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Making a good mask to extract. t.he edges of objects in an image correctly, 

is a problem that many researches have done around it.. To detect the shape 

of Corneal Endit.helial Cells (CEC), which is important. for clinical diagnosis, 

we use the combination of conventional LGF and newly developed TAS-LGF 

(Three-Arrow-Shaped Laplacian-Gaussian Filter) and we show that its rersult 

will be better than that. of using a two dimensional LGF. 

I. Introduction 
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A problem of fundamental importance in image analysis is edge detection. 

Edges characterize object boundaries and are therefore useful for segmentation 

, registration, and identification of objects in scenes. Edge points can be 

thought of as pixel locations of abrupt gray-level change. For example, it is 

reasonable to define edge points in binary images as black pixels with at least 

one white nearest neighbor, that is , pixel locations (m,n) such that u(m,n)=O and 

g(m,n)=l, where 

g(m,n)= [u(m,n) + u(m± l.nJ .OR. [u(m,n) + u(m,n± 1)J (1) 

where u(m,n) indicates a digital image and + denotes the logical exclusive_OR 

operation. 
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In summary a good edge detector should have three performance criteria as 

follows: 

1) Good detection. There should be a low probability of failing to mark 

real edge points, and low probability of falsely marking nonedge points. Since 

both these probabilities are monotonically decreasing functions of the output 

signal-to-noise ratio, this criterion corresponds to maximizing signal-to-noise 

ratio. 

2) Good localization. The points marked as edge points by the operator 

should be as close as possible to the center of the true edge. 

3) Only one response to a single edge. This is implicitly captured in the 

first criterion since when there are two responses to the same edge, one of 

them must be considered false. However, the mathematical form of the first 

criterion did not capture the multiple response requirement and it had to be 

made explicit. 

II. Edge Detection Methods 

For a continuous image f(x,y) its derivative assumes a local maximum in the 

direction of the edge. Therefore, one edge detection technique is to measure the 

gradient of f along r in a direction e (Fig. 1), that is 

y 

~------------------~~x 

af afax af ay . 
-;- = -;- - + -;- -;- = fx cos e + [y sm e ur ux ar uy ur 

The maximum value of at/ar is obtained when 

(a/ae)(aj/ar) = o. This gives 

-Ix sin 8, + I, cos 0, = 0 =? 8, = tan- 1(1J 
(at) = Yj2 + f2 a,. max x y 

Figure 1. Gradient of [(x, y) along r direction. 

(2) 

(3. a) 

(3.b) 

where e,;; is the direction of the edge. Based on these concepts, two types of 

edge detection operators have been introduced, gradient operators and compass 

operators. For digital images these operators, also called masks, represent 

finite-difference approximations of either the orthogonal gradients L:,i':,; or the 

directional gradient af/ar. Let B denote a pxp mask and define, for an arbitrary 

image U, their inner product at location (m, n) as the correlation (*) 

<U.B>nl. n = 2. 2. h(i,j)u(i+m,j+n) = u(m,n)*h(-m,-n) (4) 
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a) Gradient Operators 

These are represented by a pair of masks HI,H2, which measure the gradient of 

the image u(m,n) in two orthogonal directions (Fig. 2). Defining the 

bidirectional gradients gl (m,n)=<U,Hl>rn. n, g2(m,n)=<U,ll2>rn.1"I the gradient vector 

magnitude and direction are given by; 

u(m,n) ~ 

y 

g (m, n) = V gi (m, n) + g~ (m, n) 

e
g 

(m, n) = tan- 1 g2 (m, n) 
gl (m, n) 

g, m,n 
h (-m -n) I g= Jgf + 95 , . I 

Magnitude 
g(m,n) 

92(m,n) 
h (-m -n) I 8g = tan-1 (92/9,) ~ Direction 

2 • J 6 (m,n) 
9 

Figure 2. Edge detection via gradient operators. 

Often the magnitude gradient is calculated as 

g(m,n)= I gJ(m,n) I + I gdm,n) I 

(5) 

(6) 

o--±=- Edge 
map 

t 

Threshold 

(7) 

rather than as in 5. This calculation is easier to perform and is preferred 

especially when implemented in digital hardware. 

Table 1 lists some of the common gradient operators. The Prewitt, Sobel, 

and isotropic operators compute horizontal and vertical differences of local 

sums. This reduces the effect of noise in the data. Note these operators have 

the desirable property of yielding zeros for uniform regions. 

TABLE 1 Some Common Gradient Operators. 
Boxed element indicates the location of the origin 

Roberts 
[ [QJ 1] 
-1 0 

[-1 0 1] 
-1 0 1 
-1 0 1 

Smoothed (Prewitt) 

Sobel 

[-1 0 1] 
-2 [QJ 2 
-1 0 1 

[-1 0 1] 
-v'2 [Q] Vi 
-1 0 1 

Isotropic 
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The pixel location (m, n) is declared an edge location if gem, n) E:~xceE:~ds some 

threshold t. The locations of edge points constitute an edge map c (m, n), which 

is defined as 

( ) = {I, (m, n) E Ig 
E m, n 0 h . , ot erWlse (8) 

where 

Ig ~ {(m, n);g(m, n) > t} (9) 

The edge map gives the necessary data for tracing the object boundaries in an 

image. Typically, t may be selected using the cumulative histogram of g(m, n) so 

that 5 to 10% of pixels with largest gradients are declared as edges. (AI though 

the gradient operators act as good detectors in many cases but Photos 18,19 of 

the Appendix shows their poor results to detect CEC edges.) 

b) Compass Operators 

Compass Operators measure gradients in a selected number of directions (Fig·.3). 

Table 2 shows four different compass gradients for north-going edges. An 

anti-clockwise circular shift of the eight boundary elements of these masks 

gives a 45° rotation of the gradient direction. For example, the eight compass 

gradients corresponding to the third operator of Table 2 are 

u(m,n) 
Gradient g(m, n) 1 r--- Edge map 

/------..-J 0 ---J t __ _ 
Ok Threshold 

Figure 3 Edge detection via compass operators. 

1 1 i 1 1 0 '\, 1 o -1 ~ o -1 -1 II' 
0 0 o (N) 1 0 -1 (NW) 1 o -1 (W) 1 o -1 (SW) 

-1 -1 -1 o -1 -1 1 o -1 1 1 0 

-1 -1 -1 ~ -1 -1 0 ~ -1 0 1 ~ 0 1 1 / 
0 0 o (S) -1 0 1 (SE) -1 0 1 (E) -1 0 1 (NE) 
1 1 1 0 1 1 -1 0 1 -1 -1 0 

Let gl-.:(m,n) denote the compass gradient in the direction e ,.'. 
k=0, ... ,7. The gradient at location (m, n) is defined as 

7[ ./ 2 + k 7[ //4, 

g(m,n) = max { I gk(m,n) I (10) 
k 

which can be thresholded to obtain the edge map as before. Note that only four 

of the preceding eight compass gradients are linearly independent. Therefore, 
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it is possible to define four 3x3 arrays that are mutually orthogonal and span 

the space of these compass gradients. These arrays are called orthogonal 

gradients and can be used in place of the compass gradients. Compass gradients 

with higher angular resolution can be designed by increasing the size of the 

mask. 

TABLE 2 . Compass Gradients (North). Each Clockwise Circular Shift of 
Elements about the Center Rotates the Gradient Direction by 45° 

1) [ ~ ~ ~] 
-1 -1 -1 

2) [-~ 
-3 

5 5] [QJ -3 (Kirsch) 
-3 -3 

4) [ 
1 2 1] 

-~ W-~ 
c) Laplace operators and Zero Crossings 

The forgoing methods of estimating the gradients work best when the g-ray-level 

transition is quite abrupt, like a step function. As the transition region gets 

wider (Fig. 4), it is more advantageous to apply the second-order derivatives. 

One frequently encountered operator is the Laplacian operator, defined as 

fIx) 

df 
dx 

Double Threshold 

~ 
crossing 

Figure 4 First and second derivatives for edge detection 

(11) 
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Table 3 gives three different discrete approximations of this operator. Because 

of the second-order derivatives, this gradient operator is more sensitive to 

noise than those previously defined. Also, the thresholclecl magnitude of '\7 2f 

produces double edges. For these reasons, together with its inability to dctec:t 

the edge direction, the Laplacian as such is not a good edge detection operator. 

There is also Stochastic Gradients method that is powerful in the presence of 

noise. 

TABLE 3 Discrete Laplace Operators 

1) [-~ fu -~] 
o -1 0 

2) [=i ili =:] 
-1 -1 -1 

3) [-~ ili -~] 
1 -2 1 

In order to detect intensity changes efficiently, one should search for a 

filter that has two salient characteristics. First and foremost, it should be a 

differential operator, taking either a first or second spatial derivative of the 

image. Second, it should be capable of being tuned to act at any desired scale, 

so that large filters can be used to detect blurry shadow edges, and small ones 

to detect sharply focused fine detail in the image. 

Marr and Hildreth argued that the most satisfactory operator fulfilling 

these conditions is the filter \7 2 G , where '\7 2 is the Laplacian operator (d 2 /0X 2 

+ a 2/0 y2) and G stands for the two-dimensional Gaussian distribution 

(12) 

which has standard deviation (J • '\7 2G is a eircularJy symmetric 

Mexican-hat-shaped operator whose distr ibu ti on in two clirnensi OTIS lTJay be 

expressed in terms of the radial distance r from the origin by the formula 

(13) 

There are two basic ideas behind the choice of the filter '\72G. The first is 

that the Gaussian part of it, G, blurs the image, effectively wiping out all 

structure at scales much smaller than the space constant (J of the Gaussian. 

The reason why one chooses the Gaussian, rather than blurring with a 

cylindrical pillbox function (for instance), is that the Gaussian distribution has 

the desirable characteristic of being smooth and localized in both the spatial 

and frequency domains and, in a strict sense, being the unique distribution that 

is simultaneously optimally localized in both domains. And the reason, in turn, 

why this should be desirable property of blurring function is that if the 
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blurring is as smooth as possible, both spatially and in the frequency domain, it 

is least likely to introduce any changes that were not pres(~nt in the original 

image. 

The second idea concerns the derivative part of the filter, ve.. The great 

advantage of using it is economy of eomputation. First-order directional 

derivatives, like ~/ax or a/a y, could be used, in whicb ease one would 

subsequently have to search for their peaks or troughs at each orientation (as 

illustrated in Figure 4); or, second-order directional derivatives, like {)2 /~) x2 

ora2/a y2, could be used, in which case intensity changes would correspond to 

their zero-crossing (Figure 4). However, the disadvantage of all these 

operators is that they are directional; they all involve an orientation. In 

order to use the first derivatives, for example, both;) 1/;) x anci()I/_) y, have to 

be measured, and the peaks and troughs in the overall amplitude have to be 

found, This means that the signed quantity [(;)I/<:lx)2 + (;",I/~Jy)2J -i/2 must also 

be computed. 

Using second-order directional derivative operators involves problems 

that are even worse than the ones involved in using first-order derivatives. 

The only way of avoiding these extra computational burdens is to try to choose 

an orientation-independent operator. The lowest-order isotropic differential 

operator is the Laplacian v 2
, and fortunately it so happens that this operator 

can be used to detect intensity changes provided the blurred image satisfies 

some quite weak requirements. Images on the whole do satisfy these 

requirements locally, so in practice one can use the Laplacian. Hence, in 

practice, the most satisfactory way of finding the intensity changes at a given 

scale in an image is first to filter it with the operator v 2 G , where the spaee 

constant of G is chosen to reflect the scale at which the changes are to be 

detected, and then to locate the zero-crossings in the fil tered image. 

Unfortunately there are some errors in edge detection using the above 

method. Clark proofs that this method can produce phantom, or spurious, edges, 

which have no correspondence to significant changes in image intensity. It is 

seen that the phantom edges occur, for the domain of smoothed step edges, when 

two spatially consecutive edges have the same sense (i. e., dark to light or light 

to dark). For Gaussian smoothing, the strength of a phantom edg·e increases as 

the filter scale constant u increases, while the strength of cln authentic edge 

decreases with u. From this observation comes the description of these eclges 

as phantom; as we reduce u and are looking at these edges more dosely, they 

fade away, vanishing altogether at u =0 
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III. Contour enhancement using three-arrow-shaped LGF 

Our interest is to detect and enhance the edges of a noisy and low 

contrast images, particularly their crossing points (branches). Normally there 

are some irregularities in detected branch edges, using conventional explained 

filters (joint section of three adjacent hexagons as our interest). To detect 

these kinds of edges we present an special mask name it three-arrow-shaped 

Laplacian Gaussian Filter (TAS-LGF). The numbers and their distribution in this 

mask are the result of combination of laplacian of gaussian function and the 

shape of mentioned edges (Fig. 6). As a working sample we selected a C.E.C image 

(defected by operation) which consist of hexagonal cells (Photo 1). First we 

convolved the image with the two kinds of TAS-LGF (Figs. 6 & 7). Photos 5 and 6 

show their result after convolution, and photos 10,11 show these results after 

the process of binarization, isolated point removement, expansion and line 

thinning. Almost all of corners are detected by these two filters while the 

results are weak in normal straight edges. So it is difficult to extract the 

contour by only simple algorithm. T. Saga presented a method, enhancing the 

image by combining FIR and smoothing filters. Extraction of the C. E. C. contour 

is carried out by discriminating the vertical angle information of hexagon. To 

complete the edges, we used more three one-directional LGF (Figs. 5,8,9). Here, 

the filter is composed of stepwise weighted second-order differential operator, 

therefore the shape is not a pure LGF. However, the original image is degraded 

and has few high frequency component. Stepwise shape will affect only high 

frequency components. Therefore, this approximation gives no effective 

difference to the output shape. This situation is the same as the operation of 

the following TAS-LGF. The image is faded naturally. Since the 1D-LGF is fitted 

to extract only the simple edges the vertex of the CEC hexagon is difficult to 

extract by that, as it may produce the missing vertices, sometimes. So we 

specially devised the TAS-LGF to extract the crossing parts. Photos 2,3,4 show 

the result of convolution of original image with three one-directional LGFs. 

Photos 7,8,9 indicate the thinned-line images of these results. Here is our 

algorithm to detect strongly the noisy hexagonal shape edges with poor 

contrast (like CEC). Three types of 1D-LGF's (vertical, left and right oblique) 

and two types of TAS-LGF's are applied to the original image. Their five outputs 

are summed to extract contours irrelevant to edge direction. Outputs of above 

fil ters are shown in Photos 2 to 6, while Photo 12 shows their summation. The 

binarization processing is applied to the summation result. In order to 

eliminate the noise, we used the reduction and expansion processing while we 

removed the isolated points, also. Finally with exerting line thinning process 

we achieved the result which contain most parts of edges (Photo 14). We did the 

same process using two dimensional LGF (Fig. 10 and Photo 13), then compared its 

result (Photo 15) with the result of our algorithm (Photos 16 and 17). The 

comparisons show that the better result belongs to the TAS-LGF algorithm that 

Fig. 11 shows its flow chart. 
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0 0 0 0 0 0 0 0 0 1 I 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 1 I 1 0 0 0 I 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 I 1 1 

1 1 1 -2 -2 -2 1 1 1 0 I I -4 -4 -4 I 1 0 

1 1 1 -2 -2 -2 1 1 1 0 0 1 -4 -4 -4 1 0 0 

1 1 1 -2 -2 -2 1 1 1 0 0 0 -4 -4 -4 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 a 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 a 0 0 1 1 1 0 0 0 

Fig·5 One-directional LGF (for Ver. lines) Fig.6 Three-Arrow-Shapped LGF 

0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 

0 0 0 -4 -4 -4 0 0 0 0 1 1 1 -3 -3 0 0 0 

0 0 1 -4 -4 -4 1 0 0 0 0 I -3 -3 -3 -3 0 0 

0 1 1 -4 -4 -4 1 1 0 0 0 0 -3 -3 -3 1 1 0 

1 1 1 1 0 1 1 1 1 0 0 0 0 -3 1 1 1 1 

1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 

1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 

Fig.7 Three-Arrow-Shapped LGF Fig.8 Oblique one-directional LGF(Left) 

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 I 1 1 1 0 0 -1 -2 -3 -2 -1 0 0 

0 0 0 0 1 1 1 1 1 0 -1 -4 -8 -8 -8 -4 -1 0 

0 0 0 -3 -3 1 1 1 0 0 -2 -8 2 21 2 -8 -2 0 

0 0 -3 -3 -3 -3 1 0 0 0 -3 -8 21 GO 21 -8 -3 0 

0 1 1 -3 -3 -3 0 0 0 0 -2 -8 2 21 2 -8 -2 0 

1 1 1 1 -3 0 0 0 0 0 -1 -4 -8 -8 -8 -4 -1 0 

1 1 1 1 0 0 0 0 0 0 0 -1 -2 -3 -2 -1 0 0 

1 1 1 0 0 0 a 0 a 0 0 0 0 0 0 0 0 0 

fig.9 Oblique one-dIrectional LGF(lUght) Fig. 10 Two Dimensional LGF 
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Photo. 1 Original Image Photo.2 Output of ID-LGF (Ver.) 

Photo 3 Output of Oblique LGF (Right) Photo 4 Output of Oblique LGF (Left) 

Photos 5,6 Outputs of Three-Arrow-Shaped LGF (Two types) 
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Photo 1 Original Image Photo 7 

Photo 8 Photo 9 

Photo 10 Photo 11 
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Photo 12 Photo 13 

Photo 14 Photo 15 

Photo 16 Photo 17 



IV. Conclusion 

We have enhanced the contour of CEC 

image which is low resolu,tion, low 

contrast and noisy image, using 

Three-Arrow-Shaped LGF. Al though its 

resul t still have some weaknesses, but in 

comparison with the result of powerful 

Two-Dimensional Laplacian Gaussian Filter, 

it seems that it is closer to real edges. 

However the images obtained in daily 

clinical diagnosis, are with less contrast 

and often include more noise. To cope 

with such situations the algorithm should 

be reformed to more generalized form. 
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Original Imag-c I 
I 

Convolution with: 

One Directional Enhanced Filter 

{Vertical, Ob lique( righ t, left)) 

Three-Arrow-Shaped LGF (two types) 

Total: 5 

I 
Logical Addition 

Binarization 

I 
Reduction 

Isolated Point Removement 

I 
Expansion 

Line Thining 
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Appendix 

Photo 18 CEC edges, using Sobel Operator 

Photo 19 CEC edges, using Prewitt Operator 


