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§ 1. Family Ep of regular functions. 

Let the function 
ao 

(1.1) F(z) = 1,' anzn• (ap == 1) 
R=P 

be regular in the unit-circle. where p is any positive integer. (1) 

We denote by Sp or Kil respectively the family of functions Fez) by which the 

unit-circle is mapped into a star-like region with respect to the. origin or a Convex 

region, then the following theorems are well known. C2J 
Theorem 1. 

The necessary and sUfficient condltion that FC z) should belong 

to the f amz"ly Sp is 

R C z F' (~)J > 0 ( I z I < 1). F (z) 

Theorem 2. 
The necessary and sufficlent condition that F(z) should belong 

to the /amlly Kp is 

l+R [zF,,(z)J"l - p-1 R [z~'(z)J >0 
F' (z) p F (z) (I z) < 1). 

Now we denote by Ep the family of functions F(z) having the following two properties. 

1 Q The mapped region of I z I < I by F(z) is p-valent. 

2° At any point of the mapped curve of I z I = r. where 

r is any positive number less than 1. by F(z). the 

curvature is positive and finite determinate. 

And we call F(z) a quasi-convex function. We can understand. by this definition. tha,t 

a quasi-convex function F(z) is convex on Riemann surface of F(z). Then we have 

Theorem 3. 

Proof: If 

then 

and we have 

The necessary and sufflct"ent condition that F(z) should belong 
to the family Ep t·s 

l+R (z Ff!(z)] >0 (I' 1) F'(z) z i < . 

l+R Cz F"(z)] == R [z (zf~.(z)'j"l >0 
, F' (z) zF' (z) • 

eF' (:?J = P =\= o. 
zP 1 z=o 



Thefore F'z~~ does not vanJsh in I z I < 1 and F'(z)=\=o in 0 < I z I < 1. (3) 

Now we denote by p the 'curva ture at any point on the mapped curve C of I z I = r 
(0 <r <1). then 

- 1 [F,,(z)J 
p - 1 zF' (z) 1- R l+zF'Cz) >0. 

which is the property 2°. 

As F' (z)=\=o on I z 1= r, C is a regular curve and the angle from the real-axis to the 

tangent line at any pnint on C is given by argizF'(z). ~o that we have. as z describes 

on I z I:::: r, 

J dargizF' (z) = J dargZP + J dargF~~zJ. = J dargZP = 2prr, 

F'(z) 
where -----zr-t does not vanish. as cited above. 

Therefore the mapped Curve C is closed and p-valent, and. being r arbitrary. the mapped 

region of I z I < 1 is p-valent which proves the property 1°. 

Conversely. if we have properties 1°, 2°, then the curvature 

- 1 r F"(z)J 
p - 1 zF'(z) I R 1,1+z F ,(z) 

at any point z on I z I = r (0 <r <1) is positive, and, being r arbitrary, we have 

(I z I < 1). 

Thus our theorem is completly proved. 

§ 2. Relations among Sp, Kp , and Ep , 

If Fez) belongs to anyone of Sp, Kp and Ep. then Fez) is p-valent in ! z I < 1, and 

consequently F(z) does not vanish in 0 < I z I < 1. Hence there exists the regular function 

h(z) such that 

h(~) = z P /F(z) F(z) = Chez)]p, heo) = 0, h'(o) = 1 (I z I < 1 ), 'V zP , 

and we have, for h(z), the relations 

R [z F' (Z)J' = pR [z ~' (z)J 
F (z) h (z) 

[ 
FII(Z)] _ l" h"(z)] .--- h' (z), 

(2.1) 1 + R z F'(z) - l+R z h'(z) + (p-1) R l z h (z).) 

!,1 + R [z ~~~:~J - P;l R [Z~' ~:~J = l+R [ Z ~~~:~J . 
We get immediately, from these relatins, the following 

Theorem 4. 

Suppose that F(z) ESp, then h(z) E S1 and suppose that 

F(z) E Kp. then h(z) E Kt. 

If we assume that F(z) E Kp and therefore h(z)eK1, then 

R l ...... z h' (z)J >l 
h (z) 2 
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by the theorem due to M. Strohacker (4J. and. from (2,1), 

C 
F"(z)'l 1 

l+R· zF'(z)J >2 (p-l) ~o, 

This proves the following 

Theorem 5. 

R r z F' (z )J >-E 
, F (z) 2 . 

Suppose that F(z) E K p, then F(z) E Ep and F(z) ESp. 

3 

Next we assume that E(z) E Ep and denote by tp the angle from the real·axis to the 

tangent line at F(z), where Z = re i9, on the mapped curve of I z I = r, then 

dtp _ d ., _ r F'll z)l 
dO - dO ar.glzF (z) - l+R ,z F' (z)"" > o. 

So that the tangent line rotates such that tp increases as Z describes in positive sense 

on I z 1= r. And. as the curvature p is positive, the radius vector F(z) rotates in positive 

sense. Hence we have 

R ( z F'(zlJ 
l. F (z) :0 arg F(z» o. 

which reduces to the following theorem. 

Theorem 6. 
Suppose that F(z) E Ep, then F(z) ESp. 

We can represent the theorem 5 and 6 symbolically by 

and, especially for the case p= 1, 

by (2.0. 

Lastly we have the theorem as follows, from the relation 

R C z (zF'(~J = l+R lr z FIf(z)J 
zF' (z) . F' (z) 

Theorem 7. 

if F(z) E Epo then ! zF' (z) E Sp and 1/ F(z) ESp, then 

p JF~) dz E Ep. 

§ 3. The circle of quasi-convexity for tha functions E Sp. 

Suppose that F(z) E SI" then 

R [ z F'(~J >0 
F (z) , 

and 

[
.F'(z)] z--· =p F (z) co . 

Therefore, 

(Iz[~r), 

ahd we have, by the well known theorem of G. Julia, 
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! 
Z ~f~CZ) _ Z F' (z) + 1 i L 2 _, z_l_ R [z fffiJ 

F' (z) F (z) i = 1- \'z!Z I z ~r ~:~ I 

Combining these inequalities, we get 

1 + R [Z F"(z)] :::::,. prZ-2(p+l)r+p 
F'(z) = 1 - rZ C)zILr), 

and hence, for Izl< all ~ ~ (p+l-V2p+1). 

r F"(z)J 
1 + R l z F' (z) > o. 

and that, for the function 

we have 

1 + R· [z F"(z)J' = 0 
F'"(z) 

Thus we conclude the following 

Theore.m 8. 

1 --
Suppose that Fez) ESp, then F(z) E Ep for \ z 1 < ap = p(P+l-J'2P+l). 

And ap is the greatest number for quasi-convexity. 

§ 4.' Distortion theorem and Coefficient problem for Ep• 

For the function Fez) E Ep , we have, by the theorem 7, 

~ z F' (z) E Sp , 

and consequently, 

I zip I) t I I Z \ll 
(I +1 z 1)21' ~ P z F, (z) J L (1-1 z I )ZP • 

From tMs relation, we can prove the following theorem by the analogous method for 

the case p =:; 1. 

Theorem 9. 

Let Fez) = l' a"z71 (ap=l) E Ep, then 
n=p 

And the equality sz"gns are true lor 

J 
z Zp-l 

F(z) = P 0 el-zYP dZ E Ep. 

We have already known, for Fez) ESp, that 
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. zP 
and the equalzty holds for F(z) = (l-z)2I)' (5J 

We can represent this theorem, by Majorant symbol. as follows. 
Zll 

F(z) -< -(-,;-:l-_-
Z

----=oy-ll. 

Now, if F(z) E EQ, thenl ZF' (z) E S" and therefore p . 

1 Z" P z F'(z) -< (l-Z)2P • 

From this relation, we have 

j z Zp-l 

F(z) -< p 0 (l-z) p dz 

i, e, 

F( ) e- JZ [ p-l + ).~ 2p(2p+l)-··(2p+ k - 1) 
z 'Z." P, 0 Z K=l k ! 

Consequently the following result is obtained~ 

Theorem 10. 

Let F(z) = .1 a"z" (ap= 1) E Ep, then 
u=p 

Z p+K-l J dz 

I a I L 2P(2P+1)···(2p+k-1) (k=1,2, ••. ) 
p+k = k! (p+k) , 

and equaUty holds true for the function 

J% ZP-l 
F( z) = p 0 ( 1-Z )2P dZ. 

§ 5. Some lemmas. 
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In this section, some inequa~ities, all of which hold for I z I L r, will be given for the 
preparation of next section. 

Let F(z) be bounded (I F(z)! < M), then we have 

Lemma 1. 

mrp1- Mr L.I Fez) I L MrJll+ Mr 
M-r = = M+r' 

Now putting cp(z) = Fi~), then i cp(z) 1 ~M, tf(o) = 1 and therefore 

I,· £()'(z) I,' ~ M2 - I so(z) I 2 
,.. M(l-r2 ) • 

i,e, 



Combining (5,1) with lemma 1, we have 

Lemma 2. 

I F' (z) I ::::::,. Mr p-I p(r). 
, = (M-rY~' 

where per) = pM - {(p+I)'M2 + (p-l)}r + pMr2. 

and 
Lemma 3. 

M2 r 2p 

I J(z) I ~ (M--r)2 (1- 2Mr+r2
), 

where J(z) = zF' (z) - (p-1) F(z). 

From Lemma 1, 2. (5,1), we get 

Lemma 4. 

,where J.!(z) = M2 l' 2(~_=1) I F(z) i 2. 

and 
Lemma 5. 

Next we have, applying (5,1) and lemma 1 to 

I J(z) [ _ I F(z) I [F' (z) I 
-=M---=-r-P~-l-"-+ I-F(z)! - MiP-=i-+liCz)T I Z FCz) - (p+1) 1 , 

Lemma 6. 
__ I J.(z)J __ ::::::,. r(1-2Mr+r2) 
Mr p - l + I Fez) I == (1-1'2) (M-:"'r) . 

LasfIy lemma 2 and 4 conclude 

Lemma 7 . 

. The equality sign in lemma 1 """ 7 holds at z=r for the function 

F(z) = MzI) 1-Mz . 
M-z 

§ 6. The circle of quasi - convexity for the bounded functions. 

Let Fez) be bounded (I F(z) I <M), then the auther has proved [6) that the circle of 

convexity of F(z) for KI =: EI is given by : z! < PI. whre PI is the positive root less than 

I of the equation 

M - (4M2 - 1) Z + 3 MZ2 
- Z 3 = o. 

Now we shall generalise this theorem for the functions of Frl • 

If we define the function ¢(z) regular in I z I < 1 by 
zp-1F( w) - wP-1F(z) s 

¢(z) = M2 - -' W = = .. + z. (z I < 1) 
Mil Z!l-lWp - 1 _ F(z)F(w) 1 - z S I , 
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then I ¢(s) I <M, ¢(O) =0 and, by the theorem of bounded functions, 

I ,f.,' (0) 112 1 
M- 'f' M ~ 2 11/'(0)1. 

Thie inequality is reduced to 

(
(p- I)M21 z 1

2(1'-1l_ zF(z)F' (z) A (z) J v(z) 
+ 2R ).I(z) • zF' (z) - 2M(1- rll)ll i z 11'-2 J F' (z) I • 

where F' (z)=\::o and ).(z)=zF' (z) -(p-l)F(z), ).I(z)=M2 1 z 12Ip
-':

1
) -I F(z) \ 2. 

The fourth term of the right-hand side in (6.1) is reduced to 

2 R r ( -1- F(z)l.(z) ) _ ).(z) 'I 
" p ).I(z) zF' (z)J , 

which is not less than 

2 (p-l)R [z~~(~)J - 21 F(~~z~(z) I ! z~\ZZz) I , 
and 

F(z) ).(z) 
(p-l) zF' (z) = 1 - zF' (z)" 

Therefore we have 

(6.2) R [ z ~:2~SJ ~ p -2 + Ci~~ ~ll:2 +p J R Cz}>~~)J +21 z~\t{z) [ _~ir:St~i F(z) I 

).I(z) 
- 2 M(I- 'z :2)2: z 11'-2,F'(z)[. 

ApplyIngl emma 1 ...... 7 in § 5, the inequality 

(6.3) 1 + R ( Z F'I (z) J :::::". ---=-:;--K~(,,=-r-==-)--,-
l F' (z) p(r)(M - r) 

holdsfor : z' L r, where 

(6.4) K(r) =M2p2_ M {(p+ 1)2M2+2p2 -2p-l}r + {(2p2+2p-l)M2+ (p - I)2}r2 - Mp2r3~ 

The equality sign in (6.3) holds at z =r for the function 

F(z)=MzP I-Mz. 
M-z 

As it is easiy proved that the equation K(r)=O has only one positive root (Jp [ess than 

I and K(r) and Per) and positive for o~r <PP' we have the result as follows. 

Theorem II. 

Let F(z) = l' a"z" (ap=l) qe regular and bounpep ([ F(z)! < M) 
n-p 

in 1 z: < 1, then F(z) is .quasi-convex in i z! < Pp, where pp is a 

posit~ve rooot less than 1 of the equation K(r) =0. And pp is 

tbe possible number for quasi - convexity. 
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If we assume that p is any real mumber, then we can prove 

dpp :> 0 
dp , 

so that pp increases with p and hence 

PI < pz < ...... <PP < P.+I < ...... . 

Consequently we have the following corollary of theorem 11. 

Corollary. 

Let F(z) be any function in theorem 11, then F(z) is quasi ~ convex 

'in : z i < PI for all posiUve integer P. where PI is a posiUve 'root less 

than 1 of the equatz'on 

M - (4M 2 - l)Z + 3MZ 2 - Z 3 = 0 . 

In conclusion. 1 express my heartly thanks to professor Akira Kobori of Kyoto University 

for his kind advices. 

Faculty of Technology, Fukui University. 
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