K̃) be the
transposed, τ -conjugate, ϵ-conjugate matrix of A such that the (i, j)-entry is
equal to aji, τ(aij), ϵ(aij), respectively, with the trace tr(A) :=

∑n
i=1 aii ∈ F,

and the adjoint matrix A∗ := t(ϵA) ∈ Mn(K̃). Let denote the set of all
hermitian matrices of order three corresponding to K̃ as follows:

J3(K̃) := {X ∈ M3(K̃)| X∗ = X}

with an F-bilinear Jordan algebraic product X ◦Y := 1
2
(XY +Y X), the iden-

tity element E := diag(1, 1, 1) and an F-bilinear symmetric form (X|Y ) :=
tr(X ◦Y ) ∈ F. After H. Freudenthal [8] (cf. [7, (7.5.1)], [25], [14], [16, p.232,
(47)], [28]), the cross product on J3(K̃) is defined as follows:
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X × Y := X ◦ Y − 1

2
(tr(X)Y + tr(Y )X − (tr(X)tr(Y )− (X|Y ))E)

with X×2 := X × X as well as an F-trilinear form (X|Y |Z) := (X × Y |Z)
and the determinant det(X) := 1

3
(X|X|X) ∈ F on J3(K̃) (cf. [9, p.163]).

Put Ei := diag(δi1, δi2, δi3) for i ∈ {1, 2, 3} with the Kronecker’s delta δij.
For x ∈ K̃, put

F1(x) :=

0 0 0
0 0 x
0 x 0

 , F2(x) :=

0 0 x
0 0 0
x 0 0

 , F3(x) :=

0 x 0
x 0 0
0 0 0

 .

For x ∈ KC = RC,CC,HC or OC, put M1(x),M23(x) ∈ J3(K
C) such as

M1(x) := (x|1)(E2 − E3) + F1(
√
−1x), M23(x) := F2(

√
−1x) + F3(x)

with M1 := M1(1), M23 := M23(1). For x ∈ K ′ = C ′,H ′ or O′, put
M1′(x),M2′3(x) ∈ J3(K

′) such as

M1′(x) := (x|1)(E2 −E3) +F1(
√
−1e4x), M2′3(x) := F2(−

√
−1e4x) +F3(x)

with M1′ := M1′(1), M2′3 := M2′3(1). For x ∈ K̃, let denote

M̃1(x) := M1(x) (when K̃ = KC) or M1′(x) (when K̃ = K ′),

M̃23(x) := M23(x) (when K̃ = KC) or M2′3(x) (when K̃ = K ′);

M̃1 := M1 (when K̃ = KC) or M1′ (when K̃ = K ′),

M̃23 := M23 (when K̃ = KC) or M2′3 (when K̃ = K ′).

And denote

P2(K̃) := {X ∈ J3(K̃)| X×2 = 0, tr(X) = 1},
J3(K̃)0 := {X ∈ J3(K̃)| tr(X) = 0},
M1(K̃) := {X ∈ J3(K̃)0| X ̸= 0, X×2 = 0},
M23(K̃) := {X ∈ J3(K̃)0| X×2 ̸= 0, tr(X×2) = det(X) = 0}.
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When K̃ = K, P2(K̃) has a structure of Moufang projective plane [9, p.162,
4.6, 4.7], the algebraization method of which motivates to define the cross
product on J3(K̃) for any K̃. The automorphism group of J3(K̃) with
respect to the F-bilinear Jordan product X ◦ Y is denoted as follows:

G(K̃) := Aut(J3(K̃)) = {α ∈ GLF(J3(K̃))| α(X ◦ Y ) = αX ◦ αY },

which is a complex (resp. compact; real split) simple Lie group of type (F4)

(resp. (F4(−52)); (F4(4))) when K̃ = O′C = OC (resp. O; O′) by C. Chevalley
and R.D. Schafer [2] (resp. [7], [9, p.161], [20, p.206, (2), (3)]; [29]). When
K = R,C or H , the group G(K̃) is a simple Lie group of type (A1), (A2) or
(C3), respectively (cf. [9, p.165]). Put γ : J3(K̃) −→ J3(K̃);X 7→ γX such
that γX :=

∑3
i=1(ξiEi+Fi(γxi)) for X =

∑3
i=1(ξiEi+Fi(xi)) ∈ J3(K̃). Put

τ : J3(K̃) −→ J3(K̃);X 7→ τX such as τX :=
∑3

i=1((τξi)Ei+Fi(τxi)). Then
τ ∈ GLR(J3(K̃)) such that τ(X◦Y ) = (τX)◦(τY ), τ(X×Y ) = (τX)×(τY ),
tr(τX) = τ(tr(X)), (τX|τY ) = τ(X|Y ) and det(τX) = τ(detX), and that
τ 2 = id, J3(K̃) = J3(K̃)τ ⊕ J3(K̃)−τ and J3(K

C)−τ =
√
−1J3(K), so that

G(K) ≡ {αC| α ∈ G(K)} = G(KC)τ .
For X ∈ J3(K̃) and the indeterminate λ, put φX(λ) := λE − X. Then

the characteristic polynomial of X is defined as the polynomial ΦX(λ) :=
det(φX(λ)) of λ with degree 3 and the derivative Φ′

X(λ) is
d
dλ
ΦX(λ), so that

ΦX(λ) ≡ (λ − λ1)(λ − λ2)(λ − λ3) with some λ1, λ2, λ3 ∈ C. In this case,
the set {λ1, λ2, λ3} is said to be the characteristic roots of X. Put ΛX :=
{λ1, λ2, λ3} ⊂ C with #ΛX ∈ {1, 2, 3} and VX := {aX×2 + bX + cE| a, b, c ∈
F} with vX := dimVX ∈ {1, 2.3}.

Proposition 0.1. Let K̃ be K,K ′ or KC with K = R,C,H or O.

(1) G(K̃) j {α ∈ GLF(J3(K̃))| tr(αX) = tr(X), αE = E}. And

G(K̃) = {α ∈ GLF(J3(K̃))| det(αX) = det(X), αE = E}
= {α ∈ GLF(J3(K̃))| ΦαX(λ) = ΦX(λ)}
= {α ∈ GLF(J3(K̃))| det(αX) = det(X), (αX|αY ) = (X|Y )}
= {α ∈ GLF(J3(K̃))| α(X × Y ) = (αX)× (αY )}.

Especially, ΛαX = ΛX and vαX = vX for all X ∈ J3(K̃) and α ∈ G(K̃).

(2) G(K̃)τ is a maximal compact subgroup of G(K̃). And γ ∈ G(K̃)τE1,E2,E3
.
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(3) P2(K̃) = OG(K̃)◦(E1),

(4) Assume that K̃ ̸= K, i.e., K̃ = RC,CC,HC,OC;C ′,H ′ or O′. Then:

(i) M1(K̃) = OG(K̃)◦(M̃1),

(ii) M23(K̃) = OG(K̃)◦(M̃23).

Theorem 0.2. Let KC be RC,CC,HC or OC. Then the orbit decompo-
sition of J3(K

C) over G(KC) or G(KC)◦ is given as follows:

(1) Take X ∈ J3(K
C). Then #ΛX = 3, 2 or 1.

(i) Assume that #ΛX = 3 with ΛX = {λ1, λ2, λ3}. Then diag(λ1, λ2, λ3) ∈
OG(KC)◦(X) with vX = 3.

(ii) Assume that #ΛX = 2 with ΛX = {λ1, λ2} such that Φ′
X(λ2) = 0. Then

vX = 2 or 3. Moreover:

(ii-1) vX = 2 iff diag(λ1, λ2, λ2) ∈ OG(KC)◦(X); and

(ii-2) vX = 3 iff diag(λ1, λ2, λ2) +M1 ∈ OG(KC)◦(X).

(iii) Assume that #ΛX = 1 with ΛX = {λ1}. Then:
(iii-1) vX = 1 iff λ1E ∈ OG(KC)◦(X);

(iii-2) vX = 2 iff λ1E +M1 ∈ OG(KC)◦(X); and

(iii-3) vX = 3 iff λ1E +M23 ∈ OG(KC)◦(X).

(2) For X, Y ∈ J3(K
C), OG(KC)◦(X) = OG(KC)◦(Y ) iff ΛX = ΛY and vX =

vY . For any X ∈ J3(K
C), O(X) := OG(KC)◦(X) = OG(KC)(X) and O(X) ∩

J3(RC) ̸= ∅.

Theorem 0.3. Let K ′ be C ′,H ′ or O′. Then the orbit decomposition of
J3(K

′) over G(K ′) or G(K ′)◦ is given as follows:

(1) Take X ∈ J3(K
′). Then #ΛX = 3, 2 or 1.

(i) Assume that #ΛX = 3. Then vX = 3. And ΛX = {λ1, λ2, λ3} for some
λ1 ∈ R and λ2, λ3 ∈ C such that ΛX ⊂ R or {λ2, λ3} = {p ± q

√
−1} with

some p ∈ R and q ∈ R\{0}. Moreover:

(i-1) If ΛX ⊂ R with λ1 > λ2 > λ3, then diag(λ1, λ2, λ3) ∈ OG(K′)◦(X);
and

(i-2) If {λ2, λ3} = {p± q
√
−1} with some p, q ∈ R such that q > 0, then

diag(λ1, p, p) + F1(q
√
−1e4) ∈ OG(K′)◦(X).

(ii) Assume that #ΛX = 2 with ΛX = {λ1, λ2} such that Φ′
X(λ2) = 0. Then

λ1, λ2 ∈ R and vX = 2 or 3. Moreover:
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(ii-1) vX = 2 iff diag(λ1, λ2, λ2) ∈ OG(K′)◦(X); and

(ii-2) vX = 3 iff diag(λ1, λ2, λ2) +M1′ ∈ OG(K′)◦(X).

(iii) Assume that #ΛX = 1 with ΛX = {λ1}. Then λ1 ∈ R. Moreover:

(iii-1) vX = 1 iff λ1E ∈ OG(K′)◦(X);

(iii-2) vX = 2 iff λ1E +M1′ ∈ OG(K′)◦(X); and

(iii-3) vX = 3 iff λ1E +M2′3 ∈ OG(K′)◦(X).

(2) For X,Y ∈ J3(K
′), OG(KC)◦(X) = OG(KC)◦(Y ) iff ΛX = ΛY and vX =

vY . For any X ∈ J3(K
′), O(X) := OG(K′)◦(X) = OG(K′)(X) and O(X) ∩

J3(C
′) ̸= ∅.

By Proposition 0.1 (1), ΛX and vX are invariants on OG(K̃)(X), so that
the Theorems 0.2 (2) and 0.3 (2) follow from Theorems 0.2 (1) and 0.3 (1),
respectively. Hence, this paper is concentrated in proving Theorems 0.2 (1)
and 0.3 (1) with Proposition 0.1.

Note that the second equality of Propositoin 0.1 (1) was obtained by
N. Jacobson [13, Lemma 1] in a more general setting (cf. [24, p.159, Propo-
sition 5.9.4, §5.10]). In §1, by Lemma 1.2, it appears that the characteristic
polynomial ΦX(λ) of X equals the generic minimal polynomial of X defined
by N. Jacobson [16, p.358 (5)]. By Lemma 1.6 (3), it appears that vX equals
the degree of N. Jacobson [16, p.389, Theorem 10]’s minimal polynomial for
X ∈ J3(K̃) with respect to the Jordan product.

Contents
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2. Proposition 0.1 (3) and (4) (i).
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4. Proposition 0.1 (4) (ii) and Theorems 0.2 and 0.3 in (1) (iii).
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Let i, i+ 1, i+ 2 ∈ {1, 2, 3} be the indices counted modulo 3. Then


Ei ◦ Ei = Ei, Ei ◦ Ei+1 = 0,
Ei ◦ Fi(x) = 0, Ei ◦ Fj(x) =

1
2
Fj(x) (i ̸= j),

Fi(x) ◦ Fi(y) = (x|y)(Ei+1 + Ei+2), Fi(x) ◦ Fi+1(y) =
1
2
Fi+2(xy);

Ei × Ei = 0, Ei × Ei+1 =
1
2
Ei+2,

Ei × Fi(x) = −1
2
Fi(x), Ei × Fj(x) = 0 (i ̸= j),

Fi(x)× Fi(y) = −(x|y)Ei, Fi(x)× Fi+1(y) =
1
2
Fi+2(xy)

for any x, y ∈ K̃. And

M1(x)×M1(y) =
√
−1{(x|1)(y|1)− (x|y)}E1,

M1(x)×M23(y) = −1

2
{F2(

√
−1(x− (x|1))y) + F3(y(x− (x|1)))},

M23(x)×M23(y) = (x|y)M1, M1 = M×2
23 ; and

M1′(x)×M1′(y) = {(x|y)− (x|1)(y|1)}E1,

M1′(x)×M2′3(y) =
1

2
{F2(−(x

√
−1e4)y + (x|1)

√
−1e4y)

+ F3(−(y
√
−1e4)(x

√
−1e4) + (x|1)y)},

M23′(x)×M23′(y) = (x|y)M1′ , M1′ = M×2
2′3 .

Let denote X(r; x) :=
∑3

i=1 riEi+
∑3

i=1 Fi(xi) for any r = (r1, r2, r3) ∈ F3

and x = (x1, x2, x3) ∈ K̃3. If Y = X(r; x) ∈ J3(K̃), put (Y )Ei
:= (Y |Ei) = ri

and (Y )Fi
:= (Y |Fi(1))/2 = xi.

Lemma 1.1. (1) Let i, i+ 1, i+ 2 ∈ {1, 2, 3} be counted modulo 3. Then
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X(r; x)× X(s; y) =
1

2

3∑
i=1

{(ri+1si+2 + si+1ri+2 − 2(xi|yi))Ei

+ Fi(xi+1yi+2 + yi+1xi+2 − riyi − sixi)};

(X(r; x)|X(s; y)) =
3∑

i=1

(risi + 2(xi|yi));

(X(r; x)|X(s; y)|X(u; z)) = (X(r; x)|X(s; y)× X(u; z))

=
3∑

i=1

{ri
2
(si+1ui+2 + ui+1si+2) + (xi|yi+1zi+2 + zi+1yi+2)

− ri(yi|zi)− si(zi|xi)− ui(yi|xi)};

det(X(r; x)) = r1r2r3 + 2(xi|xi+1xi+2)−
3∑

j=1

rjN(xj) for i ∈ {1, 2, 3}.

(2) For X,Y, Z ∈ J3(K̃), all of X ◦ Y , (X|Y ), X × Y , (X ◦ Y |Z) and
(X|Y |Z) are symmetric. And (X|Y ) is non-degenerate.

(3) 2E × X = tr(X)E − X = φX(tr(X)). Especially, E×2 = E and
2E ×X×2 = tr(X×2)E −X×2 = φX×2(tr(X×2)).

(4) (X|Y |E) = tr(X × Y ) = 1
2
(tr(X)tr(Y )− (X|Y )).

Proof. (1) follows from the definitions except the 3rd equality, which is
proved by [5, p.15, 3.5 (7)] as follows:

(X(r; x)|X(s; y)|X(u; z)) =
3∑

i=1

{ui(ri+1si+2 + si+1ri+2)/2

+ (zi|xi+1yi+2 + yi+1xi+2)− ui(xi|yi)− ri(yi|zi)− si(xi|zi)}

=
3∑

i=1

{(ui+2ri+3si+4 + ui+1si+2ri+3)/2

+ (xi+3 zi+2|yi+4) + (zi+1 xi+3|yi+2)− ui(xi|yi)− ri(yi|zi)− si(xi|zi)}

=
3∑

i=1

{ri(si+1ui+2 + ui+1si+2)/2 + (xi|yi+1zi+2 + zi+1yi+2)

− ri(yi|zi)− si(zi|xi)− ui(yi|xi)}
= (X(r; x)|X(s; y)× X(u; z)).
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(2) follows from the definitions or (1). (3) follows from direct computations.
(4) follows from the definitions of (X|Y |Z) and X × Y .

For X ∈ J3(K̃), put ∆X(λ) := −1
2
{3λ2 − 2tr(X)λ + tr(X)2 − 2(X|X)},

which values in F (or C) if λ ∈ F (resp. C).

Lemma 1.2. (1) ΦX(λ) = λ3 − tr(X)λ2 + tr(X×2)λ − det(X) with F ∋
tr(X) = λ1 + λ2 + λ3, tr(X

×2) = λ1λ2 + λ2λ3 + λ3λ2, det(X) = λ1λ2λ3 if
ΛX = {λ1, λ2, λ3} ⊂ C for X ∈ J3(K̃).

(2) Φ′
X(λ) = 3λ2 − 2tr(X)λ + tr(X×2) = tr(φX(λ)

×2) = −2∆X(λ) −
1
2
{tr(X)2 − 3(X|X)}.
(3) Put M(K̃) := {X ∈ J3(K̃)0| X ̸= 0, ΦX(λ) = λ3}. Then M(K̃) =

{X ∈ J3(K̃)0| X ̸= 0, tr(X×2) = det(X) = 0} = M1(K̃) ∪ M23(K̃) with
M1(K̃)∩M23(K̃) = ∅. And {X ∈ J3(K̃)| #ΛX = 1} = FE⊕({0}∪M(K̃)).

Proof. (1) ΦX(λ) =
1
3
(λE−X|λE−X|λE−X), which equals the required

one by Lemma 1.1 (2, 3) and ΦX(λ) ≡ (λ− λ1)(λ− λ2)(λ− λ3).
(2) The first equality folllows from (1). By Lemma 1.1 (3), φX(λ)

×2 =
(λE − X)×2 = λ2E − (tr(X)E − X)λ + X×2, so that tr(φX(λ)

×2) = 3λ2 −
2tr(X)λ+tr(X×2). And 3λ2− 2tr(X)λ+tr(X×2) = −2∆X(λ)− 1

2
{tr(X)2−

3(X|X)} by the second equality of Lemma 1.1 (4).
(3) The first claim follows from (1). For X ∈ J3(K̃), put X0 := X −

1
3
tr(X)E ∈ J3(K̃)0. ThenX = 1

3
tr(X)E+X0, so that J3(K̃) = FE⊕J3(K̃)0.

If ΦX(λ) = Π3
i=1(λ−λi), then ΦX0(λ) = det((λ+ 1

3
tr(X))E−X) = Π3

i=1(λ+
1
3
tr(X) − λi), so that ΦX0(λ) = λ3 ⇔ 1

3
tr(X) − λi = 0(i = 1, 2, 3) ⇔

λ1 = λ2 = λ3 ⇔ #ΛX = 1, because of tr(X) =
∑3

i=1 λi by (1). Hence,
{X ∈ J3(K̃)| #ΛX = 1} = FE ⊕ ({0} ∪M(K̃)).

Let V be an F-algebra with the multiplication xy of x, y ∈ V . For x ∈ V ,
put an F-linear endomorphism on V , Lx : V → V ; y 7→ xy, as the left
translation by x. And put the automorphism group of V as follows:

Aut(V ) := {α ∈ GLF(V )| α(xy) = (αx)(αy); x, y ∈ V }.

Lemma 1.3. (1) Let V be an F-algbra. Assume that α ∈ Aut(V ). Then
trace(L(αx)) = trace(Lx), det(L(αx)) = det(Lx) for all x ∈ V . If moreover
V admits the identity element e, then αe = e.
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(2) Let L◦
X and L×

X be the left translations by X ∈ J3(K̃) on J3(K̃)
with respect to the product ◦ and the cross product ×, respectively. Then
trace(L◦

X) = (dK + 1) tr(X) and trace(L×
X) =

−1
2
dK tr(X).

Proof. (1) For x, y ∈ V and α ∈ G(V ), L(αx)y = (αx)y = α(x(α−1y)) =
(αLxα

−1)y, i.e. L(αx) = αLxα
−1, so that trace(L(αx)) = trace(Lx) and

det(L(αx)) = det(Lx) as an F-linear endomorphism on V . Assume that ex =
xe = x for any x ∈ V . Take α ∈ Aut(V ). Then (αe)(αx) = (αx)(αe) = αx,
so that (αe)y = y(αe) = y for all y ∈ V . In particular, αe = (αe)e = e.

(2) {Ei, Fi(ej/
√
2)| i = 1, 2, 3; j = 0, · · · , dK − 1} forms an orthonormal

basis of (J3(K
C), (∗|∗)) by Lemma 1.1 (1). And L◦

X and L×
X can be identified

with a C-linear endomorphism on J3(K
C) = J3(K̃) or C⊗J3(K̃). By Lemma

1.1 (1, 2), trace(L◦
X) =

∑3
i=1{(X ◦ Ei|Ei) +

1
2

∑dK−1
j=0 (X ◦ Fi(ej)|Fi(ej))} =∑3

i=1{(X|Ei ◦ Ei) +
1
2

∑dK−1
j=0 (X|Fi(ej) ◦ Fi(ej))} =

∑3
i=1

{(X|Ei) +
1
2

∑dK−1
j=0 (X|Ei+1 + Ei+2)} = (dK + 1) tr(X); and trace(L×

X) =∑3
i=1{(X × Ei, Ei) +

1
2

∑dK−1
j=0 (X × Fi(ej)|Fi(ej))} =

∑3
i=1{(X|Ei × Ei) +

1
2

∑dK−1
j=0 (X|Fi(ej)× Fi(ej))} =

∑3
i=1

1
2

∑dK−1
j=0 (X| − Ei) =

−1
2
dKtr(X).

Proof of Proposition 0.1 (1). The first claim follows from Lemma 1.3
(1)(2). For the second claim, since det(X) is defined by X ◦X, tr(X) and E,
the first equality is recognized as the inclusion j. By ΦX(λ) = det(λE−X),
the 2nd equality is recognized as the inclusion j. By Lemmas 1.1 (4) and
1.2 (1), the 3rd equality is recognized as the inclusion j. By polarizing
3det(X) = (X|X|X) with Lemma 1.1 (2), the 4th equality is recognized as
the inclusion j. Assume that α ∈ GLF(J3(K̃)) and (αX)×(αY ) = α(X×Y )
for all X, Y ∈ J3(K̃). By Lemma 1.3, tr(αX) = tr(X). By Lemma 1.1 (4),
(X|Y ) = tr(X)tr(Y ) − 2tr(X × Y ), so that (αX|αY ) = (X|Y ). By the
definition of ×, (X ◦ Y |Z) = (X × Y |Z) + (tr(X)(Y |Z) + tr(Y )(X|Z) −
(tr(X)tr(Y ) − (X|Y ))tr(Z))/2, so that ((αX) ◦ (αY )|αZ) = (X ◦ Y |Z) for
all X,Y, Z ∈ J3(K̃). By Lemma 1.1 (2), α−1((αX) ◦ (αY )) = X ◦Y , that is,
α ∈ G(K̃). Hence, all of the equations of the second claim follow. The last
claim follows from these equations.

Proof of Proposition 0.1 (2). Note that τγ = γτ , γEi = Ei, γE = E and
det(γX(r; x)) = det(X(r;x)) by Lemma 1.1 (1), so that γ ∈ G(K̃)τE1,E2,E3

.
By Proposition 0.1 (1), the last claim follows. For the first claim, put <
X|Y >:= (τX|Y ) ∈ F for X, Y ∈ J3(K̃), which defines a positive-definite
symmetric (or hermitian) 2-form on J3(K

′) (resp. J3(K
C)) over R (resp.
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C) by Lemma 1.1 (1). For α ∈ G(K̃), α∗ ∈ GLF (J3(K̃)) is defined such
that < αX|Y >=< X|α∗Y > for all X, Y ∈ J3(K̃). By (1), < X|α∗Y >=
(ταX|Y ) = τ(αX|τY ) = τ(X|α−1τY ) =< X|τα−1τY >, so that α∗ =
τα−1τ ∈ G(K̃) because of (1) by det(α∗X) = τdet(α−1τX) = τ 2det(X) =
det(X) and α∗E = τα−1τE = E. Then G(K̃) ∼= G(K̃)τ × R as a polar
decomposition of C. Chevalley [1, p.201] (resp. [12, p.450, Lemma 2.3]), so
that G(K̃)τ is a maximal compact subgroup of G(K̃).

For i ∈ {1, 2, 3} and a ∈ K̃, put Bi(a) : J3(K̃) −→ J3(K̃);X(r; x) 7→
X(s; y) such that si := 0, si+1 := 2(a|xi), si+2 := −2(a|xi), yi := −(ri+1 −
ri+2)a, yi+1 := −xi+2a, yi+2 := axi+1, where i, i + 1, i + 2 ∈ {1, 2, 3} are
counted modulo 3. Then exp(tBi(a)) ∈ (G(K̃)Ei

)◦ for t ∈ F. In fact, si =
si+1 = si+2 = yi = yi+1 = yi+2 = 0 if X(r; x) = Ei or E. Put X = X(r;x).
By Lemma 1.1 (1), (Bi(a)X|X|X) = (Bi(a)X|X×2) = 2{(a|xi)(ri+2ri −
N(xi+1)−riri+1+N(xi+2))−(ri+1−ri+2)(a|xi+1xi+2−rixi)−(xi+2a|xi+2xi−
ri+1xi+1) + (axi+1|xixi+1 − ri+2xi+2)} = 0, so that exp(tBi(a)) ∈ (G(K̃)Ei

)◦

for all t ∈ F by Proposition 0.1 (1), as required. Note that Bi(a) is nothing
but Ãa

i given in H. Freudenthal [7, (5.1.1)].
For ν ∈ {1,

√
−1}, put Cν(t) := (eνt + e−νt)/2, Sν(t) := (eνt − e−νt)/(2ν)

as F-valued functions of t ∈ F. Then (Cν(t), Sν(t)) = (cosh(t), sinh(t)) or
(cos(t), sin(t)) if ν = 1 or

√
−1, respectively. Note that

τCν(t) = Cν(τt), τSν(t) = Sν(τt),

Cν(t1)Cν(t2) + ν2Sν(t1)Sν(t2) = Cν(t1 + t2),

C ′
ν(t) = ν2Sν(t), S ′

ν(t) = Cν(t),

Sν(t1)Cν(t2) + Cν(t1)Sν(t2) = Sν(t1 + t2),

C ′
ν(0) = 0, S ′

ν(0) = 1, Cν(2t) = 1 + 2ν2S2
ν(t).

For i ∈ {1, 2, 3}, t ∈ F, a ∈ K̃ and ν ∈ {1,
√
−1}, put βi(t; a, ν) :

J3(K̃) −→ J3(K̃);X(r; x) 7→ X(s; y) such that

si := ri,
si+1 := ri+1+ri+2

2
+ ri+1−ri+2

2
Cν(2t) + (a|xi)Sν(2t),

si+2 := ri+1+ri+2

2
− ri+1−ri+2

2
Cν(2t)− (a|xi)Sν(2t),

yi := xi − a ri+1−ri+2

2
Sν(2t)− 2a(a|xi)S

2
ν(t),

yi+1 := xi+1Cν(t)− xi+2aSν(t),
yi+2 := xi+2Cν(t) + axi+1Sν(t).
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For c ∈ F, put S1(c, K̃) := {x ∈ K̃| N(x) = c}, which is said to be a
generalized sphere [11, p.42, (3.7)] of first kind over F.

Lemma 1.4. (1) (i) Assume that i ∈ {1, 2, 3}, ν ∈ {1,
√
−1} and a ∈

S1(−ν2, K̃). Then βi(t; a, ν) = exp(tBi(a)) ∈ (G(K̃)Ei
)◦ for t ∈ F such that

βi(t; a, ν)τ = τβi(τt; τa, ν) for all t ∈ F. Especially, σi := βi(π; 1,
√
−1) ∈

((G(K̃)τEi
)◦)Ei+1,Ei+2

.

(ii) For i ∈ {1, 2, 3}, put β̂i := βi(
π
2
; 1,

√
−1). Then β̂i ∈ (G(K̃)τEi

)◦ such

that β̂iX = riEi + ri+2Ei+1 + ri+1Ei+2 + Fi(−xi) + Fi+1(−xi+2) + Fi+2(xi+1)
if X = X(r;x) ∈ J3(K̃). Especially, for any permutation µ = (µ1, µ2, µ3)
of the triplet (1, 2, 3), there exists β̂ ∈ (G(K̃)τ )◦ such that β̂(

∑3
j=1 rjEj) =∑3

j=1 rµj
Eµj

for all ri ∈ F (i = 1, 2, 3).

(iii) Put B23 := B2(
√
−1) − B3(1), B23′ := B2(1) − B3(

√
−1e4), B2′3 :=

B2(−
√
−1e4) − B3(1), β23(t) := exp(tB23), β23′(t) := exp(tB23′), β2′3(t) :=

exp(tB2′3). Then β23(t) ∈ (G(KC)◦)M1 and β23(t)M23(x) = 2t(x|1)M1 +
M23(x) (x ∈ KC, t ∈ C). And β23′(t), β2′3(t) ∈ (G(K ′)◦)M1′ such that
β23′(t)M2′3(x) = 2t(

√
−1e4|x)M1′ + M2′3(x), β2′3(t)M2′3(x) = 2t(1|x)M1′ +

M2′3(x) (x ∈ K ′, t ∈ R).
(2) (i) Let S1(1, K̃)◦ be the connected component of S1(1, K̃) contain-

ing 1 = e0 in K̃. And O(K̃) := {α ∈ GLF (K̃)| N(αx) = N(x)}. Then
S1(1, K̃) = OO(K̃)(e0) = S1(1, K̃)◦ ∪ (−S1(1, K̃)◦). Especially, S1(1, K̃) =

S1(1, K̃)◦ = −S1(1, K̃)◦ when K̃ = H ′,O′;CC,HC,OC.

(ii) For a ∈ S1(1, K̃) and i ∈ {1, 2, 3}, put δi(a) ∈ EndF(J3(K̃)) with
X(s; y) := δi(a)X(r; x) such that si := ri, si+1 := ri+1, si+2 := ri+2, yi :=
axia, yi+1 := axi+1, yi+2 := xi+2a. Then δi(a) ∈ ((G(K̃)Ei

)◦)Ei+1,Ei+2
such

that δi(a)σi = σiδi(a) = δi(−a) and δi(a)τ = τδi(τa). Especially, δi(a) ∈
(G(K̃)E1,E2,E3)

◦ when K̃ = H ′,O′;CC,HC,OC.

(iii) Assume that dK̃ 5 4. For a ∈ S1(1, K̃) and i ∈ {1, 2, 3}, put
βi(a) ∈ EndF(J3(K̃)) with X(s; y) := βi(a)X(r;x) such that si := ri, si+1 :=
ri+1, si+2 := ri+2, yi := axia, yi+1 := axi+1, yi+2 := xi+2a. Then βi(a) ∈
((G(K̃)Ei

)◦)Ei+1,Ei+2,Fi(1) such that βi(a)σi = σiβi(a) = βi(−a). Especially,

βi(a) ∈ (G(K̃)E1,E2,E3,F1(1))
◦ when K̃ = H ′;CC,HC.

Proof. (1) (i) Put X(u; z) := d
dt
βi(t; a, ν)X(r;x) − Bi(a)X(r; x). Then

ui = zi = 0, ui+1 = (ν2 + N(a))((ri+1 − ri+2)Sν(2t) + 4(a, xi)S
2
ν(t)) = 0 =

−ui+2, zi+1 = (ν2 + N(a))xi+1Sν(t) = 0, zi+2 = (ν2 + N(a))xi+2Sν(t) =
0, i.e. d

dt
βi(t; a, ν)X(r;x) = Bi(a)X(r;x) (t ∈ F) with βi(0; a, ν)X(r;x) =
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X(r; x). Hence, βi(t; a, ν) = exp(tBi(a)), so that βi(t; a, ν) ∈ (G(K̃)Ei
)◦ and

βi(t; a, ν)τ = exp(tBi(a))τ = τexp((τt)Bi(τa)) = τβi(t; a, ν) for all t ∈ F.
Especially, σi(t) := βi(πt; 1,

√
−1) ∈ (G(K̃)τEi

)◦ for all t ∈ R such that
σi = σi(1), σiEi+1 = Ei+1, σiEi+2 = Ei+2.

(ii) The first claim follows from (i), so that the second claim follows.
(iii) For a, b ∈ KC, (B2(a) − B3(b))M1 = M23(−

√
−1a − b). Then

B23M1 = 0 by a =
√
−1 and b = 1. For x ∈ KC, (B2(a) − B3(b))M23(x) =

X(−2((a|
√
−1x)+(b|x)), 2(b|x), 2(a|

√
−1x); ax+

√
−1 bx, 0, 0). In particular,

B23M23(x) = 2(1|x)M1. Hence, β23(t) ∈ (G(KC)◦)M1 and β23(t)M23(x) =
2t(1|x)M1 + M23(x) for x ∈ KC and t ∈ C. For a, b ∈ K ′, (B2(a) −
B3(b))M1′ = M2′3(a

√
−1e4 − b). Then B23′M1′ = B2′3M1′ = 0 by b =

a
√
−1e4 with (a, b) = (1,

√
−1e4), (−

√
−1e4, 1). For x ∈ K ′, (B2(a) −

B3(b))M2′3(x) = X(−2((a| −
√
−1e4x) + (b|x)), 2(b|x), 2(a| −

√
−1e4x); ax−

(
√
−1e4x)b, 0, 0), so that B23′M2′3(x) = 2(

√
−1e4|x)E2 − 2(1|

√
−1e4x)E3 +

F1(x+
√
−1e4(x

√
−1e4)) and B2′3M2′3(x) = 2(1|x)M1′ . Put x = p+q

√
−1e4

with p, q ∈ H , so that x = p − q
√
−1e4. Then (

√
−1e4)(x

√
−1e4) =

p + q
√
−1e4, x −

√
−1e4(x

√
−1e4) = −(q + q)

√
−1e4 = 2(

√
−1e4|x)

√
−1e4.

And B23′M2′3(x) = 2(
√
−1e4|x)M1′ . Hence, β23′(t), β2′3(t) ∈ (G(KC)◦)M1′

such that β23′(t)M2′3(x) = 2t(
√
−1e4|x)M1′ +M2′3(x) and β2′3(t)M2′3(x) =

2t(1|x)M1′ +M2′3(x) for x ∈ K ′ and t ∈ R.
(2) (i) Since K̃ is a composition algebra, La ∈ O(K̃) for all a ∈ S1(1, K̃).

Hence, S1(1, K̃) = {La(e0)| a ∈ S1(1, K̃)} = OO(K̃)(e0). Put SO(K̃) :=

{α ∈ O(K̃)| det(α) = 1}. When dK̃ = 1: S1(1, K̃) = {±e0}, S1(1, K̃)◦ =
{e0}, S1(1, K̃) = S1(1, K̃)◦ ∪ (−S1(1, K̃)◦). When dK̃ = 2, 4, 8: O(K̃) =
SO(K̃) ∪ SO(K̃)ϵ with ϵ(e0) = e0, SO(K̃) = −SO(K̃), so that S1(1, K̃) =
OSO(K̃)(e0) = −OSO(K̃)(e0) = −S1(1, K̃). Since SO(KC) is connected,

S1(1, K
C)◦ = S1(1, K

C) = −S1(1, K
C)◦.

And MdK′ (R) k SO(K ′) ∼= S(O(dK′/2)×O(dK′/2))× R(dK′/2)2 . Put

1n := diag(1, · · · , 1), 1′n := diag(1n−1,−1) ∈ Mn(K
′).

When dK′/2 = 2, 4, SO(K ′) admits just four connected components contain-
ing idK′ , diag(1′dK′/2

, 1dK′/2), diag(1dK′/2, 1
′
dK′/2

), diag(1′dK′/2
, 1′dK′/2

), so that

S1(1, K
′) = OSO(K′)(e0) = OSO(K′)◦(e0) = S1(1, K

′)◦.

(ii) For a ∈ S1(1, K̃), δi(a) ∈ GLF(J3(K̃))E1,E2,E3 with δi(a)
−1 = δi(ā),

δi(a)τ = τδi(τa) and δi(a)E = E. By Lemma 1.1 (1), det(δi(a)X(r;x)) =
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r1r2r3+2(axia|(axi+1)(xi+2a))− riN(axia)− ri+1N(axi+1)− ri+2N(xi+2a) =
r1r2r3 + (2(x̄i|xi+1xi+2)− riN(xi))N(a)2 − (ri+1N(xi+1) + ri+2N(xi+2))N(a)
= det(X(r;x)). By Proposition 0.1 (1), δi(a) ∈ (G(K̃)E1,E2,E3)

◦ for a ∈
S1(1, K̃)◦. And δi(−a) = σiδi(a) = δi(a)σi with σi ∈ ((G(K̃)Ei

)◦)Ei+1,Ei+2

by (1)(i). By (i), {δi(a)| a ∈ S1(1, K̃)} = {δi(a), δi(−a)| a ∈ S1(1, K̃)◦} =
{δi(a), δi(a)σi| a ∈ S1(1, K̃)◦} j (G(K̃)Ei

)◦)Ei+2,Ei+3
. By the last claim of

(i), {δi(a)| a ∈ S1(1, K̃)} = {δi(a)| a ∈ S1(1, K̃)◦} j (G(K̃)E1,E2,E3)
◦ when

K̃ = H ′,O′;CC,HC,OC.
(iii) K̃ is associative by dK̃ 5 4. Hence, GLF(J3(K̃))E1,E2,E3,Fi(1) ∋

βi(a) is well-defined such that βi(a)
−1 = δi(ā), βi(a)τ = τβi(τa), βi(a)E =

E. Then det(βi(a)X(r;x)) = r1r2r3 + 2(axia|(axi+1)(xi+2a)) − riN(axia) −
ri+1N(axi+1) − ri+2N(xi+2a) = r1r2r3 + (2(x̄i|xi+1xi+2) − riN(xi))N(a)2 −
(ri+1N(xi+1) − ri+2N(xi+2))N(a) = det(X(r; x)) by Lemma 1.1 (1). Be-
cause of Proposition 0.1 (1), βi(a) ∈ (G(K̃)E1,E2,E3,F1(1))

◦ for a ∈ S1(1, K̃)◦.

By (1) (i), σi ∈ ((G(K̃)Ei
)◦)Ei+1,Ei+2

with βi(−a) = σiβi(a) = βi(a)σi. By

virtue of (i), {βi(a)| a ∈ S1(1, K̃)} = {βi(a), βi(−a)| a ∈ S1(1, K̃)◦} =
{βi(a), βi(a)σi| a ∈ S1(1, K̃)◦} is contained in (G(K̃)Ei

)◦)Ei+2,Ei+3,Fi(1). By

the last claim of (i), {βi(a)| a ∈ S1(1, K̃)} = {βi(a)| a ∈ S1(1, K̃)◦} is con-
tained in (G(K̃)E1,E2,E3,Fi(1))

◦ when K̃ = H ′;CC,HC with dK̃ 5 4.

Put GJ(K̃τ ) := {βj(t; a,
√
−1)| j ∈ J, t ∈ R, a ∈ K̃τ , N(a) = 1} for

any subset J j {1, 2, 3}. By Lemma 1.4 (1) (i), GJ(K̃τ ) ⊂ (G(K̃)τ )◦. By
Proposition 0.1 (2), G(K̃)τ and the identity connected component (G(K̃)τ )◦

are compact.

Lemma 1.5. (1) For any X ∈ J3(K̃)τ and any closed subgroup H of
G(K̃)τ such that GJ(K̃τ ) j H with some J j {1, 2, 3},

OH(X) ∩ {Y ∈ J3(K̃)| (Y |Fj(x)) = 0 (j ∈ J, x ∈ K̃τ )} ≠ ∅.

(2) O(G(K̃)τ )◦(X) ∩ {diag(r1, r2, r3)| ri ∈ R (i = 1, 2, 3)} ̸= ∅ for any

X ∈ J3(K̃)τ , where {r1, r2, r3} = ΛX iff diag(r1, r2, r3) ∈ O(G(K̃)τ )◦(X).

(3) OG(K)◦(X) ∩ {Y +
√
−1diag(r1, r2, r3)| Y ∈ J3(K), ri ∈ R (i =

1, 2, 3)} ≠ ∅ for any X ∈ J3(K
C).

(4) O(G(K′)τ )◦(X) ∩ {X(s; y)| si ∈ R, yi =
√
−1pie4, pi ∈ K ∩ K ′ (i =

1, 2, 3)} ≠ ∅ for any X ∈ J3(K
′).
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Proof. (1) (cf. [27, 3.3]): Since the closed subgroup H of the compact
group G(K̃)τ is compact, the orbit OH(X) is compact, which is contained in
J3(K̃)τ if X ∈ J3(K̃)τ . Put ϕ : J3(K̃)τ −→ R;X(r; x) 7→

∑3
j=1 r

2
j , which is a

continuous R-valued function admitting a maximal point X(r; x) ∈ OH(X).
Suppose that (X(r, x)|Fj(q)) ̸= 0 for some j ∈ J and q ∈ K̃τ . By Lemma 1.1
(1), 2(xj|q) ̸= 0. Since (x|y) is non-degenerate on K̃ and K̃τ , K̃ = K̃τ ⊕ K̃⊥

τ

for K̃⊥
τ := {x ∈ K̃| (x|y) = 0 (y ∈ K̃τ )}, so that xj = yj + y⊥j for some

yj ∈ K̃τ and y⊥j ∈ K̃⊥
τ . Then (yj|q) = (xj|q) ̸= 0, so that yj ̸= 0 and

(yj|yj) = (τyj|yj) > 0. Put a := yj/
√

(yj|yj) ∈ K̃τ , so that (a|a) = 1. By

Lemma 1.4 (1) (i), βj(t; a,
√
−1) ∈ GJ(K̃τ ) j H. Put ε := (a|xj) = (a|yj) =√

(yj|yj) > 0, s±j := (rj+1 ± rj+2)/2 ∈ R and Y (t) := βj(t; a,
√
−1)X(r;x) ∈

J3(K̃)τ . Then ϕ(Y (t)) = r2j +
∑

±(s
+
j ± (s−j cos(2t) + ε sin(2t)))2 = r2j +

2(s+j )
2 + 2(s−j cos(2t) + ε sin(2t))2 = r2j + 2(s+j )

2 + 2((s−j )
2 + ε2) cos(2t + θ)

for some constant θ of t determined by s−j and ε > 0. Hence, ϕ(Y (−θ
2
)) =

r2j + r2j+1+ r2j+2+2ε2 = ϕ(X(r; x))+2ε2 = ϕ(Y (−θ
2
))+2ε2 by the maximality

of ϕ(X(r; x)), which gives ε = 0, a contradiction.
(2) Take X ∈ J3(K̃)τ . By (1) on H := (G(K̃)τ )◦ k G{1,2,3}(K̃τ ),

there exists β ∈ H such that (βX,Fi(x)) = 0 (x ∈ K̃τ ; i = 1, 2, 3), so
that βX = diag(r1, r2, r3) for some ri ∈ R (i = 1, 2, 3). In this case,
ΦX(λ) = Φdiag(r1,r2,r3)(λ) = Π3

i=1(λ − ri), so that {r1, r2, r3} = ΛX . Con-
versely if {r1, r2, r3} = ΛX , then diag(s1, s2, s3) ∈ O(G(K̃)τ )◦(X) for some
{s1, s2, s3} = ΛX , so that diag(r1, r2, r3) ∈ O(G(K̃)τ )◦(X) by Lemma 1.4 (1)
(ii).

(3) Take X ∈ J3(K
C). Then X = X1 +

√
−1X2 for some Xi ∈ J3(K) =

J3(K
C)τ (i = 1, 2). By (2), there exist β ∈ (G(KC)τ )◦ = G(K)◦ and

{r1, r2, r3} ⊂ R such that βX2 = diag(r1, r2, r3), so that βX = βX1 +√
−1βX2 has the required form with βX1 ∈ J3(K).
(4) Take X ∈ J3(K

′). Then X = X+ + X− for some X± ∈ J3(K
′)±τ .

By (1) on H := (G(K ′)τ )◦ k G{1,2,3}(K̃τ ), there exists β ∈ H such that
βX+ = diag(r1, r2, r3) for some ri ∈ R. Then βX = βX+ + βX− has the
required form because of βX− ∈ J3(K

′)−τ = {X(0; y)| yi =
√
−1pie4; pi ∈

K ∩K ′ (i = 1, 2, 3)}.

Lemma 1.6. (1) For a positive integer m, let f(X1, · · · , Xm) be a J3(K̃)-
valued polynomial of E and X1, · · ·Xm ∈ J3(K̃) with respect to ◦, × and
the scalar multiples of tr(Xi), (Xi|Xj), det(Xi) and (Xi|Xj|Xk) for i, j, k ∈
{1, · · · ,m}. Assume that f(X1, X2, · · · , Xm) = 0 for any X2, · · ·Xm ∈
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J3(K) and all diagonal forms X1 in J3(R). Then
f(X1, · · · , Xm) = 0 for all X1, · · ·Xm ∈ J3(K

C).

(2) Assume that X, Y ∈ J3(K̃). Then:

(i) X ◦ ((X ◦X) ◦ Y ) = (X ◦X) ◦ (X ◦ Y );

(ii) X×2 ◦X = det(X)E, (X×2)×2 = det(X)X;

(iii) X×2×X = −1
2
{tr(X)X×2+tr(X×2)X−(tr(X×2)tr(X)−det(X))E}.

(3) VX is the minimal subspace over F generated by X and E under the cross
product. Especially, φX(λ)

×2 ∈ VX for all λ ∈ F.
(4) (φX(λ1)

×2)×2 = 0 if X ∈ J3(K̃) and λ1 ∈ C with ΦX(λ1) = 0.

(5) M23(K̃) = {X ∈ J3(K̃)0| X×2 ̸= 0, tr(X×2) = 0, (X×2)×2 = 0} and
{X×2| X ∈ M23(K̃)} j M1(K̃).

Proof. (1) (cf. [7, p.42], [28, p.74, ℓℓ.2–4], [6, p.91, Corollary V.2.6]): By
Lemma 1.5 (2), any X1 ∈ J3(K) admits some β ∈ G(K) = G(KC)τ such
that βX1 is a diagonal form in J3(R). Then f(βX1, X2, · · · , Xm) = 0 for
any Xi ∈ J3(K) with i ∈ {2, · · · ,m}. By Proposition 0.1, β preserves ◦, ×,
tr(∗), (∗|∗), det(∗), (∗| ∗ |∗) and E, so that f(X1, β

−1X2 · · · , β−1Xm) = 0
for all Xi ∈ J3(K) (i = 2, · · · ,m). Hence, f(X1, · · · , Xm) = 0 for all
Xi ∈ J3(K) (i = 1, · · · ,m). Since this formula consists of some polynomial
equations on the R-coefficients of each matrix entry of Xi’s with respect to
the R-basis {ej} of K, the formula holds on J3(K

C) = J3(K)⊗R C.
(2) The formulas in (i) and (ii) are polynomials of X,Y and E with

respect to ◦, ×, tr(∗), (∗|∗), det(∗), (∗| ∗ |∗). If X is a diagonal form in
J3(R), the formulas can be checked by Lemma 1.1 (1), easily. By (1), the
formulas (i) and (ii) hold for any X, Y ∈ J3(K

C). Hence, they hold for any
X, Y ∈ J3(K̃) j J3(K

C). The formula (iii) follows from the first formula of
(ii) and the definition of cross product with (X×2|X) = 3 det(X).

(3) follows from the formulas in (ii), (iii) and Lemma 1.1 (3).
(4) (φX(λ1)

×2)×2 = det(φX(λ1))φX(λ1) = ΦX(λ1)φX(λ1) = 0 by the
second formula of (ii) in (2).

(5) By (2) (ii), (X×2)×2 = det(X)X, so that (X×2)×2 = 0 if and only if
det(X) = 0, which gives the results.

The formula (i) of Lemma 1.6 (2) implies that (J3(K̃), ◦) is a Jordan
algebra over F, which is also reduced simple in the sense of N. Jacobson [16,
Chapters IV, IX], where J3(K̃) is called split iff K̃ is split (i.e. non-division),
that is the case when K̃ = K ′ or K ′C.



ORBIT DECOMPOSITION 18

Proof of “Proposition 0.1 (3) when K̃ = K” (cf, [7], [27, 4.1 Proposition]).
Take anyX ∈ P2(K) ⊂ J3(K) = J3(K

C)τ . By Lemma 1.5 (2) with K̃ = KC,
there exists α ∈ G(K)◦ = (G(KC)τ )◦ such that αX = diag(r1, r2, r3) for
some r1, r2, r3 ∈ R. By tr(αX) = 1 and (αX)×2 = 0, r1 + r2 + r3 = 1
and r2r3 = r3r1 = r1r2 = 0, so that (r1, r2, r3) = (1, 0, 0), (0, 1, 0), (0, 0, 1).
By Lemma 1.4 (1) (ii), there exists β̂ ∈ (G(KC)τ )◦ = G(K)◦ such that
β̂(αX) = E1.

H. Freudenthal [7, 5.1] gave the diagonalization theorem on J3(O) with
the action of {α ∈ G(O)| tr(αX) = tr(X)} (cf. [27, 3.3 Theorem], [20,
p.206, Lemma 1], [23, Proposition 1.4], [6, p.90, Theorem V.2.5]), which is
developing to Lemma 1.5 (2) for K̃ = OC with J3(K̃)τ = J3(O

C)τ = J3(O)
under the action of G(K̃)τ = G(OC)τ ∼= G(O) =: F4. I. Yokota [27, 4.2 and
6.4 Theorems] proved the connectedness and the simply connectedness of F4

by the diagonalization theorem of H. Freudenthal (cf. [18, Appendix], [20,
p.210, Theorem 3], [10, p.175, Proposition 1.4]). O. Shukuzawa & I. Yokota
[22, p.3, Remark] (cf. [29, p.63, Theorem 9; p.54, Remark]) proved the
connectedness of F ′

4 := G(O′) by showing the first formula of Proposition
0.1 (1) by virtue of Hamilton-Cayley formula on J3(O

′) given as the first
formula of Lemma 1.6(2)(ii) (cf. [24, p.119, Proposition 5.1.5], [11, Lemma
14.96]). Because of FC

4
∼= (FC

4 )
τ × R52 with (FC

4 )
τ = F4 [30, Theorem 2.2.2]

(cf. Proposition 0.1 (2)), FC
4 := G(OC) is connected and simply connected,

so that F ′
4 = (FC

4 )
τγ is again proved to be connected by virtue of a theorem

of P.K. Rasevskii [21].

2. Proposition 0.1 (3) and (4) (i).

Assume that K̃ = K ′ or KC with K ′ = C ′,H ′ or O′; and KC =
RC,CC,HC or OC. And put σ := σ1 defined in Lemma 1.4 (1) (i) such that
σ2 = idJ3(K̃). Then J3(K̃) = J3(K̃)σ ⊕ J3(K̃)−σ, J3(K̃)σ = {

∑3
i=1 riEi +

F1(x1)| ri ∈ F, x1 ∈ K̃} such that J3(K̃)−σ = {F2(x2) + F3(x3)| x2, x3 ∈
K̃} = {X ∈ J3(K̃)| (X, Y ) = 0 (Y ∈ J3(K̃)σ)}. And J3(K̃)σ = FE1⊕J2(K̃)
with J2(K̃) := {

∑3
i=2 riEi + F1(x1)| ri ∈ F, x1 ∈ K̃}. By Lemma 1.1 (1),

J3(K̃)L×
2E1

= {r(E2+E3)| r ∈ F} and J3(K̃)−L×
2E1

= {r(E2−E3)+F1(x)| r ∈
F, x ∈ K̃}, so that J2(K̃) = J3(K̃)L×

2E1

⊕ J3(K̃)−L×
2E1

.

Lemma 2.1. (1) G(K̃)E1 = G(K̃)E1,E2+E3,J3(K̃)±L×
2E1

,J2(K̃),J3(K̃)±σ
.
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(2) (i) {X((X|E1), s2, s3; 0, 0, 0)| s2, s3 ∈ R; s2 = s3} ∩ O(G(K)E1
)◦(X) ̸= ∅

and {X((X|E1), t2, t3;u, 0, 0)| t2, t3, u ∈ R;u = 0} ∩ O((G(K)E3
)◦)E1,E2

(X) ̸= ∅
if X ∈ J3(K)σ.

(ii) {X((X|E1), s2, s3;u
√
−1e4, 0, 0)| s2, s3, u ∈ R;u = 0, s2 = s3} ∩

O(G(K′)◦)τE1
(X) ̸= ∅ if X ∈ J3(K

′)σ.

(iii) {X((X|E1), t2 +
√
−1s2, t3 +

√
−1s3;u, 0, 0)| t2, t3, s2, s3, u ∈ R;u =

0, s2 = s3} ∩ O(G(K)◦)E1
(X) ̸= ∅ if X ∈ J3(K

C)σ.

Proof. (1) For α ∈ G(K̃)E1 , one has that α(E2+E3) = α(E−E1) = αE−
αE1 = E −E1 = E2 +E3 and αJ3(K̃)±L×

2E1

= J3(K̃)±L×
2E1

since α preserves

× by Proposition 0.1 (1), so that αJ2(K̃) = J2(K̃), αJ3(K̃)σ = J3(K̃)σ and
αJ3(K̃)−σ = J3(K̃)−σ because of the orthogonal direct-sum decompositions
of them and that α preserves (∗|∗) on J3(K̃) by Proposition 0.1 (1).

(2) (i) Take any X ∈ J3(K)σ. Then there exist ri ∈ R and x1 ∈ K such
that X = X(r1, r2, r3;x1, 0, 0). By Lemmas 1.4 (1) and 1.5 (1) with K̃ = K =
Kτ , F = R and H := (G(K)E1)

◦ k GJ(K) with J = {1}, there exists α ∈ H
such that (αX)F1 = 0. By (1), αX ∈ J3(K)σ, so that αX is diagonal with
si := (αX|Ei) ∈ R (i = 1, 2, 3) such that s1 = (αX|αE1) = (X|E1) = r1. If
s2 = s3, then αX gives an element of the left-handed set of the first formula.

If s2 < s3, put α1 := β̂1α with β̂1 ∈ (G(K)E1)
◦ given in Lemma 1.4 (1) (ii), so

that α1X gives an element of the left-handed set of the first formula. Hence,
follows the first formula.

If x1 = 0, then X gives an element of the left-handed side of the second
formula with u = 0 ∈ R. If x1 ̸= 0, put a := x1/

√
(x1|x1) ∈ S1(1, K),

so that δ3(a) ∈ ((G(K)E3)
◦)E1,E2 in Lemma 1.4 (2) (ii) such that δ3(a)X =

X(r1, r2, r3;u, 0, 0) with u :=
√

(x1|x1) > 0, which gives an element of the
left-handed side of the second formula. Hence, follows the second formula.

(ii) Take any X ∈ J3(K
′)σ. By Lemmas 1.4 (1) and 1.5 (1) with K̃ = K ′

and H := (G(K ′)τE1
)◦ k GJ(K

′
τ ) with J = {1}, there exists β ∈ H such that

(βX|F1(x)) = 0 for all x ∈ K ′
τ = K ∩ K ′. By (1), βX ∈ J3(K

′)σ. Hence,
βX = X((X|E1), s2, s3;

√
−1qe4, 0, 0) for some q ∈ K ∩ K ′. Put α1 := β

(if s2 = s3) or β̂1β (if s2 < s3), so that α1 ∈ H by Lemma 1.4 (1) (ii).
Then α1X = X((X|E1), s2, s3;

√
−1qe4, 0, 0) for some q ∈ K ∩K ′, s2, s3 ∈ R

with s2 = s3. Put α := α1 (if q = 0) or δ3(a)β for a := q/
√
(q|q) ∈ K ′

τ

with N(a) = 1 (if q ̸= 0), where δ3(a) ∈ ((G(K ′)E3)
◦)τE1,E2

j (G(K ′)◦)τE1

by Lemma 1.4 (2) (ii). Then αX = X((X|E1), s2, s3;
√
−1ue4, 0, 0) with

u :=
√

N(q) = 0, which is an element of the left-handed set.
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(iii) Take any X ∈ J3(K
C)σ. Then X = X1 +

√
−1X2 for some Xi ∈

J3(K)σ (i = 1, 2). By (i), there exist α1 ∈ (G(K)E1)
◦ such that α1(X2) =

X((X2|E1), s2, s3; 0, 0, 0) for some s2, s3 ∈ R with s2 = s3. Because of
J3(K)σ ∋ α1(X1) = X((X1|E1), t2, t3;x, 0, 0) for some t2, t3 ∈ R and x ∈ K,
so that α1(X) = X((X|E1), t2 +

√
−1s2, t3 +

√
−1s3;x, 0, 0). Put α := α1

(if x = 0) or δ3(a)α1 with a := x/
√

(x|x) ∈ S1(1, K) (if x ̸= 0), where
δ3(a) ∈ ((G(K)E3)

◦)E1,E2 by Lemma 1.4 (2) (ii). Then α ∈ (G(K)◦)E1 and

αX = X((X|E1), t2 +
√
−1s2, t3 +

√
−1s3;u, 0, 0) with u :=

√
(x|x) = 0,

which is an element of the left-handed set.

For c ∈ F, put S2(c, K̃) := {W ∈ J3(K̃)−L×
2E1

| (W |W ) = c,W ̸=
0}, which is said to be a generalized sphere of second kind over F. Then
G(K̃)E1 = ∩c∈F G(K̃)E1,S2(c,K̃).

Lemma 2.2. (1) J3(K
′)−L×

2E1

= (∪c∈RS2(c,K
′)) ∪ {0} such that

(i-1) S2(c,K
′) = O(G(K′)◦)E1

(
√

c
2
(E2 − E3)) for c > 0;

(i-2) S2(c,K
′) = O(G(K′)◦)E1

(
√

−c
2
F1(

√
−1e4)) for c < 0;

(ii) S2(0, K
′) = O(G(K′)◦)E1

(M1′); and

(iii) {0} = O(G(K′)◦)E1
(0).

(2) J3(K
C)−L×

2E1

= (∪c∈CS2(c,K
C)) ∪ {0} such that

(i) S2(c,K
C) = O(G(KC)◦)E1

(
√

c
2
(E2 − E3)) for c ∈ C\{0};

(ii) S2(0, K
C) = O(G(KC)◦)E1

(M1); and

(iii) {0} = O(G(KC)◦)E1
(0).

Proof. (1) For W ∈ J3(K
′)−L×

2E1

, put c := (W |W ) ∈ R. By Lemma

2.1 (1) and (2) (ii), αW = X(0, s,−s;u
√
−1e4, 0, 0) for some s = 0, u = 0

and α ∈ (G(K ′)◦)τE1
. Then c = (αW |αW ) = 2(s2 − u2). For t ∈ R, put

X(r; x) := β1(t;
√
−1e4, 1)(αW ), so that r1 = x2 = x3 = 0, r2 = −r3 =

cosh(2t)(s−u tanh(2t)) and x1 = v
√
−1e4 with v := cosh(2t)(u−s tanh(2t)).

(i-1) If c > 0, then s > u = 0 and |u/s| < 1, so that tanh(2t) = u/s for
some t ∈ R such that v = 0 and r2 = cosh(2t)(s2 − u2)/s > 0. In this case,
X(r; x) = r2(E2 − E3) with c = (W |W ) = (X(r; x)|X(r;x)) = 2(r2)

2, so that
X(r; x) =

√
c
2
(E2 − E3) ∈ S2(c,K

′).
(i-2) If c < 0, then u > s = 0 and |s/u| < 1, so that tanh(2t) = s/u for

some t ∈ R such that r2 = 0 and v = cosh(2t)(u2 − s2)/u > 0. In this case,
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X(r; x) = vF1(
√
−1e4) with c = (W |W ) = (X(r; x)|X(r; x)) = −2v2, so that

X(r; x) =
√

−c
2
F1(

√
−1e4) ∈ S2(c,K

′).

(ii, iii) If c = 0, then s2 − u2 = c/2 = 0, so that s = u = 0 and
r2 = v = ue−2t. When u ̸= 0: u > 0 and ue−2t = 1 for some t ∈ R. In
this case, X(r; x) = E2 − E3 + F1(

√
−1e4)) = M1′ ∈ S2(0, K

′). When u = 0:
r2 = v = u = 0 and X(r;x) = 0 ∈ {0}.

(2) For W ∈ J3(K
C)−L×

2E1

, put c := (W |W ) ∈ C. By Lemma 2.1

(1) and (2) (iii), αW = X(0, t2 + s2
√
−1,−t2 − s2

√
−1;u, 0, 0) for some

t2, s2, u ∈ R with s2, u = 0 and some α ∈ (G(K)E1)
◦ j (G(KC)E1)

◦.
Then c = (αW |αW ) = 2((t2 + s2

√
−1)2 + u2). For t ∈ R, put X(r;x) :=

β1(t; 1,
√
−1)(αW ) with β1(t; 1,

√
−1) ∈ (G(K)E1)

◦ j (G(KC)E1)
◦, so that

r1 = x2 = x3 = 0, r2 = −r3 = (t2 + s2
√
−1) cos(2t) + u sin(2t) and

x1 = u cos(2t)− (t2 + s2
√
−1) sin(2t).

(i) If c ̸= 0, then (t2+(s2+u)
√
−1)(t2+(s2−u)

√
−1) = c/2 ̸= 0, so that

e
√
−14t = (t2 + (s2 + u)

√
−1)/(t2 + (s2 − u)

√
−1) ̸= 0 for some t ∈ C, and

that x1 = u(e
√
−12t+ e−

√
−12t)/2− (t2+ s2

√
−1)(e

√
−12t− e−

√
−12t)/(2

√
−1) =√

−1
2

{(t2 + (s2 − u)
√
−1)e

√
−12t − (t2 + (s2 + u)

√
−1)e−

√
−12t} = 0. In this

case, X(r;x) = r2(E2 − E3) with c = (X(r;x)|X(r; x)) = 2(r2)
2, so that

X(r; x) =
√

c
2
(E2 − E3) ∈ S2(c,K

C).

(ii, iii) If c = 0, then t22− s22+u2+2t2s2
√
−1 = c/2 = 0, so that t2s2 = 0.

When s2 = 0: t2 = u = 0, so that X(r;x) = 0 ∈ {0}. When s2 ̸= 0: t2 = 0,
u = s2 > 0, r2 = −r3 =

√
−1ue−2t

√
−1, x1 = ue−2t

√
−1. There exists t ∈ C

such that
√
−1ue−2t

√
−1 = 1, so that X(r;x) = E2 − E3 + F1(

√
−1) = M1 ∈

S2(0, K
C).

Lemma 2.3. (1) If Y = X(r;x) ∈ J2(K̃), then tr(Y ) = r2 + r3, det(E1 +
Y ) = r2r3 −N(x1) and Y ×2 = det(E1 + Y )E1.

(2) For any X ∈ J3(K̃)σ, there exists Y ∈ J2(K̃) such that X =

(X|E1)E1 + Y and that Y = tr(Y )
2

(E2 + E3) +W for some W ∈ J3(K̃)−L×
2E1

such that (W,W ) = 1
2
(tr(Y )2 − 4det(E1 + Y )). In this case, put ΨY (λ) :=

λ2 − tr(Y )λ + det(E1 + Y ) ≡ (λ − λ2)(λ − λ3) with some λ2, λ3 ∈ C. Then
ΦX(λ) = (λ− (X|E1))ΨY (λ) and 2(W,W ) = (λ2 − λ3)

2.

(3) O(G(K̃)τ )◦(X) ∩ J2(K̃) ̸= ∅ if X ∈ J3(K̃) with X×2 = 0.

Proof. (1) By Lemma 1.1, one has the first and the second equations.
And Y ×2 = 1

2
(2r2r3 − 2N(x1))E1 = det(E1 + Y )E1.

(2) Take X := X(r1, r2, r3; x1, 0, 0) ∈ J3(K̃)σ. Put
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Y := X(0, r2, r3;x1, 0, 0), W :=
r2 − r3

2
(E2 − E3) + F1(x1) ∈ J2(K̃).

Then X = r1E1+Y , Y = r2+r3
2

(E2+E3)+W ; tr(Y ) = r2+r3, det(E1+Y ) =

r2r3 −N(x1) and (W |W ) = (r2−r3)2

2
+ 2N(x1) =

1
2
(tr(Y )2 − 4 det(E1 + Y )).

By Lemma 1.1 (1), φX(λ) = (λ − r1)(λ − r2)(λ − r3) − (λ − r1)N(x1) =
(λ − r1)(λ

2 − (r2 + r3)λ + (r2r3 − N(x1))) = (λ − r1)ΨY (λ). Because of
ΨY (λ) ≡ (λ−λ2)(λ−λ3), one has that tr(Y ) = λ2+λ3, det(E1+Y ) = λ2λ3,
so that 2(W,W ) = (λ2 + λ3)

2 − 4λ2λ3 = (λ2 − λ3)
2.

(3) Take X ∈ J3(K̃) with X×2 = 0. (i) When K̃ = K ′: By Lemma
1.5 (4), αX =

∑3
i=1(siEi + Fi(pi

√
−1e4)) for some pi ∈ K ∩K ′, si ∈ R and

α ∈ (G(K ′)τ )◦, so that 0 = α(X×2) = (αX)×2 =
∑3

i=1(si+1si+2+2N(pi))Ei+∑3
i=1 Fi(pi+1pi+2−sipi

√
−1e4), that is, si+1si+2+2N(pi) = pi+1pi+2 = sipi =

0 for all i ∈ {1, 2, 3}. (Case 1) When pi = 0 for all i: 0 = s2s3 = s3s1 = s1s2,
so that αX = siEi for some i. If i = 2 or 3, then αX ∈ J2(K

′). If i = 1,
then β̂3(αX) = s1E2 ∈ J2(K

′) by β̂3 ∈ (G(K ′)τ )◦ defined in Lemma 1.4 (1)
(ii). (Case 2) When pi ̸= 0 for some i: pi+1 = pi+2 = 0 and si = 0. If
i = 1, then αX ∈ J2(K

′). If i = 2, then β̂3(αX) ∈ J2(K
′). If i = 3, then

β̂2(αX) ∈ J2(K
′) by β̂2 ∈ (G(K ′)τ )◦ defined in Lemma 1.4 (1) (ii).

(ii) When K̃ = KC: αX = Y +
√
−1diag(r′1, r

′
2, r

′
3) for some r′i ∈ R (i =

1, 2, 3), Y ∈ J3(K), and α ∈ G(K)◦ = (G(KC)τ )◦ by Lemma 1.5 (3). Putting
Y = X(r; x), si := ri +

√
−1r′i ∈ C, one has 0 = (αX)×2 =

∑3
i=1{(si+1si+2 −

2N(xi))Ei + Fi(xi+1xi+2 − sixi)}, that is, 0 = r′ixi = xi+1xi+2 − rixi =
si+1si+2 − 2N(xi) for all i ∈ {1, 2, 3}. Then (Case 1) xi = 0 for all i, (Case
2) xi ̸= 0, xi+1 = xi+2 = 0 for some i, (Case 3) xi ̸= 0, xi+1 ̸= 0, xi+2 = 0
for some i; or (Case 4) xi ̸= 0 for all i. In (Case 1), 0 = si+1si+2 for all i,
so that αX = siEi for some i. If i = 2 or 3, then αX ∈ J2(K

C). If i = 1,
then β̂3(αX) = s1E2 ∈ J2(K

C) by β̂3 ∈ (G(KC)τ )◦ defined in Lemma 1.4
(1) (ii). In (Case 2), 0 = r′i = ri, so that αX = si+1Ei+1 + si+2Ei+2 + Fi(xi)
and that β̂k(αX) ∈ J2(K

C) for some β̂k ∈ (G(KC)τ )◦ defined in Lemma 1.4
(1) (ii). In (Case 3), 0 = r′i = ri = r′i+1 = ri+1 = N(xi) = N(xi+1), so that

αX = si+2Ei+2 and that β̂k(αX) ∈ J2(K
C) for some β̂k ∈ (G(KC)τ )◦ defined

in Lemma 1.4 (1) (ii). In (Case 4), r′i = 0 for all i, so that αX ∈ J3(K)
and that α1(αX) is diagonal for some α1 ∈ G(K)◦ by Lemma 1.5 (2). Then
β(α1(αX))) ∈ J2(K

C) for some β ∈ (G(KC)τ )◦ by the argument on (Case
1).
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Proof of Proposition 0.1 (3) when K̃ ̸= K. Take any X ∈ P2(K̃). By
(3), α1X ∈ J2(K̃) for some α1 ∈ (G(K̃)τ )◦. By (1), det(E1 + α1X)E1 =

(α1X)×2 = α(X×2) = 0, i.e. det(E1+α1X) = 0. By (2), α1X = tr(α1X)
2

(E2+

E3) +W = 1
2
(E2 + E3) +W for some W ∈ J3(K̃)−L×

2E1

such that (W |W ) =

1
2
(tr(α1X)2 − 4det(E1 + α1X)) = 1

2
, so that W ∈ S2(1/

√
2, K̃). By Lemma

2.2 (1)(2), α2W = 1
2
(E2 − E3) ∈ S2(1/

√
2, K̃) for some α2 ∈ (G(K̃)E1)

◦.
Then α2(α1X) = 1

2
(E2 + E3) +

1
2
(E2 − E3) = E2 by Lemma 2.1 (1). By

β̂3 ∈ (G(K̃)τE3
)◦ defined in Lemma 1.4 (1) (ii), β̂3(α2(α1X)) = E1, where

β̂3α2α1 ∈ G(K̃)◦.

Proof of Proposition 0.1 (4) (i). Take any X ∈ M1(K̃) defined in Lemma
1.6 (5). By (3), 0 ̸= αX ∈ J2(K̃) for some α ∈ (G(K̃)τ )◦ with tr(αX) =

tr(X) = 0. In this case, by (2), αX = tr(αX)
2

(E2 + E3) +W = W for some

W ∈ J3(K̃)−L×
2E1

. And (αX|αX) = (X|X) = (X ◦X|E) = −2(X ×X|E) =

−2tr(X×2) = 0 by Lemma 1.1 (4). Hence, αX ∈ S2(0, K̃). By Lemma 2.2
(1) (ii) or (2) (ii), there exists β ∈ (G(K̃)◦)E1 such that β(αX) = M1′ (when
K̃ = K ′) or M1 (when K̃ = KC).

3. Theorems 0.2 and 0.3 in (1) (i, ii).

Assume that X ∈ J3(K̃) admits a characteristic root λ1 ∈ F of multiplic-
ity 1. Then 0 ̸= Φ′

X(λ1) = tr(φX(λ1)
×2) by Lemma 1.2 (2), so that

EX,λ1 :=
1

tr(φX(λ1))
φX(λ1)

×2 ∈ VX

is well-defined. Put WX,λ1 := X − λ1EX,λ1 −
tr(X)−λ1

2
φEX,λ1

(1) ∈ VX . Then

X = λ1EX,λ1 +
tr(X)− λ1

2
φEX,λ1

(1) +WX,λ1 .

Lemma 3.1. Assume that X ∈ J3(K̃) admits a characteristic root λ1 ∈ F
of multiplicity 1. Then:

(1) VX ∩ P2(K̃) ∋ EX,λ1 ̸= 0, φEX,λ1
(1) ̸= 0, E×2

X,λ1
= 0, 2EX,λ1 ×

φEX,λ1
(1) = φEX,λ1

(1), φEX,λ1
(1)×2 = EX,λ1, 2EX,λ1 ×WX,λ1 = −WX,λ1;
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(2) VX = FEX,λ1 ⊕ FφEX,λ1
(1) ⊕ FWX,λ1 such that vX = 2 (if WX,λ1 =

0) or vX = 3 (if WX,λ1 ̸= 0) with (EX,λ1 |φEX,λ1
(1)) = (EX,λ1 |WX,λ1) =

(φEX,λ1
(1)|WX,λ1) = 0, (EX,λ1|EX,λ1) = 1,

(φEX,λ1
(1)|φEX,λ1

(1)) = 2 and (WX,λ1 |WX,λ1) = ∆X(λ1).

Proof. (1) Put Z := φX(λ1) and Y := Z×2, so that Y ×2 = 0 by Lemma
1.6 (4). Then EX,λ1 = 1

tr(Y )
Y , tr(EX,λ1) = 1 and E×2

X,λ1
= 0, so that EX,λ1 ∈

P2(K̃)∩VX . Note that tr(φEX,λ1
(1)) = tr(E)− tr(EX,λ1) = 3− 1 = 2 ̸= 0, so

that φEX,λ1
(1) ̸= 0. By Lemma 1.1 (3), 2EX,λ1 × φEX,λ1

(1) = 2EX,λ1 × (E −
EX,λ1) = 2EX,λ1 × E = tr(EX,λ1)E − EX,λ1 = φEX,λ1

(1) and φEX,λ1
(1)×2 =

(E−EX,λ1)
×2 = E×2−2E×EX,λ1 = E−φEX,λ1

(1) = EX,λ1 . By direct compu-

ations, WX,λ1 =
tr(Z)
2

φEX,λ1
(1)− Z. By Lemma 1.6 (2) (iii) and det(Z) = 0,

2EX,λ1 × Z = 2
tr(Y )

Z×2 × Z = 2
tr(Y )

−1
2
(tr(Z)Y + tr(Y )Z − tr(Y )tr(Z)E +

det(Z)E) = −tr(Z)EX,λ1 − Z + tr(Z)E = −Z + tr(Z)φEX,λ1
(1). Hence,

2EX,λ1 ×Wλ1 = tr(Z)
2

φEX,λ1
(1) + Z − tr(Z)φEX,λ1

(1) = Z − tr(Z)
2

φEX,λ1
(1) =

−WX,λ1 .
(2) Since VX is spanned by E,X,X×2, vX := dimFVX 5 3. If WX,λ1 ̸=

0, then EX,λ1 , φEX,λ1
(1), WX,λ1 are eigen-vectors of L×

2EX,λ1
with different

eigen-values 0, 1,−1, i.e. vX = 3. If WX,λ1 = 0, then X = λ1EX,λ1 +
tr(X)−λ1

2
φEX,λ1

(1) and X×2 = λ1(tr(X)−λ1)
2

φEX,λ1
(1) + ( tr(X)−λ1

2
)2EX,λ1 , so that

VX is spanned by EX,λ1 and φEX,λ1
(1) = E − EX,λ1 , i.e. vX = 2. By Lem-

mas 1.1 (2) and 1.6 (3), L×
2EX,λ1

is a symmetric F-linear transformation on

(VX , (∗|∗)), so that EX,λ1 , φEX,λ1
(1),WX,λ1 are orthogonal as zero or eigen-

vectors of L×
2EX,λ1

with the different eigen-values. By (1) and Lemma 1.1

(4), 0 = 2tr(E×2
X,λ1

) = tr(EX,λ1)
2 − (EX,λ1 |EX,λ1) = 1 − (EX,λ1 |EX,λ1), so

that (EX,λ1 |EX,λ1) = 1 and (φEX,λ1
(1)|φEX,λ1

(1)) = (E|E) − 2(E|EX,λ1) +
(EX,λ1 |EX,λ1) = 3 − 2tr(EX,λ1) + 1 = 2. Because of the orthogonality in
(1), (X|EX,λ1) = λ1, (X|φEX,λ1

(1)) = tr(X) − λ1 and (WX,λ1 |WX,λ1) =

(X|X)+λ2
1+

(tr(X)−λ1)2

2
−2λ1(X|EX,λ1)−(tr(X)−λ1)(X|φEX,λ1

(1)) = (X|X)−
3
2
λ2
1 + tr(X)λ1 − 1

2
tr(X)2 = ∆X(λ1).

Note that ∆X(λ1) = −1
2
{3λ2

1 − 2tr(X)λ1 + tr(X)2 − 2(X|X)} ∈ F is an
invariant on OG(K̃)(X) if λ1 ∈ F is a characteristic root of multiplicity 1 for

X ∈ J3(K̃).

Lemma 3.2. Assume that X ∈ J3(K̃) admits an eigen-value λ1 ∈ F
of multiplicity 1. Put ΦX(λ) ≡ Π3

i=1(λ − λi) for some λ2, λ3 ∈ C with λ1 ̸=



ORBIT DECOMPOSITION 25

λ2, λ3. Then OG(K̃)◦ ∋ λ1E1+
1
2
(tr(X)−λ1)(E−E1)+W for W ∈ J3(K̃)−L×

2E1

such that (W |W ) = ∆X(λ1) = (λ2 − λ3)
2/2 given by ΛX and vX as follows:

(1) When K̃ = K ′ with F = R:

(i-1) W =

√
∆X(λ1)√

2
(E2 − E3) with #ΛX = vX = 3 if ∆X(λ1) > 0;

(i-2) W =

√
−∆X(λ1)√

2
F1(

√
−1e4) with #ΛX = vX = 3 if ∆X(λ1) < 0;

(ii) W = M1′ if ∆X(λ1) = 0 with vX = 3;

(iii) W = 0 if ∆X(λ1) = 0 with vX = 2.

(2) When K̃ = KC with F = C:
(i) W = w√

2
(E2 − E3) for any w ∈ C such that w2 = ∆X(λ1) with #ΛX =

vX = 3 if 0 ̸= ∆X(λ1) ∈ C;
(ii) W = M1 if ∆X(λ1) = 0 with vX = 3;

(iii) W = 0 if ∆X(λ1) = 0 with vX = 2.

Proof. By Lemma 3.1 (1) and Proposition 0.1 (3), αEX,λ1 = E1 for
some α ∈ G(K̃)◦, so that αφEX,λ1

(1) = α(E − EX,λ1) = E − E1. Put

W ′ := αWX,λ1 . Then αX = λ1E1 +
tr(X)−λ1

2
(E − E1) +W ′ with ΦαX(λ) =

Π3
i=1(λ − λi). And 2E1 × W ′ = α(2EX,λ1 × WX,λ1) = −αWX,λ1 = −W ′

by Lemma 3.1 (1), i.e. W ′ ∈ J3(K̃)−L×
2E1

⊂ J3(K̃)σ. By Lemmas 3.1 (2)

and 2.3 (2), ∆X(λ1) = (WX,λ1|WX,λ1) = (W ′|W ′) = (λ2 − λ3)
2/2, which

is determined by ΛX , so that W ′ ∈ S(∆X(λ1)) ∪ {0}. Note that W ′ = 0
(or W ′ ̸= 0) iff WX,λ1 = 0 (resp. WX,λ1 ̸= 0) iff vX = 2 (resp. vX = 3)
by Lemma 3.1 (2). If ∆X(λ1) ̸= 0, then (W ′|W ′) ̸= 0, so that W ′ ̸= 0
and λ2 ̸= λ3, i.e. vX = #ΛX = 3: By Lemma 2.2 (1) (i-1, 2) or (2) (i),
W := βW ′ is given as (1) (i-1, 2) or (2) (i) for some β ∈ (G(K̃)E1)

◦, so that

β(αX) = λ1βE1+
tr(X)−λ1

2
β(E−E1)+W = λ1E1+

tr(X)−λ1

2
(E−E1)+W . If

∆X(λ1) = 0, then (W ′|W ′) = 0, so that W ′ ∈ S2(0, K̃)∪{0}: By Lemma 2.2
(1) (ii, iii) or (2) (ii, iii), W := βW ′ is given as (1) (ii, iii) or (2) (ii, iii) for

some β ∈ (G(K̃)E1)
◦, so that β(αX) = λ1βE1 +

tr(X)−λ1

2
β(E − E1) +W =

λ1E1 +
tr(X)−λ1

2
(E − E1) +W .

Proof of Theorems 0.2 and 0.3 in (1) (i, ii). Let X ∈ J3(K̃) be such as
#ΛX ̸= 1, that is, X admits no characteristic root of multiplicity 3. Since
the degree of ΦX(λ) equals 3 = 1+1+1 = 1+2, there exists a characteristic
root µ1 ∈ C of multiplicity 1. If F ∋ µ1, put λ1 := µ1. If F ̸∋ µ1, then
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F = R ̸∋ µ1, so that ΦX(λ) = (λ − µ1)(λ − µ1)(λ − ν1) for some ν1 ∈ R. In
this case, put λ1 := ν1. In all cases, put ΛX = {λ1, λ2, λ3} with #ΛX = 3 or
2 such that Φ′

X(λ1) ̸= 0 and tr(X) =
∑3

i=1 λi, so that ∆X(λ1) = (λ2−λ3)
2/2

by Lemmas 3.1 (2) and 2.3 (2). By Lemma 3.2 (2) (if K̃ = KC) or (1) (if

K̃ = K ′), αX = λ1E1 +
tr(X)−λ1

2
(E − E1) + W for some W ∈ J3(K̃)−L×

2E1

and α ∈ G(K̃)◦.

(0.2.1) When F = C: K̃ = KC = RC,CC,HC or OC.

(0.2.1.i) The case of #ΛX = 3: Put w := (λ2 − λ3)/
√
2. Then λ2 ̸= λ3.

And ∆X(λ1) = w2 ̸= 0. By Lemma 3.2 (2) (i), vX = 3 and αX = λ1E1 +
tr(X)−λ1

2
(E−E1)+

w√
2
(E2−E3) = λ1E1+

λ2+λ3

2
(E2+E3)+

λ2−λ3

2
(E2−E3) =

diag(λ1, λ2, λ3).

(0.2.1.ii) The case of #ΛX = 2: λ2 = λ3 and ∆X(λ1) = 0.
(0.2.1.ii-1) When vX = 2: By Lemma 3.2 (2) (iii), αX = λ1E1 + λ2(E2 +

E3) = diag(λ1, λ2, λ2).
(0.2.1.ii-2) When vX = 3: By Lemma 3.2 (2) (ii), αX = λ1E1 + λ2(E2 +

E3) +M1 = diag(λ1, λ2, λ2) +M1.

(0.3.1) When F = R: K̃ = K ′ = C ′,H ′ or O′. And λ1 ∈ R, λ2, λ3 ∈ C.
(0.3.1.i) The case of #ΛX = 3:
(0.3.1.i-1) When ΛX ⊂ R: It can be assumed that λ1 > λ2 > λ3 by

translation if necessary. Then ∆X(λ1) > 0. By Lemma 3.2 (1) (i-1), vX = 3
and αX = λ1E1 +

λ2+λ3

2
(E2 + E3) +

λ2−λ3

2
(E2 − E3) = diag(λ1, λ2, λ3).

(0.3.1.i-2) When ΛX ̸⊂ R: {λ2, λ3} = {p ± q
√
−1} for some p, q ∈ R

with q > 0. And ∆X(λ1) = −2q2 < 0. By Lemma 3.2 (1) (i-2), αX =
λ1E1 + p(E2 + E3) + qF1(

√
−1e4) = diag(λ1, p, p) + F1(q

√
−1e4).

(0.3.1.ii) The case of #ΛX = 2: ΛX = {λ1, λ2} with Φ′
X(λ2) = 0. Then

λ2 =
1
2
(tr(X)− λ1) ∈ R and ∆X(λ1) = 0.

(0.3.1.ii-1) When vX = 2: By Lemma 3.2 (1) (iii), αX = λ1E1 + λ2(E2 +
E3) = diag(λ1, λ2, λ2).

(0.3.1.ii-2) When vX = 3: By Lemma 3.2 (1) (ii), αX = λ1E1 + λ2(E2 +
E3) +M1′ = diag(λ1, λ2, λ2) +M1′ .

4. Proposition 0.1 (4) and Theorems 0.2 and 0.3 in (1) (iii).

Assume that K̃ ̸= K, i.e., K̃ = RC,CC,HC,OC;C ′,H ′ or O′. Put
N1(K̃) := (J3(K̃)0)LM̃1

,0 and N2(K̃) := {X ∈ J3(K̃)0| X×2 = M̃1}.
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Lemma 4.1. (1) N2(K̃) j N1(K̃).

(2) N1(K̃) = {M̃1(x) + M̃23(y)| x, y ∈ K̃};
(3) N2(K̃) = {sM̃1 + M̃23(y)| s ∈ F, y ∈ S1(1, K̃)};

Proof. (1) Take X ∈ N2(K̃). Then tr(X) = 0 and tr(X×2) = tr(M̃1) = 0.
By Lemma 1.6 (2) (ii), det(X)X = (X×2)×2 = M̃×2

1 = 0, so that det(X) = 0.
By Lemma 1.6 (2) (iii), X×M̃1 = X×(X×2) = −1

2
(tr(X)X×2+tr(X×2)X−

(tr(X)tr(X×2)− det(X))E) = 0, as required.
(2) (i) Take X = X(r;x) ∈ N1(K

C). Then r1 + r2 + r3 = 0 and that
0 = 2M1×X = 2X(0, 1,−1;

√
−1, 0, 0)×X(r;x) = (r3−r2−2(

√
−1|x1))E1−

r1E2 + r1E3 +F1(−
√
−1r1) +F2(

√
−1x3 − x2) +F3(

√
−1x2 + x3) by Lemma

1.1 (1), that is, x2 =
√
−1x3, r1 = 0, r2 = −r3 = −(

√
−1|x1) = (1|−

√
−1x1)

with x1 =
√
−1(−

√
−1x1), so that X = M1(−

√
−1x1) +M23(x3).

(ii) Take X = X(r;x) ∈ N2(K
′). Then r1 + r2 + r3 = 0 and that 0 =

2M1′×X = 2X(0, 1,−1;
√
−1e4, 0, 0)×X(r;x) = (r3−r2−2(

√
−1e4|x1))E1−

r1E2+r1E3+F1(−r1
√
−1e4)+F2(−

√
−1e4x3−x2)+F3(−x2

√
−1e4+x3) by

Lemma 1.1 (1), that is, x2 = −
√
−1e4x3, r1 = 0, r2 = −r3 = −(

√
−1e4|x1) =

(1|
√
−1e4x1) with x1 = (

√
−1e4)

2x1 =
√
−1e4(

√
−1e4x1), so that X =

M1′(
√
−1e4x1) +M2′3(x3).

(3) (i) Take X ∈ N2(K
C). By (1), X ∈ N1(K

C). By (2), X = M1(x1) +
M23(x3) for some x1, x3 ∈ KC, so thatX×2 = M1(x1)

×2+2M1(x1)×M23(x3)+
M23(x3)

×2 =
√
−1{(x1|1)2−N(x1)}E1−F2(

√
−1(x1−(x1|1))x3)−F3(x3(x1−

(x1|1))) +N(x3)M1. Hence, X
×2 = M1 iff N(x3) = 1 and x1 = (x1|1) ∈ RC,

i.e. (x1, x3) = (s, x) for some (s, x) ∈ RC × S1(1, K
C).

(ii) Take X ∈ N2(K
′). By (1), X ∈ N1(K

′). By (2), X = M1′(x1) +
M2′3(x3) for some x1, x3 ∈ K ′, so that X×2 = M1′(x1)

×2 + 2M1′(x1) ×
M2′3(x3)+M2′3(x3)

×2 = (N(x1)− (x1|1)2)E1−F2(((x1− (x1|1))
√
−1e4)x3)+

F3(−(x3

√
−1e4)(x1

√
−1e4) + (x1|1)x3) + N(x3)M1′ . Hence, X×2 = M1′ iff

N(x3) = 1 and x1 ∈ R, as required.

Lemma 4.2. N2(K̃) = O(G(K̃)◦)M̃1

(M̃23).

Proof. (1) Take any X ∈ N2(K
C). By Lemma 4.1 (3), X = sM1+M23(x)

for some s ∈ RC and x ∈ S1(1, K
C). Put x =

∑dK−1
i=0 ξiei with ξi ∈ RC and

xv :=
∑dK−1

i=1 ξiei such that xv = −xv.
(Case 1) When ξ0 = 0: By xv = x ∈ S1(1, K

C), xx = −xx = −1. By
Lemma 1.4 (2) (ii), δ1(x)X = s(E2 −E3 − F1(

√
−1))− F2(

√
−1) + F3(1), so

that σ3δ1(x)X = sM1 + M23. By Lemma 1.4 (1) (iii), β23(t)(σ3δ1(x)X) =
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(2t + s)M1 + M23 = M23 if t = −s/2 with β23(−s/2) ∈ (G(KC)◦)M1 and
(β23(−s/2)σ3δ1(x))M1 = β23(−s/2)(M1) = M1, as required.

(Case 2) When ξ0 ̸= 0: Put Y := β23(−s/(2ξ0))X with β23(−s/(2ξ0)) ∈
(G(KC)◦)M1 . By Lemma 1.4 (1) (iii), Y = M23(x).

(i) When xv = 0: ξ20 = (x|x)− (xv|xv) = 1− 0 = 1, x = ξ0 = ±1 and Y =
M23(±1) = ±M23, so that Y = M23 or σ1Y = M23 with σ1 ∈ (G(KC)◦)M1 .

(ii) When xv ̸= 0 with dK = 4: Then dK − 1 = 3. If ξ21 + ξ2j = 0 for
all j ∈ {2, · · · , dK − 1} and ξ22 + ξ23 = 0, then −ξ21 = ξ22 = ξ23 = · · · =
ξ2dK−1 = 0, that is, xv = 0, a contradiction. Hence, ξ2i + ξ2j ̸= 0 for some
i, j ∈ {1, · · · , dK − 1} with i ̸= j. Take c ∈ RC such that c2 = ξ2i + ξ2j .
Put a := (ξjei − ξiej)/c, so that −a = a ∈ S1(1, K

C) and (a|x) = 0. Put
y := xa. Then (y|1) = (a|x) = 0 and σ3δ

a
1Y = F2(

√
−1y) + F3(y) with

σ3δ
a
1 ∈ (G(KC)◦)M1 . According to the (Case 1), β(σ3δ

a
1Y ) = M23 for some

β ∈ (G(KC)◦)M1 .
(iii) When xv ̸= 0 with dK 5 4: By Lemma 1.4 (2) (iii), β1(x)Y = M23

with β1(x) ∈ (G(KC)◦)M1 .
(2) Take any X ∈ N2(K

′). Then X = sM1′ +M2′3(x) for some s ∈ R and
x ∈ S1(1, K

′) by Lemma 4.1 (3). Take p, q ∈ K ′
τ such that x = p+ q

√
−1e4,

so that pp − qq = N(x) = 1. Note that
√
−1e4x = q + p

√
−1e4, and that

x(
√
−1e4x) = (p+ q

√
−1e4)(q + p

√
−1e4) = p(q + q) + (q2 + pp)

√
−1e4.

(Case 1) When (
√
−1e4x|1) = 0: Then q + q = 2(q|1) = 0. By q = −q,

q2 + pp = pp − qq = 1, so that x(
√
−1e4x) =

√
−1e4 and x

√
−1e4x =

−x
√
−1e4x = −

√
−1e4 =

√
−1e4. By Lemma 1.4 (2) (ii), δ1(x)M1′ = E2 −

E3 + F1(x
√
−1e4x) = M1′ and δ1(x)X = sM1′ + F2(−x

√
−1e4x) + F3(xx) =

sM1′ +M2′3. By Lemma 1.4 (1) (iii), β2′3(−s/2)(sM1′ +M2′3) = M2′3 with
β23′(t) ∈ (G(K ′)◦)M1′ .

(Case 2) When (
√
−1e4x|1) ̸= 0: Then (

√
−1e4|x) = −(1|

√
−1e4x) ̸= 0.

By Lemma 1.4 (1) (iii), β23′(−s/(2(
√
−1e4|x)))X = M2′3(x) with β2′3(t) ∈

(G(K ′)◦)M1′
. Note that q + q = 2(

√
−1e4|x) ̸= 0, so that q ∈ K ′

τ and q ̸= 0.
(i) When dK′ = 4: By dimRK ′

τ = dK′/2 = 2, there exists q1 ∈ K ′
τ such

that (q|q1) = 0, so that (
√
−1e4(xq1)|1) = −(xq1|

√
−1e4) = −(q1|x

√
−1e4) =

(q1|
√
−1e4x) = (q1|q) = 0. Put a := q1/

√
N(q1) ∈ S1(1, K

′). Because of
(
√
−1e4a|1) = 0, δ1(a)M1′ = M1′ as well as (Case 1), so that N2(K

′) ∋
δ1(a)M2′3(x) = M2′3(xa) with xa ∈ S1(1, K

′) such that (
√
−1e4(xa)|1) = 0.

Then δ1(a)M1′ = M1′ and δ1(xa)M2′3(xa) = M2′3 as well as (Case 1).
(ii) When dK′ 5 2: Then K ′ = C ′, so that x ∈ S1(1,C

′). By Lemma 1.4
(2) (iii), β1(x) ∈ (G(C ′)◦)M1′

such that β1(x)M2′3(x) = M2′3.
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Proof of Proposition 0.1 (4) (ii). Take any X ∈ M23(K̃). By Lemma 1.6
(5), X×2 ∈ M1(K̃). By Proposition 0.1 (4) (i), there exists α ∈ G(K̃)◦ such
that M̃1 = α(X×2) = (αX)×2, so that αX ∈ N2(K̃). By Lemma 4.2, there
exists β ∈ (G(K̃)◦)M̃1

such that β(αX) = M̃23, as required.

Proof of Theorems 0.2 and 0.3 in (1) (iii). Take any X ∈ J3(K̃) with
#ΛX = 1 such as ΛX = {λ1}. By Lemmas 1.2 (1) and (3), X = λ1E +X0

with some X0 ∈ {0} ∪M1(K̃) ∪M23(K̃).
(iii-1) When X0 = 0: X = λE and vX = dimFVX = dimF{aX× + bX +

cE| a, b, c ∈ F} = dimF{cE| c ∈ F} = 1.
(iii-2) When X0 ∈ M1(K̃): By Proposition 0.1 (4) (i), there exists α ∈

G(K̃)◦ such that αX = λ1E+ M̃1. By Lemma 1.1 (3) with M̃×2
1 = tr(M̃1) =

0, one has that (αX)×2 = λ2
1E−λ1M̃1, so that vX = dimF{a(αX)×2+bαX+

cE| a, b, c ∈ F} = dimF{(aλ2
1 + bλ1 + c)E + (b− aλ1)M̃1| a, b, c ∈ F} = 2.

(iii-3) When X0 ∈ M23(K̃): By Proposition 0.1 (4) (ii), there exists
α ∈ G(K̃)◦ such that αX = λ1E + M̃23. By Lemma 1.1 (3) with M̃×2

23 = M̃1

and tr(M̃23) = 0, one has that (αX)×2 = λ2
1E − λ1M̃23 + M̃1, so that vX =

dimF{a(αX)×2 + bαX + cE| a, b, c ∈ F} = dimF{(aλ2
1 + bλ1 + c)E + (b −

aλ1)M̃23 + aM̃1| a, b, c ∈ F} = 3.
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