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Origin of scaling structure and non-Gaussian velocity distribution in a self-gravitating ring model
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Fractal structures and non-Gaussian velocity distributions are characteristic properties commonly observed
in virialized self-gravitating systems, such as galaxies and interstellar molecular clouds. We study the origin of
these properties using a one-dimensional ring model that we propose in this paper. In this simple model,N
particles are moving, on a circular ring fixed in three-dimensional space, with mutual interaction of gravity.
This model is suitable for the accurate symplectic integration method by which we argue the phase transition
in this system. Especially, in between the extended phase and the collapsed phase, we find an interesting phase
~halo phase! that has negative specific heat at the intermediate energy scale. Moreover, in this phase, there
appear scaling properties and nonthermal and non-Gaussian velocity distributions. In contrast, these peculiar
properties are never observed in othergasandcorephases. Particles in each phase have a typical time scale of
motions determined by the cutoff lengthj, the ring radiusR, and the total energyE. Thus all relaxation patterns
of the system are determined by these three time scales.
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I. INTRODUCTION

Many astrophysical objects in our universe consist of m
tually interacting elements through gravity. If they are alm
isolated systems, they are called self-gravitating sys
~SGS!. For example, galaxies, clusters of galaxies, globu
clusters, and molecular clouds are thought to be typ
SGSs. Their statistical properties are often characterized
non-Gaussian velocity~or pair-wise velocity! distributions
@1#, fractal structures@2#, and the scaling relation betwee
the mass density and the system size@3#. Most of these ob-
jects are thought to be gravitationally virialized. Therefo
pure gravitational force seems to play an essential role
characterizing the above statistical properties of SGS in
pendently of initial conditions.

There have been some theoretical approaches to ex
the fractal structures in SGS from the viewpoint of critical
and phase transition in gravothermodynamics@4#. Strictly
speaking, the ordinary SGSs in three dimension~3D! cannot
attain genuine stable equilibrium, because the gravitatio
force does not vanish at long distances~IR divergence! and
diverges at short distances~UV divergence!. These proper-
ties of gravity cause gravothermal catastrophe in a s
gravitating gas system enclosed by a solid adiabatic wal
fact, the isothermal sphere is not always stable, since
entropy does not necessarily take the local maximum for
configuration@5–7#. Therefore, the introduction of a smal
scale cutoff as well as a large-scale cutoff is inevitable
such unstable systems to attain the final equilibrium. Tho
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the introduction of the cutoff prevents the gravothermal
tastrophe, 3D gravitational system has a phase with nega
specific heat when treated in the microcanonical ensem
Even in the canonical ensemble, this system is highly
stable. When the temperature decreases, the system ex
ences a violent first-order phase transition from the gas ph
into the cluster phase@6,8#. According to these arguments
no stable equilibrium states are theoretically expected in
3D gravitational system with or without cutoff in any en
semble.

On the other hand, in the real world, we do not ne
stable equilibrium states for describing SGS; metasta
equilibrium states do actually appear in the dynamical
scription, such as, collisionless Boltzmann equation. The
nite lifetime of such structures is sufficient to explain t
present structures of SGS, even if they are expected
evolve further into different quasistable states through tw
body relaxation.

The relaxation process of SGS has been mainly discus
in the one-dimensional gravitational sheet model~1DS!
@9,10#. In this model, many parallel sheets interact with ea
other through constant force that never decays at dis
places. Though the interaction is long ranged, no phase t
sition occurs in 1DS. Thermodynamics of 1DS is exac
solved and actually, in numerical calculations, the syst
reaches thermal equilibrium long after it attains virial eq
librium. In this model, the virial condition gives the relatio
2^K&5^V& between the time averaged kinetic energy^K&
and the potential energŷV&. Therefore, contrary to the 3D
SGS, specific heat of 1DS is always positive. Thus the re
ation process in 1DS would be quite different from that
3D SGS. Another well-known one-dimensional model th
has long-range force is the Hamilton mean-field~HMF!
model, in which phase transition does occur@11#. There have
been a lot of studies on the relaxation process of HMF. A
tually, Lévy-type jumping motion of constituent particle
©2001 The American Physical Society33-1
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and superdiffusion process have been revealed in HMF@12#.
In this HMF, though the specific heat becomes negative
the quasistable state@13#, it remains positive in the therma
equilibrium state and the phase transition turns out to be
the second order. Despite some common properties of
models, the interaction form in HMF is also quite differe
from that of real 3D gravitational systems.

Several other simple models have been proposed@14# in
order to characterize the 3D SGS much faithfully. For e
ample, the cell model and its extended versions are the
plest models that show phase transition. In these models
pair interaction potential changes its value only at the c
boundary@15,16#. At low temperatures, most particles a
trapped within several clusters, and at higher temperatu
these clusters melt and the particles can move freely. H
ever, it seems difficult to examine the relaxation process
this system numerically, since the interaction is not effici
to cause sufficient relaxation; particles have no interac
within each cell. There are also several numerical analy
with the different type interactions including the lower a
higher cutoffs@16,17#. However, the value of the lower cu
off used in realistic numerical calculations of these mod
seems to be too large to extract the intrinsic properties
realistic 3D SGS.

Thus it seems indispensable for us to have a model
faithfully reflects the characteristic properties of 3D SGS
the model has negative specific heat and shows a phase
sition similar to 3D SGSs, and is capable for us to anal
quasiequilibrium states that would be realized before the
tem reaches the complete equilibrium.

In this paper, therefore, we first propose a model~Self-
gravitating ring: SGR! that ~a! has negative specific heat,~b!
shows phase transition representing 3D SGS, and~c! is nu-
merically tractable. This model consists ofN particles, which
can freely move on a ring with a fixed radius, mutually i
teracting through 3D gravity. An excellent point of th
model is that the force is genuine 3D gravity while the c
culation is essentially one dimensional. Moreover,
Hamiltonian permits the accurate symplectic integrat
method by which we can analyze the nature of quasiequ
rium states and phase transitions within very long time sc
in this model.

In Sec. II, we introduce the SGR model, and in Sec.
identify three quasiequilibrium states including the state w
negative specific heat. In Sec. IV, we analyze the part
motions from a statistical point of view, and then we stu
the relaxation process toward the thermodynamical equ
rium in Sec. V, and the scaling structure in Sec. VI. Final
we discuss our results in Sec. VII.

II. SELF-GRAVITATING RING MODEL

In this section, we introduce the SGR model, in whi
particles interact with each other through genuine 3D gra
while the particle motion is constrained on a 1D ring. B
utilizing this model, we study the gravitational phase tran
tion, which was not feasible in the 1DS model@10#. The lack
of phase transition in 1DS is related to the fact that the
tential of 1DS increases linearly without bound, and, the
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fore, there is no characteristic energy scale required fo
particle to escape from the cluster. On the other hand,
have the characteristic energy scale to bind particles in
SGR model.

We consider a system of self-gravitatingN particles with
massm, whose motions are smoothly constrained on a c
cular ring with a fixed radiusR without friction ~Fig. 1!.
Each pair of particles interact with each other through a
gravitational force. The distance between a pair is measu
by the length of the straight line combining the pair and n
by the minor arc of the ring.

The Hamiltonian of this system becomes

Hp5
1

2mR2 (
i 51

N

Pi
22(

i , j

N
Gm2

A2RA12cos~u i2u j !1e
.

~2.1!

The position ofi th particle is fully described by the angula
variableu i as r i5(R sinui ,Rcosui). The momentum conju-
gate tou i is given by Pi5mR2du i /dt. The UV-cutoff pa-
rameter e truncates the diverging gravitational force
around the distancej[A2eR.

We first introduce three dynamical time scales that
apparent in the above Hamiltonian. They are parametrized
the ring radiusR, the cutoff scalej, and the total energyE of
the system.

When the system is almost uniformly filled by movin
particles, we have the longest dynamical timetR defined by

tR[A R3

GNm
. ~2.2!

During this timetR , a typical particle goes around the rin
once. Therefore, the time scale for the whole system to at
thermodynamical equilibrium, if any, is at least larger th
this time scale.

When all the particles collapse completely into a core,
find the shortest dynamical time scaletj defined as

tj[A j3

GNm
. ~2.3!

FIG. 1. SGR model with a fixed radiusR. The particle locations
are specified by the angles measured from a fixed direction. A
of particles atu i and atu j interact with each other through th
inverse-square law 3D gravitational force; the distance is meas
by the straight line in the picture and not byRuu i2u j u.
3-2
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During this time tj , a typical particle bound to the cor
oscillates once1.

There is an another time scale in between the above
extreme time scales. Suppose the system is stably confin
a region with a scaler, which satisfies

j!r !R. ~2.4!

For this scaler, the ring can be approximated as an infin
straight line and the cutoffj can be neglected. Then th
leading term of the denominator of the potential, term in
Hamiltonian~2.1! becomesuu i2u j u and

Hp'
1

2mR2 (
i 51

N

Pi
22(

i , j

N
Gm2

Ruu i2u j u
. ~2.5!

In this case, the potential termVp satisfies Euler’s theorem
for homogeneous function

(
i 51

N

u i

]Vp

]u i
52Vp , ~2.6!

and the ordinary virial condition holds

2^Kp&52^Vp&, ~2.7!

where angle brackets represent the long-time average.2 Ac-
cording to this virial relation, the typical size of a systemr is
related with the total energyE as

E5
Vp

2
[2

Gm2N2

4r
. ~2.8!

Hence the above condition forr ~2.4! reads

Gm2N2

4j
@uEu@

Gm2N2

4R
. ~2.9!

Moreover from the virial relation, the velocity dispersion
given as

2^Kp&52^Vp&5mN^v2&, ~2.10!

wherev[dr/dt and, therefore,

A^v2&5A2uEu
mN

. ~2.11!

From this Eq.~2.11!, the crossing time is defined as

tE5
r

A^v2&
5

Gm5/2N5/2

4A2uEu3/2
. ~2.12!

1In the following section, we classify all the particles into thr
species,core, halo, and gas. The typical time scalestR and tj ,
respectively, characterize thegasand thecore species.

2Outside of the above region in SGR model, this form of vir
relation would be modified even in the limit ofj→0, as is shown in
Appendix A.
05613
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This is the intrinsic time scale associated with genuine gr
ity independent of the cutoffj and of the system sizeR.3

The above introduced cutoff parameterj connects the two
limiting cases in the following sense. In the limitj→0, the
SGR model becomes genuine 3D gravity at small sca
while in the limit j→R, the model almost becomes the HM
model. The latter is, because, in this limit, the shape of
potential aroundu5kp(k50,61, . . . ) becomes almos
identical as it does in the HMF model.4

For numerical simulations, we need to make all physi
variables nondimensional; we usem, R, andtR for the unit of
mass, distance, and time, respectively. In these units,
physical Hamiltonian~2.1! reads

Hp5Gm2
N

R
H, ~2.13!

where

H5
1

2 (
i 51

N

pi
22(

i , j

N
1

A2NA12cosu i j 1e
. ~2.14!

The dimensionless momentumpi is given by pi5du i /dt
and the dimensionless timet is introduced ast[t/tR . The
above form of Hamiltonian permits us to use a power
symplectic integrator@18#, with which the total energy is
conserved with extremely high accuracy, even beyond th
sands of dynamical time. Typical magnitudes of errors
the total HamiltonianH(t) and the total momentumP(t) in
our simulations up tot;104, are @H(t)2H(0)#/H(0)
;O(1025) and P(t)/Prms(t);O(1028), respectively,
wherePrms(t)[(( i 51

N pi
2)1/2.

III. CLASSIFICATION OF PHASES AND PARTICLES

We now study the quasiequilibrium state that appears
transient stationary stage in our SGR system. Though
state is not absolutely stable, it generally appears in SG
during sufficiently long time before the system finally a
proaches the equilibrium state characterized by the equi
tition of particle energy.

We would like to extract universal properties observed
this transient state; only the transient description is poss
and necessary to explain observations.

A. Negative specific heat of SGS

First, we study the phase diagram of SGR model in
temperature-energy plane. TheT-U relation is shown in Fig.
2 and we observe that the region with negative specific h
i.e., negative slope region, apparently exists. The temp
ture T and the internal energy per particleU of the present
system are defined, respectively, by

3As we will show in Sec. IV, this is also the time scale for th
particles inhalo species in SGR model.

4The exact HMF model is reproduced in the limitj→`.
3-3
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T[
2^K~t!&

N
, ~3.1!

U[
H

N
. ~3.2!

The internal energyU is conserved in the present microc
nonical system, while the temperatureT is defined as the
twice of the time-averaged~represented by angle bracket!
kinetic energy per particle. The phase diagram in Fig. 2
time averaged untilt52 where the system achieves viri
equilibrium ~see Fig. 3!. Throughout this paper, except e
plicitly mentioned, we fix the total number of particlesN
5100 for simplicity and, therefore, the remaining releva
parameters that characterize the quasiequilibrium state o
system would bee andU.

From Fig. 2, we find two characteristic energy sca
where ]T/]U50; Uc-low(e) at a low-energy side and
Uc-high(e) at a high-energy side. The energy scaleUc-high(e)
corresponds to a mean gravitational binding energy per
ticle, which is estimated aŝ1/(A2NA12cosu1e)&@N(N
21)/2#/N;O(1), while Uc-low(e) strongly depends on th

FIG. 2. Diagram of temperatureT vs energy per particleU for
three different cutoffse52.531025, 1.031026, and 2.531027. In
eachT-U curve, there are two critical energy scales;Uc-low(e) and
Uc-high(e), between which negative specific heat]U/]T,0
appears.

FIG. 3. The time evolution ofI (t) defined by the left side of Eq
~A5! in the case withU52100, 2300, 2500, ande52.531027.
In each case, the system achieves virial equilibrium within a f
dynamical timest.
05613
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cutoff e. This cutoff dependence can be estimated from
condition ~2.9! that, in our normalization, becomes

2
1

4A2e
!U!2

1

4
. ~3.3!

Under this condition, the negative specific heat condition
virialized state would be justified. Actually, substitution
three different cutoffse52.531027, 1.031026, and 2.5
31025 into Eq. ~3.3! yields the lower limits of Eq.~3.3!
353, 177, and 35.3, respectively. Thus the condition~3.3!
correctly describes the region of negative specific hea
Fig. 2 with sufficient accuracy. However, the slope of ea
T-U line in Fig. 2 is less steep than the value22 which is
expected for the virial condition of 3D gravity. This discre
ancy is probably because the energy range satisfying the
dition ~3.3! is too narrow for the idealT-U curves according
to our choice of the cutoff parameters; even the smal
cutoff we took may not be enough to make the relation c
verge.

In the range between these two energy scales,
Uc-low(e),U,Uc-high(e), the system has negative specifi
heat, which suggests the existence of phase transition@8,15–
17#. Actually in the system with negative specific heat,
slight energy injection from outside decreases the syste
temperature and induces further energy flow from outsi
Then this catastrophic temperature reduction induces ra
cluster formations in the system. As we will see below, su
phase transition from the gaseous state to the cluster
actually appears and characteristic structures are realize
this intermediate energy range.

B. Three phases in SGR model

As is seen in Fig. 2, there are apparently three pha
according to the energy per particleU; ~a! low-energy col-
lapsed phase (C phase! U,Uc-low(e), ~b! intermediate-
energy phase (I phase! Uc-low(e),U,Uc-high(e), and ~c!
high-energy gaseous phase (G phase! Uc-high(e),U. The G
phase~c! is stabilized by the infrared cutoff (u<2p, or a
largest physical scale;R), without which the particles
would escape into spatial infinity. TheC phase~a! is stabi-
lized by the ultraviolet cutoffe, without which the particles
would fall into a singularity. The specific heat for these pa
ticles ~a! and ~c! is positive, in accordance with the stabilit
of these phases. On the other hand, theI phase~b! ~the most
specific to gravity! has negative specific heat and, therefo
is unstable. The nature of this phase is independent of
artificial cutoffs and, therefore, is thought to represent intr
sic properties of gravity.

The existence of three different phases, as is explai
above, distinguishes the SGR model from other models w
long-range force. For example, HMF model has only hig
and low-energy phases, and shows a second-order p
transition between these phases. On the other hand in S
model, the intermediate phase with negative specific h
exists and is strongly unstable when the system is in con
with a heat bath. As for 1DS model, only a single pha
exists because the system has no characteristic energy s
3-4
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there is no phase transition in this model.
The limit e→0 in SGR model represents genuine grav

without collision and the range of the intermediate pha
increases without bound.

C. Three species:gas, halo, and core particles

In each phase, the particles of the system prevail in v
ous energy ranges. For example, in the intermediate ph
some particles evaporate from a cluster and move along
ring almost freely with the time scaletR , while some of the
others fall into the center of a cluster and oscillate with
time scaletj . Thus, the overall phase information does n
precisely specify the nature of individual particles. In ord
to obtain much fine information, we define three species
each phase by using the energy of the particles: The en
of the i th particle is given by

Ei[
1

2
pi

22(
j 5” i

N
1

A2NA12cosu i j 1e
. ~3.4!

The classification is based on particle energy, that is,~a! core
particles forEi,Uc-low(e), ~b! halo particles forUc-low(e)
,Ei,Uc-high(e), and~c! gasparticles forUc-high,Ei .5

In the low-temperature phase of SGR, the quasiequi
rium state at very low temperature is highly inhomogene
and a single cluster is formed. Most particles are conden
in this cluster and the total potential is deep. In the interm
diate phase, many particles spread around a cluster. As
temperature increases within this phase,halo particles gradu-
ally dominatecore particles and eventually there appeargas
particles, which evaporate from a cluster and go along
ring. In the high-temperature phase, all particles move
most freely without forming any cluster.

We describe the ratio of particle number in each states6 by
lcore, lhalo, and lgas, with lcore1lhalo1lgas51. Their
evolution is shown in Fig. 4 for the casee52.531027. From
this, we observe those ratios seem to have approac
asymptotic values beyondt'1: lcore'0, lhalo'0.2, and
lgas'0.8 for U5100 (G phase!, lcore'0.41, lhalo'0.23,
and lgas'0.36 for U52100 (I phase!, lcore'0.96, lhalo
'0.02, andlgas'0.02 for U52500 (C phase!. Gas par-
ticles dominate inG phase andcore particles dominate inC
phase in number. While inI phase, all of the three species
particles coexist almost equally. According to our vario
calculations changing the particle number and initial con
tions, this coexistence seems to represent the promi
property of SGS and not the finiteness of particles.

In Fig. 5, the energy dependence of the ratio of each s
cies in t55 for e52.531027 is shown at the center. Th
energy scale wherehalo particles exit corresponds to the on
where negative specific heat appears (I phase!. Together

5Note that even in theC phase, there exist a fewgasparticles. We
term thecore particles andhalo particles as a cluster in this pape
they form an apparent single bound state.

6We term a state to represent the situation that a particle belo
to one of the three species.
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with it, the relative ratio of time intervals of three states
which each particle stays untilt55 is shown. As we expect
in both G andC phases, most particles stay just in one st
for quite a long time. For theI phase, however, many pa
ticles experience at least two states. Some particles wa
from one state to another in three states.

IV. PARTICLE MOTIONS

In this section, we examine individual particle motion a
velocity distribution function in each phase.

A. Recurrent motion of halo particles

In the HMF model at the state near the critical energ
Lévy-type flight and anomalous diffusion of particles ha

gs

FIG. 4. Time evolution of the percentage of each species:lcore,
lhalo , and lgas in high-energy (G) phase~top!, in intermediate-
energy (I) phase~middle!, and in low-energy (C) phase~bottom!
for e52.531027. Gasparticles dominate in the high-energy phas
andcore particles dominate in the low-energy phase. On the ot
hand, all three species coexist in the intermediate-energy phas
3-5
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FIG. 5. The middle diagram shows the energy dependence of the ratio of each states at timet55 for the cutoffe52.531027. For three
typical cases,U5100, 2100, and2500, the ratio of time duration intervals of the three states in which each particle stays untilt55 is
shown in the upper and lower diagrams. In these diagrams, each vertical bar corresponds to a particle, and each ratio of thegas, halo, and
core states is represented by the white, gray, and black areas, respectively. In both theG phase (U5100) andC phase (U52500), most
particles stay within each state. On the other hand, in theI phase (U52100), many particles experience at least two states. Some par
wander in all three states.
056133-6



re

li
th
. I

o
v

g
p
ay

rg

nd

th

e
el
s
rg
M
a

we
e

re

he

s

d
il

s

ill
for
n

the

ofl
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been reported@13#. These peculiar behaviors of particles a
apparently caused by the transitions fromcore particles to
gas particles and vice versa. We observe that such pecu
behaviors in HMF model are caused by the periodicity of
configuration space and not by the long-range force itself
fact, for all Lévy-type flights numerically shown in HMF, the
flight distances turn out to be longer than the period 2p.
Therefore, the artificial periodicity in the potential, and n
the long-rage nature of the force itself, is thought to ha
caused the Le´vy-type flight in HMF model. In our SGR
model, we do have the possibility to observe the same Le´vy-
type flight motions since particles in SGR also move alon
closed ring. Since we would like to extract the intrinsic pro
erty of the long-range nature of the gravity itself, we p
attention to the recurrent motion ofhalo particles and disre-
gard the round-trip motion along the entire ring.

First, we choose the parameters asj'7.131024R and
U52100 for which the system is in the intermediate-ene
phase. The particle motion is shown in Fig. 6~a!, in which
core particles form a firm cluster and they oscillate arou
the center of the cluster with the time scaletj and halo
particles go in and out of thecore region without any typical
time scale and amplitude. Zoomed in ten times@Fig. 6~b!#,
and even in hundred-times@Fig. 6~c!#, the particle motion is
always similar recurrent movements. This repetition of
similar recurrent pattern suggests a self-similar structure
the system.

Note that the recurrent motion ofhalo particles is con-
fined within the range@0,2p# and particles never experienc
a round trip along the ring, quite contrary to the HMF mod
Moreover, this recurrent motion of particles is quite robu
and is observed in any region of the intermediate ene
phase. This robustness is a remarkable contrast to the H
model in which such motion is observed only at the critic
point in the phase diagram.7

In order to analyze this behavior more quantitatively,
examine the frequency distribution of the recurrent tim
t rec[t in2tout, that is, the time period from the momenttout
when a particle leaves the barycenter of thecore to the mo-
ment t in when it first returns to the barycenter again. He
we have defined the location of the barycenter of thecoreas

ubc[(
i 51

Nc

u i /Nc , ~4.1!

whereu i is the location ofi th particle in thecore andNc is
the total number ofcore particles at each moment.

In Fig. 7, we depicted the frequency distribution of t
recurrent timet rec for core particles andhalo particles sepa-
rately. For core particles, as we expected, we find almo
Gaussian distribution around the centertj @Fig. 7~a!#. On the
other hand forhalo particles, although a peak is foun
aroundtE([tE /tR), the distribution shows that a long ta
spreads widely characterized by the power lawf (t rec)
;t rec

2p with p'2.0 @Fig. 7~b!#. We have checked that thi

7The smaller the cutoffe, the larger is the range of the tota
energy per particleU where the recurrent motion appears.
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power law range23, log10 t rec,21.5 is consistent with
the eye-fitted region of self-similar motion in Fig. 6. We w
see that the above difference of frequency distribution
core and halo particles leads to the difference in relaxatio
time of them in Sec. V.

We have also examined the energy dependence of
above powerp. The result is given in Fig. 7~b! showing that
the value ofp('2.0) is almost independent of the choice
the energyU throughout the intermediate-energy phase.

FIG. 6. Trajectories ofhalo particles for the time interval~a!
t55 –8, ~b! t55 –5.3, and~c! t55 –5.03. Ten-times zooming up
the marked square region in~a! yields ~b!. Further ten-times zoom-
ing up the marked square region in~b! yields ~c!. The recursion
profiles are similar despite the scale difference.
3-7
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FIG. 7. A linear-log plot with
common logarithm of frequency
distribution f (t rec) for core par-
ticles and a logarithmic plot of
frequency distributionf (t rec) for
halo particles in several values o
U. Each plot in ~b! shows the
same slope within the rang
1023.0,t rec,1021.5. The broken
line represents a line with slope
22.0.
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B. Velocity distribution of particles

As is shown in Appendix A, the time averaged kine
energy^K& is, in general, expressed as the sum ofN2 inde-
pendent stochastic variables. However, in the case ofcore
particles, which are located within a few cutoff scales,
quantity^K& turns out to be expressed as the sum ofN inde-
pendent stochastic variables~see Appendix B!. In this sec-
tion, we show that theN dependence of̂K& characterizes the
velocity distribution of particles.

In Fig. 8, we show the velocity distributions ofcore and
halo particles in three cases;~a! j'531024R, U5
2100 ~b! j'531024R, U52500, and ~c! j'5
31022R, U520.65. We have superposed the veloc
data att51, 2, 3, 4, and 5, with ten different random initia
conditions fixing the total energy. Thus the size of the wh
data we used is 53103 for each velocity distribution func-
tion. The distribution ofcore particles is well fitted by the
Gaussian distribution

P~v !5
1

A2ps
e2v2/2s2

, ~4.2!

with the dispersion ^vcore
2 &1/2[s57.29(a),10.9(b), and

0.51(c).
05613
e

e

On the other hand, the distribution ofhalo particles in~a!
is manifestly non-Gaussian, although that of the same p
ticles in the case~c! is Gaussian. This distribution is at lea
unchanged untilt5200.

What is the origin of the above non-Gaussian distribut
for halo particles in the intermediate-energy phase in c
~a!? Here we analyze this issue from the viewpoint of t
generalized central-limit theorem. It is well known that th
limit distribution for sums of independent random variabl
is the Gaussian distribution provided that the dispersion
finite ~the central-limit theorem!. However, it is less well
known that the limit distribution for sums of independe
random variables is the stable distribution in general ca
including those where the dispersion is divergent. This sta
distribution is defined to satisfy the relation

(
i 51

N

xi5
d

N1/ax, ~4.3!

whered
5

means that the distributions of both sides are eq
to each other. The parametera classifies the stable distribu
tions and must satisfy 0,a<2 for the normalizability and
the positivity of the probability distribution function. In th
above definition,xi and x are the probabilistic variable
obeying the same distribution. Let us apply this to the vel
-

-

-

f

FIG. 8. The linear-log plot
with common logarithm of veloc-
ity distributions of particles for
the three cases: ~a! e52.5
31027, U52100 (I phase!,
~b! e52.531027, U52500
(C phase!, and ~c! e52.5
31023, U520.65 (I phase!.
In all cases, velocities ofcorepar-
ticles are well fitted by the Gauss
ian distribution with dispersions
50.51(a), 7.29~b!, and 0.51~c!,
respectively. Also in the large cut
off case~c!, velocities ofhalo par-
ticles are well fitted by the Gauss
ian distribution s50.93. On the
other hand, in the small cutof
case ~a!, velocities of halo par-
ticles are well fitted by the Lorent-
zian distribution (a51) with s
52.2.
3-8
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ORIGIN OF SCALING STRUCTURE AND NON-GAUSSIAN . . . PHYSICAL REVIEW E64 056133
ity distribution of our model. We square both sides of t
above equation, and obtain the nonextensive property

^v2&N-particle5N2/a21^v2&one-particle ~4.4!

and the method of characteristic function yields the expl
form of the distribution function@19#

P~v !5
1

2pE2`

`

dy exp@2 ivy2suyua#. ~4.5!

Note that this stable distribution includes the Gaussian
tribution ~4.2! as a special casea52, where the kinetic en-
ergy becomes extensive, and the dispersions5A2s is finite.
The parameters is thought to be a generalized temperatu

Let us first consider the velocity distributions ofcorepar-
ticles. We observe, from our numerical calculations, that
coreparticles oscillate within the narrow region of the cuto
size j, and the gravitational two-body interaction is dom
nated by the artificial potential force. Therefore, the avera
kinetic energy is described as the sum ofN independent sta
tistical elements~Appendix B!. This leads to the normal ex
tensivity for the velocity distributions ofcore particles and,
therefore, we expect the Gaussian distribution. This is c
sistent with the results in Fig. 8.

On the other hand, forhalo particles that interact throug
genuine gravity, the kinetic energy behaves as^Kp&;N2 for
fixed R as is shown in Appendix A. Thus from Eq.~4.4! we
find the indexa51 for the physical velocity distribution o
SGR. In this case witha51, the distribution~4.5! becomes
the Lorentz form

P~v !5
1

p

s

v21s2 . ~4.6!

This is also consistent with the results in Fig. 8. The esse
of the appearance of this non-Gaussian distribution is
nonextensivity of the energy for SGS; this is the intrins
property of gravity.

Then what is the origin of the Gaussian distribution
halo particles in case~c!? As we show in the following sec
tion, this is mainly because the relaxation times ofcore and
halo particles are close to each other. In the following s
tion, we will discuss the relation between the profile of v
locity distribution and the relaxation process.

V. RELAXATION

One of the most important issues in statistical physics
the N-particle system is the relaxation process. In order
study the relaxation process of our model, we choose sev
different initial conditions for the same values ofe and U.
Here we have examined two parameter sets, i.e.,~i! e52.5
31023,U520.65 and ~ii ! e52.531027,U52100, for
both of which negative specific heat appears.

As we discussed in Sec. II, there are three dynamical t
scales:tR , tj , andtE . In the units of our normalization, th
ratios of these time scales are
05613
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tE /tR5
1

4A2
uUu23/2,

tj /tR5~2e!3/4. ~5.1!

For example, if we chooseU52100 ande52.531027,
then tE /tR'1.831024 and therefore the three time scal
are separated as

tj,tE!tR . ~5.2!

Then the contribution ofgas particles to the dynamics o
halo or core particles is negligible during a fewtR .

The parameter set~i! does not meet the condition~3.3!
and tE /tR'0.34; tE is the same order astR . On the other
hand, the parameter set~ii ! meets Eq.~3.3! and tE /tR'1.8
31024; tE is much shorter thantR . This means thatgas
species play an important role in relaxation in case~i!, while
they do not do so in case~ii !. In order to examine the relax
ation process for these two cases, it is convenient to norm
ize the time with the unittE , since the degree of relaxatio
of 3D gravitational system is conventionally measured w
the dynamical time. So here we introduce the dimension
time tE[t/tE .

As for initial conditions, we locate several clusters of t
same size with the same interval. The number of cluster
chosen as 5, 10, 20, 25, and 50 for model~i! and 5, 10, 20,
and 25 for model~ii !. The initial velocities of particles are
set randomly but the total energy is fixed:U520.65 for ~i!
andU52100 for ~ii !.

In order to study the Ergode property of the system,
examine the mixing property of the particles in the thr
states~core, halo, andgas!. In other words, we examine th
degree of isolation of each states. We directly measure
extent to which each particle experiences these three st
First, we pick up discrete times (tE1 ,tE2 , . . . ,tEi , . . . )
with the equal intervalDtE ; at each time, each particle stay
at one of the three states. Then we count how many times
kth particle stays at each states before the timetEi . Finally,
after normalization, we obtain the relative frequencies
three states lcore

k (tEi),lhalo
k (tEi), and lgas

k (tEi) ~with
lcore

k (tEi)1lhalo
k (tEi)1lgas

k (tEi)51) for thekth particle.
At the first timetE1, each particle definitely stays at on

of the three states; relative frequencies of s
lcore

k (tE1),lhalo
k (tE1), andlgas

k (tE1) are either 1 or 0. In the
next time tE2, some particles may change the state; th
lcore

k (tE2),lhalo
k (tE2) and lgas

k (tE2) for these particles are
1/2. In this way, lcore

k (tEi),lhalo
k (tEi) and lgas

k (tEi) will
evolve in timetEi . Various distributions of$lcore

k (tEi)%k51
N

for all the particlesk51,2, . . . ,N will define the distribution
function N(lgas,tE) for valueslgas at time tEi by simply
counting the number of the particles that take the valuelcore
at time tE . Similarly distribution functions for other state
can also be defined:N(lhalo,tE) and N(lcore,tE). As the
system is thermally relaxed and the equipartition of energ
attained,lcore

k (tE),lhalo
k (tE), andlgas

k (tE) will converge to
the same valuelcore* , lhalo* , andlgas* independent of the par
ticle label k. Then N(lgas,tE), N(lhalo,tE), and
3-9
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FIG. 9. Time variation ofN(l,tE), where the
bars in white, gray and black colors sho
N(lgas,tE), N(lhalo ,tE), and N(lcore,tE), re-
spectively. The left and right columns, respe
tively, represent the case of large UV cutoff~a!
e52.531023 and U520.65 and the case o
small UV cutoff ~b! e52.531027 and U5
2100, wheretE156.53104, DtE52.03103 for
~a!, and tE151.13105, DtE53.83103 for ~b!.
In both columns, time flows from top to bottom
(a1,b1)tE1

,(a2,b2)tE3
,(a3,b3)tE12

,(a4,b4)tE34
,

respectively.
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We
N(lcore,tE) would have sharp peaks atlcore* ,lhalo* , andlgas*
in the thermal equilibrium state. Thus the development of
peaks in the distribution functionsN(lgas,tE), N(lhalo,tE),
and N(lcore,tE) can be a good measure of the degree
thermal equilibrium.

In the large UV-cutoff case~i!, each distribution
N(lgas,tE), N(lhalo,tE), and N(lcore,tE) starting from
tE156.53104 seems to develop a single peak in betwee
and 1 at least by the timetE'105 @Fig. 9~b!#, and the vari-
ance around the peak seems to reduce in time@Fig. 9~c!#.
This means that most particles experience all of the th
states at least bytE'2.03105; thermal relaxation proceed
in the time scaletE;105. In contrast, in the small UV-cutof
case ~ii !, each distributionN(lgas,tE), N(lhalo,tE), and
N(lcore,tE) starting fromtE151.13105 seems to develop
peaks at the edge of the domain 1 and/or 0, even after
time duration,tE'3.83105 @Fig. 9~e!#. This means that
most particles stay in each single state even in the time s
tE;105; the system does not approach thermal relaxatio
all in this time scale.

By combining these results, the Gaussian velocity dis
bution realized in case~i! in Fig. 8 seems to reflect th
achieved thermal relaxation of the system. On the ot
hand, the Lorentzian velocity distribution realized in case~ii !
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in Fig. 8 seems to reflect some quasiequilibrium intermed
stage before the thermal relaxation of the system. Latter
culiar properties in velocity distributions may make 3
gravitational system quite different from those in the syst
with short-range interactions or the system with positive s
cific heat. If we sete larger, then the encounter ofhalo
particles with normal particles~gas and core particles! be-
comes more frequent, and thehalo particles cannot be iso
lated from the normal particles, resulting in trivial thermod
namical equilibrium of the whole system as in case~i!.

VI. SCALING PROPERTIES OF THE HALO

In Sec. IV, we have found that the velocity distribution
halo particles is non-Gaussian with anomalousv22 tail and
each halo particle shows intermittent recursive motio
around thecore without a definite time scale. These scal
free properties of thehalo particles turn out to appear in th
spatial distribution profile of them itself. In this section, w
study the scaling property of the spatial distribution with t
box-counting method@20#.

For this purpose, we use the box counting method:
divide the entire configuration space 2pR into segments
with equal sizel and count the numberN(l ) of the segment
3-10
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ORIGIN OF SCALING STRUCTURE AND NON-GAUSSIAN . . . PHYSICAL REVIEW E64 056133
that contains at least onehalo particle. Then we define the
quantity2](log10 N(l ))/](log10 l ), which turns out to be
the scaling exponent, provided that the quantity is alm
independent of the scalel . In order to increase the statistic
significance, we used multiple particle-distribution data
different times for each run. Moreover, we made many ru
of calculations with different initial conditions for the fixe
total energyU. We have applied the box-counting method
each data and then all the individual results are superpo
When we extract the distribution data, we have chosen
time interval @2000tj,5000tj#, in which the particle ratios
lcore, lhalo, andlgas almost reach the relaxed constant v
ues. Thus we calculate the following averaged quantity:

D~ l ![2 K ]~ log10 N~ l !!

]~ log10 l ! L
ens

, ~6.1!

over all the data we thus prepared. If any scaling prope
exists in the particle distribution,D(l ) would become con-
stant for a finite range ofl 1<l <l 2. As for the boundsl 1
and l 2, we have technical restrictions originating from o
numerical calculation method. The averaged distance
tweengasparticles is estimated as

l gas~e!;
2pR

Nlgas
. ~6.2!

If the box sizel is larger thanl gas(e) we expectD'1.0,
because almost all the boxes contain at least one particle
the other hand, ifl is smaller than the cutoff distancej, the
genuine property of gravity is lost. Therefore, scaling pro
erty in particle distribution is relevant only within the rang
j<l <l gas. Actually in our calculation, fore52.531027

andU52100, we can see the typical behavior ofN(l ) as a
function of l in Fig. 10. In this plot, we can see scalin
behaviorN(l );l 2d with the small exponent in the rang
1023R,l ,1021R, which is well inside the relevant region
This scaling seems to originate fromhalo particles, because
they not only dominate in the above scaling range but a
show non-Gaussian velocity distributions and self-similar
cursion jumps.

However, the scaling property of the box-countin
method does not always conclude the existence of the fra
structure in the particle distributions. This is because
box-counting method itself cannot distinguish the two pos
bilities; ~a! genuine fractal structure and~b! the power-law
tail of the particle distributions around thecore center.

In order to distinguish the above possibilities, we comp
two different superposition methods as follows:~a! We sim-
ply superpose all the data with the bare coordinateu and~b!
we superpose all the data with the coordinate adjusting
that the mass center of each data comes to the same pos
i.e., we introduce a new coordinateū as ū[u2ubc for each
data with the mass centerubc .

As a result, the scaling property of the particle distrib
tions, which was observed in the original method, disappe
completely in case~a!. On the other hand in case~b! we
observe the same scaling property as was observed in
original method. This result suggests that the observed s
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ing property in particle distribution is not the genuine frac
property of the system, but simply due to the power-la
distribution of particles around the mass center. We h
confirmed this with our further analysis on the direct obs
vation of the power-law particle distributions around t
mass center.

The energy and cutoff dependence on the scaling ex
nentD is shown in Fig. 11. Here we show the scaling exp
nent ofhalo particles in the region of negative specific he
We find that the scaling exponentD is almost constant in this
region. Moreover, smaller cutoffe corresponds to the
smaller dimensionD. On the other hand in the limit ofe
→1, the scaling property cannot be observed.

In the limit of real gravitational interaction (e→0), the
region of negative specific heat extends in energy range

FIG. 10. Log-log plot with common logarithm for the box sca

L̄ vs the number of the boxN̄ occupied by at least onehalo particle.
We superposed the snapshot data ofn different times. The cases
with n51, 10 (t052.0,Dt50.3), and 100 (t052.0,Dt50.03)
with the cutoff e52.531027 (j'7.131024R) are plotted. The
plots of these three cases coincide with each other in the ranj

,L̄,1021R. The scaling exponentD(L̄) derived from the slope in
this range is 0.1.

FIG. 11. Scaling exponentD vs energy per particleU. Most of
the energy region shown in the figure corresponds to theI phase.
For convenience, we useAeU as a horizontal axis. The case ofe
52.531025 ~squares with error bars! and the case ofe52.5
31027 ~crosses with error bars! are plotted. It seems that the d
mensionD does not depend onU. Since the number ofhalo par-
ticles is small in low energy, the error becomes large there.
3-11
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so does the scaling region. This constant property of
exponentD is likely to be independent of the temperature
the energy of the system.

VII. CONCLUSION

In this paper we have studied the self-gravitating ri
~SGR! model that is a one-dimensional~1D! model of a self-
gravitating system. Although the system is 1D, the partic
constrained on a circular ring mutually interact with the 3
full gravitational force. We found that an interesting pha
with the negative specific heat appears at the intermed
energy scale, which reflects the virial condition of the 3
gravitating system. Classifying the particles in each ph
into three species~core, halo, andgasspecie!, we examined
dynamical properties of this phase. Using SGR model,
further examined characteristic properties of relaxation,
locity distributions, and density profiles in each phase.

The cutoff parameterj introduced in SGR model control
the singular properties of the system at short distances
changing this parameter, we could systematically study
effect of the short-distance singularity of the force upon
statistical properties of the system.

When the cutoff parameter is of order one (j;R), the
system resembles the Hamilton mean-field model~HMF!. In
fact, the velocity distribution becomes Gaussian att
;O(103)tR . This is because the two time scalestE and tR
become of the same order and, therefore,halo particles fre-
quently encounter and interact withgasparticles. This strong
interaction induces frequent exchange of particles betw
these two species. Thus the energy diffuses effectively
complete thermodynamical equilibrium of the entire syst
is established. Especially the temperature is the same fo
the particle species. In other words, the negative specific
region ~halo particles! does exist, but the strong interactio
with gas and core particles~positive specific heat! quickly
dissolves the negative specific heat region.

In much more smaller cutoff case withj'7.1
31022R(e52.531023), the velocity distribution become
almost Gaussian after the virialization, although the tempe
ture of each species is different from each other. This te
perature difference, as well as the required time for establ
ing the equilibrium, is increased for smaller value of t
cutoff j.

On the other hand, asj→0, the difference of the two time
scales increasestR@tj , and the energy region of the neg
tive specific heat extends wider. Therefore, we can exp
that halo particles become almost isolated from thegaspar-
ticles. This isolation of unstablehalo particles from other
normal species enables thehalo species to last sufficiently
long. In the case ofj'7.131024R(e52.531027), the ini-
tial condition dependence ofhalo particles survives even af
ter 53104tR in our simulation, which prevents the full sys
tem from reaching thermal equilibrium. These resu
resemble the case ofcore particles with j'7.131022R.
However, the remarkable difference between the two cas
that the velocity distribution ofhalo particles in j'7.1
31024R is not Gaussian but Lorentzian distribution, whi
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that of core particles inj'7.131024R is Gaussian. This
property ofhalo particles qualitatively reflects genuine 3
gravitational interaction and is the main difference from t
HMF models or 1DS models We have also found the sca
structure ofhalo particles in the intermediate-energy phas
When we reduce the cutoffj→0, the scaling region as wel
as the energy range of negative specific heat is exten
wider, although the value of exponent depends on the cu
and reduces withj.

In 1DS model, the system reaches thermodynamical e
librium at least at t;O(107)tE , where tE

[(1/4pGmN)A4E/mN is the crossing time of 1DS mode
@10#. It is also shown that the system reaches the collision
mixing phase in much shorter time interval. Our simulati
with j'7.131024R shows non-Gaussian velocity and sca
ing property in such a short time interval 43103tE;2
3105tE for U52100. So the non-Gaussian velocity distr
bution might reflect the character in collisionless mixin
phase that appears in 1DS simulation@10#. However, it might
also be true that the relaxation process in SGR is quite
ferent from that in 1DS, where no time scale separation
tweencore andhalo particles exists. So the exotic charact
of halo particles might be intrinsic in SGR or the syste
with real 3D gravitational interactions because of the tim
scale separation.

In summary, SGR model is characterized~i! by the phase
separation and the particle state separation and~ii ! by similar
recurrent motion and non-Gaussian velocity distribution
halo particles. Both these characters may play a key role
explaining the observational properties in real 3D se
gravitating objects. For example, the recent observati
with Hubble space telescope support the existence of su
massive black holes or cusps at the center of triaxial ellipt
galaxies@21–23#. This observation suggests that the abo
property ~i! may appear in these galaxies, since they ha
high density region corresponding tocore particles at their
centers and low density region corresponding tohalo par-
ticles surrounding them. Hence, property~i! may give a hint
for explaining the relaxation process and the origin of s
tionally configuration shape of these galaxies, since the
chastic halo orbits that interact withcore particles at the
center of a triaxial galaxy may affect the equilibrium sha
through the continued mixing near the center@24#. In addi-
tion, propety~ii ! might help to explain the observed fract
structures and non-Gaussian velocity distributions in the
terstellar medium@25#, which are likely to be gravitationally
virialized.
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APPENDIX A: VIRIAL CONDITION FOR SGR MODEL

We start with the nondimensional Hamiltonian of th
SGR model

H5
1

2 (
i 51

N

pi
22(

i , j

N
1

A2NA12cosu i j 1e
. ~A1!

Canonical equations of motion for this system become

du i

dt
5pi ,

dpi

dt
52(

j 5” i

N
sinu i j

2A2N~12cosu i j 1e!3/2
. ~A2!

Then the second time derivative of the inertia moment of t
system becomes

d2

dt2 (
i 51

N

u i
252S (

i 51

N

pi

du i

dt
1(

i 51

N

u i

dpi

dt D
52(

i 51

N

pi
222(

i , j

N
u i sinu i j

A2N~12cosu i j 1e!3/2
. ~A3!

Taking long-time average for this equation, we obtain

K d2

dt2 (
i 51

N

u i
2L 54NT22K (

i , j

N
u i sinu i j

A2N~12cosu i j 1e!3/2L .

~A4!

Therefore if the condition

I ~t![K d2

dt2 (
i 51

N

u i
2L /~NT!!1 ~A5!

is realized, then the virial relation

T'
1

2NK (
i , j

N
u i sinu i j

A2N~12cosu i j 1e!3/2L ~A6!

holds.
By using the total potential

V52(
i , j

N
1

A2NA12cosu i j 1e
, ~A7!

the virial relation~A6! can be expressed as

T'
1

2N K (
i , j

N

u i

]V

]u i
L . ~A8!

Note that even in the limit ofe→0, the virial relation^K&
52NT52^V&/2 is not justified, because of the potenti
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form ~A7!. However, as is shown in Sec. II, we can get t
above ideal virial condition for 3D gravity within the appro
priate energy range.

APPENDIX B: VIRIAL CONDITION IN A C PHASE
FOR SGR MODEL

In C phase, almost all of the particles are trapped ins
the core , whose size is almostj. Therefore, in this state
canonical equations~A2! are approximated as

du i

dt
5pi ,

dpi

dt
52(

j 5” i

N
u i j

2A2Ne3/2
,

52
u i

2A2e3/2S 12
1

ND1(
j 5” i

N
u j

2A2Ne3/2
, ~B1!

sinceuu i j u;O(e)!1.
In this approximation, the second time derivative of t

inertia moment of this system becomes

d2

dt2 (
i

u i
252(

i
pi

22
1

A2e3/2S 12
1

ND(
i 51

N

u i
2

1
2

A2Ne3/2 (
i , j

N

u iu j . ~B2!

Taking long-time average for this relation, we obtain

K d2

dt2 (
i

u i
2L 54NT2

1

A2e3/2S 12
1

ND(
i 51

N

^u i
2&

1
2

A2Ne3/2 (
i , j

N

^u iu j&. ~B3!

Sinceu i and u j ( i 5” j ) are independent stochastic variable
the last term in Eq.~B3! vanishes. Hence, from the viria
relation,

T'
1

4A2NNe3/2S 12
1

ND(
i 51

N

^u i
2& ~B4!

and

^Kp&'
Gm2

2A2e3/2R
S 12

1

ND(
i 51

N

^u i
2&, ~B5!

hold. This shows that̂Kp& in C phase is given by the sum o
N statistical elements.
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