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We study the effect of modified gravity on weak lensing in a class of scalar-tensor theory that
includes f(R) gravity as a special case. These models are designed to satisfy local gravity constraints
by having a large scalar-field mass in a region of high curvature. Matter density perturbations in
these models are enhanced at small redshifts because of the presence of a coupling Q that charac-
terizes the strength between dark energy and non-relativistic matter. We compute a convergence
power spectrum of weak lensing numerically and show that the spectral index and the amplitude of
the spectrum in the linear regime can be significantly modified compared to the ΛCDM model for
large values of |Q| of the order of unity. Thus weak lensing provides a powerful tool to constrain
such large coupling scalar-tensor models including f(R) gravity.

I. INTRODUCTION

The observations of the Supernovae Ia (SN Ia) in 1998
[1] opened up a new research paradigm known as Dark
Energy (DE). In spite of the tremendous effort over the
past ten years, we have not yet identified the origin of
DE responsible for the late-time accelerated expansion.
Many DE models have been proposed so far to allevi-
ate the theoretical problem of the cosmological constant
scenario [2, 3]. We can broadly classify these models
into two classes: (i) “changing gravity” models and (ii)
“changing matter” models. The first class includes f(R)
gravity [4], scalar-tensor models [5] and braneworld mod-
els [6], whereas scalar-field models such as quintessence
[7] and k-essence [8] are categorized in the second class.

While changing matter models lead to dynamical evo-
lution for the equation of state of DE, it is not easy to
distinguish them from the cosmological constant scenario
in current observations. Meanwhile, if we change gravity
from General Relativity, the models need to pass local
gravity tests as well as cosmological constraints. In this
sense it is possible to place stringent experimental and
observational constraints on changing gravity models.

In fact there have been a burst of activities to search
for viable modified gravity DE models. In the so-called
f(R) gravity where f is a function of the Ricci scalar R,
it was found that the model f(R) = R−α/Rn (α, n > 0)
proposed in Refs. [4] is unable to satisfy the stability
condition (f,RR ≡ d2f/dR2 > 0) for perturbations [9],
cosmological viability [10] and local gravity constraints
(LGC) [11]. Recently a number of authors proposed vi-
able f(R) DE models that satisfy all these requirements
[12, 13, 14, 15, 16, 17, 18, 19, 20]. For example, the model
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f(R) = R−αRn with α > 0, 0 < n < 1 is consistent with
LGC for n < 10−10 [21] while at the same time satisfying
stability and cosmological constraints. However it is diffi-
cult to distinguish this model from the ΛCDM cosmology
because of the tight bound on the power n coming from
LGC.

The f(R) models proposed by Hu and Sawicki [15] and
Starobinsky [16] are designed to satisfy LGC in the re-
gion of high density where local gravity experiments are
carried out. Moreover it is possible to find an appre-
ciable deviation from the ΛCDM model as the Universe
evolves from the matter-dominated epoch to the late-
time accelerated era. In fact the equation of state of DE
in these models exhibits peculiar evolution at small red-
shifts [14, 18]. In addition, for the redshift smaller than
a critical value zk, the growth rate of matter density per-
turbations is larger than in the case of General Relativity
[16, 18].

Recently the analysis in f(R) gravity was extended to a
class of scalar-tensor DE models, i.e., Brans-Dicke theory
with a scalar field potential V (φ) [22]. By introducing a
constant Q with the relation 1/(2Q2) = 3 + 2ωBD (ωBD

is a Brans-Dicke parameter), one can reduce this the-
ory to the one given by the action (2). The constant Q
characterizes the coupling between dark energy and non-
relativistic matter. If the scalar field φ is nearly massless,
the coupling is constrained to be |Q| . 10−3 from solar
system experiments [22]. However, if the field φ is mas-
sive in the region of high density, it is possible to satisfy
LGC even when |Q| is of the order of unity. In fact, in the

context of f(R) gravity (Q = −1/
√

6), the models of Hu
and Sawicki [15] and Starobinsky [15] are designed in such
a way that the field is sufficiently massive in the regime
R ≫ R0 (R0 is the present cosmological Ricci scalar) and
that the mass becomes lighter as R approaches R0. For
general coupling Q, the potential given in Eq. (5) can
be compatible with both local gravity and cosmological
constraints.
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The scalar-tensor models mentioned above show devi-
ations from the ΛCDM model at late times and hence
they can leave a number of interesting observational sig-
natures. In Ref. [22] several bounds on the coupling Q
and model parameters were derived by considering the
evolution of matter density perturbations as well as LGC.
It was found that there exists allowed parameter space of
model parameters even when |Q| is of the order of unity.

In this paper we shall study the effect of such modified
gravity models on weak lensing observations [23]. Since
weak lensing carries the information of perturbations at
low redshifts, it is expected that this sheds light on reveal-
ing the nature of DE [24, 25, 26, 27, 28, 29, 30, 31, 32].
In Refs. [33, 34] a convergence power spectrum of weak
lensing was derived in scalar-tensor theories with the La-
grangian density L = F (φ)R/2 − (∇φ)2/2 − V (φ). In
these theories a deflecting lensing potential Φwl is modi-
fied compared to General Relativity due to the different
evolution of gravitational potentials. This gives rise to
the change of the convergence power spectrum, which
provides a powerful tool to distinguish modified gravity
from the ΛCDM model.

The lensing potential Φwl is sourced by matter density
perturbations. The equation for matter perturbations in
scalar-tensor models was derived in Ref. [35] under the
approximation on sub-horizon scales (see also Ref. [36]).
This analysis can be generalized to the theories with the
Lagrangian density f(R, φ, X) (where X = −(∇φ)2/2),
in which Φwl was obtained analytically [37]. The DGP
braneworld model also leads to the modification to the
lensing potential [38]. Thus the effect of modified gravity
generally manifests itself in weak lensing observations.

In this work we focus on scalar-tensor models (2) with
a large coupling Q and evaluate the convergence power
spectrum to find signatures of the modification of gravity
in weak lensing. This analysis is general in the sense that
f(R) gravity is included as a special case. In Sec. II we
review our scalar-tensor models and present cosmological
background equations to find dark energy dynamics. In
Sec. III we derive the form of the convergence power spec-
trum as well as the equation for the deflecting potential
Φwl. In Sec. IV we compute the convergence spectrum
numerically and estimate the effect of modified gravity
on weak lensing. We conclude in Sec. V.

II. MODIFIED GRAVITY MODELS

We start with the following action

S =

∫

d4x
√−g

[

1

2
χR − ωBD

2χ
(∇χ)2 − V (χ)

]

+Sm(gµν , Ψm) , (1)

where χ is a scalar field coupled to the Ricci scalar R,
ωBD is a constant parameter, V (χ) is a field potential,
and Sm is a matter action that depends on the metric
gµν and matter fields Ψm. The action (1) corresponds

to Brans-Dicke theory [39] with a potential V (χ). In the
following we use the unit 8πG = 1, but we restore the
bare gravitational constant G when it is required.

Setting χ = F = e−2Qφ, where Q is a constant and
φ = −1/(2Q) lnχ is a new scalar field, we find that the
action (1) is equivalent to

S =

∫

d4x
√−g

[

1

2
FR − 1

2
(1 − 6Q2)F (∇φ)2 − V

]

+Sm(gµν , Ψm) , (2)

where Q is related with the Brans-Dicke parameter ωBD

via the relation 1/(2Q2) = 3 + 2ωBD [22]. The f(R)

gravity corresponds to the coupling Q = −1/
√

6, i.e.,
ωBD = 0 [40].

In the absence of the potential V the Brans-Dicke
parameter is constrained to be ωBD > 4.0 × 104 from
solar system experiments [41], which gives the bound
|Q| < 2.5 × 10−3. If the potential V is present, it is
possible to satisfy solar system constraints even when
|Q| is of the order of unity by having a large mass in a
high-curvature region. In the context of f(R) gravity,
the following model is designed to satisfy LGC [18]:

f(R) = R − µRc[1 − (R/Rc)
−2n] , (3)

where µ, Rc, n are positive constants, and Rc is roughly
of the order of the present cosmological Ricci scalar R0.
Note that this satisfies the stability condition f,RR > 0
for R ≥ R1 (R1 is a Ricci scalar at a late-time de-Sitter
point) unlike the model f(R) = R−α/Rn (α, n > 0) [16,
18]. In the limit R ≫ Rc the above model approaches the
ΛCDM model, which allows a possibility to be consistent
with LGC in the region of high density.

In fact, the model (3) satisfies LGC for n > 0.9 [21]
through a chameleon mechanism [42] because of the pres-
ence of an effecive potential V = (RF − f)/2 with the

dynamical field φ = (
√

6/2) lnF . The field potential in
this case is given by

V (φ) =
µRc

2

[

1 − 2n + 1

(2nµ)2n/(2n+1)
(1 − e2φ/

√
6)

2n
2n+1

]

. (4)

The models proposed by Hu and Sawicki [15] and by
Starobinsky [16] reduce to this form of the potential
in the high-curvature region (R ≫ Rc) where local
gravity experiments are carried out. When R ≫ Rc

the field φ is almost frozen at instantaneous minima

around φ = 0 characterized by the condition e2φ/
√

6 =
1 − 2nµ(R/Rc)

−(2n+1) with a large mass squared M2 ≡
V,φφ ∝ φ− 2n+2

2n+1 . These minima are sustained by an effec-
tive coupling Q between non-relativistic matter and the
field φ [21].

For arbitrary coupling Q with the action (2), one can
also construct viable models by generalizing the analysis
of f(R) gravity. An explicit example of the potential
consistent with LGC is given by [22]

V (φ) = V1

[

1 − C(1 − e−2Qφ)p
]

, (5)
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where V1 > 0, C > 0, 0 < p < 1. This is motivated
by the potential (4), which means that the f(R) model
(3) is recovered by setting p = 2n/(2n + 1). The anal-
ysis using the potential (5) with the action (2) is suffi-
ciently general to understand essential features of mod-
ifed gravity models that satisfy local gravity and cosmo-
logical constraints. As p gets closer to 1, the field mass in
the region of high-curvature tends to be heavier so that
the models are consistent with LGC. In Ref. [22] it was
found that the constraints coming from solar system tests
and the violation of equivalence principle give the bounds
p > 1 − 5/(9.6− ln10|Q|) and p > 1− 5/(13.8− ln10|Q|),
respectively. In f(R) gravity with the potential (4) these
bounds translate into the conditions n > 0.5 and n > 0.9,
respectively [21].

Let us review cosmological dynamics for the action (2)
with the potential (5) in the flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric, ds2 = −dt2 +
a2(t)dx2, where t is cosmic time and a(t) is the scale
factor. As a source term for the matter action Sm, we
take into account a non-relativistic fluid with energy den-
sity ρm and a radiation with energy density ρrad. These
obey the usual conservation equations ρ̇m + 3Hρm = 0
and ρ̇rad +4Hρrad = 0, where H ≡ ȧ/a. The variation of
the action (2) leads to the following equations of motion:

3FH2 =
1

2
(1 − 6Q2)Fφ̇2 + V − 3HḞ + ρm + ρrad , (6)

2FḢ = −(1 − 6Q2)Fφ̇2 − F̈ + HḞ − ρm − 4

3
ρrad , (7)

(1 − 6Q2)F

(

φ̈ + 3Hφ̇ +
Ḟ

2F
φ̇

)

+ V,φ + QFR = 0 ,(8)

where R = 6(2H2 + Ḣ).
In order to solve the background equations (6)-(8) nu-

merically, we introduce the dimensionless variables

x1 =
φ̇√
6H

, x2 =
1

H

√

V

3F
, x3 =

1

H

√

ρrad

3F
. (9)

We also define

ΩDE ≡ (1 − 6Q2)x2
1 + x2

2 + 2
√

6Qx1 , (10)

Ωrad ≡ x2
3 , (11)

Ωm ≡ 1 − (1 − 6Q2)x2
1 − x2

2 − 2
√

6Qx1 − x2
3 , (12)

which satisfy the relation ΩDE + Ωrad + Ωm = 1. Using
Eqs. (7) and (8) we find

Ḣ

H2
= −1 − 6Q2

2

[

3 + 3x2
1 − 3x2

2 + x2
3 − 6Q2x2

1

+2
√

6Qx1

]

+ 3Q(λx2
2 − 4Q),(13)

where λ = −V,φ/V . For the potential (5) we have

λ =
2C p Qe−2Qφ(1 − e−2Qφ)p−1

1 − C(1 − e−2Qφ)p
. (14)

The effective equation of the system is defined by

weff ≡ −1 − 2Ḣ/(3H2) . (15)

Using Eqs. (6)-(8), we obtain the following equations

dx1

dN
=

√
6

2
(λx2

2 −
√

6x1) +

√
6Q

2

[

(5 − 6Q2)x2
1

+2
√

6Qx1 − 3x2
2 + x2

3 − 1

]

− x1
Ḣ

H2
, (16)

dx2

dN
=

√
6

2
(2Q − λ)x1x2 − x2

Ḣ

H2
, (17)

dx3

dN
=

√
6Qx1x3 − 2x3 − x3

Ḣ

H2
, (18)

where N ≡ ln (a) is the number of e-foldings. We note
that the variable F satisfies the equation of motion:
dF/dN = −2

√
6Qx1F .

There exists a radiation fixed point: (x1, x2, x3) =
(0, 0, 1) for this system. During radiation and matter
eras, the field φ is stuck around the “instantaneous” min-
ima characterized by the condition V,φ + QFR = 0, i.e.,

2Qφm ≃
(

2V1pC

ρm

)
1

1−p

≪ 1 , (19)

where we used the fact that V1 is of the order of the
squared of the present Hubble parameter H0 so that
the potential (5) is responsible for the accelerated ex-
pansion today. Note that we have F = e−2Qφm ≃ 1
under the condition (19). In this region the quan-
tity |λ| defined in Eq. (14) is much larger than unity.
The field value |φm| increases as the system enters the
epoch of an accelerated expansion, which leads to the
decrease of |λ|. The matter-dominated epoch is real-
ized by the instantaneous fixed point characterized by
(x1, x2, x3) = (

√
6/(2λ), [(3+2Qλ−6Q2)/2λ2]1/2, 0) with

Ωm = 1−(3−12Q2+7Qλ)/λ2 ≃ 1 and weff = −2Q/λ ≃ 0
(because |λ| ≫ 1 in this regime). In the presence of
the coupling Q there exists a de-Sitter point character-
ized by (x1, x2, x3) = (0, 1, 0), Ωm = 0 and weff = −1,
which corresponds to λ = 4Q. This solution is stable for
dλ/dφ < 0 [22] and hence can be used for the late-time
accelerated expansion. See Ref. [22] for detailed analysis
about the background cosmological evolution.

The mass squared, M2 = V,φφ, is given by

M2 = 4V1CpQ2(1 − pe−2Qφ)(1 − e−2Qφ)p−2e−2Qφ.(20)

Plugging the field value φm into Eq. (20), we find

M2 ≃ 1 − p

(2ppC)1/(1−p)
Q2

(

ρm

V1

)

2−p

1−p

V1 . (21)

Since the energy density ρm is much larger than V1

during the radiation and matter eras, we have that
M2 ≫ V1 ∼ H2

0 . The mass squared M2 decreases to the
order of V1 after the system enters the accelerated epoch.
This evolution of the field mass leads to an interesting ob-
servational signature in weak lensing observations, as we
will see in subsequent sections.
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III. WEAK LENSING

Let us consider a perturbed metric about the flat
FLRW background in the longitudinal gauge:

ds2 = −(1 + 2Φ)dt2 + a2(t)(1 − 2Ψ)δijdxidxj , (22)

where scalar metric perturbations Φ and Ψ do not co-
incide with each other in the absence of an anisotropic
stress. Matter density perturbations δm in the pressure-
less matter contribute to the source term for the gravi-
tational potentials Φ and Ψ. The equation of δm for the
action (2) was derived in Ref. [22] under an approxima-
tion on sub-horizon scales [3, 35, 37]. Provided that the
oscillating mode of the field perturbation δφ does not
dominate over the matter-induced mode at the initial
stage of the matter era, we obtain the following approx-
imate equation

δ̈m + 2Hδ̇m − 4πGeffρmδm ≃ 0 , (23)

where the effective gravitational “constant” is given by

Geff =
1

8πF

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2
. (24)

Here k is a comoving wavenumber and M2 is given in
Eq. (20) for the potential (5). Using the derivative with
respect to N , Eq. (23) can be written as

d2δm

dN2
+

(

1

2
− 3

2
weff

)

dδm

dN

−3

2
Ωm

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2
δm ≃ 0 . (25)

The gravitational potentials Φ and Ψ satisfy

k2

a2
Φ ≃ −ρm

2F

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2
δm , (26)

k2

a2
Ψ ≃ −ρm

2F

(k2/a2)(1 − 2Q2)F + M2

(k2/a2)F + M2
δm . (27)

In order to confront our model with weak lensing obser-
vations, we define the so-called deflecting potential [34]

Φwl ≡ Φ + Ψ , (28)

together with the effective density field

δeff ≡ − a

3H2
0Ωm,0

k2 Φwl , (29)

where the subscript “0” represents the present values and
we set a0 = 1. Using the relation

ρm = 3F0H
2
0Ωm,0/a3 , (30)

together with Eqs. (26) and (27), we get

Φwl = −a2

k2

ρm

F
δm , δeff =

F0

F
δm . (31)

We write the angular position of a source to be ~θS and

the direction of weak lensing observation to be ~θI . The
deformation of the shape of galaxies is characterized by

the amplification matrix A = d~θS/d~θI . The components
of A are given by [23, 34]

Aµν = Iµν −
∫ χ

0

χ′(χ − χ′)

χ
∂µνΦwl[χ

′~θ, χ′]dχ′ , (32)

where χ is the comoving radial distance satisfying the
relation dχ = −dt/a(t) along the geodesic. In terms of
the redshift defined by z = 1/a− 1, we have that

χ(z) =

∫ z

0

dz′

H(z′)
. (33)

The convergence κ and the shear ~γ = (γ1, γ2) can be
derived from the components of the 2 × 2 matrix A, as

κ = 1 − 1

2
TrA , ~γ = ([A22 −A11]/2,A12) . (34)

If we consider a redshift distribution p(χ)dχ of the source,

the convergence is given by κ(~θ) =
∫

p(χ)κ(~θ, χ)dχ. Us-
ing Eqs. (29), (32) and (34) we obtain

κ(~θ) =
3

2
H2

0Ωm,0

∫ χH

0

g(χ)χ
δeff [χ ~θ, χ]

a
dχ , (35)

where χH is the maximum distance to the source and

g(χ) ≡
∫ χH

χ

p(χ′)
χ′ − χ

χ′
dχ′ . (36)

Since the convergence is a function on the 2-sphere it

can be expanded in the form κ(~θ) =
∫

κ̂(~ℓ)ei~ℓ·~θ d2~ℓ
2π , where

~ℓ = (ℓ1, ℓ2) with ℓ1 and ℓ2 integers. Defining the power

spectrum of the shear to be 〈κ̂(~ℓ)κ̂∗(~ℓ′)〉 = Pκ(~ℓ)δ(2)(~ℓ −
~ℓ′), one can show that the convergence has a same power
spectrum as Pκ [23]. It is given by [34]

Pκ(ℓ) =
9H4

0Ω2
m,0

4

∫ χH

0

[

g(χ)

a(χ)

]2

Pδeff

[

ℓ

χ
, χ

]

dχ . (37)

In our scalar-tensor theory we have Pδeff
=

(F0/F )2Pδm
from Eq. (31), where Pδm

is the matter
power spectrum. In the following we assume that the
sources are located at the distance χs (corresponding to
the redshift zs), which then gives p(χ) = δ(χ − χs) and
g(χ) = (χs − χ)/χs. This leads to the following conver-
gence spectrum

Pκ(ℓ) =
9H4

0Ω2
m,0

4

∫ χs

0

(

χs − χ

χsa

F0

F

)2

Pδm

[

ℓ

χ
, χ

]

dχ.

(38)
Let us consider the action (2) with the potential (5).

In the deep matter era where the Ricci scalar R is much
larger than H2

0 , we have M2/F ≫ k2/a2 and F ≃ 1 for
the wavenumber k relevant to the matter power spectrum
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[22]. Since Geff ≃ G in this regime from Eq. (24), the
perturbations evolve in a standard way: δm ∝ t2/3 and
Φwl = constant. Meanwhile, at the late epoch of the
matter era, the system can enter a stage characterized
by the condition M2/F ≪ k2/a2. Since Geff ≃ (1 +
2Q2)/8πF during this stage, the perturbations evolve in
a non-standard way:

δm ∝ t(
√

25+48Q2−1)/6 , Φwl ∝ t(
√

25+48Q2−5)/6. (39)

The critical redshift zk at M2/F = k2/a2 can be esti-
mated as

zk ≃
[

(

k2

H2
0

1

Q2(1 − p)

)1−p
2ppC

(3F0Ωm,0)2−p

V1

H2
0

]
1

4−p

− 1.

(40)
As long as zk & 1 it is expected that the effect of modified
gravity manifests itself in weak lensing observations.

Since the evolution of perturbations is similar to that
in the ΛCDM model at an early epoch characterized by
the condition z ≫ zk, the deflecting potential Φwl at late
times is given by [43]

Φwl(k, a) =
9

10
Φwl(k, ai)T (k)

D(k, a)

a
, (41)

where Φwl(k, ai) ≃ 2Φ(k, ai) corresponds to the initial
deflecting potential generated during inflation, T (k) is
a transfer function that describes the epochs of horizon
crossing and radiation/matter transition (50 . z . 106),
and D(k, a) is the growth function at late times defined
by D(k, a)/a = Φwl(a)/Φwl(aI) (aI corresponds to the
scale factor at a redshift 1 ≪ zI < 50).

Since we are interested in the case where the transition
redshift zk is smaller than 50, we can use the standard
transfer function of Bardeen et al. [44]:

T (x) =
ln(1 + 0.171x)

0.171x

[

1.0 + 0.284x + (1.18x)2

+(0.399x)3 + (0.490x)4
]−0.25

, (42)

where x ≡ k/kEQ and kEQ = 0.073 Ωm,0h
2 Mpc−1.

In the ΛCDM model the growth function during the
matter-dominated epoch (Ωm = 1) is scale-independent:
D(k, a) = a.1 In our scalar-tensor model the mass
squared M2 given in Eq. (21) evolves as M2 ∝
t−2(2−p)/(1−p), which implies that the transition time tk

at M2/F = k2/a2 has a scale-dependence tk ∝ k− 3(1−p)
4−p

[22]. This leads to the scale-dependent growth of metric
perturbations.

1 Note that in the late-time accelerated epoch the growth of matter
pertubations is no longer described by D(a) = a.

Using Eqs. (29) and (41) we obtain the matter pertur-
bation δm at the redshift z < zI :

δm(k, a) = − 3

10

F

F0

k2

Ωm,0H2
0

Φwl(k, ai)T (k)D(k, a) . (43)

The initial power spectrum generated during inflation is
PΦwl

≡ 4|Φ|2 = (200π2/9k3)(k/H0)
ns−1δ2

H , where ns is
the spectral index and δ2

H is the amplitude of Φwl. Then
the power spectrum, Pδm

≡ |δm|2, is given by

Pδm
(k, a) = 2π2

(

F

F0

)2
kns

Ω2
m,0H

ns+3
0

δ2
HT 2(k)D2(k, a).

(44)
From Eqs. (38) and (44) we get

Pκ(ℓ) =
9π2

2

∫ zs

0

(

1 − X

Xs

)2
1

E(z)
δ2
H

×
(

ℓ

X

)ns

T 2(x)

(

Φwl(z)

Φwl(zI)

)2

dz , (45)

where

E(z) =
H(z)

H0
, X = H0χ , x =

H0

kEQ

ℓ

X
. (46)

From Eq. (33) the quantity X satisfies the differential
equation dX/dz = 1/E(z). In the following we use the
value zs = 1 in our numerical simulations.

IV. OBSERVATIONAL SIGNATURES OF

MODIFIED GRAVITY

When Q 6= 0 the evolution of δm during the time-
interval tk < t < tΛ (where tΛ is the time at ä = 0)
is given by Eq. (39), whereas δm ∝ t2/3 in the ΛCDM
model (Q = 0). Hence, at time tΛ, the power spectrum
for Q 6= 0 exhibits a difference compared to the ΛCDM
model [22]:

Pδm
(tΛ)

PΛCDM
δm

(tΛ)
=

(

tΛ
tk

)2

„√
25+48Q2

−1
6 − 2

3

«

∝ k∆n(tΛ) , (47)

where

∆n(tΛ) =
(1 − p)(

√

25 + 48Q2 − 5)

4 − p
. (48)

In order to derive the difference ∆n(t0) at the present
epoch, we need to solve perturbation equations numer-
ically by the time t0. However, as long as zk is larger
than the order of unity, the growth rate of δm during the
time-interval tΛ < t < t0 hardly depends on k for fixed
Q. Hence it is expected that the analytic estimation (48)
does not differ much from ∆n(t0) provided zk ≫ 1.

We start integrating the background equations (16)-
(18) from the deep matter era and identify the present
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(a) Q=0.7, p=0.6
(b) Q=-(1/6)1/2, p=0.6

(c) ΛCDM, linear
(d) ΛCDM, nonlinear

Figure 1: The matter power spectra Pδm(k) at the present
epoch for (a) Q = 0.7, p = 0.6, C = 0.9, (b) Q = −1/

√
6,

p = 0.6, C = 0.9, (c) the ΛCDM model, and (d) the ΛCDM
model with a nonlinear halo-fitting (σ8 = 0.78 and shape
parameter Γ = 0.2). The model parameters are Ωm,0 = 0.28,
H0 = 3.34 × 10−4 h Mpc−1, ns = 1 and δ2

H = 3.2 × 10−10. In
the cases (a) and (b) we start integrating Eqs. (16)-(18) with

initial conditions (x1, x2, x3) = (0, [(3+2Qλ−6Q2)/2λ2]1/2, 0)
and F − 1 = −10−8.

epoch by the condition Ωm = 0.28. We then run the
code again from z = zI (< 50) to z = 0 in order to solve
the perturbation equations (25) and (31). Since we are
considering the case in which zk is smaller than zI , the
initial conditions for matter perturbations are chosen to
be dδm

dN = δm (i.e., those for the ΛCDM model).

In Fig. 1 we plot the matter power spectra at the
present epoch for (a) Q = 0.7, p = 0.6, C = 0.9, (b)

Q = −1/
√

6, p = 0.6, C = 0.9, (c) the ΛCDM model,
and (d) the ΛCDM model with a nonlinear halo-fitting
[45]. Since we do not take into account nonlinear effects
in the cases (a)-(c), these results are trustable in the lin-
ear regime k . 0.2hMpc−1.

In the case (b), which corresponds to f(R) gravity with
n = 0.75 in the model (3), the spectrum shows a devi-
ation from the ΛCDM model for k > 0.01hMpc−1. On
the scales k = 0.01hMpc−1 and k = 0.1hMpc−1 the crit-
ical redshifts at M2/F = k2/a2 are given by zk = 2.995
and zk = 5.868, respectively. Numerically we find
∆n(t0) = 0.017 and ∆n(t0) = 0.119 for k = 0.01hMpc−1

and k = 0.1hMpc−1 respectively, whereas the estimation
(48) gives the value ∆n(tΛ) = 0.088. Since zk decreases
for smaller k, the analytic estimation (39) obtained by
using the condition zk ≫ 1 tends to be invalid on larger
scales. This is the main reason of the discrepancy be-
tween ∆n(t0) and ∆n(tΛ) found for k < 0.1hMpc−1.
We checked that ∆n(t0) approaches the analytic value
∆n(tΛ) = 0.088 on smaller scales, e.g., ∆n(t0) = 0.089

10
-9

10
-8

10
-7

 10  100

P
κ

l

(a) p=0.5, C=0.9
(b) p=0.7, C=0.9

(c) ΛCDM

Figure 2: The convergence power spectrum Pκ(ℓ) in f(R)
gravity (Q = −1/

√
6) for the cases: (a) p = 0.5, C = 0.9

and (b) p = 0.7, C = 0.9. We also show the spectrum in the
ΛCDM model. Other model parameters are chosen similarly
as in the case of Fig. 1.

for k = 4.3hMpc−1.

For larger |Q| the growth rate of δm increases in the
regime zΛ < z < zk, which alters the shape of the matter
power spectrum. In the case (a) of Fig. 1 we numerically
find that ∆n(t0) = 0.323 on the scale k = 0.1hMpc−1,
while the estimation (48) gives ∆n(tΛ) = 0.231. Again
this analytic estimation is in a better agreement with
∆n(t0) on smaller scales, e.g., ∆n(t0) = 0.244 for k =
4.3hMpc−1. In Fig. 1 we also show the matter power
spectrum in the ΛCDM model derived by using the non-
linear halo-fit [45]. This gives rise to an enhancement
of the power in the nonlinear regime (k > 0.2hMpc−1).
The spectrum in the case (a) exhibits a significant differ-
ence compared to this halo-fit ΛCDM spectrum even for
k < 0.2hMpc−1, which implies that our linear analysis is
enough to place stringent constraints on model parame-
ters Q and p from observations of galaxy clustering.

Let us next proceed to the convergence power spectrum
of weak lensing. Compared to the matter power spec-
trum the wavenumber k is replaced by k = ℓ/χ. In the
deep matter era the evolution of the Hubble parameter
can be approximated as H2(z) ≃ H2

0Ωm,0(1 + z)3, which

gives χ ≃ 2/(H0Ω
1/2
m,0) = constant. Hence the time tℓ at

M2/F = (ℓ/χ)2/a2 has an ℓ-dependence tℓ ∝ ℓ−
3(1−p)
4−p ,

provided this transition occurs at the redshift zℓ ≫ 1.

Since Φwl ≃ constant for tI < t < tℓ and Φwl ∝
t(
√

25+48Q2−5)/6 for tℓ < t < tΛ, we have that

Φwl(zΛ)

Φwl(zI)
≃
(

tΛ
tℓ

)(
√

25+48Q2−5)/6

. (49)
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Figure 3: The convergence power spectrum Pκ(ℓ) for p = 0.7
with two cases: (a) Q = 1, C = 0.9 and (b) Q = 0.5, C = 0.9
together with the ΛCDM spectrum. Other model parameters
are chosen similarly as in the case of Fig. 1.

As long as zℓ ≫ 1, the evolution of Φwl during the time-
interval tΛ < t < t0 is almost independent of ℓ for a fixed
value of Q. Then we obtain the following ℓ-dependence
for 0 < z < zΛ ∼ zs:

(

Φwl(z)

Φwl(zI)

)2

∝ ℓ
(1−p)(

√
25+48Q2

−5)
4−p . (50)

From Eq. (45) this leads to a difference of the spectral in-
dex of the convergence spectrum compared to the ΛCDM
model:

Pκ(ℓ)

PΛCDM
κ (ℓ)

∝ ℓ∆n , (51)

where ∆n is the same as ∆n(tΛ) given in Eq. (48). We
caution again that the estimation (51) is valid for zℓ ≫ 1.

In Fig. 2 we plot the convergence spectrum in f(R)
gravity for two different values of p together with the
ΛCDM spectrum. We focus on the linear regime charac-
terized by ℓ . 200. Since the ΛCDM model corresponds
to the limit n → ∞ in Eq. (3), the power p = 2n/(2n+1)
approaches 1 in this limit. The deviation from the ΛCDM
model becomes important for smaller p away from 1.

When p = 0.7, for example, Fig. 2 shows that such a
deviation becomes significant for ℓ & 10. Numerically we
get ∆n = 0.056 at ℓ = 200, which is slightly smaller than
the analytic value ∆n = 0.068 estimated by Eq. (51).
The main reason for this difference is that the critical
redshift zℓ = 3.258 at ℓ = 200 is not very much larger
than unity.

When p = 0.5 the deflecting potential Φwl is amplified
even for small ℓ (. 10), which is associated with the fact
that zℓ is greater than 1 even for ℓ > 2. For example we

find that zℓ = 1.386 for ℓ = 5. In this case the system
enters the non-standard regime (z < zℓ) before entering
the epoch of an accelerated expansion (z < zΛ ∼ 1),
which leads to the amplification of Φwl. This changes the
total amplitude of Pκ(ℓ) relative to the ΛCDM model.
The numerical value of ∆n at ℓ = 200 is found to be
∆n = 0.084 for p = 0.5. Since ∆n increases for smaller
p, this information is useful to place a lower bound on p
in f(R) gravity from weak lensing observations.

In Fig. 3 the convergence spectrum for p = 0.7 is plot-
ted for two different values of Q together with the ΛCDM
spectrum. We note that the transition redshift zℓ de-
creases for larger |Q|, see Eq. (40). Hence the deviation
from the ΛCDM model is insignificant for small ℓ, unless
we choose smaller values of p. However the spectrum is
strongly modified for ℓ & 10 with the increase of |Q|.
The numerical values of ∆n at ℓ = 200 are found to be
∆n = 0.084 and ∆n = 0.311 for Q = 0.5 and Q = 1,
respectively. Hence it should be possible to derive an up-
per bound on the strength of the coupling Q by using
observational data of weak lensing.

V. CONCLUSIONS

We have discussed the signature of modified gravity
in weak lensing observations. Our model is described
by the action (2) with a constant coupling Q, which is
equivalent to Brans-Dicke theory with a field potential
V . This theory includes f(R) gravity as a special case

(Q = −1/
√

6). The scalar-field potential V (φ) can be
designed to satisfy local gravity constraints through a
chameleon mechanism. The representative potential that
satisfies LGC is given in Eq. (5), which is motivated by
viable f(R) models proposed by Hu and Sawicki [15] and
by Starobinsky [16]. Note that most of past works in
scalar-tensor dark energy models restricted the analysis
in the small coupling region (|Q| . 10−3). In this paper
we focused on the large |Q| region in which a signifi-
cant difference from the ΛCDM model can be expected
in weak lensing observations.

Cosmologically these models can show deviations from
the ΛCDM model at late epochs of the matter-dominated
era. The growth rate of matter density perturbations gets
larger for redshifts smaller than a critical value zk. Since
zk increases for larger k, the matter power spectrum is
subject to change on smaller scales. We evaluated the
matter power spectrum Pδm

(k) numerically and showed
that the spectral index and the amplitude of Pδm

(k) can
be significantly modified for larger values of |Q|.

The non-standard evolution of matter perturbations
affects the convergence power spectrum Pκ(ℓ) of weak
lensing. As long as the transition redshift zℓ is larger
than the order of unity, one can estimate the difference
∆n of spectral indices between modified gravity and the

ΛCDM cosmology to be ∆n ≃ (1 − p)(
√

25 + 48Q2 −
5)/(4−p) with 0 < p < 1. In f(R) gravity the parameter
n for the model (3) is linked with the parameter p via
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the relation p = 2n/(2n + 1). The limit p → 1 (i.e.,
n → ∞) corresponds to the ΛCDM model, in which case
we have ∆n → 0. The difference of the convergence
spectrum relative to the ΛCDM case is significant for p
away from 1. As seen in Fig. 2 (which corresponds to the

case Q = −1/
√

6), the spectral index and the amplitude
of Pκ(ℓ) are modified for smaller values of p.

If we take larger values of |Q|, the convergence spec-
trum deviates from that in the ΛCDM model more sig-
nificantly. This situation is clearly seen in the numerical
simulation of Fig. 3. It should be possible to place strong
observational constraints on the parameters Q and p by

using observational data of weak lensing and the mat-
ter power spectrum, which we leave for future work. We
hope that some signatures of modified gravity can be de-
tected in future high-precision observations to reveal the
origin of dark energy.
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