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In designing a digital phase-locked loop two important 

criteria include short acquisition time and high accuracy. 

The settling time of step response and the steady-state 

phase error variance of a loop may be considered as measures 

of the acquisition time and the accuracy of the loop respec­

tively. \<Te have established relationships between the set­

tling time of step response and the steady-state phase error 

variance for the first and second-order loops. Hith this, 

it is a simple matter to find proper filter narameters for a 

desirable or nearly optimum loop performance with a short 

settling time and a small phase error variance. 

I. INTRODUCTION 

In recent years the performance of digital phase-locked loop 

(DPLL) has been investigated by a number of authors. In particular, 

Weinberg and Liu 1) considered discrete time analyses of first and 

second-order loops for phase step and frequency step inputs. Gill 

and Gupta 2) analyzed higher order loops and investigated the prob­

lem of optimizing loop filter for minimum mean square error. 

In designing PLL, digital or analog, there exist two important 

criteria that must be taken into consideration. The first one is 

that PLL should follow the change of phase or frequency of incoming 

signal as qUickly as possible, and the second is that its steady­

state mean square phase error should be kept as small as possible. 

Obviously these are contradictory requirements that cannot be satis­

fied simultaneously. Thus we have to make a compromise between fast 

response and small steady-state phase error variance. For this pur­

pose it is necessary to investigate the relationships between tran­

sient response and steady-state phase error characteristics of PLLs. 
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None of the previous papers seem to have considered this sort of 

problem. 

In this paper we will consider a DPLL shown in Fig. 1 and specif­

ically be concerned with relationships between the steady-state 

phase error variance and the settling time of step response of the 

DPLL. The settling time may be considered as a control-theoretic 

measure of the loop's acquisition time, and the phase error variance 

gives an indication of the accuracy of the loop. The relationships 

will lead to a solution of the problem: what loop filter is to be 

placed in the loop or what filter parameters are to be chosen in 

order to obtain a satisfactory performance of the loop. 

s(t)+n(t) 

(Kz=O for first-order filter) 

Fig. 1 Block diagram of digital phase-locked loop. 

II. TRANSIENT RESPONSE 

The DPLL shown in Fig. 1 tracks the zero crossings of incoming 

signals, and hence is characterized by nonuniform sampling inter­

vals. 

The input to the DPLL is assumed to be the sum of a signal 

set) = A sin{wot + 8(t)} 

and white Gaussian noise net). The input is sampled at time in­

stants t(k) determined by the digital clock. 

The value of the kth sample is denoted by R(k), i.e., 

(1) 

R(k) = A sin{wot(k) + 8(k)} + n(k), (2) 

where e(k) = e{t(k)}, n(k) = n{t(k)}. Let I(k) denote the time be­

tween the (k-l)th and the kth sampling instants. The sequence 

{R(k)} is passed through the AID converter and the digital filter 

whose output, {U(k)}, is used to control the period of the DPLL ac-



cording to the relationship 

I(k) T - U(k-l), (3) 

where T = 2n/wo is the nominal clock period. 

Without loss of generality we can assume that teO) 
fore it follows from (3) that 

O. There-

t(k) 
k 
l: I (j ) 

j=l 

k-l 
kT - l: U (j) . 

j=O 

From Fig. 1, U(j) is given by 

j 
U(j) = K1R(j) + Kz ~ R(i). 

i=O 

From (2), (4), and (5) we obtain 

e(k+l) - e(k) = ¢(k+l) - ¢(k) + wo(K 1+ Kz){A sin¢(k) + n(k)} 

k-l 
+ woKz l: {A sin¢(i) + n(i)}; 

j=O 

where ¢(k) is the phase error at t(k) and is given by 

k-l 
¢ (k) = - w 0 L: U (j) + e (k) . 

.i=O 

(4) 

(5 ) 

(6 ) 

(7) 

First, the response of the first-order loop to phase step input 

is considered. The loop is assumed to be noise-free. For the 

first-order loop with phase step input, K2 = 0 and e(k+l) = e(k), 
and (6) reduces to 

¢(k+l) - ¢(k) 

where 

l.ll = WOKIA. 

woK 1 A sin ¢ (k) 

l.llsin¢(k), (8) 

(9) 

Solving the difference equation (8) numerically, the transient 

responses of the first-order loop to phase step input have been ob­

tained for several values of the loop gain l.ll. Some of the result 

is shown in Fig. 2. 
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Fig. 2 Responses of first-order loop to phase step input 



For the second-order noise-free loop with frequency step input, 

(6) reduces to 

cjl (k+l) 2 cjl (k) + cjl (k - 1 ) 

where 

s 
CUKIA = j..{lCU/CUQ, 

(K1 + K2 ) / Kl . 

(10) 

(11) 

(12 ) 

For various choices of filter parameters and initial conditions, 

the difference equation (10) has been solved to obtain transient re­

sponses and incremental phase plane plots, some of which are shown 

in Figs. 3 and 4. In those figures cjl(k) represents cjl(k)-cjl(k-l) . 
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Fig. 3 Responses of second-order loop to frequency step input. 
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Fig. 4 Incremental phase plane plots of second-order loop for 
frequency step input. 

The settling time to characterize these responses is defined as 

follows: 

For the first-order loop with phase step input, the settling time 

Tsl is defined as the value of k required for I¢(k) I to decrease to 

and stay within 10 per cent of I¢(O)I. 

For the second-order loop with frequency step input, the settlin~ 

time Ts2 is defined as the value of (k+l) required for 1¢(k+l)-¢(k)1 

/woT to decrease to and stay within 5 per cent of Iw-wol/wo = I¢(l) 

-¢ (0) 1/2rr. 



Figure 2 clearly shows that the settling time Tsl is shortened by 

increasing the loop gain ~1. This is the same with the settling 

time Ts2 of the second-order loop, as long as the value of ~1 re­

mains below a certain upper limit. The upper limit is known to be 

(wo/w)(4/l+S) 1). Concerning the other filter parameter S, we can 

roughly conclude from Figs. 3 and 4 that the settling time Ts2 be­

comes short as the value of S increases. 

III. SETTLING TIME VS. PHASE ERROR VARIANCE CHARACTERISTICS 

As mentioned before, the settling time is a measure of the acqui­

sition time of the DPLL, while the steady-state phase error variance 

gives an indication of the accuracy of the loop disturbed by the 

noise at the input. 

In the past, several authors analyzed the first and second-order 

loops for phase step and frequency step plus noise inputs 1),3). 

A way to do this is to apply Gram-Charlier series expansion to the 

Smoluchowski equation associated with phase error probability densi­

ty of the DPLL 3). 

In the present work, steady-state phase error variances for the 

first and second-order loops have been obtained by the analytical 

method mentioned above, and to justify the results the digital simu­

lation of (6) has also been performed. The analytical results have 

been found to be in good agreement with the simulation results. 
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The steady-state phase error variance and the settling time of 

step response are both related to loop filter parameters. Therefore, 

the phase error variance can be related to the settling time through 

loop filter parameters. 

In Fig. 5 the phase error variance is shown as a function of the 

settling time for the first-order loop with various initial condi­

tions and inverse signal-to-noise ratios (ISNs). The ISN is defined 

as n 2 (t)/A2. Figure 6 shows the similar relation between the set­

tling time and the phase error variance for the second-order loop. 

In the first-order loop, as the loop gain ~l increases, the 

loop's ability to correct phase error is improved, and as a result 

the settling time decreases. On the other hand, as ~l increases 

noise power in the loop also increases, and this increases the phase 

error variance. 

Basically this is the same with the second-order loop. However, 

the problem is not so simple as in the case of the first-order loop, 

since the step response becomes oscillatory for large loop gain. In 

the case of the second-order loop there is another parameter which 
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we are allowed to choose, i.e., 8. It is possible for the second­

order loop to have a satisfactory or nearly optimum performance by 

a proper choice of the filter parameters, ~l and 8, since the phase 

error variance is not sensitive to the change of the settling time 

for small ~l and 8 as we can observe in Figs. 6(a) and 6(b). 
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IV. CONCLUSIONS 

We have established relationships between the settling time of 

step response and the steady-state phase error variance for both of 

the first and second-order loops. With this, it is a simple matter 

to find proper filter parameters for a satisfactory or nearly opti­

mum loop performance with a short settling time and a small steady­

state phase error variance which imply a short acquisition time and 

a high accuracy respectively. 

Here we have considered only the first and second-order loops, 

but certainly the analysis can be extended to higher order loops. A 

similar analysis of the third-order loop will be a problem for study 

in the future. 
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