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Origin of scaling structure and non-Gaussian velocity distribution in a self-gravitating ring model
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Fractal structures and non-Gaussian velocity distributions are characteristic properties commonly observed
in virialized self-gravitating systems, such as galaxies and interstellar molecular clouds. We study the origin of
these properties using a one-dimensional ring model that we propose in this paper. In this simpleNmodel,
particles are moving, on a circular ring fixed in three-dimensional space, with mutual interaction of gravity.
This model is suitable for the accurate symplectic integration method by which we argue the phase transition
in this system. Especially, in between the extended phase and the collapsed phase, we find an interesting phase
(halo phase that has negative specific heat at the intermediate energy scale. Moreover, in this phase, there
appear scaling properties and nonthermal and non-Gaussian velocity distributions. In contrast, these peculiar
properties are never observed in otgasandcore phases. Particles in each phase have a typical time scale of
motions determined by the cutoff lengththe ring radiusR, and the total energl. Thus all relaxation patterns
of the system are determined by these three time scales.
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[. INTRODUCTION the introduction of the cutoff prevents the gravothermal ca-
tastrophe, 3D gravitational system has a phase with negative
Many astrophysical objects in our universe consist of muspecific heat when treated in the microcanonical ensemble.
tually interacting elements through gravity. If they are almostEven in the canonical ensemble, this system is highly un-
isolated systems, they are called self-gravitating systerstable. When the temperature decreases, the system experi-
(SGS. For example, galaxies, clusters of galaxies, globulaences a violent first-order phase transition from the gas phase
clusters, and molecular clouds are thought to be typicainto the cluster phasgs,8]. According to these arguments,
SGSs. Their statistical properties are often characterized byo stable equilibrium states are theoretically expected in the
non-Gaussian velocityor pair-wise velocity distributions 3D gravitational system with or without cutoff in any en-
[1], fractal structure$2], and the scaling relation between semble.
the mass density and the system dizg Most of these ob- On the other hand, in the real world, we do not need
jects are thought to be gravitationally virialized. Therefore,stable equilibrium states for describing SGS; metastable
pure gravitational force seems to play an essential role irquilibrium states do actually appear in the dynamical de-
characterizing the above statistical properties of SGS indescription, such as, collisionless Boltzmann equation. The fi-
pendently of initial conditions. nite lifetime of such structures is sufficient to explain the
There have been some theoretical approaches to explapresent structures of SGS, even if they are expected to
the fractal structures in SGS from the viewpoint of criticality evolve further into different quasistable states through two-
and phase transition in gravothermodynamiid$ Strictly  body relaxation.
speaking, the ordinary SGSs in three dimengigD) cannot The relaxation process of SGS has been mainly discussed
attain genuine stable equilibrium, because the gravitationah the one-dimensional gravitational sheet mod&DS)
force does not vanish at long distand&® divergencgand  [9,10]. In this model, many parallel sheets interact with each
diverges at short distancéslV divergence. These proper- other through constant force that never decays at distant
ties of gravity cause gravothermal catastrophe in a selfplaces. Though the interaction is long ranged, no phase tran-
gravitating gas system enclosed by a solid adiabatic wall. Isition occurs in 1DS. Thermodynamics of 1DS is exactly
fact, the isothermal sphere is not always stable, since thsolved and actually, in numerical calculations, the system
entropy does not necessarily take the local maximum for thiseaches thermal equilibrium long after it attains virial equi-
configuration[5—7]. Therefore, the introduction of a small- librium. In this model, the virial condition gives the relation
scale cutoff as well as a large-scale cutoff is inevitable for2(K)=(V) between the time averaged kinetic enexd$)
such unstable systems to attain the final equilibrium. Thougland the potential energ{¥/). Therefore, contrary to the 3D
SGS, specific heat of 1DS is always positive. Thus the relax-
ation process in 1DS would be quite different from that in
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and superdiffusion process have been revealed in H\FE
In this HMF, though the specific heat becomes negative in
the quasistable stafd 3], it remains positive in the thermal
equilibrium state and the phase transition turns out to be of
the second order. Despite some common properties of the
models, the interaction form in HMF is also quite different
from that of real 3D gravitational systems.

Several other simple models have been propd4dtlin
order to characterize the 3D SGS much faithfully. For ex-
ample, the cell model and its extended versions are the sim-
plest models that show phase transition. In these models, the
pair interaction potential changes its value only at the cell FIG. 1. SGR model with a fixed radit® The particle locations
boundary[15,16. At low temperatures, most particles are are specified by the angles measured from a fixed direction. A pair
trapped within several clusters, and at higher temperaturesf particles at¢; and at6; interact with each other through the
these clusters melt and the particles can move freely. Howinverse-square law 3D gravitational force; the distance is measured
ever, it seems difficult to examine the relaxation process oby the straight line in the picture and not By6;— 6;|.
this system numerically, since the interaction is not efficient
to cause sufficient relaxation; particles have no interactiorfore, there is no characteristic energy scale required for a
within each cell. There are also several numerical analysegarticle to escape from the cluster. On the other hand, we
with the different type interactions including the lower and have the characteristic energy scale to bind particles in our
higher cutoffs[16,17]. However, the value of the lower cut- SGR model.
off used in realistic numerical calculations of these models We consider a system of self-gravitatifgparticles with
seems to be too large to extract the intrinsic properties ofnassm, whose motions are smoothly constrained on a cir-
realistic 3D SGS. cular ring with a fixed radiufR without friction (Fig. 1).

Thus it seems indispensable for us to have a model thadach pair of particles interact with each other through a 3D
faithfully reflects the characteristic properties of 3D SGSs;gravitational force. The distance between a pair is measured
the model has negative specific heat and shows a phase tramy the length of the straight line combining the pair and not
sition similar to 3D SGSs, and is capable for us to analyzéby the minor arc of the ring.
guasiequilibrium states that would be realized before the sys- The Hamiltonian of this system becomes
tem reaches the complete equilibrium.

In this paper, therefore, we first propose a moglf- 1 N
gravitating ring: SGRthat(a) has negative specific hedh) Hoy=—— 2 P7—
shows phase transition representing 3D SGS, (@his nu- 2mRe =1
merically tractable. This model consistsNfarticles, which
can freely move on a ring with a fixed radius, mutually in-

teracting through 3D gravity. An excellent point of this variable ¢, asr,= (Rsin,Rcosé). The momentum conju-

model is that the force is genuine 3D gravity while the cal- R v _ i i
culation is essentially one dimensional. Moreover, thegate tod; is given byP;=mR’d¢; /dt. The UV-cutoff pa

Hamiltonian permits the accurate symplectic integrationrametzrt; t;gntcateszt\?ze_slverglng gravitational force at
method by which we can analyze the nature ofquasiequilibf’Iroun e distance= v2eR.

rium states and phase transitions within very long time scales We f|rs_t introduce three_ dy’?am'ca' time scales th_at are
in this model. apparent in the above Hamiltonian. They are parametrized by

In Sec. I, we introduce the SGR model, and in Sec. IIIthe ring radiusR, the cutoff scale, and the total energl of

identify three quasiequilibrium states including the state withthe system. . . . .
negative specific heat. In Sec. IV, we analyze the particle When the system is almost umformly f|l|ed b_y moving
motions from a statistical point of view, and then we studyParticles, we have the longest dynamical titgedefined by
the relaxation process toward the thermodynamical equilib- 3
rium in Sec. V, and the scaling structure in Sec. VI. Finally, t R
we discuss our results in Sec. VII. R GNm

N Gn?

< V2RV1—cod6,—6))+e€
(2.1

The position ofith particle is fully described by the angular

2.2

During this timetg, a typical particle goes around the ring
Il. SELF-GRAVITATING RING MODEL once. Therefore, the time scale for the whole system to attain
hthermodynamical equilibrium, if any, is at least larger than

In this section, we introduce the SGR model, in which ="
his time scale.

particles interact with each other through genuine 3D gravit . .
When all the particles collapse completely into a core, we

while the particle motion is constrained on a 1D ring. Byf. d the sh d cal ti defined
utilizing this model, we study the gravitational phase transi- ind the shortest dynamical time scajedefined as

tion, which was not feasible in the 1DS mod&0]. The lack 3
of phase transition in 1DS is related to the fact that the po- t.= § 2.3
tential of 1DS increases linearly without bound, and, there- ¢ GNm '
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During this timet,, a typical particle bound to the core This is the intrinsic time scale associated with genume grav-

oscillates onck

ity independent of the cutof and of the system size.2

There is an another time scale in between the above two The above introduced cutoff paramegetonnects the two
extreme time scales. Suppose the system is stably confined limiting cases in the following sense. In the lingit-0, the

a region with a scale, which satisfies

g<r<R. (2.4)

For this scale, the ring can be approximated as an infinite
straight line and the cutof¢ can be neglected. Then the
leading term of the denominator of the potential, term in theva

Hamiltonian(2.1) becomeg 6, — 6;| and

> P EG_”‘Z_

2.
Hp~ ZmR2 = =i Rl6;— 0] @9

In this case, the potential terM, satisfies Euler’s theorem

for homogeneous function

(2.6

N
2‘ 'ao Ve
and the ordinary virial condition holds

2<Kp> == <Vp>’

(2.7

where angle brackets represent the long-time averadye.

cording to this virial relation, the typical size of a systelis
related with the total energl as

SGR model becomes genuine 3D gravity at small scales,
while in the limit é— R, the model almost becomes the HMF
model. The latter is, because, in this limit, the shape of the
potential around #=kmw(k=0,%+1,...) becomes almost
identical as it does in the HMF modl.

For numerical simulations, we need to make all physical
riables nondimensional; we use R, andtg for the unit of
mass, distance, and time, respectively. In these units, the
physical Hamiltonian2.1) reads

N
Hp:szﬁH, (2.13
where
1 N N
H=— z (2.14
2 P EJwﬁTEaE
The dimensionless momentup) is given by p;=dé;/dr

and the dimensionless timeis introduced ag=t/tg. The
above form of Hamiltonian permits us to use a powerful
symplectic integratof18], with which the total energy is
conserved with extremely high accuracy, even beyond thou-
sands of dynamical time. Typical magnitudes of errors for
the total HamiltoniarH (7) and the total momenturi(7) in

our simulations up tor~10* are [H(7)—H(0)]/H(0)
~0(10°% and P(T)/P,m5(7)~0(10_8), respectively,
whereP . {7)=(2,p?)2

Ill. CLASSIFICATION OF PHASES AND PARTICLES

We now study the quasiequilibrium state that appears in a

Moreover from the virial relation, the velocity dispersion is transient stationary stage in our SGR system. Though this

Vo GmPN? o g
2T @ 28
Hence the above condition for(2.4) reads
Gm?N? . Gn?N? .
Y: >|E[> IR 2.9
given as
2(Kp)= _<Vp>:mN<U2>a (2.10
wherev=dr/dt and, therefore,
2IEI
V(v (2.11

From this Eq.(2.11), the crossing time is defined as

r G m5/2N 5/2

D azER

(2.12

state is not absolutely stable, it generally appears in SGSs
during sufficiently long time before the system finally ap-
proaches the equilibrium state characterized by the equipar-
tition of particle energy.

We would like to extract universal properties observed in
this transient state; only the transient description is possible
and necessary to explain observations.

A. Negative specific heat of SGS

First, we study the phase diagram of SGR model in the
temperature-energy plane. TheU relation is shown in Fig.
2 and we observe that the region with negative specific heat,
i.e., negative slope region, apparently exists. The tempera-
ture T and the internal energy per partidle of the present

Yn the following section, we classify all the particles into three System are defined, respectively, by

species,core, halo, and gas The typical time scalesg and t,,
respectively, characterize tlymsand thecore species.

2Outside of the above region in SGR model, this form of virial 3As we will show in Sec. IV, this is also the time scale for the

relation would be modified even in the limit (-0, as is shown in

Appendix A.

particles inhalo species in SGR model.
“The exact HMF model is reproduced in the lingits .
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W, C2srtaTo cutoff €. This cutoff dependence can be estimated from the
400 ¢ :i;fg;;g_f; i condition (2.9) that, in our normalization, becomes
350 + -
oo ! ocu<-t (3.3
N 250 5: 1 4\/2—6 4" ’

200 g‘_y 1
150 | 6% ans & Under this condition, the negative specific heat condition in
100 - A ?“’@°f>% £ virialized state would be justified. Actually, substitution of
sol o - %%g ] three different cutoffse=2.5x10"7, 1.0x10°°, and 2.5

0 oL S X 10° into Eq. (3.3 yields the lower limits of Eq.(3.3)

"800 700 -600 500 -400 -300 -200 100 0 100 200 353, 177, and 35.3, respectively. Thus the conditidrg)

v correctly describes the region of negative specific heat in

FIG. 2. Diagram of temperaturE vs energy per particle) for ~ Fi9- 2 with sufficient accuracy. However, the slope of each
three different cutoffg=2.5<1075, 1.0x10°5, and 2.5¢10~". In  T-U line in Fig. 2 is less steep than the valu€ which is
eachT-U curve, there are two critical energy scalek;o,(€) and  €xpected for the virial condition of 3D gravity. This discrep-
Ucngi(€), between which negative specific heat)/dT<0 ancy is probably because the energy range satisfying the con

appears. dition (3.3) is too narrow for the ideal-U curves according
to our choice of the cutoff parameters; even the smallest
2(K(7)) cutoff we took may not be enough to make the relation con-
T= N (3.1) verge.
In the range between these two energy scales, i.e.,

Uciow(€) <U<Ucpigr(€), the system has negative specific

heat, which suggests the existence of phase tran$gid®—
(3.2 17]. Actually in the system with negative specific heat, a

slight energy injection from outside decreases the system’s
. . . ) temperature and induces further energy flow from outside.
The internal energy is conserved in the present Microca- Then this catastrophic temperature reduction induces rapid
nonical system, while the temperatufeis defined as the ¢ ster formations in the system. As we will see below, such
twice of the time-average(tepresented by angle brackets hase transition from the gaseous state to the cluster state
kinetic energy per particle. The phase diagram in Fig. 2 ictyally appears and characteristic structures are realized in
time averaged untir=2 where the system achieves virial s intermediate energy range.
equilibrium (see Fig. 3 Throughout this paper, except ex-
plicitly mentioned, we fix the total number of particlés
=100 for simplicity and, therefore, the remaining relevant
parameters that characterize the quasiequilibrium state of the As is seen in Fig. 2, there are apparently three phases
system would be and U. according to the energy per partidle (a) low-energy col-

From Fig. 2, we find two characteristic energy scaleslapsed phase (( phas¢ U<U_,(€), (b) intermediate-
where dT/dU=0; Ugou(€) at a low-energy side and energy phaseZ phasg¢ U, (€) <U<Ucpigr(€), and(c)
Ucnign(€) at a high-energy side. The energy sclg,gh(€)  high-energy gaseous phasg ghasg U nigi(€) <U. The g
corresponds to a mean gravitational binding energy per paphase(c) is stabilized by the infrared cutoffé< 2, or a
ticle, which is estimated aféll(\/wa/l—cos¢9+e)>[N(N largest physical scale-R), without which the particles
—1)/2]/N~O(1), while U ,,(€) strongly depends on the would escape into spatial infinity. Th@ phase(a) is stabi-
lized by the ultraviolet cutof, without which the particles
would fall into a singularity. The specific heat for these par-
U=3800 — 1 ticles (a) and(c) is positive, in accordance with the stability
of these phases. On the other hand,Zhghaseb) (the most
specific to gravity has negative specific heat and, therefore,

3 is unstable. The nature of this phase is independent of any
[ DR artificial cutoffs and, therefore, is thought to represent intrin-
sic properties of gravity.

The existence of three different phases, as is explained
above, distinguishes the SGR model from other models with
- long-range force. For example, HMF model has only high-
15 2 25 3 85 4 45 5 and low-energy phases, and shows a second-order phase

' transition between these phases. On the other hand in SGR

FIG. 3. The time evolution of(7) defined by the left side of Eq. Model, the intermediate phase with negative specific heat
(A5) in the case withJ = — 100, — 300, — 500, ande=2.5x 10" ". exists and is strongly unstable when the system is in contact
In each case, the system achieves virial equilibrium within a fewwith a heat bath. As for 1DS model, only a single phase
dynamical timesr. exists because the system has no characteristic energy scale;

c
1l
Z| T

B. Three phases in SGR model

I(t)
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there is no phase transition in this model.

The limit e—0 in SGR model represents genuine gravity
without collision and the range of the intermediate phase
increases without bound.

C. Three speciesgas halo, and core particles

In each phase, the particles of the system prevail in vari-
ous energy ranges. For example, in the intermediate phase,
some particles evaporate from a cluster and move along the
ring almost freely with the time scalg,, while some of the
others fall into the center of a cluster and oscillate with the
time scalet;. Thus, the overall phase information does not
precisely specify the nature of individual particles. In order
to obtain much fine information, we define three species in
each phase by using the energy of the particles: The energy
of theith particle is given by

1 N 1
Ei=5p{— 2 (3.4

i7i V2Ny1—cosf;+e

The classification is based on particle energy, thagis;ore
particles forE;<U_ . ow(€), (b) halo particles forU. o(€)
<Ej<Uc.ig(€), and(c) gasparticles forU ¢ pigh<E; 2

In the low-temperature phase of SGR, the quasiequilib-
rium state at very low temperature is highly inhomogeneous
and a single cluster is formed. Most particles are condensed
in this cluster and the total potential is deep. In the interme-
diate phase, many particles spread around a cluster. As the
temperature increases within this phasap particles gradu-
ally dominatecore particles and eventually there appgas
particles, which evaporate from a cluster and go along the
ring. In the high-temperature phase, all particles move al-
most freely without forming any cluster.

We describe the ratio of particle number in each sfaigs
)\COTE! )\haloa and )\gasa with )\COfe+ )\halo"— }\gaszl' Their
evolution is shown in Fig. 4 for the cage=2.5x 10 ’. From

08 -

0.6 -

0.4 -

0.2

04

0.2

0.8

06

04 r

0.2 -
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I ihingg

core,

2 25 3 35 4 45 5

L

gas halo
05 1 16 2 25 3 35 4 45 5
T
core
U=-500
halo
e gas
AR R g R T R e P e
05 1 15 2 25 3 35 4 45 5

T

FIG. 4. Time evolution of the percentage of each speaigs.,

this, we observe those ratios seem to have approached,  and Ngas in high-energy @) phase(top), in intermediate-

asymptotic values beyont=1: A =0, Apao=0.2, and
Ngas=0.8 for U=100 (G phasg, Agoe~0.41, Npge~=0.23,
and N\ 4,¢~0.36 for U=—100 (Z phasg, Aue=0.96, Apapo
~0.02, and\ 4,¢~0.02 for U=—-500 (C phasg¢. Gas par-
ticles dominate ing phase andore particles dominate i

energy () phase(middle), and in low-energy ) phase(bottom

for e=2.5x10"". Gasparticles dominate in the high-energy phase,
andcore particles dominate in the low-energy phase. On the other
hand, all three species coexist in the intermediate-energy phase.

phase in number. While ifi phase, all of the three species of with it, the relative ratio of time intervals of three states in
particles coexist almost equally. According to our variouswhich each particle stays unti=5 is shown. As we expect,
calculations changing the particle number and initial condi-in both G andC phases, most patrticles stay just in one state
tions, this coexistence seems to represent the prominefdr quite a long time. For th€ phase, however, many par-

property of SGS and not the finiteness of particles.

ticles experience at least two states. Some particles wander

In Fig. 5, the energy dependence of the ratio of each sperom one state to another in three states.

cies in7=5 for e=2.5x10 " is shown at the center. The
energy scale wherealo particles exit corresponds to the one
where negative specific heat appeafs phas¢. Together

IV. PARTICLE MOTIONS

In this section, we examine individual particle motion and

velocity distribution function in each phase.

SNote that even in th€ phase, there exist a fegasparticles. We
term thecore particles anchalo particles as a cluster in this paper;
they form an apparent single bound state.

A. Recurrent motion of halo particles

SWe term a state to represent the situation that a particle belongs In the HMF model at the state near the critical energy,

to one of the three species.

056133-5
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U=-500

U=100

0.8

0.6

0.4

0.2

relative number of time intervals
relative number of time intervals

label of particles label of particles

0.8
0.6

0.4

Ratio of species

0.2

- 500—450-400- 350- 300 250-200- 150~ 100 =50 —10 100 200

Uc-low Uc-high

U=-100

0.8

0.6

0.4

0.2

relative number of time intervals

label of particles

FIG. 5. The middle diagram shows the energy dependence of the ratio of each statesrat Sirfar the cutoffe=2.5x10" 7. For three
typical casesl =100, — 100, and— 500, the ratio of time duration intervals of the three states in which each particle stays=ubtils
shown in the upper and lower diagrams. In these diagrams, each vertical bar corresponds to a particle, and each g fudltheand
core states is represented by the white, gray, and black areas, respectively. In bgtpthhse U =100) andC phase U= —500), most
particles stay within each state. On the other hand, irfthkase U= —100), many particles experience at least two states. Some particles
wander in all three states.
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been reportedl13]. These peculiar behaviors of particles are ¢
apparently caused by the transitions fra@wre particles to
gas particles and vice versa. We observe that such peculiat
behaviors in HMF model are caused by the periodicity of the .
configuration space and not by the long-range force itself. In® —
fact, for all Levy-type flights numerically shown in HMF, the '
flight distances turn out to be longer than the periog. 2
Therefore, the artificial periodicity in the potential, and not 0
the long-rage nature of the force itself, is thought to have
caused the DLey-type flight in HMF model. In our SGR

model, we do have the possibility to observe the same/Le

type flight motions since particles in SGR also move along a (a)
closed ring. Since we would like to extract the intrinsic prop-

erty of the long-range nature of the gravity itself, we pay

attention to the recurrent motion balo particles and disre- 538 : :

gard the round-trip motion along the entire ring. __ /\
First, we choose the parameters &s7.1x 10" “R and © . /\, \

U= —100 for which the system is in the intermediate-energy s / \

phase. The particle motion is shown in Figa in which
core particles form a firm cluster and they oscillate around
the center of the cluster with the time scale and halo sat
particles go in and out of theore region without any typical
time scale and amplitude. Zoomed in ten tiniegsy. 6(b)],
and even in hundred-timg&ig. 6(c)], the particle motion is saf 1
always similar recurrent movements. This repetition of the \>/ v
similar recurrent pattern suggests a self-similar structure of b) | |
the system. ( sas |

Note that the recurrent motion dfalo particles is con-
fined within the rang¢0,27] and particles never experience
a round trip along the ring, quite contrary to the HMF model.
Moreover, this recurrent motion of particles is quite robust
and is observed in any region of the intermediate energy
phase. This robustness is a remarkable contrast to the HMF
model in which such motion is observed only at the critical
point in the phase diagram.

In order to analyze this behavior more quantitatively, we
examine the frequency distribution of the recurrent time 0
Trec= Tin— Tout: that is, the time period from the momeny,,;
when a patrticle leaves the barycenter of tioee to the mo-
ment 7, when it first returns to the barycenter again. Here
we have defined the location of the barycenter ofdbee as

5.38 -

L L L LY L
5.05 51 5.15 52 525 53

N, (G) i 5005 o1 Py S0z oz 5.08
Ohe=2, 6N, (4. T
i=1

FIG. 6. Trajectories ohalo particles for the time intervala)
where 6, is the location ofith particle in thecoreandN. is  7=5-8,(b) 7=5-5.3, and(c) 7=5-5.03. Ten-times zooming up
the total number otore particles at each moment. the marked square region {g) yields (b). Further ten-times zoom-

In Fig. 7, we depicted the frequency distribution of theing up the marked square region (b) yields (c). The recursion
recurrent timer,.. for core particles anchalo particles sepa- Profiles are similar despite the scale difference.
rately. Forcore particles, as we expected, we find almost
Gaussian distribution around the centefFig. 7(@]. Onthe  power law range—3<log;( 7e.< — 1.5 is consistent with
other hand forhalo particles, although a peak is found the eye-fitted region of self-similar motion in Fig. 6. We will
around rg(=tg/tg), the distribution shows that a long tail see that the above difference of frequency distribution for
spreads widely characterized by the power ldr.) core and halo patrticles leads to the difference in relaxation
~ T With p~2.0 [Fig. 7(b)]. We have checked that this time of them in Sec. V.
We have also examined the energy dependence of the
above powep. The result is given in Fig.(B) showing that
The smaller the cutoffe, the larger is the range of the total the value ofp(=~2.0) is almost independent of the choice of
energy per particlé where the recurrent motion appears. the energyU throughout the intermediate-energy phase.
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4 =<

3 . N FIG. 7. A linear-log plot with

) et T TR e 3 I R common logarithm of frequency
- o N moxy | B U5 3% distribution f(7,) for core par-
gt : Y 32 .’ : 5\;\ ticles and a logarithmic plot of
~— ¢ u ~N, . . .

:lll 0.06225 0.0003 0.00035 0.0004 0.0004%0.0005 t/ m X >\\ frequenc_y dlS‘.:l'lbUtlorTf(Trea fOf
- / . %1 " - . halo particles in several values of
S \ = i R . U. Each plot in (b) shows the

; \ 0 m D P same slope within the range
-3 -3 -25 o 2 -15 -1 10739%< 7,,<10715 The broken
08 (Trec) line represents a line with slope
(@ ®) —20.
B. Velocity distribution of particles On the other hand, the distribution bélo particles in(a)

is manifestly non-Gaussian, although that of the same par-
ticles in the caséc) is Gaussian. This distribution is at least
unchanged untit-= 200.

What is the origin of the above non-Gaussian distribution
or halo particles in the intermediate-energy phase in case
(a)? Here we analyze this issue from the viewpoint of the
generalized central-limit theorem. It is well known that the
limit distribution for sums of independent random variables
is the Gaussian distribution provided that the dispersion is
finite (the central-limit theorem However, it is less well
known that the limit distribution for sums of independent
random variables is the stable distribution in general cases,
including those where the dispersion is divergent. This stable
edistribution is defined to satisfy the relation

As is shown in Appendix A, the time averaged kinetic
energy(K) is, in general, expressed as the suniNdfinde-
pendent stochastic variables. However, in the caseooé
particles, which are located within a few cutoff scales, thef
quantity(K) turns out to be expressed as the suniNaohde-
pendent stochastic variablésee Appendix B In this sec-
tion, we show that th&l dependence dK) characterizes the
velocity distribution of particles.

In Fig. 8, we show the velocity distributions abre and
halo particles in three casesfa) é~5X10 %R, U=
—100 (b) &é~5%x10%R, U=-500, and (c) &é=~5
x10 %2R, U=-0.65. We have superposed the velocity
dataatr=1, 2, 3, 4, and 5, with ten different random initial
conditions fixing the total energy. Thus the size of the whol
data we used is 810° for each velocity distribution func- Ny
tion. The distribution ofcore particles is well fitted by the E x;=NYex, 4.3
Gaussian distribution =1

whered means that the distributions of both sides are equal
1 e-vi20? (4.2) to each other. The parameterclassifies the stable distribu-
N ’ ' tions and must satisfy @a<2 for the normalizability and
the positivity of the probability distribution function. In the
with the dispersion (v, ?=0=7.29(a),10.9(b), and above definition,x; and x are the probabilistic variables
0.51(c). obeying the same distribution. Let us apply this to the veloc-

P(v)=

FIG. 8. The linear-log plot
with common logarithm of veloc-
ity distributions of particles for
the three cases:(a) €=2.5
X107, U=-100 (Z phase,
() €=25x10"7, U=-500

b (C phasg, and (c) e€=25
-5|-7 5 o omtinf N X103, U=-0.65 (Z phasg.
/ —- Lorentzian (s =2, 20) \ In all cases, velocities afore par-
—20 -10 0 10 20 _tlcles.ar_e ngl fltte_d by the Gauss-
v ian distribution with dispersiomr
=0.51(a), 7.2%), and 0.51(c),
0 0 respectively. Also in the large cut-
off case(c), velocities ofhalo par-
— "1 o 1 ticles are well fitted by the Gauss-
3‘9’:_2 E_’z‘i« -2 % ian distribution 0=0.93. On the
e } g - -3 S other hand, in the small cutoff
& -3 0 U=-500 o 2 4l 4 i case (a), velocities of halo par-
R o ecore ot k " g‘ an ©oosn| \\ ticles are well fitted by the Lorent-
"4 ~ Gavsdane 2.2 i/ — dmmmm oo | zian distrbuion @=1) with s
-3 -20 -10 0 10 20 30 -3 2 -1 0o 1 2 3 =22
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ity distribution of our model. We square both sides of the 1
above equation, and obtain the nonextensive property tE/tRzmlul’w,
<U2>N—particle: N2/0_1<U2>one—particle (4.9 tgltR: (26)3/4. (5.1)

and the method of characteristic function yields the explicit

. _ — — 7
form of the distribution functiof19] For example, if we choos&)=—-100 ande=2.5x10" ",

then tg/tg=~1.8x 10" and therefore the three time scales
are separated as

1 (= . w
P(v)=zf_mdyex;[—|vy—s|y| 1. (4.5 f<te<tp. 5.2

Note that this stable distribution includes the Gaussian dis] Nén the contribution ofyas particles to the dynamics of
tribution (4.2) as a special case= 2, where the kinetic en- halo or core particles is negligible during a fety.
ergy becomes extensive, and the dispersiony/2s is finite. The parameter sef) does not meet the conditiof8.3)
The parametes is thought to be a generalized temperature.2Ndte/tr=0.34;  tg is the same order dg. On the other

Let us first consider the velocity distributions agrepar- ~ "and, the parameter set) meets Eq(3.3 andtg/tr~1.8
ticles. We observe, from our numerical calculations, that al10 ™ te is much shorter that. This means thagas
core particles oscillate within the narrow region of the cutoff SPECi€S play an important role in relaxation in céi$ewhile
size ¢, and the gravitational two-body interaction is domi- they do not do so in cas@). In order to examine the relax-
nated by the artificial potential force. Therefore, the average@Uon process for these two cases, it is convenient to normal-

kinetic energy is described as the sum\bindependent sta- 128 the tim(_a with the unitg ,_since the _degree of relaxatior_1
tistical elementgAppendix B. This leads to the normal ex- of 3D gravitational system is conventionally measured with

tensivity for the velocity distributions ofore particles and, the dynamical time. So here we introduce the dimensionless

therefore, we expect the Gaussian distribution. This is confiMe Te=t/te. L

sistent with the results in Fig. 8. As for initial conditions, we locate several clusters of the
On the other hand, fdnalo particles that interact through S2@Me size with the same interval. The number of clusters is

genuine gravity, the kinetic energy behaveg igs)~N? for chosen as 5, 10, 20, 25, and 50 for mo@igland 5, 10, 20,

fixed R as is shown in Appendix A. Thus from E6#.4) we and 25 for modelii). The initial vgloqltles of particles are

find the indexa=1 for the physical velocity distribution of S€t randomly but the total energy is fixéd:= —0.65 for (i)

SGR. In this case witlv=1, the distribution(4.5) becomes andU=—100 for (ii).
the Lorentz form In order to study the Ergode property of the system, we

examine the mixing property of the particles in the three

1 s states(core halo, andgas. In other words, we examine the
(4.6) degree of isolation of each states. We directly measure the

extent to which each particle experiences these three states.
o . ) o First, we pick up discrete timesrfq,7eo, - - - \TEis - - - )
This is also consistent with the results in Fig. 8. The essencg;ih the equal interval ¢ ; at each time, each particle stays
of the appearance of this non-Gaussian distribution is thg; one of the three states. Then we count how many times the
nonextensivity of the energy for SGS; this is the intrinsic particle stays at each states before the tigge Finally,

property of gravity. _ o after normalization, we obtain the relative frequencies of
Then what is the origin of the Gaussian distribution of 4, o4 states A5 7e) MK o(7er),  and )\gas(TEi) (with

halo particles in caséc)? As we show in the following sec- | «k K ¢ k _ ;
tion, this is mainly because the relaxation timesofe and Neore 7ei) + Nnaiol 7ei) + X gad 7e1) = 1) for thekth partice.

. . At the first time 74, each particle definitely stays at one
halo particles are close to each other. In the following sec- : : .
. N, ) ' of the three states; relative frequencies of stay
tion, we will discuss the relation between the profile of ve-

k k k :
locity distribution and the relaxation process. Ncore 7€1) Mhatol 7E1), @NdAge{ 7e1) are either 1 or 0. In the
next time rz,, some particles may change the state; then

Neord Te2) Mol Te2) and M. (7g,) for these particles are
V. RELAXATION 1/2. In this way, AX (7e) A fao(Te) and M. (7e) will

One of the most important issues in statistical physics ofVoIve in timerg;. Various distributions of\ ¢re 7ei) -1
the N-particle system is the relaxation process. In order tdor all the particlek=1,2, ... N will define the distribution
study the relaxation process of our model, we choose severfinction N(Ag.s, 7e) for valuesh g, at time 7g; by simply
different initial conditions for the same values efandU.  counting the number of the particles that take the valug
Here we have examined two parameter sets, (ii.)i‘ﬁ: 25 at time TE - Slmllarly distribution functions for other states
x1073,U=-0.65 and (i) e=2.5x10"7,U=—100, for can also be defined\(\pao,7e) and N(Acore, 7g). As the
both of which negative specific heat appears. system is thermally relaxed and the equipartition of energy is

As we discussed in Sec. Il, there are three dynamical timattained \ & 7e) Mo 7e), @nd )\'aas( 7e) will converge to
scalestg, t;, andtg. In the units of our normalization, the the same valu& gy, a0 @Nd\g,sindependent of the par-
ratios of these time scales are ticle label k. Then N(Agas,72); N(Mpao,7e), and

o= re
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R R
~ f 1 —~ ]
e &
S 9 g
4 4
24 | 2f
o 0.5 X ) 0.5 1.0
(al) A (b1) A
& Tl & Tl FIG. 9. Time variation oN(\, ), where the
< 4 < 4 bars in white, gray and black colors show
& 26 A 4 N()\gas:TE)a N(Nhaio» 72), and N(X¢ore, 7g), re-
[ [Iu- rﬂ. spectively. The left and right columns, respec-
NG 0.5 1.0 o G 1.0 tively, represent the case of large UV cutéd
(@2) A ®2) A €=2.5x10"% and U=—0.65 and the case of
e e small UV cutoff (b) e=2.5x10"7 and U=
o —100, whererg;=6.5x 10*, A 7g=2.0x 10° for
_ _ (@, and 7g;=1.1X 10, A7=3.8x10° for (b).
e e In both columns, time flows from top to bottom:
% e ‘\;/ 4 (albl)re ,(a2p2)7e ,(a3b3)7e (a4 bd) e,
e]ilj]i ‘ IW o [ i respectively.
0 0.5 1.0 0 0.5 1.0
(a3 A (b3) A
Z Z
20 - 24
_ Iillh,, allnll.. LS. ... al

0 0.5 1.0 0 0.5 1.0

(ad) A (b4)

N(Xcore, ) Would have sharp peaks B, e, fapo» and?\éas in Fig. 8 seems to reflect some quasiequilibrium intermediate
in the thermal equilibrium state. Thus the development of théstage before the thermal relaxation of the system. Latter pe-
peaks in the distribution function$( gas, 7e), N(Apaio, 7¢), cuhay properties in ve]omty distributions may make 3D
and N(A e, 7e) Can be a good measure of the degree ofgravitational system quite different from those in the system
thermal equilibrium. with short-range interactions or the system with positive spe-
In the large UV-cutoff case(i), each distribution cific. heat. 'If we sete Iarger, then the encounter dfalo
N(Agas: 7€) N(Apaios 7e), and N(Acore, 7¢) Starting from particles with normal particleggas and_ core particles b_e-
7e1=6.5X 10" seems to develop a single peak in between (comes more frequent, and thelo particles cannot be iso-
and 1 at least by the time-~10° [Fig. Ab)], and the vari- Iateq from th.e. nprmal particles, resulting in tr_ivial t.hermody—
ance around the peak seems to reduce in fifig. 9c)].  namical equilibrium of the whole system as in cabe
This means that most particles experience all of the three

states gt least byg~2.0x 10°; thermgl relaxation proceeds VI. SCALING PROPERTIES OF THE HALO
in the time scaler=~ 10°. In contrast, in the small UV-cutoff
case (i), each distributionN(\ gas, 7€), N(Apao,7g), and In Sec. IV, we have found that the velocity distribution of

N(\cores 7€) Starting fromrg;=1.1X 10° seems to develop halo particles is non-Gaussian with anomalaus? tail and
peaks at the edge of the domain 1 and/or O, even after theach halo particle shows intermittent recursive motion
time duration, 7e~3.8x10° [Fig. %e)]. This means that around thecore without a definite time scale. These scale-
most particles stay in each single state even in the time scafeee properties of théalo particles turn out to appear in the
e~ 10°; the system does not approach thermal relaxation aspatial distribution profile of them itself. In this section, we
all in this time scale. study the scaling property of the spatial distribution with the
By combining these results, the Gaussian velocity distri-box-counting method20].
bution realized in caséi) in Fig. 8 seems to reflect the For this purpose, we use the box counting method: We
achieved thermal relaxation of the system. On the othedivide the entire configuration spacerR into segments
hand, the Lorentzian velocity distribution realized in céise  with equal size” and count the numbe(/) of the segment
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that contains at least orfealo particle. Then we define the wal ' ' ' ' n= o |
quantity — d(log; o N(/))/d(log,0/), which turns out to be e neio .
the scaling exponent, provided that the quantity is almost bl ”‘“ﬂ%@ B
independent of the scalé. In order to increase the statistical 1t ﬁ"ﬂmf o e

significance, we used multiple particle-distribution data at el e .

different times for each run. Moreover, we made many runs_, @

of calculations with different initial conditions for the fixed £ ¢ . m

total energyU. We have applied the box-counting method to '2 2 oaf . =

each data and then all the individual results are superpose(u

When we extract the distribution data, we have chosen theS  *[ ‘
time interval[200G,,500Q,], in which the particle ratios 0 g
Ncores Mhalos @NAA g5 @lmost reach the relaxed constant val- i
ues. Thus we calculate the following averaged quantity:
0.4 1
d(lo N(/ 5 ” s r 3 o 1 - 2
D(/)=~— <%> , (6.1)
G107 ens log [L/R]

over all the data we thus prepared. If any scaling property FiG. 10. Log-log plot with common logarithm for the box scale
exists in the particle distributiord (/) would become con-  "ys the number of the boX occupied by at least orfealo particle.

stant for a finite range of ;</'</,. As for the bounds”;  \we superposed the snapshot datanddifferent times. The cases
and/’,, we have technical restrictions originating from our with n=1, 10 (ry=2.0A7=0.3), and 100 f,=2.0A7=0.03)

numerical calculation method. The averaged distance bewith the cutoff e=2.5x1077 (£~7.1x107*R) are plotted. The

tweengasparticles is estimated as plots of these three cases coincide with each other in the range
<L<10'R. The scaling exponer(L) derived from the slope in
27R this range is 0.1.
lgad €~ - (6.2)

gas . . . L .
ing property in particle distribution is not the genuine fractal

If the box size/ is larger thanl ,{€) we expectD~1.0, property of the system, but simply due to the power-law
because almost all the boxes contain at least one particle. Qfistribution of particles around the mass center. We have
the other hand, i is smaller than the cutoff distanégthe  confirmed this with our further analysis on the direct obser-
genuine property of gravity is lost. Therefore, scaling prop-vation of the power-law particle distributions around the
erty in particle distribution is relevant only within the range mass center.

¢</'</ 4as Actually in our calculation, fore=2.5x 10~/ The energy and cutoff dependence on the scaling expo-
andU=—100, we can see the typical behavionNf/) asa nentD is shown in Fig. 11. Here we show the scaling expo-
function of / in Flg 10. In this plot, we can see scaling nent ofhalo particles in the region of negative specific heat.
behaviorN(/)~ /9 with the small exponent in the range We find that the scaling exponeRtis almost constant in this
10 3R</< 10*1R which is well inside the relevant region. region. Moreover, smaller cutoff corresponds to the
This scaling seems to originate fronalo particles, because smaller dimensiorD. On the other hand in the limit of
they not only dominate in the above scaling range but also- 1, the scaling property cannot be observed.

show non-Gaussian velocity distributions and self-similar re- In the limit of real gravitational interactione(~0), the

cursion jumps. region of negative specific heat extends in energy range and
However, the scaling property of the box-counting

method does not always conclude the existence of the fractal 1 _

structure in the particle distributions. This is because the og| Sceline Exponent D

box-counting method itself cannot distinguish the two possi- ) ‘°‘=2'5"10_5

bilities; (a) genuine fractal structure ar(th) the power-law 0.6 ' ° £=25x10 1

tail of the particle distributions around tle®re center. 04} ‘ .
In order to distinguish the above possibilities, we compare 02 % i i i 3 b @

two different superposition methods as followar We sim- ’ % 1 = }L Py

ply superpose all the data with the bare coordirtatand (b)

. ) Y -025 -02 -015 -0.1 -0.05 0
we superpose all the data with the coordinate adjusting so

that the mass center of each data comes to the same position, Vel
i.e., we introduce a new coordinafeas 6= 6— 6, for each FIG. 11. Scaling exponerid vs energy per particle). Most of
data with the mass centé,. the energy region shown in the figure corresponds taZtidase.

~ As aresult, the scaling property of the particle distribu-For convenience, we us¢eU as a horizontal axis. The case of
tions, which was observed in the original method, disappears 2.5x10°5 (squares with error barsand the case of=2.5

completely in casea). On the other hand in casé®) we  x 107 (crosses with error barsre plotted. It seems that the di-
observe the same scaling property as was observed in thgensionD does not depend ob. Since the number dfalo par-
original method. This result suggests that the observed scaticles is small in low energy, the error becomes large there.
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so does the scaling region. This constant property of théhat of core particles iné~7.1x10 “R is Gaussian. This
exponentD is likely to be independent of the temperature orproperty ofhalo particles qualitatively reflects genuine 3D
the energy of the system. gravitational interaction and is the main difference from the
HMF models or 1DS models We have also found the scaling
structure ofhalo particles in the intermediate-energy phase.
VII. CONCLUSION When we reduce the cutoff— 0, the scaling region as well
, ) . . as the energy range of negative specific heat is extended
In this paper we have studied the self-gravitating ring, iqjer, although the value of exponent depends on the cutoff
(SGR model that is a one-dimensiondD) model of a self- and reduces wit.

gravitating system. Although the system is 1D, the particles In 1DS model, the system reaches thermodynamical equi-
constrained on a circular ring mutually interact with the 3D;piim  at  least  at t~O(10)te where  tg

full gravitational force. We found that an interesting phase_ =P L
with the negative specific heat appears at the intermediat —_(1/47-_erI\I) 4E/mNis the crossing time of 1DS '.“F’de'
10]. It is also shown that the system reaches the collisionless

energy scale, which reflects the virial condition of the 3D ing oh in much shorter time interval. Our simulation
gravitating system. Classifying the particles in each phas@_ g phase uch shorte € Interval. Lur simulatio

into three speciecore, halo, andgasspecig, we examined With £~7.1x10 *R shows non-Gaussian velocity and scal-
dynamical properties of this phase. Using SGR model, wdNd Property in such a short time |nte'rval><41§'tE~'2 _
further examined characteristic properties of relaxation, vex 10°te for U=—100. So the non-Gaussian velocity distri-
locity distributions, and density profiles in each phase. bution might reflect the character in collisionless mixing
The cutoff parametet introduced in SGR model controls Phase that appears in 1DS simulatjd0]. However, it might
the singular properties of the system at short distances. B§lso be true that the relaxation process in SGR is quite dif-
changing this parameter, we could systematically study théerent from that in 1DS, where no time scale separation be-
effect of the short-distance singularity of the force upon thetweencore andhalo particles exists. So the exotic character
statistical properties of the system. of halo particles might be intrinsic in SGR or the system
When the cutoff parameter is of order oné~(R), the  with real 3D gravitational interactions because of the time
system resembles the Hamilton mean-field ma&d¥iF). In scale separation.
fact, the velocity distribution becomes Gaussian tat In summary, SGR model is characteriz@dby the phase
~0(10%tg. This is because the two time scalgsandtz  separation and the particle state separation(@ntly similar
become of the same order and, therefdva@p particles fre-  recurrent motion and non-Gaussian velocity distribution of
quently encounter and interact wiglasparticles. This strong halo particles. Both these characters may play a key role in
interaction induces frequent exchange of particles betweegyplaining the observational properties in real 3D self-
these two species. Thus the energy diffuses effectively angravitating objects. For example, the recent observations
complete thermodynamical equilibrium of the entire systemyiih Hubble space telescope support the existence of super-
IS estab.hshed. E;pemally the temperature is Fhe same for assive black holes or cusps at the center of triaxial elliptical
the particle species. In other words, the negative specific he@’alaxies[Zl—ZG]. This observation suggests that the above
region (halo particles does exist, but the strong interaction property (i) may appear in these galaxies, since they have
with gas and core particles (positive specific heatquickly  Kioh density region corresponding tore particles at their
dissolves the negative specific heat region. centers and low density region correspondinghtdo par-
In_zmuch more_ssmaller cutoff case WithE~7.1  rje5 surrounding them. Hence, propeftymay give a hint
X 10""R(e=2.5x10""), the velocity distribution becomes ¢, eypiaining the relaxation process and the origin of sta-
almost Gaussian after the virialization, although the temperagon |y configuration shape of these galaxies, since the sto-
ture of each species is different from each other. This temgpagtic halo orbits that interact withcore particles at the
perature difference, as well as the required time for establishsanter of a triaxial galaxy may affect the equilibrium shape
ing the equilibrium, is increased for smaller value of thethrough the continued mixing near the cerft24]. In addi-
cutoff &. _ _ tion, propety(ii) might help to explain the observed fractal
On the other hand, &0, the difference of the two time  g¢;ctures and non-Gaussian velocity distributions in the in-

scales increasetg>t,, and the energy region of the nega- ierstellar mediuni25], which are likely to be gravitationally
tive specific heat extends wider. Therefore, we can expegjirialized.

that halo particles become almost isolated from thees par-
ticles. This isolation of unstablbalo particles from other
normal species enables thalo species to last sufficiently
long. In the case of~7.1x10 *R(e=2.5x10" 1), the ini-
tial condition dependence tialo particles survives even af- We would like to thank A. Nakamichi, I. Joichi, K. Na-
ter 5x 10%g in our simulation, which prevents the full sys- kamura, and M. Hotta for useful discussions and comments.
tem from reaching thermal equilibrium. These resultsThis work was supported partially by a Grant-in-Aid for Sci-
resemble the case afore particles with é~7.1x10 °R. entific Research Fund of the Ministry of Education, Science
However, the remarkable difference between the two cases &nd Culture(Specially Promoted Research No. 08102010
that the velocity distribution ofhalo particles in é~7.1  and by the Waseda University Grant for Special Research
X 10" “R is not Gaussian but Lorentzian distribution, while Projects.
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APPENDIX A: VIRIAL CONDITION FOR SGR MODEL form (A7). However, as is shown in Sec. I, we can get the
above ideal virial condition for 3D gravity within the appro-

We start with the nondimensional Hamiltonian of the priate energy range.

SGR model
1 % % 1 APPENDIX B: VIRIAL CONDITION INA C PHASE
= (A1) FOR SGR MODEL
24P i V2NV1—cosf;+e

' _ _ . In C phase, almost all of the particles are trapped inside
Canonical equations of motion for this system become the core , whose size is almos§. Therefore, in this state
canonical equation§A2) are approximated as

do;
ar P de,
dr P
dp N sin
|
_ A2 N
dr Jz%l 2\2N(1—cosf;;+€)*? (A2) %__2 b;j
. o o . dr {7 2\/2Ne%?
Then the second time derivative of the inertia moment of this
system becomes ) 0, 1 . % 6, o
a2 N NCode N dp T o2l TN > N3/2’
LS =2 3 p 2, 652 v2e 7 2,one
dr° =1 = dr = 'dr .
since| 6;;| ~O(e)<1.
N N - sing: In this approximation, the second time derivative of the
=2> pZ—ZE b1 Sin i (A3) inertia moment of this system becomes
= i V2N(1—cosb;;+€)*?
N
Taking long-time average for this equation, we obtain d - 2 02 22 P. J2e 3,2( %)21 9i2
d2 % 02 _ANT—2 % Hisinﬁij
dr® & <3 V2N(1—cosé;;+€)%?] 2 0.6, (B2)
(A4 \/EN 215
Therefore if the condition Taking long-time average for this relation, we obtain
d? o d2 1 1\
I(r)={== 2>, 6?)/(NT)<1 A5 2\ _ANT- ——[1-= 2
(7) <d7'2i21 .> (NT) (A5) <WZ al> ANT ﬁé’z(l N)iZl(a,)
is realized, then the virial relation 2 N
= > (6,6)). (B3)
1/ 6, sin 6y, JaNed2isy
T~oy > % o (A6)
<] V2N(1-cosfjj+e) Since 6; and 6;(i#) are independent stochastic variables,
holds the last term in Eq(B3) vanishes. Hence, from the virial
By using the total potential relation,
N
N 1
1 2
_ T E (65) (B4)
V=— , (A7) 3/2( ) < i
i2<j \/EN\/l—coseijJre 4\/—NN
the virial relation(A6) can be expressed as and
N N
1 oV Gm? ( 1) .
~— S Kpy~——F—|1-— = 07), B5)

Note that even in the limit ot—0, the virial relation(K)  hold. This shows thatK) in C phase is given by the sum of
=2NT=—(V)/2 is not justified, because of the potential N statistical elements.

056133-13



SOTA, IGUCHI, MORIKAWA, TATEKAWA, AND MAEDA

PHYSICAL REVIEW E 64 056133

[1] W. H. Zurek, P. J. Quinn, J. K. Salmon, and M. S. Warren,[12] V. Latora, A. Rapisarda, and S. Ruffo, Phys. Rev. L88,

Astrophys. J431, 559 (1994).

2104(1999.

[2] F. Sylos Labini, M. Montuori, and L. Pietronero, Phys. Rep. [13] V. Latora and A. Rapisarda, Nucl. Phys.681, 406¢(2001J).

293 61(1998.
[3] G. de Vaucouleurs, Sciend&7, 1203(1970.
[4] H. J. de Vega, N. Szhez, and F. Combes, Phys. Rev5H)
6008(1996.
[5] V. A. Antonov, Vestn. Leningr. Univ., Ser. 4: Fiz., Khind,
135(1962.
[6] D. Lynden-Bell and R. Wood, Mon. Not. R. Astron. SA88
495 (1968.
[7]1. Hachisu and D. Sugimoto, Prog. Theor. Phy, 123
(1978.
[8] E. B. Aronson and C. J. Hansen, Astrophys.1J7, 145
(1972.
[9] G. L. Camm, Mon. Not. R. Astron. So&10 305(1950.
[10] T. Tsuchiya, N. Gouda, and T. Konishi, Phys. Re\ww¥ 2210
(1996.
[11] M. Antoni and S. Ruffo, Phys. Rev. &2, 2361(1995.

[14] T. Padmanabhan, Phys. Re88 285 (1990.

[15] P. Hertel and W. Thirring, Ann. Phys$Parig 63, 520(1971).

[16] A. Compagner, C. Bruin, and A. Roelse, Phys. Rev3@
5989(1989.

[17] Y. Aizawa, K. Sato, and K. Ito, Prog. Theor. Phyi€3 519
(2000.

[18] M. Suzuki, Phys. Lett. AL46, 319(1990.

[19] W. Feller, An Introduction to Probability Theory and its Ap-
plications 2nd ed.(Wiley, New York, 1966, Vol. Il.

[20] K. Falconer,Fractal Geometry(Wiley, New York, 1990.

[21] T. R. Laueret al,, Astrophys. J110, 2622(1995.

[22] T. R. Laueret al,, Astrophys. J111, 1880(1996.

[23] K. Gebhardtet al,, Astrophys. J112, 105(1996.

[24] D. Merritt and T. Fridman, Astrophys. 460, 136(1996.

[25] E. Falgarone, T. G. Phillips, and C. K. Walker, Astrophys. J.
378 186(199)).

056133-14



