
MEMOIRS OF THE FACULTY OF ENGINEERING 
FUKU I UNIVERSITY 
VOL.33 No.1 1985 

An Implementable Version of the Sturm's Algorithm 

for the Number of Zeros of a Real Polynomial 

Taketorno MITSUI* and Kyoji SAITO** 

(Received Feb.27, 1985) 

Abstract 

An algorithm is considered to give the number of real 

zeros of a real polynomial on an interval rather than 

their precise locations. The Sturm's algorithm is suita

ble for such problems because it is not uncommon that the 

polynomial to be treated is in fact over the rational 

field Q. While the algorithm is implemented through a 

symbolic and algebraic manipulation (SAM) software on a 

computer, computational costs make a significant increase 

as the degree of polynomial increases. The reason lies in 

the time-consuming reduction of non-reduced fraction to 

the irreducible one in SAM. The essential information in 

the Sturm's algorithm is however not the coefficients of 

polynomials in the Sturm sequence but their signs at point 

in the interval. From this viewpoint we have reached an 

improved version of the algorithm, which drastically re-· 

duces the costs in comparison with the original Sturm's 

algorithm. Some numerical examples arising from a problem 

in mathematics will be shown. 

§l. Introduction 
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Many scientists are often faced with the problem to know the 

number of real zeros of a real polynomial on an interval rather 

than their procise locations. It is not uncommon that the polynomi~ 

al to be treated is in fact over rational field~. For such prob

lems the Sturm's algorithm is known to be suitable. 

~']hen the algorithm is implemented through a symbolic and 

algebraic manipulation software on a computer, one can readily 
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become aware of the great increase of computational costs as the 

degree of polynomial increases. In the present note we will de

scribe a modified version of the Sturm's algorithm, which dras

tically reduces the costs in comparison with the original one. 

Some numerical examples will be given to show the efficiency of the 

version 

§2. The original Sturm's algorithm 

A sequence of real polynomials 

fO(x), fl(x), ••• , fm(x) (2.1) 

will be said to form a Sturm seguence on the interval [a,B] if they 

satisfy the followings: 

(i) No two consecutive polynomials in the sequence vanish simulta

neously on the interval. 

(.ii) If at some xe(a,B) f.(x) =0 (j <m), then f. l(x).f.+l(x) <0. 
J J- J 

(ni) Throughout the interval, fm(x)f O. 

(lv) If fa (x) = a for some XE [a, B], then fO (x) • fl (x) > O. 

Then, we have the following theorem. 

Theorem 1. Let the sequence (2.1) be a Sturm sequence on 

[a,B] and fo(a)fo(B) fa. Let N(x) denote the number of variations 

of sign for the numerical sequence {fO(x), fl(x) ,"', fm(x)} at x. 

Then the number of zeros of fa (x) on [a, B] is given by N (a") -N (B) • 

Given a real polynomial f(x) and an interval [a~B] (f(a) .f(B) 

fa), then, under the assumption that all real zeros of f(x) are 

simple on [a,S], we can form the Sturm sequence {SO(x) ,Sl(x), ••• , 

Sm(x)} starting fromf(x) by the Euclidean algorithm. 

Let So (x) = f (x) and Sl (x) = f' (x). Thus 

Sk_l (x) = Pk (x) Sk (x) - Sk+l (x), k = 1, 2, ••• , m-l, (2.2) 

where Sm(x) is a polynomial, possibly a constant, which never 

vanishes on the interval (a,B). The process (2.2) can be written 

in short as 

Sk-l (x) = -Sk+l (x) mod(Sk(x» • (2.2)' 

Then we have 

Theorem 2. The sequence {SO(x), Sl(x) ,"', Sm(x)} forms the 

Sturm sequence, and therefore the number of zeros of f(x) on [a,B] 

is given by N(a) - N(B). 

As for the proofs of the above theorems, one can readily find 

them in some textbooks on numerical analysis (e.g. [1]). Hence we 
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omit them, but we would like to comment that though the process is 

purely algebraic, the proofs are carried out by rather analytical' 

way. 

Thus the Sturm's algorithm may be described by the followings. 

( 1 ) PutS 0 (x) = f (x) and S 1 (x) = f' (x) • 

(2) By (2.2), generate the polynomial Sk(x) one after another until 

we obtain the polynomial S (x) which nowhere vanishes on [a,S]. 
m 

(3) Count the number of variations of sign for each {So (a) , 

Sl(a), ••• , Sm(a)} and {SO(S), Sl(S),···, Sm(S)}. 

Remark. Hereafter we assume for brevity's sake that all real 

zeros of f(x) are simple. But suppose f(x) has multiple zeros. 

Then So (x) = f (x) and Sl (x) = f' (x) have a common divisor, say cf> (x) , 

and this divides every Sk(x) in the sequence. The presence of this 

factor, however, does not affect N(x). Hence, the last statement 

of Theorem 2 remains valid by interpreting that a zero of whatever 

multiplicity is counted only once. 

§3. An improved version 

Since the Euclidean algorithm for polynomials is hard to 

implement by any numerical manipulation (NM) software, e.g. 

FORTRAN, ALGOL, BASIC, a symbolic and algebraic manipulation (SAM) 

software is suitable for the Sturm's algorithm. In fact we, who 

want to know the number of real zeros on [-2, 2] of a certain 

series of polynomials over Q arising from the study of singulari

ties on algebraic manifolds ([4]), made a procedure implementing 

the algorithm by REDUCE-3 on DEC System 2020 in Computer Programm

ing Laboratory of Research Institute for Mathematical Sciences. It 

was successful to give an exact result for our problem because 

REDUCE-3 is capable to carry out the arithmetic over ~ without 

round-off errors. But, as is known well, the reduction of non

reduced fraction to the irreducible one is very time-consuming. 

Really computing time required in our procedure is seemed to be 

exponentially increasing as the degree nu~ber increases. 

The essential information, however, in the Sturm's algorithm 

is not the coefficients of polynomials in the sequence but their 

signs at a point in the interval. From this viewpoint, we may omit 

unnecessary factor in Q in each polynomial to avoid repeated reduc

tion for fractions. Hence we have reached the following improved 

version of the original Sturm's algorithm. 

Definition. A polynomial over Q is said to be quasi-monic if 
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its leading coefficient is equal to 1 or -1. 

Improved Sturm's algorithm generates a sequence of quasi-monic 

polynomials RO(x), Rl(X) , ••• , Rm(x) starting from f(x) as follows: 

(po/qo) f (x) , 

(Pl/ql) f' (x) , 

k = 1, 2, ••• , m-l. 

mod (Rk(X}), 

Here PO' qO,PI' ql"'" Pk' qk"" are positive integers. 

(3.1) 

The sequence of polynomials {RO(X), Rl(X), ••• , Rm(X)} will be 

mentioned as the revised Stur~ sequence. 

Theorem 3. Let ~(x) be the number of variations of sign at x 

for the revised Sturm sequence. Then, the number of real zeros on 

[a,S] of f(x) is given by N(a) - N(S). 

Proof. Between two sequence of polynomials {Sk(x)} and 

{Rk(X}}, we have the identity 

= 1 

qkqk-2'" qo 
Rk (x) for even k 

PkPk-2'" Po 
Sk(x) 

qkqk-2' .• ql 
Rk (x) for odd k. 

PkPk-2' •• PI 

(3.2) 

In fact, for k=O and 1, the above identity is obvious. If it 

holds for up to k, then by virtue of (3.1) 

qk+l 
Rk _ l (x) = tk (x) • Rk (x) - -- • R (x) 

Pk+l k+l 

Thus 

Then 

Qk-lqk-3'" 

Pk-IPk-3'" 

which, with (2.2), implies 

(t
k 

E Q [x] ) • 

(t~ E Q [x] ) , 
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By induction, we have (3.2). 

Since the rational number qkQk-2 •.. / PkPk-2 ••. is positive, the 

number of variations of sign at x for {Rk(X)} is identical with 

that of {Sk(x)}. The statement of Theorem 2 implies the desired 

result. 0 
Remark. While the implementation of the original algorithm, 

the leading coefficient of Sk(x) often becomes a rational number 

with many digits as k increases. This is so called as intermediate 

swelling in SAM. For the GCD of two integral polynomials, a ver

sion of the Euclidean algorithm is found in [2], [3] to reduce the 

swelling. In our case, the identity (3.2) implies that the im

proved process recursively gives the reduced polynomial Rk(x) whose 

leading coefficient is equal to 1 or -1 according to the sign of 

that of Sk(x). Hence we may expect to reduce the computational 

load haunting the original algorithm. 

§4. Numerical examples 

To investigate the zeros of characteristic function for the 

exponents of cusp singularities, we introduce a series of functions 

Xf of T such as 

T-Tl / p T_Tl / q T_Tl / r 
Xf(T) =T(l + 1/ + 1/ + 1/ + T), 

T P-l T q-l T r_l 
(4.1) 

where p, q, r are natural numbers ([4]). For the present we are 

interested in the cases for p=2, q=3, r=~~12. An appropriate 

transformation of variable T derives a series of functions 

6r+6 
P (z) = z4r + z2r + z3r +_l_-_z-::=--_ 

r 1 _ z6 
(4.2) 

from Xf. The problem is how is the distribution of zeros of Pr(z), 

especially the zeros with magnitude 1. Taking the fact 

6r -1 
Pr(z} = z Pr(z ) 

into account, another variable transformation x = Z + Z -1 can be 

applied to Pr(z), which reduces to a polynomial Fr(X) of degree 3r 

with integral coefficients. We show Fr(X) in Table 1. We are to 

know the number of zeros on [-2,2] of each Fr{X). 

The original Sturm's algorithm works well for Fr(X) with the 
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smallerr r'se As r increases, that is the degree number of F r 
increases, for some r's the Euclidean algorithm generates rational 

number with many digits so that the computational speed greatly 

slows down. For instance, starting from Fll(x) which has the 

degree number 33, it gives a rational number with 568 digits in 

both numerator and denominator as the final member in the Sturm 

sequence. But we need only the sign of it. The improved algorithm 

can overcome these difficulties. 

Table 2 gives the comparison of required CPU time in the com

putations by the original and the improved algorithms. In the hard 

cases for the original algorithm (r= 5,7,11), the reduction due to 

the improvement is drastic as it would be expected. In the other 

cases, the improved algorithm consumes comparable CPU time to that 

by the original one, though it needs some extra calculations to 

generate quasi-monic polynomials. 

Table 3 shows the original and revised Sturm sequences for the 

case of r = 7 by REDUCE-3. 
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Table 1. 

F(7)=X 21 - 21X 19 
+ 189X 17 - 951X 15 

+ 2925X 13 - 5643X 11 
+ 6733X 9 -

4706X 7 
+ 1721X 5 - 260X 3 

+ 5X + 

F(8)=X 24 - 24X22 + 252X 20 - 1519X 18 + 5796X 16 - 14553X 14 + 

24207X 12 - 26181X 10 
+ 17578X 8 - 6741X 6 

+ 1295X 4 - 106X 2 
+ 4 

F(9)=X
27 

- 27X
25 

+ 324X 23 - 2276X 21 
+ 10374X 19 - 32130X 17 

+ 

68817X 15 - 101727X 13 
+ 101763X 11 - 66196X 9 

+ 26172X 7 -

5616X 5 + 515X 3 - 6X + 

F(10)=X 30 - 30X28 + 405X 26 - 3249X2~ + 17226X 22 - 63504X 20 
+ 

166726X 18 - 313974X 16 + 421497X 14 - 395693X 12 + 250954X 10 

- 101773X B 
+ 24242X 6 - 2975X 4 + 160X2 - 2 

29 

F(11)=X 33 - 33X 31 
+ 495X 29 - 4465X 27 

+ 27000X 25 - 115506X 23 
+ 

359514X 21 - 824526X 19 
+ 1395549X 17 - 1729001X 15 

+ 1539759X 13 

- 956384X 11 
+ 395682X 9 - 101683X7 

+ 14476X 5 - 896X3 + 7X + 1 

F(12)=X 36 - 36X 34 
+ 594X 32 - 5951X 30 

+ 40425X 28 - 196911X 26 
+ 

709281X 24 - 1920294X 22 + 3932631X 20 - 6082374X 18 + 7040736X 16 

- 5997159X 14 
+ 3660S42X 12 - 1539771X 10 

+ 421551X 8 - 68929X 6 
+ 

5901X 4 - 225X2 + 4 
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Table 2. 

no. of zeros ratio 

deg. no. on [ -2,2] A B AlB 

F1 3 3 1.85 2.18 0.85 

F2 6 2 3.07 3.78 0.81 

F3 9 3 6.44 11.63 0.55 

F4 12 4 13.88 11.28 1.23 

F5 15 7 59.98 29.81 2.01 

F6 18 18 21.39 23.35 0.92 

F7 21 11 345.97 80.49 4.30 

F8 24 12 36.25 48.58 0.75 

F9 27 15 84.20 74.53 1.13 

FlO 30 18 72.99 77.73 0.94 

F11 33 19 7769.50 415.39 18.70 

F12 36 24 88.97 101.26 0.88 

Total 8504.49 880.16 9.66 

A CPU time by the original Sturm's algorithm (sec) 

B CPU time by the improved Sturm's algorithm (sec) 

Corrunent: Time account is done under the same TSS environment. 

But the resulting values are only in relative sense. 



Table 3. 

The original Sturm sequence for F7 

S(O>=X 21 - 21X 19 + 189X 17 - 951X 15 + 2925X 13 - 5643X 11 + 6733X 9 

4706X 7 + 1721X S - 260X 3 + SX + , 

S(1)=21X 20 - 399X18 + 3213X 16 - 14265X 14 + 38025X'2 - 62073X
1O 

+ 

60597X
8 

- 32942X
6 

+ 8605X
4 

- 780X
2 + 5 

S(2)=(42X 19 - 756X
17 

+ 5706X
15 

- 23400X
13 

+ 56430X
11 

- 80796X
9 

+ 

65884X 7 - 27536X 5 + 4680X 3 - 100X - 21)/21 

S(3)=(42X 18 - 720X 16 + 5130X 14 - 19620X 12 + 43350X 10 - 55310X 8 + 

38348X 6 - 12530X 4 + 1460X 2 - 21X - 10)/2 

S(4)=(36X 17 - 576X 15 
+ 3780X 13 - 13080X 11 

+ 25486X 9 - 27536X
7 

15006X 5 - 3220X 3 - 21X2 + 90X + 21)/21 

(the intermediate polynomiaLs are omitted) 

+ 

31 

S(20)=( 
28399523584174497425276569722053386796680295395257406575750523313027 
90077948512729187644786126978490250827155197523852386898850867060802 
450 (205083469770614879896446931477X + 

63234942263653751896367103052»/ 
1505912524424837571651971530837945933956E959002843808739112278794794 
85980599944964479531055501140134543399641741019777365068814001837593 
38555777971686179128095826874227 

S(21)=( -
60216995855015262195797854199084091438984707096499968592808730441293 
77671379044000887324264250755162P'918686539S79412649~7368348992712735 

258193743C3250572962701045032060667266e722366971485309021381559 
) / 

23889241643900331786596041375596723334734037563101713067378225170446 
68976501381835104271305852720869492194073541938254356663569985908973 
76847714911223143132856812833086787290368258594765665593892100 
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The revised Sturm sequence for F7 

R(0)=X
21 

- 21X
19 

+ 189X
17 

- 951X
15 

+ 2925X
13 

- 5643X
11 

+ 6733X
9 

4706X
7 

+ 1721X 5 - 260X 3 
+ 5X + 1 

R(1)=(21X 20 - 399X18 + 3213X 16 - 14265X 14 + 38025X 12 - 62073X 10 

60597X 8 - 32942X 6 + 8605X 4 - 780x2 + 5)/21 

R(2)=(42X
19 

- 756X
17 

+ 5706X
15 

- 23400x
13 

+ .56430X 11 

65884X 7 
- 27536X 5 + 4680X 3 - 100X - 21)/42 

R(3)=(42X 18 - 720x
16 + 513DX

14 
- 19620x

12 + 43350X
1O 

38348X 6 - 12530X 4 + 1460X 2 - 21X - 10)/42 

R(4)=(36X 17 - 576X 15 
+ 378DX 13 - 13080X 11 + 25486X 9 

15D06X S - 3220X 3 - 21X2 + 90X + 21)/36 

(the intermediate poLynomiaLs are omittd) 

R(20)=(205083469770614879896446931477X + 

63234942263653751896367103052)/ 

205083469770614879896446931477 

R(21)=(-1) 

- 80796X
9 

- 55310X
8 

- 27536X 7 

+ 

+ 

+ 

+ 


