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Orbit decomposition of Jordan matrix algebras
of order three under the automorphism groups

Akihiro Nishio and Osami Yasukura

* Abstract. The orbit decomposition is given under the automorphism
group on the real split Jordan algebra of all hermitian matrices of order three
corresponding to any real split composition algebra, or the automorphism
group on the complexification, explicitly, in terms of the cross product of
H. Freudenthal and the characteristic polynomial.

0. Introduction.

Let J’ be a split exceptional simple Jordan algebra over a field F of
characteristic not two, that is, the set of all hermitian matrices of order three
whose elements are split octonions over ' with the Jordan product. And let
G’ be the automorphism group of J’. N. Jacobson [16, p.389, Theorem 10]
found that X,Y € J’ are in the same G’-orbit if and only if X,Y admit
the same minimal polynomial and the same generic minimal polynomial, by
imbedding a generating subalgebra with the identity element E in terms of
the Jordan product into a special Jordan algebra. When F = R, the field of
all real numbers, some elements of J’ are not diagonalizable under the action
of G' = Fyuy, since J' admits a G'-invariant non-defnite R-bilinear form such
that the restriction to the subspace of all diagonal elements is positive-definite
[19, Theorem 2], although every element of J’ is diagonalizable under the
action of a linear group Eg) containing Fy4) on J' by [15] (cf. [17]) or under
the action of the maximal compact subgroup Sp(4)/Z; of Ege) on J' given
by [22].

This paper presents a concrete orbit decomposition under the automor-
phism group on a real split Jordan algebra of all hermitian matrices of order
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three corresponding to any real split composition algebra, or the complexifi-
cation of it, that is special or exceptional as a Jordan algebra. As a result,
X,Y € J' are in the same G’-orbit if and only if X, Y admit the same dimen-
sion of the generating subspace with E by the cross product [8] and the same
characteristic polynomial, which gives a simplification for N. Jacobson [16]’s
polynomial invariants on G’-orbits when F = R or the field of all complex
numbers C. To state the main results more precisely, let us give the precise
notations:

Put F:=Ror C. Let V be an F-linear space, and Endg(V') (or GLg(V))
denote the set of all F-linear endomorphisms (resp. automorphims) on V.
For a mapping f : V — V and ¢ € F, put V. := {v € V| f(v) = cv} and
Vi1 = V;. For a subgroup G of GLp(V'), let G° be the identity connected
component of G. For v € V and a mapping ¢ : V. — V, put Og(v) =
{a()] a € G}, Gy :={a € G| a(v) =v} and G? := {a € G| poa = ao ¢}.
For a subset W of V, put Gy := {a € G| {aw| w € W} = W}. For positive
integers n, m, let M (n, m; V') be the set of all nxm-matrices with entriesin V.
Put V" := M(n,1;V),V,, := M(1,m;V) and M, (V) := M(n,n;V). Since
V' can be considered as an R-linear space, the complexification is defined
as VC .=V ®@r C =V @ +/—1V with an R-linear conjugation: 7 : V¢ —
VE v 4+ V=1vy = vy — vV/—1vy (v, € V). For any o € Endg(V), put
a® : VE — V& + V=1 = (av1) + v—1(avy) such that a®r = 7aC,
which is identified with o € Endg(V): a = .

By W.R. Hamilton, the quaternions is defined as an R-algebra H :=
@3 Re; given as ege; = ejeg = €5, €2 = —eo (1 € {1,2,3}); erery1 =
—egr1€r = exro (where k, k+ 1,k + 2 € {1,2,3} are counted modulo 3) with
the unit element 1 := ¢y and the conjugation Z?:o Ti€; = Tpey — 22:1 TCh,
which contains the complex numbers C := Rey @ Re; and the real numbers
R := Req as R-subalgebras. By A. Cayley and J.T. Graves, the octanions is
defined as a non-associative R-algebra O := H & He, given as follows [4]:

(z @ yes) (2’ B y'es) = (w2’ —y'y) & (ya’ + y'x)es

with the R-linear basis {e;| i = 0,1,2,3,4,5,6,7}, where the numbering
is given as e; 1= ejey, €5 1= —egey, €7 1= ezey after [26, p.127], [5, p.20]
or [20]. Put H := C® Cey and C := R @ Rey. For K := O,H,C R,
put dg := dimgK. And put /-1 := ¢y ® e; € K¢ := K ® C with the
identification K = K ® ¢y C K. Then K€ = K @ /-1K is split (i.e. non-
division) as a C-algebra with 7 : K€ — K€ 24+v/—1y — 2—/~1y (z,y € K)
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as the complex conjugation with respect to the real form K. Put

7 3 7
v ot — O(C; g xTie; > g Tie; — E x;e;; and
i=0 i=0 i=4
7 7
. C C...._ 7o
€:0°"— 0"z := Tie; — T = Tog— T;€;
i=0 i=1

as C-linear conjugations with respect to H® and R®, respectively. And a C-
bilinear form are defined on OF as (zly) := (xg+77)/2 = Y1, ziys € C. The
restrictions of «, € and (z|y) on K© are also well-defined and denoted by the
same letters. Then K© is a composition C-algebra with respect to the norm
form given by N(x) := (z|x) [5, §1.3], because of N((x @ yes)(x’ ® y'eq)) —
N(z®yes)N (2’ @y'es) = 2€{(ya'ly'z) — (xa'ly'y) } = 2(y' (y2") — (y'y)a’| ) = 0
since H® is an associative composition algebra with respect to N [3, §6.4].
And K = (K®), is a division composition R-algebra with the norm form
N(zx) such that a=! = a/N(a) for a # 0.

Put K’ := (K®),, as a composition R-algebra with the norm form N(z)
such that (K'), = K, = (K'), = K' N K. Precisely, O' = {30 x;e; +
S wiv/—le| 7, € R} is the R-algebra of the split-octanions containing
the R-subalgebra H' = {3 _ zie; + S0, wi/—le;| x; € R} of the split-
quaternions and the R-subalgebra C' = {x¢ + z4v/—1le4| z; € R} of the
split-complex numbers such that O'NO =H, HNH = C and C'NC =R.
Then K'® = K' & v/—1K' = K€ as a C-subalgebra of OF.

Put K := K, K’ (or K'®, K©) with F := R (resp. C) and d := dimpK.
For A € M, (K) with the (4, j)-entry a;; € K, let *tA, 7A, eA € M,(K) be the
transposed, T-conjugate, e-conjugate matrix of A such that the (i, j)-entry is
equal to aj;, 7(a;j), €(a;;), respectively, with the trace tr(A) := 3"  a; € F,
and the adjoint matrix A* := *(eA) € M,(K). Let denote the set of all
hermitian matrices of order three corresponding to K as follows:

J3(K) = {X € M3(K)| X* = X}

with an F-bilinear Jordan algebraic product X oY := (XY +Y X)), the iden-
tity element E := diag(1,1,1) and an F-bilinear symmetric form (X|Y) :=
tr(X oY) € F. After H. Freudenthal [8] (cf. [7, (7.5.1)], [25], [14], [16, p.232,

(47)], [28]), the cross product on J3(K) is defined as follows:



ORBIT DECOMPOSITION 4

XXY :=XoY — %(tr(X)Y +tr(Y)X — (tr(X)tr(Y) — (X|Y))E)

with X*? := X x X as well as an F-trilinear form (X|Y|2) := (X x Y|Z)
and the determinant det(X) := 1(X|X|X) € F on J3(K) (ct. [9, p.163)).
Put E; := diag(d;1, di2, ;3) for i € {1,2,3} with the Kronecker’s delta ¢;;.
For x € f(, put

0 0 0 0 0 = 0 =z 0O
Fi(x):={0 0 x|, FR(x):=(0 0 0], Fs3(x):=[Z 0 O
0z O z 0 0 0 00

For x € K€ =RC C® HF or O, put M,(z), Mos(x) € J5(KC) such as

M (z) := (x[1)(Ey — Fs) + Fy(vV/—1x), Mas(z) := Fo(v/—17) + F3(x)

with M1 = Ml(]_), M23 = Mgg(l) For = € K = C/,H/ or O/, put
My(x), Mos(x) € J3(K') such as

Mll(l') = (fﬂ‘l)(Eg — Eg) -+ Fl(\/ —1€4$), M2/3<£C> = FQ(—\/ —1645) + Fg(l')
with My, := My/(1), Myg := My3(1). For z € f(, let denote

M, (x) :== My(z) (when K = K©) or My/(z) (when K = K'),
Mos(x) == Mas(x) (when K = K©) or Mys(z) (when K = K');
M, := M, (when K = K€) or My (when K = K'),

Mg := Moy (when K = K©) or Mys (when K =K.

And denote
Py(K) = {X € J3(K)| X** =0, tr(X) =1},
Ja(fQ = {X € J(K)| tr(X) =0},

M (R) = (X € B(R)o| X £0, X< =0},
Mos(K) :={X € T5(K)o| X*?#0, tr(X*?) = det(X) = 0}.
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When K = K, Po(K ) has a structure of Moufang projective plane [9, p.162,
4.6, 4.7], the algebraization method of which motivates to define the cross
product on J3(K) for any K. The automorphism group of J3(K) with
respect to the F-bilinear Jordan product X oY is denoted as follows:

G(K) = Aut(J5(K)) = {a € GLp(T(K))| a(X oY) = aX oaY},

which is a complex (resp. compact; real split) simple Lie group of type (F})
(resp. (Fir_s2)); (Fia)) when K = O' = OF (resp. O; O') by C. Chevalley
and R.D. Schafer [2] (resp [7], [9, p.161], [20, p.206, (2) (3)]; [29]). When
K =R, C or H, the group G(K) is a simple Lie group of type (A;), (A3) or
(C3), respectlvely (cf. ]9, p.165]). Put v : j;»,( K) — B(K); X — vX such
that vX 1= 37 (§E;+ Fy(vyx;)) for X = 37 1(£ZE + Fi(z;)) € J5(K). Put
7 B(K) — J3(K); X = 7X suchas 7X := 30 ((7&)Fi+F,(tx;)). Then
7 € GLg(J3(K)) such that 7(X oY) = (1X)o(7Y),7(X xY) = (X)) x (1Y),
tr(7X) = 7(tr(X)), (7X|7Y) = 7(X]Y) and det(7X) = 7(detX), and that

= id, (K) = J5(K)» @ Js(K)_ and J3(K€)_, = v—1J3(K), so that
G(K)={a% a € G(K)} = GK®)".

For X € J3(K) and the indeterminate A, put ¢x(\) :== AE — X. Then
the characteristic polynomial of X is defined as the polynomial ®x(\) :=
det(¢x (X)) of A with degree 3 and the derivative @y () is £ Py (), so that
Ox(A) = (A — M)A = A)(A — A3) with some A\, Ao, A3 € C. In this case,
the set {A1, A2, A3} is said to be the characteristic roots of X. Put Ay =
{1, A2, A3} € C with #Ax € {1,2,3} and Vx := {aX*? +bX + cE| a,b,c €
F} with vy := dimVy € {1,2.3}.

PROPOSITION 0.1. Let K be K, K’ or K€ with K =R,C, H or O.
(1) G(K) € {a € GLp(J(K))| tr(aX) = tr(X), aFE = E}. And

G(K) = {a € GLp(J3(K))| det(aX) = det(X), aE = E}
= {ae GLF(%({Q)I x(A) = Px(A)}
= {a € GLy(J(K))| det(aX) det(X), (aX|aY) = (X|Y)}
= {a e GLp(JH(K)| (X xY) = (aX) x (aY)}.

Especially, Aox = Ax and vox = vx for all X € Jg(f() and « € G(IN().
(2) G(K)" is a mazimal compact subgroup of G(K). And ~ € G(K)%l,EQ,Eg'
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(3) P2(f() = OG’(K)O(El)a

(4) Assume that K+#K,ie, K=R" Ct H® 0%C' H orO. Then:
() My(K) = O (V1)
(il) Ma3(K) = Og e (Mas).

THEOREM 0.2. Let K€ be RC,C%, H or OF. Then the orbit decompo-
sition of J3(K®) over G(K®) or G(K®)° is given as follows:
(1) Take X € J3(KC). Then #Ax = 3,2 or 1.
(i) Assume that #Ax = 3 with Ax = {1, A2, A\3}. Then diag(Ai, A2, \3) €
Oc(kcy (X) with vx = 3.
(ii) Assume that #Ax = 2 with Ax = {1, A2} such that Oy (X)) = 0. Then
vx = 2 or 3. Moreover:

(ii-1) vx = 2 4ff diag(A1, A2, A2) € Og(rey(X); and

(ii-2) vx = 3 iff diag(A1, A2, A2) + My € Ogxeye (X).
(iii) Assume that #Ax =1 with Ax = {\}. Then:

(iii-1) vx = 1 iff ME € Ogxeys (X);

(iii-2) vy = 2 iff ME + My € Og k) (X); and

(iii-3) vx = 3 iff M E + Mag € Ogxecye (X).
(2) For X,Y € J3(K©), Ockcye (X) = Ogreye(Y) iff Ax = Ay and vx =
vy. For any X € J3(K©), O(X) := Og(xcy(X) = Ogxe)(X) and O(X) N
J3(RT) £ 0.

THEOREM 0.3. Let K' be C', H' or O'. Then the orbit decomposition of
J3(K'") over G(K") or G(K")° is given as follows:
(1) Take X € J5(K'). Then #Ax = 3,2 or 1.
(i) Assume that #Ax = 3. Then vy = 3. And Ax = {1, Ao, A3} for some
A1 € R and Mg, A3 € C such that Ax C R or {\y, A3} = {p £ ¢/—1} with
some p € R and ¢ € R\{0}. Moreover:

(1—1) ]f AX C R with Ay > Xy > )\3, then diag(/\l,/\g,/\g) c Og(K/)o(X),'
and

(i-2) If {2, A3} = {p £ qV—1} with some p,q € R such that ¢ > 0, then
diag(A1,p,p) + Fi(gv—1es) € Ogiryo (X).
(i) Assume that #Ax = 2 with Ax = {\1, A2} such that 'y (\y) = 0. Then
A, A2 €ER and vy =2 or 3. Moreover:
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(ii-1) vx = 2 iff diag(A1, A2, A2) € Og(rrye(X); and
(i-2) vy = 3 iff diag(A1, A, Ao) + My € Ogrene (X).
(iii) Assume that #Ax =1 with Ax = {\}. Then A\ € R. Moreover:
(iii-1) vy = 1 iff ME € Ogzene(X);
(iii-2) vx = 2 iff ME + My € Ogkrye(X); and
(iii-3) vy = 3 iff ME + My € Ogere (X).
(2) For X,Y € J3(K'), Ogkeye(X) = Ogrey(Y) iff Ax = Ay and vx =
vy. For any X € J5(K'), O(X) = Ogkry(X) = Ogxy(X) and O(X) N
J5(C") # 0.

By Proposition 0.1 (1), Ax and vx are invariants on Ogg)(X), so that
the Theorems 0.2 (2) and 0.3 (2) follow from Theorems 0.2 (1) and 0.3 (1),
respectively. Hence, this paper is concentrated in proving Theorems 0.2 (1)
and 0.3 (1) with Proposition 0.1.

Note that the second equality of Propositoin 0.1 (1) was obtained by
N. Jacobson [13, Lemma 1] in a more general setting (cf. [24, p.159, Propo-
sition 5.9.4, §5.10]). In §1, by Lemma 1.2, it appears that the characteristic
polynomial ®x(\) of X equals the generic minimal polynomial of X defined
by N. Jacobson [16, p.358 (5)]. By Lemma 1.6 (3), it appears that vx equals
the degree of N. Jacobson [16, p.389, Theorem 10]’s minimal polynomial for
X € J5(K) with respect to the Jordan product.
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Let 7,14+ 1,74+ 2 € {1,2,3} be the indices counted modulo 3. Then

E.oE, = E, EioEiy =0,

{ E; o Fi(z) =0, Eio Fj(z) = 5Fj(x) (i # j),
Fi(z) o Fi(y) = (z|y)(Eis1 + Eiys), Fi(x) o Fiy1(y) = 3F42(77);
E; x E; =0, E; x By = 3Ei40,

{ Ei x Fi(x) = —3F(z),  Eix Fi(x) =0 (i # j),

Fi(z) x Fi(y) = —(z|y)Ei, Fi(z) x Fiy1(y) = 3 F12(T7)

for any z,y € K. And

M (x) x Mi(y) = vV=1{(z[1)(y|1) — (z]y)} B,
Mi(z) x Mas(y) = ~ 3 {F(V=1(7 ~ (1))7) + Fy(y(@ — ()},
May(x) x Mag(y) = (xy) My, My = My*; and
M () x Mu(y) = {(aly) ~ (1) 61} By,
Moy (2) % Mas(y) = 5{Fs(~(@EVTea)y + (a] )y ~Teap)

+ F3(—(yv/—Ted)(TV—Teq) + (z[1)y)},
Moy () x Moy (y) = (xly) My, My = My,

)
)

Let denote X(r; x) := S B+ Fi(x;) for any v = (r1,79,73) € F3
and x = (x1, 29, 23) € K3. f Y =X(r;2) € J5(K), put (Y)g, = YI|E) =
and (Y)g, := (Y|Fi(1))/2 = ;.

LeEMMA 1.1. (1) Leti,i+1,i+2 € {1,2,3} be counted modulo 3. Then
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3

1
X(r;z) x X(s;y) = 2 Z{(Tz‘+18i+2 + Sip1Tiv2 — 2(wilyi)) B

i=1
+ Fi(Tit1Yiv2 + Yir1Tiva — 7Y — Sii) };

3
(X(rs2)[X(s19)) = D (risi + 2(xilyy)):

=1

(X(r; 2)[X (5 9)[X(u; 2)) = (X(r;2) [ X(s7y) x X(u; 2))
: T —
= Z{E(Si—&-lui—ﬂ + Uit1Siv2) + (TilYir12iv2 + 2iv1Yiv2)
i=1
— ri(yilzi) — si(zilzi) — wiyl i) };
3
det(X(r;z)) = rirers + 2(Ti|Tip1Tiga) — erN(:vj) for i € {1,2,3}.
j=1
(2) For X,Y,Z € J5(K), all of X oY, (X|Y), X xY, (X 0 Y|Z) and
(X|Y|Z) are symmetric. And (X|Y') is non-degenerate.
(3) 2E x X = tr(X)E — X = px(tr(X)). FEspecially, E** = E and
2F x X*2 = tr(X*?)E — X% = pxxa (tr(X*?)).
(4) (XY|E) = tr(X x V) = 3(tr(X)tr(Y) — (X[Y)).

Proof. (1) follows from the definitions except the 3rd equality, which is
proved by [5, p.15, 3.5 (7)] as follows:

(X(r; 2) X (55 9)|X(u; 2)) = Z{ui(ri+15i+2 + Sit1Tiv2)/2

i=1
+ (Bl Yive + Yir1Tiv2) — wil@ilys) — ri(yilzi) — si(@il2i)}
3
= Z{(Ui+27’z’+35i+4 + Ui 18i42Tit3) /2
i=1
+  (Tigs Zig|Vita) + (Bt Tigs|Yire) — wilws|ys) — ri(vilzi) — si(xilzi)}
3
= Z{Ti(5i+1uz‘+2 + ui+18i+2)/2 + (Ti|yz'+1zi+2 + Zit1Yiv2)
i=1

— ri(yilzi) — si(zilwi) — wiyale:)}
= (X(r;2)|X(s;9) x X(u; 2)).
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(2) follows from the definitions or (1). (3) follows from direct computations.
(4) follows from the definitions of (X|Y|Z) and X x Y. O

For X € J(K), put Ax(\) := —1{3)\% — 2tr(X)\ + tr(X)? — 2(X|X)},
which values in F (or C) if A € F (resp. C).

LEMMA 1.2. (1) dx(A) = A3 — tr(X)A\2 + tr(X*?)\ — det(X) with F 3
tr(X) = A+ Ao+ A3, tr(X*2) = Mg + Aads + A3)g, det(X) = Ada)s if
Ax = {1, Ao, A3} C C for X € Jy(K).

(2) @4 (N) = 3A2 — 2tr(X)A + tr(X*2) = tr(px(\)*2) = —2Ax(\) —
ster(X)? = 3(X[X)}.

(3) Put M(K) == {X € J3(K)o| X #0, ©x(\) = X*}. Then M(K) =
{X € J3(K)o| X # 0,tr(X*?) = det(X) = 0} = My (K) U Mys(K) with
M(K)NMa3(K) = 0. And {X € J5(K)| #Ax = 1} = FE®({0}UM(K)).

Proof. (1) ®x()\) = 3(AE—X|\E—X|AE—X), which equals the required
one by Lemma 1.1 (2, 3) and ®x(A) = (A — A1) (A — X)) (A = A3).

(2) The first equality folllows from (1). By Lemma 1.1 (3), ox(A\)** =
(AE — X)*?2 = N2F — (tr(X)E — X)A + X*2 so that tr(px(\)*?) = 3\% —
2tr(X)A + tr(X*2). And 3M\% — 2tr(X)A + tr(X*?) = —2A ¢ (\) — H{tr(X)? —
3(X|X)} by the second equality of Lemma 1.1 (4).

(3) The first claim follows from (1). For X € J5(K), put X := X -
Hr(X)E € J3(K)o. Then X = Ltr(X)E+Xo, so that J5(K) = FE®J5(K)o.
If x(A) =TI (A= \;), then ®x,(A) = det((A+ 3tr(X ))E— X) =11, (A +
$tr(X) — X)), so that ®x,(A) = N & r(X) — N = 06 = 1,2,3) &
A= A = A3 & #Ax = 1, because of tr(X) = Zi:l Ai by (1). Hence,
(X € Ty(R)| #Ax = 1} = FE & ({0} UM(K)). .

Let V' be an F-algebra with the multiplication zy of z,y € V. For x € V,
put an F-linear endomorphism on V, L, : V — V;y — xy, as the left
translation by x. And put the automorphism group of V' as follows:

Aut(V) :={a € GLp(V)| a(zy) = (az)(ay); z,y € V}.

LEMMA 1.3. (1) Let V be an F-algbra. Assume that o € Aut(V'). Then
trace(L(ag)) = trace(L;), det(Lias)) = det(Ly) for all x € V. If moreover
V' admits the identity element e, then ae = e.
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(2) Let L and LY be the left translations by X € J3(K) on J5(K)
with respect to the product o and the cross product X, respectively. Then
trace(L%) = (dx + 1) tr(X) and trace(Ly) = Stdx tr(X).

Proof. (1) For z,y € V and a € G(V), Ly = (az)y = a(z(aly)) =
(aLza )y, ie. Ls = alya™', so that trace(L(..)) = trace(L,) and
det(L(ag)) = det(L,) as an F-linear endomorphism on V. Assume that ex =
xe = x for any z € V. Take a € Aut(V). Then (ae)(az) = (ax)(ae) = ax,
so that (ae)y = y(ae) =y for all y € V. In particular, ae = (ae)e = e.

(2) {E;, Fi(ej/\/§)| i=1,2,3;7=0,---,dg — 1} forms an orthonormal
basis of (J3(KC), (¥[*)) by Lemma 1.1 ( ) And L% and L% can be identified
with a C-linear endomorphlsm on J5(K®) = jg( )or C®J5(K). By Lemma
11 (1, 2), trace(L5) = 320, {(X 0 BE:) + £ 3205 (X 0 Fife;)| Fi(e;)} =

> 1{(X|E o Ei) + 3305 1(X!F@])oF(eJ))}—Zz !
{(XIE) + 5355 1(X |Eiy1 + Eip2)} = (dic + 1) te(X); and trace(Ly) =

ZZ A X By Bi) + 3 3055 (X x F(eg)\F(ea))} = S A(XIB x B) +
5225 (X Fi(e) XF(eg))} Y13 gt (X - B) = SHdetr(X). O

Proof of Proposition 0.1 (1). The first claim follows from Lemma 1.3
(1)(2). For the second claim, since det(X) is defined by X o X, tr(X) and E,
the first equality is recognized as the inclusion €. By ®x(\) = det(A\E — X),
the 2nd equality is recognized as the inclusion &. By Lemmas 1.1 (4) and
1.2 (1), the 3rd equality is recognized as the inclusion €. By polarizing
3det(X) = (X|X|X) with Lemma 1.1 (2), the 4th equality is recognized as
the inclusion €. Assume that o € GLg(73(K)) and (aX)x (oY) = a(X xY)
for all X,Y € J5(K). By Lemma 1.3, tr(aX) = tr(X). By Lemma 1.1 (4),
(XY) = tr(X)tr(Y) — 2tr(X x Y), so that (aX|aY) = (X[|Y). By the
definition of x, (X o Y|Z) = (X x Y|Z) + (tr(X)(Y|Z) + tr(Y)(X]|2Z) —
(tr(X)tr(Y) — (X|Y))tr(Z2))/2, so that ((aX) o (aY)|aZ) = (X o Y|Z) for
all X,Y,Z € J3(K). By Lemma 1.1 (2), o' ((aX) o (aY)) = X oY, that is,
o € G(K). Hence, all of the equations of the second claim follow. The last
claim follows from these equations.

Proof of Proposition 0.1 (2). Note that 7y = y7, vE; = E;, vE = FE and
det(yX(r;x)) = det(X(r;z)) by Lemma 1.1 (1), so that v € G(I?)EI’EQ’&.
By Proposition 0.1 (1), the last claim follows. For the first claim, put <
X|Y >= (7X|Y) € F for X,Y € J3(K), which defines a positive-definite
symmetric (or hermitian) 2-form on J3(K’) (resp. J3(K®)) over R (resp.
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C) by Lemma 1.1 (1). For a € G(K), o* € GLp(J5(K)) is defined such
that < aX|Y >=< X|a*Y > for all X,Y € J5(K). By (1), < X|a*Y >=
(taX|Y) = 7(aX|7Y) = 7(X|a"'7Y) =< X|ra™'7Y >, so that a* =
Ta~'r € G(K) because of (1) by det(a*X) = rdet(a” TX) = 72det(X) =
det(X) and a*E = 7o '7E = E. Then G(K) = G(K)™ x R as a polar
decomposition of C. Chevalley [1, p.201] (resp. [12, p.450, Lemma 2.3]), so

that G(K)" is a maximal compact subgroup of G(K). O

For i € {1,2,3} and a € K, put B(a) : Js(K) — J(K);X(r;z) —
X(s;y) such that s; := 0,s;11 := 2(a|z;), site == —2(alz;),y; == —(riz1 —
Tiy2)@, Yiy1 = —Ti20,Yir2 = aTi11, where i,7 4+ 1,i +2 € {1,2,3} are

counted modulo 3. Then exp(tB;(a)) € (G(K)g,)° for t € F. In fact, s; =
Sit1 = Sino = Yi = Yir1 = Yire = 0if X(r;2) = E; or E. Put X = X(r;x).
By Lemma 1.1 (1), (Bi(a)X|X|X) = (Bi(a)X|X*?) = 2{(a|x;)(ritor; —
N(@iy1) =riripr + N(Tiga)) = (rig1 — rige) (@|TiaTive — 1i%:) — (Ti320| TigaTi —
rit1Zit1) + (@Tia|TiZin — rivetive)} = 0, so that exp(tBi(a)) € (G(K)g,)°
for all ¢ € F by Proposition 0.1 (1), as required. Note that B;(a) is nothing
but A? given in H. Freudenthal [7, (5.1.1)].

For v € {1,v/—1}, put C,(t) := (e +e7"")/2, S,(t) :== ("' —e ") /(2 )
as F-valued functions of ¢ € F. Then (C,(t),S,(t)) = (cosh(t ) sinh(t)) o
(cos(t),sin(t)) if v =1 or /—1, respectively. Note that

TCy(t) = Cu( )7 <t> = Sl/( )7
Cy(t1)Cy(t2) + v°S, (1) S, (t2) = Cy (t1 + t2),
=128,(t), S,(t) = Cu(t),
Sy (t1)Cy(t2) + Cu(t1) S, (t2) = Su(t1 + t2),
C'(0) =0, S0)=1, C,(2t) =1+ 225%(¢).

For i € {1,2,3},t € F, a € K and v € {1,v/—1}, put Bi(t;a,v) :
T3(K) — T3 (K ),X(T’;x) — X(s;9) such that

;

S; = Ty,

Sipr = DL G BSNECL(00) - (af;) S, (2),
Sipp 1= TR - BHGERGL(20) — (al2)S, (21),
yi = @ — amESIEES (91) — 2a(alr;) S2(t),

Yir1 = 10y (t) — TiaaS, (1),
( Yirz = Tip2C,(t) +azi1S,(1).
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For ¢ € F, put Si(¢,K) := {z € K| N(z) = ¢}, which is said to be a
generalized sphere [11, p.42, (3.7)] of first kind over F.

LEMI\/{A 1.4. (1) (i) Assume that i € {1,2,3}, v € {1,v/=1} and a €
Si(=v? K). Then B(t;a,v) = exp(tBi(a)) € (G(K)g,)° for t € F such that
Bi(t; a, V)T = 70;(7t; Ta, 1/) for all t € F. Especially, o; == Bi(m;1,v/—1) €
(( ( ) l)) Eit1,Eito-

(ii) Fori e {1,2,3}, put f; := Bi(2;1,+/=1). Then i e (G(f()gl)o such
that 3, X = r;E; + Tive it +riv1 Bipe + Fi(=7) + Fip1(=Tig2) + Fipa(Tiga)
if X = X(r;x) € J3(K). Especially, for any permutation p = (Ml,/LQ,/L3>
of the triplet (1,2,3), there exists 3 € (G(K)7)° such that B(Z riE;) =
2] VT By, forallry € F (i =1,2,3).

(lll) Put ng = BQ(\/—_l) - Bg(l), ng/ = Bg(l) (\/_64) 32/3 =
By(—v/—1es) — Bs(1), Bas(t) := exp(tBas), Pow(t) := exp(tBay), Bos(t) :=
exp(tBys). Then Pas(t) € (G(K)°)u, and Pas(t )M23( ) = 2t(x|1)M; +
Mss(z) (z € K&, t € C). And By (t), Bos(t) € (G(K')°)u, such that
Bog (t) Myrs(x) = 2t(v/—TLeyg|lx) My + Mys(x), Bys(t)Mys(z) = 2t(1]z) My +
Mglg( ) (27 S K/ t e R)

(2) (i) Let Si(1, K)° be ‘the connected component of Si(1,K) contain-
ing 1 = ey in K. And O(K) := {Oz € GLp(K)| N(ax) = N(x)}. Then
81(1,{() Ooiy(eo) = Si(1, K)° U (=8(1,K)°). Especially, S;(1,K) =
Si(1,K)° = =8 (1, K)° when K = H',0"; C°, H®, O°.

(ii) For a € Si(1,K) and i € {1,2,3}, put 6;(a) € Endp(T5(K)) with
X(s;y) = 6(a)X(r;x) such that s; := r;, 841 = Tiy1, Sit2 1= Tig2, Yi =
ATi0, Yir1 = ATiy1, Yiro = Tip2a. Then 0;(a) € (G(K)E,)°) B, Biyps SUCh
that 6;(a)o; = 0;6;(a) = 0;(—a) and 6;(a)T = 70;(Ta). FEspecially, 6;(a) €
(G(K)p,.,.8,)° when K = H',O';C°, H®, O°.

(iti) Assume that dp < 4. For a € S(1,K) and i € {1,2,3}, put
Bi(a) € Endp(J5(K)) with X(s;y) := Bi(a)X(r;x) such that s; :== r;, 5,41 :=
Tit1, Sive = Tit2,Yi = QT@,Yiy1 = ATir1,Yive = Tipo@. Then Bi(a) €
(G(K)E)°)Bisr Eiva,p1) such that Bi(a)o; = oifi(a) = Bi(—a). Especially,
Bi(a) € (G(K) by .., 1))0 when K = H';C°, H.

Proof. (1) (i) Put X(u;2) := £8;(t;a,v)X(r;z) — Bz<a)X(7’ x). Then
up =z =0, w1 = (V2 + N(a))((rig1 — ris2)5,(2t) + 4(a, ;) S5(t)) = 0 =
—Uira, Zip1 = (V2 + N(a))zi1S,(t) = 0, ziz2 = (V° + N(a))2i425,(t) =

( —
0, ie. 45,(t;a,v)X(r;z) = Bi(a)X(r;z) (¢t € F) with ﬁZ(O, a,v)X(r;z) =
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X(r;z). Hence, B;(t;a,v) = exp(tB;i(a)), so that B;(t;a,v) € (G(K)g,)° and
Bi(t;a,v)T = exp(tBi(a))r = 7Texp((7t)Bi(Ta)) = 78i(t;a,v) for all t € F.
Especially, 0;(t) = Bi(nt;1,3/=1) € (G(K)3)° for all t+ € R such that
o; = Uz<1) ZEH—I Ez+17 O'lEH_Q EH_Q

(i) The first claim follows from (i), so that the second claim follows.

(iii) For a,b € K€, (By(a) — B3(b))M; = My(—y/—1a — b). Then
BysM; =0 by a =+/—1and b = 1. For v € K€, (By(a) — Bs(b)) Mys(x) =
X(—2((a|v/=17)+(b|z)), 2(b|x), 2(a|/—17); @z ++/—1 bx, 0,0). In particular,
BogMas(x) = 2(1|x)M;. Hence, Boz(t) € (G(KC)°)ns, and Pog(t) Moz(x) =
2t(1|x)M; + Mys(x) for ¥ € K€ and t € C. For a,b € K', (By(a) —
Bg(b))Mll = Mglg(a\/—_164 — b) Then B23/M1/ = BQ/3M1/ =0 by b =
ayv/—1leq with (a,b) = (1,v/—1ley), (—v/—1leq,1). For z € K', (By(a) —
B3 (b)) My3(x) = X(=2((a| — v/—1esT) + (b]z)), 2(b|x), 2(a| — v/—1esT); aT —
(\/_64T)b 0 O) so that 323/M2/3< ) = 2(\/—_1€4|$>E2 - 2(1|\/—_164E)E3 +
F1($+\/_e4(x\/_e4)) and 32/5M2/3( ) =2(1|z)My. Put z = p+qv/—1ley
with p,q € H, so that T = p — q¢v/—1les. Then (vV—ley)(zv/—1es) =
P+ v —Tes, T — V—Tes(zv/~Tes) = —(q¢ + Qv —Tes = 2(vV=Tey|z) v/~ Tes.
And Bg3/M2/3< ) = 2(\/_64|£L’)M1/. Hence, ngl(t),ﬁglg(t) c (G(Kc)o)Ml,
such that Bog (t) Mays(x) = 2¢(v/=Tea|x) My + Myz(x) and Sys(t) Mys(z) =
2t(1|x) My + My3(x) for v € K" and t € R,

(2) (i) Since K is a composition algebra, L, € O(K {) for all a € Si(1, K).
Hence, 81(1 K) = {Ly(eo)| a € Si(1,K)} = Oo(iy(€o). Put SO(K) :=
{a € O(K)| det(e) = 1}. When dg = 1: Si(1, K) = {+eo}, Si(1,K)° =
{eo}, Si(1,K) = Si(1,K)° U (=8i(1, K)°). When di = 2,4,8: O(f()
SO(K) U SO(K)e with e(eg) = ey, SO(K) = —SO(K), so that Si(1,K) =
Osoiy(€0) = —Ogo(ity(€0) = =Si(1, K). Since SO(K®) is connected,

Si(L K%)= 8i(1,K%) = =8i(1, K°)°.
And My, (R) 2 SO(K') 2 S(O(dg/2) x O(dg/2)) x RUx/2* Put

1, := diag(1,---,1),1) :=diag(1l,,_1,—1) € M,(K’).

When dg/ /2 = 2,4, SO(K") admits just four connected components contain-
ing idg, diag(1/, //2’1dK’/2) diag(La,, /2,1y , o), diag(ly 5,15, /5), so that
81(17K) = Oso(K/)(e()) OSO (K'")° ( ) 81~(1 KI) .

(11) For a € 81(].,K>7 (51<(I> S GLF(j3<K))E1,E2,E3 with 51(01) ( )
di(a)T = 76;(Ta) and J;(a)E = E. By Lemma 1.1 (1), det(d;(a )X(r x)) =
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17973 + 2(m| (dle)(nga)) — riN(axia) — TZ‘+1N(E$7;+1> — Ti_,_QN({Ei_,_QE) =
r17ars 4 (2(Ti|Tip1Tig2) — 1N (24) )N (a)? = (riga N (@i41) + 742N (2512)) N (a)
= det(X(r;z)). By Proposition 0.1 (1), di(a) € (G(K)p, p,p;)° for a €
Si(L K)°. And 6;(—a) = 0:i0i(a) = §;(a)o; with 07 € ((G(K)E,)°) By By
by (1 )(')- y (1), {di(a)] a € Si(1, K)} = {di(a),d:(=a)| a € Si(1, K)°} =
{6:(a),0i(a )01| a € Si(1,K)°} & (G(K)E,)°)Eya Biys- By the last claim of
(i), {0:(a)] @ € S1(1, K)} = {di(a)] a € Si(1, K)°} S (G(K)g, 52,5,)° When
K=H' 0 C% H" 0" )

(iil) K is assoc1at1ve by dz < 4. Hence, GLg(J3(K))E, 5, E5,5(1)
Bi(a) is well-defined such that 3;(a)! = d6;(a), Bi(a)r = 7B;(Ta), Bi(a)E
E. Then det(f5;(a)X(r;x)) = rirors + 2(az;a|(axitr)(xi42a)) — 7N (ax;a) —
riviN(azit1) — risaN(Ti0a) = rirars + (2(Fi|wi12i40) — 7N (x;))N(a)? —
(riv1N(ip1) — 12N (2iy2))N(a) = det(X(r;z)) by Lemma 1.1 (1). Be-
cause of Proposition 0.1 (1), fi(a) € (G(K) gy, my,E,m1)° for a € Si(1, K)O.
By (1) (i), 0i € (G(K)£.)°)Biy.ipe With i(—a) = 0ifi(a) = fi(a)oi. B
virtue of (i), {fi(a)| a € Si(1,K)} = {fi(a), Bi(<a)l a € Si(1, K)°}
{Bi(a), Bi(a)oi| a € Si(1,K)°} is contained in (G(K)E,)°)Biy0,Bipa R (1)-

Ry

=]

i By
the last claim of (i), {8i(a)| a € Si(1, K)} = {62( )\ a € 8(1,K)°} is con-
tained in (G(K)g, g,z r1))° When K = H'; C°, H® with d < 4. O

Put G;(K,) = {B;(t;a,v/=1)| j € J,;t € Ra € K,;,N(a) = }for
any subset J S {1,2,3}. By Lemma 1.4 (1) (i), G,(K;) C (G(K)")°. B
Proposition 0.1 (2), G(K)™ and the identity connected component (G(K) )
are compact.

LEMMA 1.5. (1) For any X € J5(K), and any closed subgroup H of
G(K)T such that G;(K;) & H with some J < {1,2,3},

On(X)N{Y € J5(K)| (Y[Fj(2)) =0 (j € J, v € K-)} # 0.

(2) Owg(iyrye(X) N {diag(ri,m2,m3)| 7 € R (i = 1,2,3)} # 0 for any
X € j?)(K)n where {ry,re,r3} = Ax iff diag(ry,ra,73) € O iy )O(X).

(3) OGK) (X)NnA{Y + \/_dlag(rl,rz,rgﬂ Y € BK), i, € R (i =
1,2,3)} # 0 for any X € J3(K©).

3)
(4) O(G ke (X) N{X(s;y)| si € R, yi = V/—1pies, p € KNK' (1 =
1,2,3)} #0 franyXEjg(K/)

w
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Proof. (1) (cf. [27, 3.3]): Since the closed subgroup H of the compact
group G(K)™ is compact, the orbit Oy (X) is compact, which is contained in
T(K), if X € J5(K),. Put ¢ : Js(K); — R; X(r;2) — 32°_, 72, which is a

J=1"3’
continuous R-valued function admitting a maximal point X(r;x) € Oy(X).
Suppose that (X(r, z)|F}j(g)) # 0 for some j € J and ¢ € K.. By Lemma 1.1
(1), 2(zjlq) # 0. Since (z|y) is non-degenerate on Kand K,, K =K, ® K-

for K+ = {z € K| (z]y) = 0 (y € K,)}, so that z; = y, + y;- for some
y; € K, and yt € K+, Then (y;lq) = (z]g) # 0, so that y; # 0 and
(Wilyi) = (Tyly;) > 0. Put a :=y;/\/(y;ly;) € K7, so that (ala) = 1. By
Lemma 1.4 (1) (i), 8;(t;a,v/—1) € G;(K,) € H. Put € := (a|z;) = =
vV (Y;ly;) >0, sj[ = (rjp1 £ 7j42)/2 € R and Y (t) := B;(t;a,v/—1)X (r,:c) €
J5(K)-. Then ¢(Y(t)) = 3+ Zi(s;r + (5; cos(2t) + 551n(2t)))2 =77+
2(s7)% 4 2(s; cos(2t) + esin(2t))* = 77 4+ 2(s) )% + 2((s7)* + €?) cos(2t + 0)
for some constant 6 of ¢ determined by s; and € > 0. Hence, ¢(Y(52)) =
P2 42,4287 = o(X(r; 1)) + 262 Z ¢(Y () + 2% by the maximality
of o(X(r; )) which gives € = 0, a contradiction. . )

(2) Take X € Jy(K),. By (1) on H = (G(RY) 2 Gpuag(K.),
there exists § € H such that (6X,Fi(z)) = 0 (z € K.;i = 1,2,3), so
that X = diag(ry,7q,73) for some r; € R (i = 1,2,3). In this case,
Px(N) = Paiag(ryrams)(A) = I (A — 713), so that {rq, 79,73} = Ax. Con-
versely if {ri, 72,73} = Ax, then diag(si, ss,53) € Og(iyr)o(X) for some
gf)l,s%si;} = Ax, so that diag(ri,72,73) € O iy- )O(X) by Lemma 1.4 (1)
ii).

(3) Take X € J5(K®). Then X = X + v/—1X, for some X; € J3(K) =
J3(K®), (i = 1,2). By (2), there exist 3 € (G(K®)")° = G(K)° and
{r1,r2,73} C R such that X, = diag(ry,re,r3), so that X = X; +
v/ —13X; has the required form with 8X; € J3(K).

(4) Take X € J3(K’). Then X = X, + X_ for some Xy € J3(K')4,.
By (1) on H := (G(K")")° 2 G{Lz,g}([h), there exists € H such that
pX, = diag(ry,ra,73) for some r; € R. Then X = X, + fX_ has the
required form because of 3X_ € J3(K')_, = {X(0;9)| v; = v—1pses; pi €
KNK' (i=1,2,3)} O

LEMMA 1.6. (1) For a positive integer m, let f(X1,--- , Xm) be a Js(K)-
valued polynomial of E and Xi,---X,, € jg(f() with respect to o, X and
the scalar multiples of tr(X;), (X;|X;), det(X;) and (X;|X;|Xy) fori,j, k €
{1,---,m}. Assume that f(X1,Xo, -+, X)) = 0 for any Xo,--- X, €
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J3(K) and all diagonal forms X, in J3(R). Then
f(X1,-+, X)) =0 forall Xy, X,,, € J3(K©).
(2) Assume that X,Y € J5(K). Then:

(i) Xo((XoX)oY)=(XoX)o(XoY);

(i) X2 0 X = det(X)E, (X*2)<2 = det(X)X;

(i) X2 x X = —1{tr(X) X ?+tr(X*?) X — (tr(X*?)tr(X) —det(X)) E}.
(3) Vx is the minimal subspace over F generated by X and E under the cross
product. Especially, ox(\)** € Vx for all X € F.

(4) (ex(M)2) 2 =0if X € J3(K) and M\ € C with ®x(\;) = 0.
(5) Mas(K) = {X € J5(K)o| X2 # 0, tr(X*?) =0, (X*?)*% = 0} and
{X7*?| X € My(K)} € M, (K).

Proof. (1) (cf. [7, p.42], [28, p.74, £0.2-4], [6, p.91, Corollary V.2.6]): By
Lemma 1.5 (2), any X; € J3(K) admits some 8 € G(K) = G(K®)™ such
that X, is a diagonal form in J3(R). Then f(8Xy,Xs,---,X,,) = 0 for
any X; € J3(K) with i € {2,--- ;m}. By Proposition 0.1, 3 preserves o, x,
tr(x), (x|x), det(*), (*| x [*) and E, so that f(X;,87'Xy---,87'X,,) =0
for all X; € J3(K) (i = 2,---,m). Hence, f(Xi,---,X,,) = 0 for all
X, € J3(K) (i =1,--- ,m). Since this formula consists of some polynomial
equations on the R-coefficients of each matrix entry of X;’s with respect to
the R-basis {e;} of K, the formula holds on J3(K®) = J3(K) @z C.

(2) The formulas in (i) and (ii) are polynomials of X,Y and E with
respect to o, x, tr(x), (x|x), det(x), (x| % |*). If X is a diagonal form in
J3(R), the formulas can be checked by Lemma 1.1 (1), easily. By (1), the
formulas (i) and (ii) hold for any X,Y € J5(K®). Hence, they hold for any
X,Y € J3(K) € J5(K®). The formula (iii) follows from the first formula of
(ii) and the definition of cross product with (X*?|X) = 3 det(X).

(3) follows from the formulas in (ii), (iii) and Lemma 1.1 (3).

(4) (px (M) = det(px(M))ex (M) = @x(M)ex (M) = 0 by the
second formula of (ii) in (2).

(5) By (2) (ii), (X*?)*2? = det(X)X, so that (X*?)*? = 0 if and only if
det(X) = 0, which gives the results. O

The formula (i) of Lemma 1.6 (2) implies that (J3(K),o) is a Jordan
algebra over F, which is also reduced simple in the sense of N. Jacobson [16,
Chapters IV, IX], where J3(K) is called split iff K is split (i.e. non-division),
that is the case when K = K’ or K'°.
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Proof of “Proposition 0.1 (3) when K = K7 (cf, [7], [27, 4.1 Proposition]).
Take any X € Py(K) C J3(K) = J3(KC)". By Lemma 1.5 (2) with K = K©,
there exists o € G(K)° = (G(K®)7)° such that aX = diag(ry,r,73) for
some 71,793,173 € R. By tr(aX) = 1 and (aX)*? =0, ri + 79+ 713 = 1
and rors = r3r; = rry = 0, so that (rq,7r9,73) = (1,0,0),(0,1,0),(0,0,1).
By Lemma 1.4 (1) (i), there exists § € (G(K®)™)° = G(K)° such that

~

B(aX) = Ej. 0

H. Freudenthal [7, 5.1] gave the diagonalization theorem on J3(O) with
the action of {a € G(O)| tr(aX) = tr(X)} (cf. [27, 3.3 Theorem], [20,
p.206, Lemma 1], [23, Proposition 1.4}, [6, p.90, Theorem V.2.5]), which is
developing to Lemma 1.5 (2) for K = O with J3(K), = J3(0%), = J5(0)
under the action of G(K)™ = G(O%)” = G(0O) =: F,. 1. Yokota [27, 4.2 and
6.4 Theorems| proved the connectedness and the simply connectedness of Fy
by the diagonalization theorem of H. Freudenthal (cf. [18, Appendix], [20,
p.210, Theorem 3], [10, p.175, Proposition 1.4]). O. Shukuzawa & I. Yokota
22, p.3, Remark| (cf. [29, p.63, Theorem 9; p.54, Remark]) proved the
connectedness of F) := G(O') by showing the first formula of Proposition
0.1 (1) by virtue of Hamilton-Cayley formula on J3(O’) given as the first
formula of Lemma 1.6(2)(ii) (cf. [24, p.119, Proposition 5.1.5], [11, Lemma
14.96]). Because of Fy = (Ff)™ x R%? with (Ff)™ = Fy [30, Theorem 2.2.2]
(cf. Proposition 0.1 (2)), F := G(O%) is connected and simply connected,
so that Fj = (FF)™ is again proved to be connected by virtue of a theorem
of P.K. Rasevskii [21].

2. Proposition 0.1 (3) and (4) (i).

Assume that K = K’ or K€ with K/ = C',H' or O’; and K¢ =
RE, C%, H® or O°. And put 0 := 0y defined in Lemma 1.4 (1) (i) such that
0% = idy,z) Then J3(K) = J(K)s @ J(K)-o, Ts(K)y = {30 1B +
Fi(z1)| 7 € F,z; € K} such that J3(K)_, = {Fy(22) + Fs(x3)| xo, 23 €
K} ={X € B(K)| (X,Y) =0(Y € T3(K),)}. And J5(K), = FE\®75(K)
With~j2(f(> = {30 B+ Fi(x)] 7 € Fo € K}. By Lemma 1.1 (1),
%(K)L;El = {T(E2+E3)| re ]F} and jg(K>_L;E1 = {T(EQ—E3)+F1(I‘)| re

F,z € K}, so that J5(K) = %(K)L;El <) jg(f()_L;El.

LEMMA 2.1. (1) G(K)p, = G(K) g, gy, 707)

iLQXEl WJ2(K),T3(K)+0o *
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(2) (i) {X((X|E1), 52, 53;0,0,0)| 52,53 € R; 50 2 53} N Oy, 1o (X) # 0
and {X((X[E1),ta, t3;u,0,0)| ta, t3,u € Riu 2 0} N Oa(r)p,)%) s, E2( ) # ()
if X € J3(K),.

(i) {X((X|E}), s2, s3;uv/—1e4,0,0)| s2,83,u € Ryu = 0,85 = s3} N
Ocrnery, (X) # 0 if X € T3(K'),.

(111) {X((X|E1>at2 + \/__827t3 + \/—_183;U,0,0)| lo, 3, S2, S3,u € R,U z
0,59 2 53} N Oa(ry),, (X) # 0 if X € J3(K©),.

Proof. (1) For a € G(K)g,, one has that a(FEy+ FE3) = a(E—E)) = aE—
aby =F —FE, = Ey+ E3 and ozj;;(K)iLQxE = jg(K)iL;E since « preserves

x by Proposition 0.1 (1), so that aJs(K) = F(K), aJs(K), = J3(K), and
aJs(K)_y = J5(K)_, because of the orthogonal direct-sum decompositions
of them and that a preserves (x|%) on J5(K) by Proposition 0.1 (1).

(2) (i) Take any X € J3(K),. Then there exist r; € R and z; € K such
that X = X(ry, 79, 73;21,0,0). By Lemmas 1.4 (1) and 1.5 (1) with K = K =
K., F=Rand H := (G(K)g,)° 2 G,(K) with J = {1}, there exists « € H
such that (aX)p = 0. By (1), aX € J3(K),, so that aX is diagonal with
si = (aX|E;) € R (i = 1,2,3) such that s; = (aX|aE)) = (X|Ey) =r. If
S9 = 83, then aX gives an element of the left-handed set of the first formula.
If 59 < 83, put g := Bloz with Bl € (G(K)g,)° given in Lemma 1.4 (1) (ii), so
that ay X gives an element of the left-handed set of the first formula. Hence,
follows the first formula.

If x;1 = 0, then X gives an element of the left-handed side of the second
formula with w = 0 € R. If 21 # 0, put a := x1//(x1]z1) € Si1(1, K),
so that d5(a) € ((G(K)g,)°)p, B, in Lemma 1.4 (2) (ii) such that d3(a)X =
X(ry,79,73;u,0,0) with u := /(x1|z1) > 0, which gives an element of the
left-handed side of the second formula. Hence, follows the second formula.

(ii) Take any X € J5(K’),. By Lemmas 1.4 (1) and 1.5 (1) with K = K’
and H := (G(K')%,)° 2 G;(K.) with J = {1}, there exists 3 € H such that
(BX|Fi(x)) =0foral z € K. = KNK'. By (1), pX € J3(K’),. Hence,
BX = X((X|E}), s2, s3;v/—1qey,0,0) for some ¢ € KN K'. Put a; = B
(if 53 = s3) or B8 (if s3 < s3), so that a; € H by Lemma 1.4 (1) (ii).
Then oy X = X((X|E}), 52, 83; v/ —1geq, 0,0) for some g € K N K', 85,53 € R
with so 2 s3. Put o := oy (if ¢ = 0) or d3(a)p for a := q/\/ q\q € K.
with N(a) = 1 (if ¢ # 0), where d3(a) € ((G(K')g,)° )5, .5, & (G(K')°)E,
by Lemma 1.4 (2) (ii). Then aX = X((X|E}), s, s3; v/—1luey, 0,0) Wlth
u:=/N(q) 2 0, which is an element of the left-handed set.
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(iii) Take any X € J3(K®),. Then X = X; + /—1X, for some X; €
J3(K)y (i = 1,2). By (i), there exist a; € (G(K)g,)° such that a;(X3) =
X((Xa|E1), s2,53;0,0,0) for some sy,53 € R with s, = s3. Because of
T5(K)s 3 an(X1) = X((X1]|EL), ta, t3;2,0,0) for some to,t3 € R and = € K,
so that a1 (X) = X((X|E1),t2 + V=189, t3 + v/—183;2,0,0). Put o := oy
(if z = 0) or d3(a)oy with a = z/+/(z]z) € S1(1,K) (if x # 0), where
d3(a) € ((G(K)gy)°)Ey B, by Lemma 1.4 (2) (ii). Then o € (G(K)°)g, and
aX = X((X|E)),ty + V=189, t3 + /—1s3;u,0,0) with u := /(z|z) = 0,

which is an element of the left-handed set. O

For ¢ € F, put Sy(c, K) == {W € jg(f()_szE| (WIW) = ¢, W #
0}, ‘which is said to be a generalized sphere of second kind over F. Then
G(K)E1 = Ncer G<K)E1,32(c,f<).

LEMMA 2.2. (1) jg(K’)_szE = (UeerSa(c, K')) U {0} such that
! ) 82(07 K/) = O(G(K/)O)El (\/E(EQ — E3)) fOT c>0;

(i-1
(i-2) Sy(c, K') = O(G(K/)")El(\/%Fl(\/__lQ)) for e <0;
(i1) $:(0, K) = Oy, (My); and
(iif) {0} = Owxnyey, (0)-

(2) ‘73(KC)—L§E1 = (UeecSa(c, K©)) U {0} such that

(1) SQ(C, KC) = O(G(KC)O)EI (\/g(EQ — Eg)) fO’I” cE (C\{O},
(11) 82(0, K(C) = O(G(KC)O)EI (Ml),' and
(111) {0} — O(G(KC)o)El (O)
Proof. (1) For W € \73(K’)7LXE , put ¢ := (W|W) € R. By Lemma
2B
2.1 (1) and (2) (ii), oW = X(0, s, —s; uy/—1e4,0,0) for some s = 0,u = 0
and a € (G(K')°)%,. Then ¢ = (aW|aW) = 2(s* —u?®). For t € R, put
X(r;z) == pi(t;vV/—1leq, 1)(aW), so that 71 = z9 = 23 = 0, 10 = —r3 =
cosh(2t)(s—utanh(2t)) and x; = vy/—1ley with v := cosh(2t)(u— s tanh(2t)).
(i-1) If ¢ > 0, then s > u = 0 and |u/s| < 1, so that tanh(2t) = u/s for
some ¢t € R such that v = 0 and ry = cosh(2t)(s* — u?)/s > 0. In this case,
X(r;z) = ro( By — E3) with ¢ = (W|W) = (X(r; 2)|X(r; )) = 2(r2)?, so that
X(r;z) = \/5(Ey — E3) € Sy(c, K').
(i-2) If ¢ < 0, then u > s 2 0 and |s/u| < 1, so that tanh(2t) = s/u for
some t € R such that 7, = 0 and v = cosh(2t)(u? — s%)/u > 0. In this case,
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X(r;x) = vF (v ~1ey) with ¢ = (W|W) = (X(r; 2)|X(r; 7)) = —2v%, so that
me:¢%m@CE@e&@Kq

(ii, iii) If ¢ = 0, then s* —u?® = ¢/2 = 0, so that s = v = 0 and
ro = v = ue 2. When u # 0: v > 0 and ue ™ = 1 for some t € R. In
this case, X(r;z) = Ey — E5 + Fi(vV/—1ey)) = My € S3(0, K'). When u = 0:

ro =v=u=0and X(r;z) =0 € {0}.
(2) For W € jg(K‘C)_LZxE, put ¢ := (W|W) € C. By Lemma 2.1

(1) and (2) (iii), aW = X(0,ty + s2v/—1, —ty — s9v/—1;u,0,0) for some
ty,89,u € R with sp,u = 0 and some a € (G(K)g,)° S (G(Kg,)°.
Then ¢ = (aW|aW) = 2((ta + sov/—1)2 + u?). For t € R, put X(r;z) :=
it 1 \/_)(aW) with fi(t; 1 \/_) € (G(K)p)° € (G(K®)p,)°, so that
1= a9 = a3 = 0, 19 = —1r3 = (ty + s20/—1)cos(2t) + usin(2t) and
z1 = wcos(2t) — (ty + s9y/—1) sin(2t).

(i) If ¢ # 0, then (ty + (sy +u)v/—1)(t2 + (s2 —u)v/—1) = ¢/2 # 0, so that
eV = (ty + (59 +u)v/—1)/(ts + (52 — u)y/—1) # 0 for some t € C, and
that £, = u(eV ™12 4 e V12) /2 — (ty + s90/— 1) (eV 12 — F%)/(Q\/_)
YLty + (59— u)y/—1)eV 12 — @ﬁ4@+mfﬁ)¢ﬁq:olnmm
case, X(r;2) = ry(Fy — E3) with ¢ = (X(r;2)|X(r;2)) = 2(r2)?, so that
X(r;z) = \/5(Ey — E3) ESQ(C K©).

(ii, iii) If ¢ = 0, then #3 — s2 +u? + 2t389v/—1 = ¢/2 = 0, so that tys5 = 0.
When sy = 0: to = u = 0, so that X(r;2) = 0 € {0}. When s, # 0: t5 = 0,
uw=85>0,1ry = —r3 =/—lue2V"1 2, = ye 2V=1 There exists t € C
such that /—Tue 2V~ =1, so that X(r;z) = Ey — Es + Fy(v/—1) = M, €
S,(0, K©). O

LEMMA 2.3. (1) If Y = X(r;2) € Bo(K), then tr(Y) = ry +r3, det(F; +
Y) =rors — N(z1) and Y*? = det(F, + Y) E.

(2) For any X € Js3(K),, there evists Y € Jo(K) such that X =
(X|E\)E, +Y and that Y = = )<E2 + Es5) 4+ W for some W € J5(K)_,
such that (W, W) = $(tr(Y)? — 4det(E, +Y)). In this case, put \I/y(/\) =
/\2 —tr(Y)A + det(E1 +Y) = (A= X)) (A= A3) with some Ay, A3 € C. Then

Cx(A) = (A= (X[E1) ¥y (A) and 2(W, W) = (A2 — A3)*,

(3) Og(ieyrye (X) N Ta(K) # 0 if X € J5(K) with X** = 0.

Proof. (1) By Lemma 1.1, one has the first and the second equations.
And Y*? = 1(2ror; — 2N($1)) =det(E, +Y)E).

(2) Take X := X(ry, 79,73, 21,0,0) € J3(K),. Put
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ro—T ~
Y = X(0, 79,75, 21,0,0), W := — 5 2 (Ey — BE3) + Fi(z1) € Jo(K).

Then X = rE1+Y,Y = 288 (Ey+ Es)+ W tr(Y) = ro+rs, det(Ey +Y) =
rors — N(z1) and (W|W) = @555 L oN(27) = L(te(Y)? — 4 det(Ey + V).
By Lemma 1.1 (1), QOX(A) = ()\ — Tl)()\ — 7“2)()\ — 7“3) — ()\ — Tl)N([El) =
(A = 711)(A2 = (rg + 13)A + (ror3 — N(71))) = (A — r1)¥y()\). Because of
Uy (A) = (A= Xg)(A— A3), one has that tr(Y) = Ao+ A3, det(E1+Y) = A2,
so that 2(VV, W) = (/\2 + >\3)2 — 4)\2)\3 = ()\2 — )\3)2.

(3) Take X € J3(K) with X** = 0. (i) When K = K’: By Lemma
15 (4), aX =327 (8;E; + Fy(piv/—1ey)) for some p; € KN K', s; € R and
a € (G(K'))°, so that 0 = a(X*?) = (aX)*2 =37 (s;118i12+2N (p;)) Ei+
Z?Zl Fi(pisiDi2 — sipiv/—les), that is, ;418140 +2N (p;) = DigaPit2 = SiDi =
0 for all i € {1,2,3}. (Case 1) When p; = 0 for all i: 0 = s583 = s351 = $159,
so that aX = s;E; for some i. If i = 2 or 3, then aX € J(K’). If i =1,
then f5(aX) = s1E, € Jo(K') by f5 € (G(K')7)° defined in Lemma 1.4 (1)
(ii). (Case 2) When p; # 0 for some @t piy1 = piy2 = 0 and s; = 0. If
i =1, then aX € J(K"). If i =2, then B3(aX) € Jo(K'). If i = 3, then
Ba(aX) € Jo(K') by B2 € (G(K')7)° defined in Lemma 1.4 (1) (ii).

(ii) When K = K©: aX =Y 4 /—1diag(r}, ), %) for some 7, € R (i =
1,2,3),Y € B3(K), and a € G(K)° = (G(K®)7)° by Lemma 1.5 (3). Putting
Y =X(r;x), 8; :=1; + v/—1r, € C, one has 0 = (aX)*? = 327 {(si118i+2 —
2N (2:))E; + Fi(Tia®irz — siwi)}, that is, 0 = rla; = Tidie — rix; =
Sit18ite — 2N(x;) for all i € {1,2,3}. Then (Case 1) x; = 0 for all i, (Case
2) €T; 7é O, Tit1 = Tj42 = 0 for some i, (C&SG 3) €T; 7é 07 Tit+1 7é 0, Tito = 0
for some i; or (Case 4) z; # 0 for all i. In (Case 1), 0 = $;415;42 for all 4,
so that aX = s;E; for some 4. If i = 2 or 3, then aX € Jo(KC®). Ifi =1,
then f3(aX) = 1By € Jo(KC) by B3 € (G(KC)T)° defined in Lemma 1.4
(1) (ii). In (Case 2), 0 = r, = r;, so that aX = s;11FE;iy1 + sioFire + Fi(x;)
and that 3y(aX) € Jo(KC) for some §, € (G(K®)7)° defined in Lemma 1.4
(1) (ii). In (Case 3), 0 =71, =r; =i,y = riy1 = N(2;) = N(2441), so that
aX = s; 1 9E; 5 and that Bk(aX) € J»(KC) for some B, € (G(K®)™)° defined
in Lemma 1.4 (1) (ii). In (Case 4), r; = 0 for all 4, so that aX € J3(K)
and that a;(aX) is diagonal for some oy € G(K)° by Lemma 1.5 (2). Then
Bar(aX))) € Jo(KC) for some B € (G(K®)7)° by the argument on (Case
1). O
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Proof of Proposition 0.1 (3) when K # K. Take any X € Py(K). By
(3), X € J(K) for some oy € (G(K)7)°. By (1), det(Ey + oy X)E; =
(ay X)*% = a(XX2) =0, ie. det(Fy+a1X)=0. By (2), X = 22X (p, ¢
Ey) + W = 3(Ey + E3) + W for some W € J5(K)_, xsuch that (W[W) =

T(tr(on X)? — 4det(Ey + on X)) = 3, so that W € 82(1/\/_ K). By Lemma
2.2 (1)(2), aeW = 3(By — E3) € 52(1/f, K) for some ay € (G(K)g,)°.
Then ozg(ole) 1(Ey + E3) + (B> — E3) = E5 by Lemma 2.1 (1). By
Bs € (G(K)3, ,)° defined in Lemma 1.4 (1) (ii), Bs(aa(ay X)) = Ey, where
ﬁgagal € G(K )°. O

Proof of Proposition 0.1 (4) (i). Take any X € M; (~ ) defined in Lemma
1.6 (5). By (3), 0 # aX € J(K) for some a € (G(K)7)° with tr(aX) =
tr(X) = 0. In this case, by (2), aX = @(EQ + E3) + W = W for some
W e jg(f()_L;El. And (aX|aX) = (X|X) = (X o X|E) = —2(X x X|E) =
—2tr(X*?) = 0 by Lemma 1.1 (4). Hence, aX € S,(0, K). By Lemma 2.2
(1) (ii) or (2) (ii), there exists 8 € (G(K)°)g, such that 3(aX) = My (when
K = K') or M; (when K = K©). O

Cl

3. Theorems 0.2 and 0.3 in (1) (i, ii).

Assume that X € J3(K ) admits a characteristic root A\; € F of multiplic-
ity 1. Then 0 # @’ (A1) = tr(px(A1)*?) by Lemma 1.2 (2), so that

1
E =

AT a(ex ()

is well-defined. Put Wi, := X — M Exy, — 252 pp | (1) € Vx. Then

tI'(X) — /\1
2

(px()\l)xg < VX

X = /\IEX,)q + SOEX,)\l (1) + WX,)\l'

LEMMA 3.1. Assume that X € jg(f() admits a characteristic root \; € F
of multiplicity 1. Then:

(1) Vx N ,PQ(K) > EX,M 7é 0, QOEX,A1<]') 7£ 0, E)??M = 0, 2EX,>\1 X
PEx (1) = (pEX,/\l(l)7 (pEX,,\l(l)XQ = EX,)\U QEX,M X WX,M = _WX,)\l;
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(2) VX = ]FEX,)\l D ]FQOEX,Al (1) @ FWX7/\1 such that Vx = 2 (Zf WX7)\1 =
0) or vx = 3 (if Wxp, # 0) with (Exxleey,, (1) = (Exxn[Wxa) =
(e, (DWx ) =0, (Exn|Exy) =1,
(prx s, (Dleny,, (1) =2 and (Wx \, [Wx ) = Ax(A1).

Proof. (1) Put Z := ¢ox(\1) and Y := Z*2 so that Y*? = 0 by Lemma

1.6 (4) Then Ex\, = (1 ;Y tr(Ex,,) = 1 and E)X(z/\ =0, so that Ex,, €

P,(K)NVx. Note that tr(ppy,, (1) = tr(E) —tr(Exy) =3-1=2#0,s0
that op,, (1) # 0. By Lemma 1.1 (3); 2Ex 0 X @y, (1) =2Ex ), x (B —
Exx,) = 2Exy, X E = tr(Ex,)E — Exa, = ¢py,, (1) and g, (1) =
(E—Ex»)?=E?-2ExEx), = E—pp,, (1) = Ex,,. By direct compu-

ations, W, = tr(Z) ¢Ex ., (1) — Z. By Lemma 1.6 (2) (iii) and det(Z) = 0,

2EX7/\1 X J = WZXQ X J = m%(tr(Z)Y + tr(Y)Z — tI'(Y)tI'(Z)E -+
det(2)F) = —tr(Z)EX,\1 — Z +t(2)E = —Z + t1(Z2)ppy,, (1). Hence,
2Ex 5, x Wy, = ) (1) +7Z - tr(Z)¢EX,A1 (1) =7 - tr(Z)ngx A (1) =
_WX,Al

(2) Since Vy is spanned by F, X, X*? vy := dimpVx < 3. If Wy, #
0, then Ex ), ¢ry,, (1), Wx, are eigen-vectors of L;EX,)\I with different
eigen-values 0,1, -1, ie. vx = 3. If Wx), = 0, then X = \Ex,, +
WQDEX,)H (1) and X** = MQD Ex (1) + (%)ZEX,AN so that
Vy is spanned by Ex ), and g, (1) = E — Ex ,, i.e. vx = 2. By Lem-
mas 1.1 (2) and 1.6 (3), LQXEKAl is a symmetric F-linear transformation on
(Vx, (x[*)), so that Ex x,, ey, (1), Wx,, are orthogonal as zero or eigen-
vectors of L;EX,)\I with the different eigen-values. By (1) and Lemma 1.1
(4), 0 = 2tr(EXY) = tr(Exa)? — (BExa1Exa) = 1= (BEx|Exy,), 50
that (Ex|Exa) = 1and (my, (Dleey,, (1) = (E|E) = 2(E[Ex ) +
(Ex|Exy) = 3 —2tr(Exy,) + 1 = 2. Because of the orthogonality in
(1), (X1Exx) = A, (Xlepg,, (1) = tr(X) = Ay and (Wx, [Wxa,) =
(X[ X)+Ai+ &—2)\1(?(“5“1) (tr(X)=A1) (Xppy 5, (1)) = (X]X)—

2

AT+ tr(X)A — Ltr(X)2 = Ax(\). O

2

Note that Ax(A;) = —3{3Af — 2tr(X)A; + tr(X)? — 2(X|X)} € F is an
invariant on Og gy (X) if Ay € F is a characteristic root of multiplicity 1 for

X e J(K).

LEMMA 3.2. Assume that X € J5(K) admits an eigen-value \; € F
of multiplicity 1. Put ®x(\) = I3, (A — \;) for some Ay, A3 € C with A\, #
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A2, As. Then Og gy 3 ME1+3(tr(X) =) (E—E)+W for W € J3(K)_
such that (W|W) = Ax(\1) = (Mo — X3)?/2 given by Ax and vx as follows:
(1) When K = K" with F = R:

(1—1) W = A\;%()\l) (EQ — Eg) with #AX =vx =3 Zf AX()\l) > 0;

(1—2) W = #Fl(v—lezl) with #AX = UVx = 3 Zf AX()\l) < 0,’
(11) W = M1/ Zf AX(/\l) =0 with Vx = 3,’
(iii) W = 0 if Ax(\;) = 0 with vy = 2.

(2) When K = K€ with F = C:

i) W = \%(Eg — E3) for any w € C such that w? = Ax(\;) with #Ax =
vy =3 ZfO # Ax<)\1) S (C,'

(11) W = M1 Zf AX()\l) =0 with Vx = 3,’

(iii) W = 0 if Ax(\;) = 0 with vy = 2.

Proof. By Lemma 3.1 (1) and Proposition 0.1 (3), aEx,, = £ for
some a € G(K)°, so that app,, (1) = a(E — Exy,) = E — E;. Put
W' :=aWx,,. Then aX = \Ey + "M (E — B) + W with oy (\) =
H?:l()‘ — )\Z) And 2E1 x W' = CK(QEX)\l X WX)q) = —OéI/V_)Q,\1 = —-W
by Lemma 3.1 (1), ie. W' e J5(K)_px  C J3(K),. By Lemmas 3.1 (2)
and 2.3 (2), Ax(Al) = (WX,)qlWX,)\l) = (W/|W/) = ()\2 - )\3)2/2, which
is determined by Ay, so that W' € S(Ax(A1)) U {0}. Note that W’ = 0
(or W' # 0) iff Wx, = 0 (resp. Wx,, # 0) iff vx = 2 (resp. vy = 3)
by Lemma 3.1 (2). If Ax(A;) # 0, then (W'|W’) # 0, so that W’ # 0
and Ay # A3, i.e. vx = #Ax = 3: By Lemma 2.2 (1) (i-1, 2) or (2) (i),
W := W' is given as (1) (i-1, 2) or (2) (i) for some 8 € (G(K)g,)°, so that
BlaX) = MBE, + "N E B+ W =\ B+ 282 E By WL I
Ax(A1) =0, then (W’|W’) = O, so that W’ € 8,(0, K)U{0}: By Lemma 2.2

(1) (i, iii) or (2) (i, iii), W := W’ is given as (1) (ii iii) or (2) (ii, iii) for
some 3 € (G(K)g,)°, so that BlaX) = MBE, + " M3(E — B+ W =
ME+ SN E )+ W O

Proof of Theorems 0.2 and 0.3 in (1) (i, ii). Let X € J5(K) be such as
#Ax # 1, that is, X admits no characteristic root of multiplicity 3. Since
the degree of ®x(\) equals 3 =14 1+1 = 142, there exists a characteristic
root p; € C of multiplicity 1. If F > py, put Ay := py. If F Z py, then
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F =R # u, so that ®x(\) = (A — pu1)(A — @) (A — vq) for some 14 € R. In
this case, put \; := v;. In all cases, put Ax = {\1, Ay, A3} with #Ax =3 or
2 such that ' (\;) # 0 and tr(X) = 37| A, so that Ax () = (A2 — A3)2/2
by Lemmas 3.1 (2) and 2.3 (2). By Lemma 3.2 (2) (if K = K®) or (1) (if
K =K', aX = \\Fy + tr(X) M(E — Ey) + W for some W € J5(K)_ Ly

1
and o € G(K)°.

(0.2.1) When F = C: K = K® =R®,C%, H® or O°.

(0.2.1.i) The case of #Ax = 3: Put w := (Mg — A3)/v/2. Then Ay # As.
And Ax(\) = w? # 0. By Lemma 3.2 (2) (i), vx = 3 and aX = \\E} +
SN (E - B)) 4 %(By — Bs) = M By + 2223 (By + Ey) + 225% (B, — By) =
diag()\l, )\2, )\3)

(0.2.1.ii) The case of #Ax = 2: Ag = A3 and Ax(\) = 0.

(0.2.1.ii-1) When vx = 2: By Lemma 3.2 (2) (iii), aX = M E1 + Ao(Fy +
Es) = diag(A1, Az, Az).

(0.2.1.ii-2) When vy = 3: By Lemma 3.2 (2) (ii), aX = M E; + \a(E2 +
E3) + My = diag(A1, Ao, A2) + M.

(0.3.1) WhenF=R: K =K' =C',H or O'. And \; € R, My, \3 € C.

(0.3.1.1) The case of #Ax = 3:

(0.3.1.i-1) When Ax C R: It can be assumed that A\; > Ay > A3 by
translation if necessary. Then Ax(A\;) > 0. By Lemma 3.2 (1) (i-1), vx =3
and aX = A\ By + 2528 (E, + E3) + 222(F, — E3) = diag(A, A2, A3).

(0.3.1.i-2) When Ax ¢ R: {)\2,)\3} = {p &+ ¢/—1} for some p,q € R
with ¢ > 0. And Ax(\) = —2¢* < 0. By Lemma 3.2 (1) (i-2), aX =
MEL+ p(Ey + Es) + qFi(vV—1es) = diag(Ay, p, p) + Fi(gv/—Tes).

(0.3.1.ii) The case of #Ax = 2: Ax = {\1, Ao} with & (A2) = 0. Then
Ay = %(tI'(X) — )\1) € R and AX(/\l) =0.

(0.3.1.ii-1) When vx = 2: By Lemma 3.2 (1) (iii), aX = M E1 + Ao (Fa +
Ej) = diag(A1, A2, A2).

(0.3.1.ii-2) When vy = 3: By Lemma 3.2 (1) (ii), aX = M\ E; + A\y(E2 +
E3) + My = diag(A1, Ao, A2) + M. O

4. Proposition 0.1 (4) and Theorems 0.2 and 0.3 in (1) (iii).

Assume that K #+ K, ie., f( R(C,C'(C,H(C O%.C' H' or O'. Put
Ni(K) = (F5(K)o)1,, oaHdN2( ) =A{X € Js3(K )!XXQ My}
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LEMMA 4.1. (1) No(K) € N (K).
(2) Nl(f:() = {Mg(w) +~M23(y)\ v,y € K}; ]
(3) No(K) = {sM1 + Mas(y)| s € F,y € Si(1, K)};

Proof. (1) Take X € N(K). Then tr(X) = 0 and tr(X*?) = tr(M;) = 0.
By Lemma 1.6 (2) (i), det(X)X = (X*?)*2 = M = 0, so that det(X) = 0.
By Lemma 1.6 (2) (iii), X x M; = X x (X*?) = ——(tr(X)XX2+tr(XX2)X—
(tr(X)tr(X*?) — det(X))FE) = 0, as required.

(2) (i) Take X = X(r;z) € Ni(K®). Then 7, + 75 + r3 = 0 and that
0=2M; x X =2X(0,1,-1;/=1,0,0) x X(r; z) = (r3—ry —2(v/—1|z1)) E; —
r1Ey+ 11 B3+ Fi (—/=1r1) + Fo(vV/ =173 — 29) + F3(v/—173 + x3) by Lemma
1.1 (1), that is, my = /=173, 71 = 0, 1y = —13 = —(v/—1|z1) = (1| = v/—171)
with z = \/_( V—121), so that X = M;(—+v/—1x1) + Mas(z3).

(ii) Take X = X(r;x) € No(K’). Then ry + 7o + 73 = 0 and that 0 =
2My x X = 2X(0,1, —1;v/—1e4,0,0) x X(r; x) = (rs—ra—2(v/—Leg|w1)) By —
?”1E2+7’1E3+F1( Tl\/_€4)+F2( \/_€4$3—I2)+F3( SC_Q\/—_1€4+I3) by
Lemma 1.1 (1), that is, 75 = —v/—1esT3, 11 = 0, 79 = —1r3 = —(v/—1ley|7y) =
(1]v/—1legzy) with z; = (V—1ey)?r; = vV—les(v/—1legry), so that X =
Mll(\/—_1€4l‘1) + Mg/g(%g).

(3) (i) Take X € No(KT). By (1), X € Ni(K®). By (2), X = My(z,) +
Mos(z3) for some 71,13 € K€, s0 that X*? = M, (21)*2+2M; (21) X Moz (z3)+
Moy(3)** = /= 1{(21]1)> = N (1)} B1 — Fo (V= 1(T1 — (21| 1))T5) — F3 (w3 (T1 —
(z1]1))) + N(x3)M;. Hence, X*? = M, iff N(x3) = 1 and 77 = (z1]1) € R,
ie. (w1,73) = (s,2) for some (s,7) € R® x §;(1, K©).

(ii) Take X € My(K'). By (1), X € NMi(K'). By (2), X = My(z1) +
Myi3(x3) for some x1,23 € K', so that X** = My/(x1)*? + 2My (1) X
Ma(3) + Mars(w3)** = (N (1) — (21]1)%) By = Fo(((T1 — (21]1)) v/~ ea)T3) +
Fy(—(z3v/—1es)(@1V/—1es) + (w1]1)23) + N(x3)My. Hence, X*? = My iff
N(z3) =1 and z; € R, as required. O

LEMMA 4.2. /\/’z(f() = O(G(R)O)Ml (Mzs)-

Proof. (1) Take any X € No(K®). By Lemma 4.1 (3), X = sM; + Mys(x)
for some s € R and = € (1, K©). Put 2 = Z?fo_l &ie; with & € RE and
Ty 1= ZdK ' ¢e; such that T, = —x,.

(Case 1) When & = 0: By z, = z € Si(1,K%), 22 = —27 = —1. By
Lemma 1.4 (2) (ii), 01(2) X = s(Ey — B3 — F1(v/—=1)) — Fo(v/=1) + F3(1), so
that 030;(z)X = sM; + My3. By Lemma 1.4 (1) (iii), Bo3(t)(03d1(2)X) =
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(Qt + S)M1 + M23 = M23 if t = —8/2 with 623(—8/2) S (G(KC)O)Ml and
(B23(—s/2)0361(w)) My = Ba3(—s/2)(My) = M, as required.

(Case 2) When &) # 0: Put Y := Ba3(—s/(280)) X with Boz(—s/(2&)) €
(G(K®)°)as,. By Lemma 1.4 (1) (iii), Y = Mays(x).

(i) When z, = 0: £ = (z|z) — (z,|z,) =1-0=1,z=§ =+l and Y =
Mzg(:tl) = :|:M23, so that Y = M23 or 0'1Y = Mgg with o1 € (G(KC)O)Ml

(i) When z, # 0 with dy = 4: Then dg — 1 = 3. If & + f? = 0 for
all j € {2,-+,dx — 1} and & + & = 0, then —& = & =& = -+ =
{flK_l = 0, that is, 7, = 0, a contradiction. Hence, £ + 52 # 0 for some
i,7 € {1,-- dK—l} with i # j. Take ¢ € R® such thatc =& +&.
Put a := (fjeZ &ej)/c, so that —a = a € 8;(1, K®) and (a|z) = 0. Put

:= za. Then (y|1) = (a|z) = 0 and 0308Y = Fy(\/—17) + F3(y) with

030% € (G(K®)°)p,. According to the (Case 1), 3(036¢Y) = Moz for some
B e (GE) ),

(iii) When z, # 0 with dx < 4: By Lemma 1.4 (2) (iii), f1(2)Y = Mo
with f(z) € (GUKO))

(2) Take any X € No(K"). Then X = sMy + Mys(x) for some s € R and
r € 8i(1, K') by Lemma 4.1 (3). Take p,q € K. such that x = p + qv/—1ley,
so that pp — gg = N(x) = 1. Note that v/—lesz = G+ pv/—1ley, and that
w(vV=Tesx) = (p+ qv/=1lea)(q + pvV—Tes) = plg +7) + (¢* + Dp)V—1eu.

(Case 1) When (y/—1eqx|1) = 0: Then ¢ +q = 2(g|1) = 0. By ¢ = —,
@ +pp =pp—qq = 1, so that x(v/—leyz) = /—1ley and Tv/—1lesT =
—av/—legr = —/—1ley = V/—1ey. By Lemma 1.4 (2) (i), 61 (z) My = Ey —
E3 + Fl(IL‘\/—_]_64l') = Ml/ and (51( ) = SM1/ + FQ(—E\/—_]_&LE) + Fg(l‘f) =
SM1/ + M2/3 By Lemma 1.4 ( ) (111) 52/3( 8/2)(8M1/ + Mg/g) = M2/3 with
Bas (1) € (GUK))ar

(Case 2) When (v/—1esz|1) # 0: Then (v/—le4|x) = —(1]v/—legz) # 0.
By Lemma 1.4 (1) (iii), Baz(—5/(2(v/—1eq|7))) X = Mos(z) with Bys(t) €
(G(K")°)u,,. Note that ¢ +q = 2(v/—1ey|z) # 0, so that ¢ € K. and g # 0.

(i) When dgr 2 4: By dimg K = dg//2 2 2, there exists ¢ € K such
that (g|q) = 0, so that (v/—Tes(2q1)|1) = — (2G| —1es) = —(@|TV—1es) =
(a|vV—Tesx) = (@1|g) = 0. Put a := ¢1/\/N(q1) € Si(1,K’). Because of
(vV—1leqall) = 0, §;(a)My = My as well as (Case 1), so that No(K') >
61(a)My3(z) = Mysz(za) with 2@ € S;(1, K') such that (v/—1les(z@)|1) = 0.
Then 0;1(a) My = My and 6y (xa) Mys(xa) = Mys as well as (Case 1).

(ii) When dgr < 2: Then K’ = C’, so that x € §;(1,C"). By Lemma 1.4
(2) (iii), f1(z) € (G(C")°)m,, such that fy(x)Mys(x) = Mays. O
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Proof of Proposition 0.1 (4) (ii). Take any X € My3(K {). By Lemma 1.6
(5), X*? € M;(K). By Proposition 0.1 (4) (i), there exists a € G(K)° such
that M; = a(X*?) = (aX)*?, so that aX € Ny(K). By Lemma 4.2, there
exists € (G(K)O)Ml such that f(aX) = My, as required. O

Proof of Theorems 0.2 and 0.3 in (1) (iii). Take any X € J3(K) with
#Ax = 1 such as Ay = {A\1}. By Lemmas 1.2 (1) and (3), X = M E + X,
with some X, € {0} UMy (K) U Mas(K).

(iii-1) When Xy = 0: X = AF and vy = dimpVy = dimp{aX ™ + bX +
cE| a,b,c € F} = dimp{cE| c € F} = 1.

(iii-2) When Xy € M, (K): By Proposition 0.1 (4) (i), there exists a €
G(K)° such that aX = \\E + M;. By Lemma 1.1 (3) with M? = tr(M;) =
0, one has that (aX)*? = A2E — \; My, so that vy = dlmF{CL<OéX>X2+bOéX+
cE| a,b,ce F} = d11r11]1:{(a/\2 + b\ +)E + (b—a\) M| a,b,c € F} = 2.

(iii-3) When X, € Mys(K): By Proposition 0.1 (4) (i), there exists
o € G(K)° such that aX = A\ E 4 Mas. By Lemma 1.1 (3) with M2 = M,
and tr(Mas) = 0, one has that (aX)*® = \2E — Ay Mas + M, so that vy =
dimp{a(aX)** 4+ baX + cE| a,b,c € F} = dimp{(al} + b\ + ¢)E + (b —
a)\l)M23+aM1|abc€F}—3 O
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