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Let/Cz)(f(O)=O,/'(O)=l)be any function regular and univalent forlz! <1-

G. Szego has proved that. for the length 1 of any Hauptsehne of the region 

into which the unit circle is mapped by fCz), 
1 ~ 1. 

And that, if ICz) is bounded C I/Cz)! <M), this inequality can be replaced by 

I ::::,.. 2M CM - J Ml! - 1) 

has been given by the auther (1) (2) 0 

In this paper we shall generalize these theorems, in slightly different forms, 

to the case of multivalent functions of order p which are regular or meromorphic 

for. z I <1. 
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We denote by 12 or In respectively the class of p-valent functions which are regular 

or meromorphic for I z! <1 and of the form 

fez) = zP + 
"=Ptl 

and by 12M the subclass of j Cz) such that functions are bounded, i. e. 

I/Cz) i <M CM ~ 1). 

Then the following lemma given by M. Biernacki is a generalization of Koebe's theorem 

for univalent functions (3) (4). 

Lemma. Let I(z) be any function E ft, then w = fez) takes every value z"n i w I < 1/4, 

and 1/4 cannot be replaced by any greater number. 

Now we suppose that fez) E ?J't and 71, 72 are two boundary points of the region mapped 

by fCz) such that 

arg 72 = argrl + f} ( 0 < f) < 2rr ). 

Then the function 

(1) ¢(z) = rif(z) 
TI - feZ) 

is regular, p-valent and can be expanded as follows: 
¢(z) = zP + ......... . 

Therefore 1> Cz) E ft and 
7172/(71 - 72) 

is a boundary point of the region mapped by tP(z). 

Hence we have by the lemma given above. 
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(2) rl rS ! ~ 1/4. 
rl - rs -

On the other hand we have 

(3) \ rl - rs I ~ IsinfJj2 

(4) ! rl ra ! L [2/4 

where I = l rl : + ' ra : . 
Consequently we get by (2), 

(5) I ~ sinfl 12 

and by (3), 
(6) I rl - ra j ~ sin? (}12. 

The equality signs in (5) and (6) hold only when : rl : = r2 . and w = ¢(z) has a 

boundary point on t wi = 1/4. 

We define fez) by 

(7) I(z) = zP = zP + ........ . 
1 - 2icotfl /2' zP + Z2P , 

then fez) is regular, p-valent for i z i < 1 with the exception of poles at z = 1\1 -tanO/4 

(0<8<11") or at z = P./cotfJ/4 (rc<8<2rc), and consequentlyf(z) E IX. Furthermore w = 
I(z) mapps I z i < 1 into the full w-plane that is furnished with a circular slit, and, for 

the two end points 

rl = i-. sin JL e -£8/2 
2 2 ' 

i . fl £8 '2 r2 = --- szn - e 
2 2 

of this slit, the equality signs in (5) and (6) can be attained. 

Thus we can establish the following theorem. 

Theorem 1. Let fez) be any function E In and PQ be any chord of the mapped region 

of the unit circle by fez) such that 

pQQ = fl (0 <fJ <2rc, fl~rr, 0: Origin), 

then 

And this lower bound for PQ is the best possible one. 

(N. B. J The above arguments hold also true for (j = rr, but the extremal function (7) 

belongs to 12 in this case and hence Therom 1 is reduced to a generalization of the 

theorem for univalent functions due to G. Szego to multivalent functions E :R.. 

Next we suppose that fez) be any function E 12M. Then we can prove the following 

theorem analogously by using 

¢(z) = 

instead of (1). 

Theorem 2. Let fez) be any functz'on E 1tM and PQ be any chord 0/ the mapped region 
of the unit circle by fez) such that 

then 

1\ 

POQ = 0 (0 <0 <2rr, 0: Origin), 
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PQ ~ 2M (M - JMlI - sinll f}/2) 

OP + UQ ~ 2M (M - JMlI - sinllf}j2 )/sin(}/2. 

(N. B. J Let fez) E 12M, then it is known that, for any boundary point r of fez), 

ri ~ M (2M - 1 - 2 JMlI-M ). 

Therefore, for 

2M (2M - 1 - 2 viMlI - M)~ 2M (M - JMlI - sin2 f}/2)/sin(}/2 

i. e. 

Mj (2M - 1) ~ sin(J /2, 

the above theorom becomes trivial. 

Finally putting (J=rr in Theorem 2 gives us the relation 

(8) PQ ~ 2M (M - JMlI-1). 

121 

It can be proved as follows that this inequality is sharp. We define fez) E 12M by 

(9) 
M2pf(z) _ zP 

(Mp+f(z») eM + p/(z)J - (1 +zP)lI 

where p = M-.vM2---=--L then the two boundary points 71, 72 of the mapped region 

which correspond to zP = 1 and zP = - 1 are given by 

rl = Mp, 

Hence we obtain 

arg r2 = arg71 + rr, I rl - r2 I = 2Mp. 

So that we have the conclusion as follows. 

Theorem 3. Let fez) be any function E 1tM , and 75Q be any Hauptsehne of the mapped 

region of the unit circle by I( z), then 

PQ ~ 2M (M - JMlI - 1 ) 

and there exists the function E 12M for which the equality sign holds in the above expression. 

This is a generalization of the theorem for univalent functions to the case of 

multivalent functions. 
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