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On some Family of Multivalent Functions.
Yasuharu SASAKI

§1. Family E, of regular functions.

Let the function
1. F(z)= 5 anzn. (ap=1)
n=p

be regular in the unit-circle, where p is any positive integer. (1]
We denote by S, or K, respectively the family of functions F(z) by which the
unit-circle is mapped into a star-like region with respect to the origin or a convex
region, then the following theorems are well known. (2]
Theorem 1.
The necessary and sufficient condition that F(2) should belong
to the family S, is

F/(z)
[zF()]>o (lzi<1).
Theorem 2.

The necessary and sufficient condition that F(z) should belong
to the family K, is

14R [ 2 g:’gg ~22lR [z II::EZ;] >0 (lz) <D).

Now we denote by E, the family of functions F(z) having the following two properties,
1° The mapped region of |z| <1 by F(z) is p-valent,
2° At any point of the mapped curve of |z| = r, where
r is any positive number less than 1, by F(z), the
curvature is positive and finite determinate.
And we call F(z) a quasi-convex function. We can understand, by this definition, that
a quasi-convex function F(z) is convex on Riemann surface of F(z). Then we have
Theorem 3.
The necessary and sufficient condition that F(z) should belong
to the family Ep is ' ’

1+R [z5@]50 (2 <,

F(z)
Proof: If
1+R zg;’gzg =Rz (;gi(zz);/\ >0,
then
ZF/(2) = pz* + (P+1) @ppzPtt 4oeeeerne
and we have
¥/ (z)

=P0.
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Thefore FZCDZ_E does not vanish in 1z| <1 and F'(z)*o ino<lz| <1. (3]

Now we denote by p the ‘curvature at any point on the mapped curve C of|z|=7r

0 <r<1), then . B
— zZ
= R [”ZF“'(Z’S] >0,

which is the property 2°.
As F'(z)Fo on |z]|=1, C is a regular curve and the angle from the real-axis to the
tangent line at any pnint on C is given by argizF’/(z). So that we have, as z describes

onl|z|=r,

f dargizF’ (z) f dargZ? + fdargFZS_) fdargZP = 2pn,
F'(z)

where 7o -1 does not vanish, as cited above.

Therefore the mapped curve C is closed and p-valent, and, being r arbitrary, the mapped
region of |z] <1 is p-valent which proves the property 1°.
Conversely, if we have properties 1°, 2°, then the curvature

F"(2)
=P R RIS

at any point z on |z| = r (o<r<1) is positive, and, being r arbitrary, we have

' 1+RLzF§Z>]>o (lz] <.

Thus our theorem is completly proved.

§ 2. Relations among Sp, Kp, and Ep,

If F(z) belongs to any one of Sp, Kp and Ep, then F(z) is p-valent in [z| <1, and
consequently F(z) does not vanish in 0<|z| < 1. Hence there exists the regular function
h(z) such that

h(» =z yFZ  F@=(h@F h(o) =0, W) =1 (lz]<1),

and we have, for h(z), the relations

( F F’ (z)~ Y h’ (z)
| ¥ (2) ‘pR[ Y0
|

(2.1 1+R [ F'(2)) 1+R 2 CZ)] + (p-1) RL b (2)7)

| F'(z)) — Y (2D h (z)/
| F'(2)y p-1 F ()Y _ h’(z)"
\1+R [ ZF () T R [z () = 1tR [Zh’(z)

We get immediately, from these relatins, the following
Theorem 4.
Suppose that F(z) & Sp, then h(z) € S and suppose that
F(z) & Kp, then h(z) © Ki.
If we assume that F(z) & Kr and therefore h(z)¢Ki, then

h’(z) 1
R[zh(Z) > =
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by the theorem due to M. Strohacker (4), and, from 2,1,

1+R [ 2 g,ggj > (0=1) o, (25 83] >2
This proves the following
Theorem 5.
Suppose that F(z) E K, then F(z) E Ep and F(z) € S,.
Next we assume that E(z) £ E, and denote by ¢ the angle from the real-axis to the
tangent line at F(z), where Z = reid, on the mapped curve of |z| =r, then :

d90 — d . ’ __ F Z)
a0 = ap ar{gle (z)= 1+R[ Fiz )7 >0

So that the tangent line rotates such that ¢ increases as Z describes in positive sense
on |z|= r. And, as the curvature p is positive, the radius vector F(z) rotates in positive
sense. Hence we have V

R r F’(z; arg F(z)>o.
which reduces to the following theorem.
Theorem 6.
Suppose that F(z) € Ep, then F(z) EI Sp.
We can represent the theorem 5 and 6 symbolically by
K, CE, C 8§,
and, especially for the case p=1,
K:

Ul

E.C S
by (2.1).
Lastly we have the theorem as follows,from the relation

(zF'(z))’ F(z)
R [Z zF'(z) . = 1+R LZ F (2

Theorem 7.

If F(z) € E,, then %zF’ (2) € Sp and if F(z) C Sp, then

2|72 gz ¢ Ep.

§ 3. The circle of quasi-convéxity for tha functions & S;.

Suppose that F(z) € S,, then
F'(z)
R [z F (z)j >0

and

[ ng; =P

' 1
Pt <R [2FE] 2ot zizv,

Therefore,

ahd we have, by the well known theorem of G. Julia,
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, R 2542
| E@ L FE ] o, el RUE )
F(2) F | = _1 |Zf2 T, F&@T
I “F @
Combining these inequalities, we get
F'(z) pr:—2(p+1r+p ;
1+R[ZF'(Z> % 1__1.2 (lzllr)’
and hence, for |z|< o, '=%(p+‘1—1/2p+1‘),
- F"(z)
1+R [z 58] >0,
and that, for the function
’ n
F(Z) Eal _‘(“ITZ_Z—)ZD E Sp ’

we have
1+R[z§.—'%] —o  (Z=-a
Thus we conclude the following
Theorem 8.

Suppose that F(z) & S,, then F(z) & Ep for |z|<dgp = ;7(15+1—‘/2p+1).
And op is the greatest number for quasi-convexity.

§ 4 Distortion theorem and Coefficient problem for Eg.
For the function F(z) € E,, we have, by the theorem 7,
1,
B zF (Z) E oy

and consequently,

z[» 1 , ] lz|¥
THZE < p| 2 F® | £

From thls relation, we can prove the following theorem by the analogous method for
the case p = 1.

Theorem 9.

Let F(2) = Spanzn (ap=1) € Ey, then

_Pi_l F blz| P!
UF] | p <L F(| L (I—|z1)?®

lsl 7 b1
TarEE £ F@) £ pf a7y Z)2pdz.

And the equality signs are true for

F(z) =ﬁf°z<1—z_% dZ € By

‘We have already known, for F(z) & S,, that



On some Family of Multivalent Functions. 5

£ 2p(2p+1)-‘1;(‘2p+k—1) , K=1,2,

; ap+K l

p

and the equality holds for F(z) :’El—fz-)T 5]
We can represent this theorem, by Majorant symbol, as follows,
Al
F@ < ~qoom.
Now, if F(z) € EY, then%— ZF'(z) €S, and therefore
1., zv
p2F@< gy,

From this relation, we have
zp—-l

F(z)‘<pfoz —(-—l-:z—)—p—dz

ie
F(z) < pfj[zw 4 ;-1 2p(2p+1).1;.§2p+k-—1) zv+1<—1] &
e _2p(2p+1)--(2p+k—-1)
= P p+K
zP + & k! (p+k) - zZP K,

Consequently the following result is obtained.
Theorem 10.

Let F(z) = 5 awz® (ap=1) © Ep, then

lapsn| £ 215(217;{}-!12;&2’5-}-12-1)’. (k=1,2,-

and equality holds true for the function

F(2) =pf: u—ZTP_ZIW dz.

§ 5. Some lemmas.

In this section, some inequalities, all of which hold for |z] £ ¥, will be given for the
preparation of next section. '
Let F(z) be bounded (|F(z)' <M), then we have

Lemma 1.
mr 35N £ 1R | £ M AT
Now putting ¢(z) = E-é—,z,-), then | ¢(z)! LM, ¢(0) =1 and therefore
@i MO
i.e,
G, Féﬁ) - pI;,,(fl) £ M;;;Zpaf;z§f”.
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Combining (5,1) with lemma 1, we have
Lemma 2.

I F’ > Tp-l p(T> R
F(z)| =M M=7)?

where p(y) = pM — {(p+1) M’ + (p—1)}7 + pMr*.
and

Lemma 3.
M 7 2

5 (1-2My+72),

where (z) = zF'(z) — (p—1) F(z).
From Lemma 1, 2, (5,1), we get
Lemma 4._
2(p~1
y(z)%NéNi S (=pt) (M=2r+ M)

;where v(z) = M? 120 |F(z) %

and
Lemma 5.
I alz) Az 1- 2MT+T“
R0y | >R ) MR P(r)
Next we have, applying (5,1) and lemmal to
12(z) | _ _ \F@]| 1, F(2) |
MR T My F@T L F Gy PP |
Lemma 6.
) ~ 7(1=2My+7*)

Mypr=t + |F(z)| = A-r*)M-7)°

Lastly lemma 2 and 4 conclude
Lemma 7.
v(z) o My(M-—-27+My*)
M@A-7") 2 F' (2] = A-7r) P

‘The equality sign in lemmal~7 holds at z=7 for the function

_ , 1-Mz
F(z) = Mz* Moz "

§ 6. The circle of quasi - convexity for the bounded functions.

Let ¥(z) be bounded (|F(z)| <M), then the auther has proved [6] that the circle of
convexity of F(z) for Ki=E: is given by !z < p1, whre g is the positive root less than
1 of the equation

M- (4M? - 1DZ +3MZ* - Z3? = o.
Now we shall generalise this theorem for the functions of Fu.
If we define the function ¢(z) regular in |z! <1 by

22 F(w) -~ wPIF(z) ~S+z,

¢<Z>=MZM25~1WI>-1_F?>F(W)’ W= i=zs’ (iz] <D,
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then |¢(s) | <M, ¢(0)=0 and, by the theorem of bounded functions,

M- M—lg\/lm > -%—\sb"(O)l-

Thie inequality is reduced to

F’(z)" F(z) 7,2 'z| A (2) Mz P
@D R [z 8] e-D0-2R [FE5]+L LR L] +om J2 02N

(p—1DM? |z %0V~ -ZF(Z\F'(Z) A(z) v(z)
+2R [ v(z) - U M(l ™2z Y F (2|’

where F'(z)3%0 and A(2)=zF'(z)—(p—1)F(2), v(z)=M:|z|*r~b~ |F(z) |
The fourth term of the right-hand side in (6.1) is reduced to

F@i(z) \ X2
2R [(p—l— e ) 2F (2)

which is not less than

1(z) F(z) i(z) A(z)
2 (P~ LR [zmz) 2| ¥(2) ; | (z)
and
F(z) A(z)
=L pm™ 1 "oy
Therefore we have
Frz) 2 l z i A(z) A(2) 12(z) |
6.2  R|zpgy =p-2+ E F’(z)] +2 ‘ (2| Mz "+ F@]
v(z)

2 MCI= 2% 2 75 F ().
Applylngl emmal ~ 7 in §5, the inequality

F (z) K@)

holdsfor {z £ 7, where
6.4  K@=Mp'-M{(p+1)’M*+2p*—2p—1}7 +{(2p’+2p - DM’ +(p— 1)*}7* ~Mp*r*
The equality sign in (6.3) holds at z=7 for the function

1-Mz
z’

F(z)=Mzr M=

As it is easiy proved that the equation K(¥)=0 has only one positive root g, [ess than

1 and K() and P(y) and positive for oLy <o, we have the result as follows.
Theorem 11.
Let F(z) :Epa,.z" (ap=1) ge regular and bounpep (|F(z)i< M)
in iz <1, then F(z) is guasi~convex in iz| < pp where pp is a
Dpositive rooot less than 1 of the eguation K(y)=0. And pp is

tbe possible number for quast - convexity.
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If we assume that p is any real mumber, then we can prove

oy ;
dp >0,

so that p, increases with p and hence

Consequently we have the following corollary of theorem 11.

Corollary.

Let F(z) be any function in theorem 11, then F(z) ¢s quasi < convex
in (2| <, for all positive integer P, u)heré p1 IS a positive root less

than 1 of the equation

M~ {4M:—-DZ+3MZ: - Z3 =0,

In conclusion, 1 express my heartly thanks to professor Akira Kobori of Kyoto University

for his kind advices.

1
2]

3]

(4]

(5]
(6]

Faculty of Technology, Fukui University.
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