
Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010)

Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010

A Portable Grid-Enabled Computing System for A Nuclear Material Study

Yuichi TSUJITA
 1*

, Tatsumi ARIMA
 2
,

Takayuki TATEKAWA
3
 and Yoshio SUZUKI

 3

1 Faculty of Engineering, Kinki University, 1 Umenobe, Takaya, Higashi-Hiroshima, Hiroshima 739-2116, Japan

2 Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
3 Center for Computational Science and e-Systems, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015, Japan

We have built a portable grid-enabled computing system specialized for our molecular dynamics (MD) simulation

program to study Pu material easily. Experimental approach to reveal properties of Pu materials is often accompanied

by some difficulties such as radiotoxicity of actinides. Since a computational approach reveals new aspects to

researchers without such radioactive facilities, we address an MD computation. In order to have more realistic results

about e.g., melting point or thermal conductivity, we need a large scale of parallel computations. Most of application

users who don’t have supercomputers in their institutes should use a remote supercomputer. For such users, we have

developed the portable and secured grid-enabled computing system to utilize a grid computing infrastructure

provided by ITBL (Information Technology Based Laboratory). This system enables us to access remote

supercomputers in the ITBL system seamlessly from a client PC through its graphical user interface (GUI). Typically

it enables seamless file accesses on the GUI. Furthermore monitoring of standard output or standard error is available

to see progress of an executed program. Since the system provides fruitful functionalities which are useful for parallel

computing on a remote supercomputer, researchers can concentrate on their researches.

KEYWORDS: Pu recycle, molecular dynamics simulation, grid computing, Java Native Interface, client

computing system

I. Introduction
1

Recently, Pu recycle is focused for effective use of

nuclear fuel (e.g., IFNEC mission
1)

). In the advanced fuel

cycle, MOX and inert matrix fuels such as ZrO2-PuO2 are

expected for effective burning Pu. However, research works

about it are restricted in limited research institutes because of

expensive experimental facilities which can manage

radiotoxicity of Pu. Therefore we have addressed computer

simulations not only to minimize costs for experimental

researches but also to have deep insights through analysis of

it by using an MD simulation. Due to the lack of a

supercomputer in user’s research groups, we need to use a

remote supercomputer with secured connections. Therefore

we have been utilizing a grid computing environment

provided by the ITBL project
2)

 to ensure a secured

connection to a remote supercomputer seamlessly.

The ITBL project is one of the national grid projects in

Japan. Its computing infrastructure (an ITBL system)

provides a seamless computing environment and huge

amount of computational resources by connecting many

parallel computers of different institutes via SINET3
 3)

 with

a secured communication infrastructure. The ITBL system

provides fruitful general purpose server-side software tools

on a portal site in which a user is registered. We can utilize

the tools such as a file manager, a program execution

manager, and a terminal manager without any attention to

heterogeneity in underlying communication systems and

*Corresponding Author, E-mail:tsujita@hiro.kindai.ac.jp

locations where computational resources are. Besides a

client API library is provided to build an

application-oriented grid application which runs on a client

PC.

Application users are non-expert in grid computing and

their target is computer simulations. Therefore we built an

application-oriented GUI computing system for our

simulation program by using an ITBL Java API as reported

in
 4)

 to orchestrate computation on a remote supercomputer

in the ITBL system and a native visualization program on a

client PC seamlessly although the ITBL system provides a

visualization system which cooperates with AVS/Express
 5)

.

Its GUI removed complexity of combination of many

parameter survey runs and users can operate computations

without mistakes. However, it lacked usability in remote file

accesses and monitoring standard output and standard error.

A pop-up window was provided to select a directory or a file

in the previous version. Users felt a gap in manipulations

between a main window and the pop-up window. Copying

and deleting directories and files were not available. Besides

the lack of monitoring prevented users to check whether a

program was running correctly or not.

Regarding to the lacks and termination of the Java API

delivery support, we have newly designed a computing

system based on the previous one by using the C++ library

and a Java Native Interface (JNI) on a Windows PC. The

new system can indicate standard output and standard error

on demand during execution of a program. Users can check

whether the program is running correctly or not easily and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Fukui Repository

https://core.ac.uk/display/59040921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

seamlessly without waiting for completion of a program.

Furthermore, it can assist seamless remote file manipulations

such as copying and deleting on the same GUI window

dedicated for job execution. Since contents of a directory

tree and a file list are updated after each operation, users can

easily know progress of each operation.

In the rest of this paper, sections II and III briefly describe

an MD computation and the ITBL system, respectively.

Section IV explains motivation and details of the computing

system. Related work is discussed in section V, followed by

conclusion in section VI.

II. Molecular Dynamics Program

MD computations have been performed by a parallel

version of MXDORTO named MXDORTOP
6)

 written in

Fortran77 to have simulation results about e.g., thermal

conductivity or melting point. Its computation task by the

Ewald method is parallelized by using Message Passing

Interface (MPI)
 7)

 because the computation is the most

compute intensive part. Figure 1 shows a flowchart of the

program code.

Fig. 1 Flowchart of a parallelized MD code, MXDORTOP

This program reads some parameters such as initial positions

and velocities of every atom, the number of atoms (1), and a

potential model from several parameter files at start-up (2).

In each step, parallelized subroutines by using the Ewald

method calculate forces for every atom (3), followed by

calculations of other forces by a root process (rank = 0 in an

MPI program) (4). Based on the forces, velocities and

positions are updated (5). At the final stage, temperature,

pressure, and so on are updated according to the calculated

results (6). The program outputs intermediate calculation

results about positions of all atoms, temperature, and so forth

at each given time step. Some of the outputs are used for

visualization of atoms or post-calculation of heat capacity

and thermal conductivity.

Since our target material is assumed to be a partially ionic

crystal, we selected a Busing-Ida-Gilbert type partially ionic

pair potential. At this moment, we adopt Pu-O and U-O ionic

pairs for our simulation research works. We assume the

partial ionic charges as 67.5 % of their formal charges.

Potential parameters were obtained from the works described

in
 8-9)

.

III. ITBL System

ITBL project is a national project as one of the e-Japan

Priority Policy Program. This project was launched in April

2001 by six institutes: the National Institute for Materials

Science, the National Research Institute for Earth Science

and Disaster Prevention, Japan Aerospace Exploration

Agency, the Institute of Physical and Chemical Research,

Japan Science and Technology Agency, and Japan Atomic

Energy Agency and has been carried out until March 2006 as

five years' plan. Project target is establishing virtual

laboratories where many researchers in various disciplines

can collaborate in developing a large scale of computer

simulation systems by utilizing computer resources

connected by high-speed network. At the end of the project,

681 researchers from 90 organizations participated. At this

moment, this project is maintained by the five institutes

except the Japan Science and Technology Agency.

An ITBL system provides a flat computing environment

by using its secured communication software such as an

RPC system named starpc
10)

. Every computing resource is

managed in the logical unit named “site” which is protected

by a firewall from Internet. Every site comprises ITBL

servers for secured access from/to Internet. The ITBL

servers consist of three servers: front, data, and proxy servers.

The front and data servers are located in DMZ

(DeMilitarized Zone) in order to protect at least computing

resources such as supercomputers inside a site. The front

server manages connections between user's client PC and

ITBL systems. It also manages seamless connections

between sites. The data server handles information to

manage ITBL systems including information of ITBL users.

The proxy server is for connections between the front server

and supercomputers inside a site. Every computing resource

is accessible via the ITBL servers after authentication.

A certificate authority generates an X.509 certificate for

every ITBL user’s single sign-on in authentication and

authorization. The certificate is deployed in both a client PC

and ITBL servers of a portal site in which the user is

assigned. Later the user can access a portal site through a

web browser by using an https protocol. The user can access

remote supercomputers in which the user has an account not

only inside the portal site but also in other sites.

Authorization for the other sites is realized by the front

server of the portal site. A portal site menu window provides

many kinds of server-side software tools such as a file

manager and a program execution manager. Moreover, a

client API library has been developed to build an

application-oriented grid system which runs on a client PC.

The library has been built on top of the ITBL's secured and

seamless communication software stack to realize the same

authentication and authorization. At this moment the library

supports C++ for Windows with the help of Microsoft

Visual C++ and C for Linux.

IV. Client GUI computing system for Nuclear

Material Engineering

We have proposed a large scale of computation by using

a remote supercomputer in the ITBL system. However, we

have faced usability problems and difficulty in setting many

parameters for MXDORTOP as described in Introduction.

For parameter settings, they need to arrange an input file for

the program in each run. Molecule structural data files

should be moved manually from a supercomputer to a client

PC on which visualization is carried out. Furthermore,

application users want to check progress of a running

program without deep understanding in a grid computing.

We have redesigned our client GUI computing system

based on the previous system by using the C++ API library

and JNI. We have selected Java to build an upper layer

software stack which faces to application users because Java

provides fruitful GUI and it is platform independent. This

system provides the following functions:

(1) Job management

This function assists to select a simulation program and

parameter settings for the program. It also supports seamless

job submission and job status monitoring.

(2) Seamless data file manipulations

A data file is seamlessly uploaded and downloaded by

using this function. Copying and deleting data files are also

available. Besides, monitoring contents of a remote file is

realized.

(3) Visualization support for remote calculated data by using

a native visualization software

Seamless parallel computations followed by visualization

of calculated results by a native visualization program are

supported.

Figure 2 depicts architecture of the client GUI system

connecting to ITBL servers.

Fig. 2 Architecture of a client GUI system connecting to ITBL

servers

The Windows C++ API layer of the client library is on top of

the ITBL's secured communication layer. The library has

many interfaces to utilize ITBL's functionalities such as a

file manager, a program execution manager, a resource

information service manager. On top of the library, we have

deployed a JNI layer to use the C++ library from a Java

application. Requests from a client PC to supercomputers are

transferred by using an ITBL's RPC named starpc. A

communication path between the client PC and the ITBL

servers is established by using an https protocol for secured

connections. On the other hand, TCP/IP is used for

communications between ITBL servers and supercomputers

because they are inside the same site.

Figure 3 illustrates a task flow of the client GUI system.

Fig. 3 Task flow of a developed client GUI system

Firstly, a Java application built by a ClientMenu class is

invoked. Then the class invokes a menu window built by a

MenuFrame class. In the menu window, a user can start a

new menu window built by an SrvManagerFrame class for a

target supercomputer. The window starts a connection to a

target supercomputer by using the ITBL's secured

communication software. We can access every

supercomputer in the registered site seamlessly and start job

execution once the window succeeds the connection. Details

of this system are explained in the following subsections.

IV-1. A common GUI menu window

A thing to do at first is execution of the GUI system on a

client PC by using a Java start-up command with the help of

an own shared library for JNI. Figure 4 shows a start-up

menu window, where a user is required to give a pass-phrase

for an X.509 certificate to connect a portal site.

Fig. 4 Start-up menu window of a client GUI system

Later, we can see available sites and associated computers.

We need to describe the URL of a registered site (portal site)

in a configuration file. The location of the X.509 certificate

can be specified in the same file. The client GUI system

reads the file at its start-up to activate such parameters. Only

the pass-phrase must be given on the start-up window for

security reason. A user can modify the parameters in the file

by selecting a menu, “Preferences,” in a pull-down menu,

“File.” Later the GUI system can connect to the portal site

by pressing a button, “Connect.” Once authentication

succeeds, the start-up window indicates available computing

resources in a tree structure manner. Here two different sites

(“koma.jaeri” and “tokai.jaeri”) are indicated as folder icons

under the root icon (“ITBL”) in a tree structure manner.

Available computers including supercomputers in each site

are indicated under a corresponding site icon. Once a user

selects one of the computers, pressing a button, “Start

Server,” invokes a new GUI window for job execution.

IV-2. Job execution menu

A job execution menu window built by an

SrvManagerFrame class is initiated for a target

supercomputer as shown in Figure 5.

Fig. 5 GUI window for a target computer

This GUI window is initiated as a new thread, thereby it can

run in parallel with the start-up window. In the middle of this

window, there are a “TME” tab menu which has buttons for

job controls and visualization of calculated results as

follows:

(1) Read script(TME)

(2) Execute(TME)

(3) Status(TME)

(4) Cancel(TME)

(5) Vis. Tool

The program execution manager in an ITBL portal menu

supports exporting a script file based on a task flow menu

named TME. In order to reuse the file, this system imports it

from a remote supercomputer or a client PC by activating

check boxes, “Server” or “Local (Client PC),” respectively.

Those operations are realized with the help of the ITBL

client API of a program execution manager. The first button,

“Read script(TME),” starts reading a job execution script file

for an ITBL system from the selected server machine or

user's client PC. Its file name is indicated under the button.

Scripts in the file are used for job execution. The second one,

“Execute(TME),” execute a simulation program by using the

script file and the job is submitted to a batch system or

interactively executed. Pressing the third one,

“Status(TME),” displays job status on a text-field, “TME Job

status,” in the middle of this menu. Submitted or running job

can be canceled by the fourth button, “Cancel(TME).” For

visualization of simulation results, VESTA
 11)

 is used at this

moment. The fifth button, “Vis. tool,” starts the visualization

software. Moreover, it is automatically started after

completion of a simulation program by activating a

check-box, “Use Vis. tool.”

Directory tree and file list are indicated on the lower part

of the window from this version. We can select a target file

or directory from here in e.g., specification of a simulation

program or a working directory, copying and moving files,

and so on by using function buttons in a “file menu” tab next

to the “TME” tab. A user can also download or upload

between a client PC and a supercomputer via secured

connections by selecting “Download” or “Upload” in a

“File” pull-down menu on the upper of it, respectively.

The window has tab-menus which handle the following

items in the upper location of the window:

(1) Server program

(2) Run parameters

(3) Job type

(4) Job list

(5) Msg output (Message output)

The first menu, “Server program,” in Figure 5 is designed

to control execution of a simulation program. A user can

specify a full-path name of a simulation program, a working

directory, a standard input, a standard output, and a standard

error. Once a user selects a target program or a file in the

directory tree or the file list, pressing a “Select” button of

each parameter validates the target directory or the file.

Figure 6 shows a tab menu, “Run parameters.”

Fig. 6 GUI window for parameters of a simulation program

Here we can specify parameters for MD computations such

as a potential model, the number of calculation steps,

temperature, pressure, and so on. Modified parameters are

applied to a parameter file of the MD code on the target

supercomputer by pressing a button, “Set parameters.” In

addition, a user can get all parameters, which are written

already in a parameter file, by pressing a button, “Get

parameters.”

The third tab menu, “Job type,” is for parameters of job

executions as shown in Figure 7.

Fig. 7 Job type selection window

We have serial and parallel modes for computation. Besides,

OpenMP
 12)

 is also supported for shared memory

programming in addition to distributed memory parallel

computing using MPI. A user can select one of them

according to a simulation program. It is noticed that a

simulation code is generally executed by a batch system on

supercomputers while an interactive mode is selected in a

test phase. A user can specify parameters associated with job

execution such as an execution mode (interactive/batch), a

queue class (mandatory for the batch system), the number of

processes, and the number of threads in this menu.

The fourth tab menu, “Job list,” is for monitoring all

submitted jobs. Figure 8 shows an example of this menu.

Fig. 8 Job list GUI window

A status of a selected job is indicated in the middle of this

program execution menu window.

The last tab menu, “Msg output,” supports monitoring

standard output/error produced by a running program on

demand. An example of it is shown in Figure 9.

Fig. 9 GUI window for a standard output

We can easily check progress of an executed program by

choosing a target standard output file or standard error file

and pressing a button, “Read,” on demand in the “File

menu” tab on the menu window. Since every component is

on the same window, users don’t feel any gaps in

manipulations. If there is some strange behavior in the

output, we can notify some problems in computations soon.

Once a computation finishes, calculated data on a remote

supercomputer can be visualized seamlessly. Figure 10

shows a visualized image obtained from two phase

simulations with 3,000 PuO2 atoms with 30,000 time steps.

Fig. 10 Visualized image by VESTA

The image was generated by the VESTA on a client PC after

automatic transfer of a structural data file from a remote

supercomputer to a client PC. This calculation was done by

connecting molecules in liquid phase to those in solid phase.

After long iterations, we can see whether the material is

stable in solid phase or not. Thus, we will see stability of the

material at the target temperature.

V. Related Work

The Globus toolkit
 13)

provides a credential delegation

based authentication mechanism which is embedded in its

Grid Security Infrastructure (GSI). GSI manages a mutual

authentication between a local and remote computers as well

as authorization on a remote computer. Security of the

Globus builds on an X.509 user certificate. The certificate is

used to create a temporary proxy certificate, which acts on

behalf of user identification. CoG kit
14)

 is available to build

a portal site or a client grid application to utilize grid

computing resources using the Globus toolkit. However a

user should have sufficient expertise in a grid computing for

installation and building stages. While the ITBL client API

is available without installation process because it is an

application-oriented library to be linked to a user’s

application.

UNICORE
 15)

 also provides a grid computing

environment. Its authentication and authorization build on

X.509 certificates, which are used to sign a job before

submitting it to the UNICORE environment. An Arcon

client library enables building client applications with a Java

API.

Visualization in MD computations is one of the

important issues. Many visualization software packages have

been developed such as VMD
16)

 and ProtoMol
17)

. VMD

supports visualization for MD computations by using

NAMD
16)

. NAMD is implemented in C++ and based on

Charm++ parallel objects. Furthermore, its Tcl scripting

provides analysis capabilities, allowing a user to design

project-specific tools. ProtoMol is fully-equipped packages

for MD computations from parallel computation to

visualization. On the other hand, our client computing

system orchestrates parallel computations on a remote

supercomputer with visualization by using a native

visualization program with the help of the ITBL's client

library. Application user need not pay attention to the

underlying middleware with the help of the ITBL’s client

library and a developed portable Java interface. Any kind of

native visualization programs can be available independently

with a grid computing environment.

VI. Conclusion

We have presented a client GUI computing system for

securely accessing a remote supercomputer seamlessly by

using the ITBL system. The GUI system has been

redesigned to support seamless file manipulations and

on-demand monitoring for standard output and standard

error based on issues reported in our previous GUI system.

Its infrastructure layer has been built by using an ITBL C++

client library. On top of the layer, we have deployed a

user-friendly and flexible Java interface layer by using JNI.

With the help of the ITBL’s client library, we have realized

single sign-on in user's authentication and authorization by

using an X.509 certificate. Since the GUI system has

adopted the same design in the previous one, it supports the

same useful functionalities. Typically newly implemented

seamless remote file manipulations remove gaps in handling

files on a remote supercomputer. Monitoring support for

standard output and standard error brings a chance to check

progress of computations on demand. It is expected that this

GUI system encourages nuclear material engineering by

using a remote supercomputer.

Acknowledgment

We would like to thank Prof. Katsuyuki Kawamura,

Tokyo Institute of Technology, Japan for providing us his

MD program code named MXDORTOP and giving useful

information. We would like to express our thanks to

supporting staff of the ITBL system.

References
1) The International Framework for Nuclear Energy Cooperation

(IFNEC), http://www.gneppartnership.org/

2) ITBL Project, http://www.itbl.jp/ [in Japanese]

3) SINET, http://www.sinet.ad.jp/?set_language-en

4) Y. Tsujita, T. Arima, K. Idemitsu, Y. Suzuki, H. Kimura,

“Building an application-specific grid computing environment

using ITBL for nuclear material engineering,” Proc. of

ICONE16, ICONE16-48223[CD-ROM] (2008).

5) Y. Suzuki, K. Sai, N. Matsumoto, O. Hazama, “Visualization

system on information technology based laboratory,” IEEE

Comp. Graph. Appl., 23[2], 32-39 (2003).

6) Kawamura Laboratory, Tokyo Institute of Technology,

http://www.geo.titech.ac.jp/lab/kawamura/eng/kawamuralab.e.

html

7) MPI Forum, http://www.mpi-forum.org/

8) H. Inaba, R. Sagawa, H. Hayashi, K. Kawamura, “Molecular

dynamics simulation of gadolinia-doped ceria,” Solid State

Ionics, 122, 95-103 (1999).

9) T. Arima, S. Yamasaki, Y. Inagaki, K. Idemitsu, “Evaluation of

thermal properties simulations from 300 to 2000 K,” J. Alloys

Compounds, 400, 43-50 (2005).

10) H. Takemiya, N. Yamagishi, “Starpc: a library for

communication among tools on a parallel computer cluster –

User’s and developer’s guide to starpc –,” JAERI-Data/Code

2000-06, JAEA (2000) [in Japanese].

11) VESTA,

http://www.geocities.jp/kmo_mma/crystal/en/vesta.html

12) OpenMP, http://www.openmp.org/

13) I. Foster, C. Kesselman, S. Tuecke, “The anatomy of the grid:

Enabling scalable virtual organizations,” Int. J. High Perf.

Comp. Appl., 15[3], 200-222 (2001).

14) G. von Laszewski, J. Gawor, P. Lane, N. Rehn, M. Russell,

“Features of the Java commodity grid kit,” Conc. and Comp.:

Prac. & Exp., 14[13-15], 1045-1055 (2002).

15) D. Erwin, “UNICORE – a grid computing environment,” Conc.

and Comp.: Prac. & Exp., 14[13-15], 1395-1410 (2002).

16) J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E.

Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, “Scalable

molecular dynamics with NAMD,” J. Comp. Chem., 26[16],

1781–1802 (2005).

17) T. Matthey, T. Cickovski, S. Hampton, A. Ko, M. Nyerges, T.

Raeder, T. Slabach, J. A. Izaguirre, “ProtoMol, an

object-oriented framework for prototyping novel algorithms for

molecular dynamics,” ACM Trans. Math. Soft., 20[3], 237–265

(2004).

http://www.itbl.jp/
http://www.openmp.org/

