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Multilayer feed-forward neural networks are widely used based on minimization of an error function.
Back propagation (BP) is a famous training method used in the multilayer networks but it often suffers
from the drawback of slow convergence. To make the learning faster, we propose ‘Fusion of Activation
Functions’ (FAF) in which different conventional activation functions (AFs) are combined to compute
final activation. This has not been studied extensively yet. One of the sub goals of the paper is to
check the role of linear AFs in combination. We investigate whether FAF can enable the learning to be
faster. Validity of the proposed method is examined by performing simulations on challenging nine real
benchmark classification and time series prediction problems. The FAF has been applied to 2-bit, 3-bit
and 4-bit parity, the breast cancer, Diabetes, Heart disease, Iris, wine, Glass and Soybean classification
problems. The algorithm is also tested with Mackey-Glass chaotic time series prediction problem. The
algorithm is shown to work better than other AFs used independently in BP such as sigmoid (SIG),
arctangent (ATAN), logarithmic (LOG).

Keywords: Neural network; training; activation function; convergence; combination of activation
functions.

1. Introduction

BP algorithm is a famous and well practiced super-
vised learning technique used for training Multi-
Layer Perceptrons (MLPs).1–4 In this algorithm, one
needs to calculate the gradient of the error func-
tion of the network with respect to weights of the
network. It attempts to minimize the difference (or
error) between the desired and actual outputs in an
iterative manner. In conventional BP, weights in the
network are adjusted by the algorithm to make the
error decrease along a descent direction.5

It is important to speed up the learning algorithm
for a number of reasons. (a) The convergence time
depends on the software to be used to make an algo-
rithm. If the software is slow (such as MATLAB),
it needs long time to converge. The case is more
severe if someone uses slow machine, (b) There are
some real world problems which take very long time
to converge although the number of patterns are
smaller such as XOR problem, (c) There are some
problems which have very large number of attributes.
They need long time even to see the output of a trial.

†Corresponding author.
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Quick convergence may resolve these problems.
Hence, efficient learning technique is required.

The gradient calculation often requires an AF in
the hidden layer and sometimes in the output layer
for a MLP. The conventional AFs such as sigmoid
and tan hyperbolic functions are often used in the
MLP training algorithms. Unfortunately, they suf-
fer from the limitation of saturation at around 0, 1
or −1, 1. The value of derivative becomes approxi-
mately zero around this zone. As a result the amount
of weight update becomes negligible. Therefore, the
convergence slows down. It was shown that the con-
vergence rate is extremely slow especially for the net-
works with more than one hidden layer.6 Recently,
the modification of gradient function to improve the
performance of the algorithm has attracted much
attention of researchers.7,8 To improve the conver-
gence of the algorithm we propose a hybrid activa-
tion function by combining the conventional AFs and
linear functions. Therefore, we call it ‘Fusion of Acti-
vation Function’ (FAF).

There have been a long series of improvements of
standard BP algorithm using different cost functions,
different activation function, and heuristic strategies.
Menke9 proposed a method to adapt the problem
with the learner to improve the supervised learn-
ing. The learning rate was adapted to speed up the
BP.10,11 A drawback of standard BP is the exis-
tence of local minima resulting from the saturation
behavior of the activation function. Zweiri et al had
proposed a three term BP, which is a proportional
factor to overcome the problems of standard BP.12 A
modified error function having fourth power instead
of two was proposed for faster training.13 An expo-
nential cost function was proposed to improve the
standard BP.14 Tawel15 proposed an adaptive neural
net by introducing the temperature of the sigmoid
activation function. To train the network both the
weights and temperatures are updated. Kamruzza-
man proposed an arctangent activation function to
improve the convergence speed of BP.16 A logarith-
mic activation function was proposed by Bilski17 in
lieu of sigmoid AF commonly used in BP.

However, most of the AFs proposed above used
independently in BP algorithm often cannot escape
from local minima. They are faster with flat error.
The performances of them become poor for large
and difficult problems due to ‘quick flat error’. This
means convergence is faster but error becomes flat

after quick convergence. As a result, unnecessary
training may produce bad generalization. The effect
of using combined AFs was not investigated exten-
sively in the literature. The use of different acti-
vation functions was first motivated by the work
of Fahlman.18 This algorithm is specially designed
for constructing network structure in a nice fash-
ion – one hidden unit in each hidden layer. How-
ever, combining of AFs are not well studied as of our
knowledge. In this paper, we report the results of
combining conventional AFs to achieve quick conver-
gence of BP algorithm with different network sizes.
Simulations with challenging problems have been
carried out to investigate the learning characteristics
of the proposed FAF.

The paper is organized as follows. Section 2
explains a brief of BP algorithm. The proposed FAF
is described in Sec. 3. The experimental studies
including characteristics of benchmark problems and
results on them are reported in Sec. 4. A brief discus-
sion is presented in Sec. 5. The paper is concluded in
Sec. 6.

2. Standard BP

The MLP5 consists of one input layer, one output
layer, and one or more hidden layers. Each layer con-
tains a set of neurons and is fully connected with
an adjacent layer. Each connection link is repre-
sented by a weight. The goal of MLP learning is
approximation of an objective function. It adjusts
the weights such that the discrepancies between the
network outputs and the target values are minimized.
This process is called supervised learning. The most
popularly used error function is the mean squared
error (MSE) that is given by:

E =
1
n

n∑

p=1

m∑

i=1

(Ypi − tpi)2

where the notations are: n is the number of training
samples; m output vector dimension; Ypi is the net-
work output of ith neuron for pattern p; tpi is the
target value of ith neuron for pattern p.

BP applies a gradient descent procedure to min-
imize the error function E as follows,

∆wij = −η
∂E

∂wij
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where the notations are: wij connection weight
between neurons i and j; η learning rate.

3. Fusion of Activation Functions

The conventional AFs that are often used in the BP
learning algorithm are sigmoid, tan hyperbolic func-
tion. A linear function is sometimes used in output
layer. Other AFs which are also used are logarith-
mic, arctangent, tan(sig), log(sig) etc. We proposed
a hybrid activation function at hidden and output
layers of a MLP. This is nothing but combining the
conventional AFs in the hidden and output layers
of a MLP. In the hidden layer we combine sigmoid
and linear function and in the output layer, sigmoid,
tan hyperbolic and linear functions are combined to
make a hybrid one. The usual targets of benchmark
problems are belonging to 0 or 1. The output of the
output layer was computed by adding half of the
both sigmoid and tan hyperbolic transfer function.
This is only to make the activation between 0 and 1.
In addition, a linear transfer function is added with
this sum as shown in Fig. 1.

A brief calculation of activation in FAF is
described here. The output of the hidden layer of
a neural network is computed as

f(x) =
1

1 + e−x
+ λ1x. (1)
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Fig. 1. A neural network with FAF in hidden and
output layers.
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Fig. 2. Different activation functions.
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Fig. 3. Derivatives of AFs shown in Fig. 2.

The derivative of the Eq. (1) is

f(x) = f(x)(1 − f(x)) + λ1 (2)

The output of the output layer is calculated as,

f(x) =
1
2

1
1 + e−x

+
1
2

ex − e−x

ex + e−x
+ λ2x

f(x) =
1
2
[fs(x) + fth(x)] + λ2x (3)

The derivative of the Eq. (3) is,

f(x) =
1
2
[fs(x)(1 − fs(x)) + (1 − fth(x)2)] + λ2

(4)

The weight update rule of standard BP requires
a derivative of activation functions in the hidden and
output layers. Therefore one needs just to use these
derivatives as computed with Eqs. (2) and (4) in the
update rule of BP. Graphically the AF in FAF and
its derivative are shown in Figs. 2 and 3, respectively.

The backpropagated error signals include the fac-
tors o(1 − o) and which are the derivatives of the
sigmoid function of the form y = 1/(1 + e(−x)).
The main reason for the slow convergence of BP
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is the behavior of these error signals. Similarly the
derivative of the tan hyperbolic function is (1 − o2).
When the actual output o approaches extreme val-
ues (i.e., 0 or 1 or −1), the error signals will become
so small that they cannot actually reflect the error
signal and weight update process slows down.

To alleviate this problem, we just mix the AFs
together. There are several explanations why we have
done this. Firstly, there is less possibility that all of
the AFs saturate together in the training if AFs are
different. Therefore, the training may have flexibil-
ity to avoid saturation. Secondly, even though they
saturate altogether the linear constants (λ1 and λ2)
will contribute to make the update possible in both
input and output layers as derived in Eqs. (2) and
(4). This is the reason why the learning is faster in
FAF. An experimental evidence will be discussed in
Sec. 4.4.

4. Experimental Studies

This section describes about the benchmark prob-
lems used in this report and the results obtained
with this method. Nine classification problems and
one time series prediction problem are used to inves-
tigate the effectiveness of the proposed FAF.

4.1. Characteristics of benchmark
classification data

These benchmark data are collected from
PROBEN119 and the UCI machine learning data
repository. The characteristics of the benchmark
data are summarized in Table 1. For example, dia-
betes problem is a classification problem having a
total examples or patterns of 768 with 8 attributes
and 2 classes. Other problems are arranged in a sim-
ilar fashion in the table.

4.2. Experimental results

In order to investigate the convergence speed of BP
learning with different AFs mentioned above, simula-
tions are carried out with wide range of benchmark
problems. Since no analytical techniques are avail-
able to study the learning speed of BP algorithm,
simulation with different problems and comparison
are the usually adopted means to evaluate the effec-
tiveness of a modification. In the present work, inves-
tigation has been done with nine different problems.

Table 1. Characteristics of benchmark data.

Number of

Examples Input Output
Data set attributes classes

2-parity 4 2 2
3-parity 8 3 2
4-parity 16 4 2
Breast 699 9 2
Cancer

Diabetes 768 8 2
Heart 303 13 2

Disease
Iris 150 4 3
Wine 284 13 3
Glass 214 9 6
Soybean 683 82 19

The error function was multiplied by 100 when it is
reported.

(a) Parity problem

The first is the parity problems which include 2-bit,
3-bit and 4-bit. A 2-2-2 network (two inputs, two
hidden and two output neuron) network was trained
with different AFs for 2-bit problem. Four methods
(FAF, SIG, ATAN, and LOG) are started at the
same initial weights in each run. The network was
initialized with small random weights. Training was
allowed until sum-squared error reduces to 1. Twenty
trials with different initial weights were carried out
and the average training cycle is presented in Table 2.
For example, FAF needs only 94 iterations on aver-
age for η = 0.5. Other results show that the FAF
improves the learning speed of BP learning in terms
of number of iterations. The results of FAF are com-
pared with the other activation functions in Table 3.
It is seen that for η = 0.1, average iteration required
for FAF is 322 which is much smaller than that of
sigmoid (17994), arctangent (4865), and logarithmic
(6940). A typical run for all AFs including FAF is
shown Fig. 4. It is clear that FAF is faster than oth-
ers, although there is a slight increase (Fig. 4) in
error at the starting stage. This is allowable if some-
one knows there is drastic down stairs in the next
few cycles.

A 3-3-2 and 4-4-2 networks are used for 3-bit and
4-bit parity problems, respectively. The results and
comparisons for 3-bit parity problems are listed in
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Table 2. Summary of results for benchmark classification problems. Mean, Min, Max and
SD represent respectively average, minimum, maximum and standard deviation.

Last error Learning rate Constants Iteration

Problems LE η λ1 λ2 Mean Min. Max. SD

2 Bit parity 1 0.1 −0.15 2.01 322 238 467 62.04
0.3 −0.14 1.05 170 132 227 26.77
0.5 −0.12 0.80 94 78 114 9.16

3 Bit parity 1 0.1 −0.175 2.50 197 138 286 48.47
0.3 −0.125 1.25 105 88 135 13.40
0.5 −0.125 0.75 92 72 117 14.42

4 Bit parity 1 0.1 −0.08 2.0 812 678 934 72.91
0.3 −0.07 0.8 731 626 817 54.14
0.5 −0.06 0.6 514 438 694 67.37

Breast cancer 2 0.10 −0.10 0.20 6.15 6 7 0.36
0.15 −0.08 0.12 5.40 5 6 0.50
0.20 −0.06 0.08 5.05 5 6 0.22

Diabetes 8 0.050 −0.005 0.13 34.5 33 36 0.97
0.075 −0.004 0.10 26.6 26 28 0.74
0.100 −0.003 0.08 17 16 19 0.86

Heart 6 0.1 −0.01 0.210 9.2 9 10 0.40
0.2 −0.01 0.040 8.6 8 10 0.41
0.3 −0.01 0.002 9.1 8 10 0.61

Iris 0.3 0.1 −0.04 0.35 42.2 27 50 8.10
0.2 −0.03 0.25 39.4 29 50 6.45
0.3 −0.02 0.15 38.8 35 43 1.82

Wine 1 0.1 −0.011 0.52 45.1 34 64 8.21
0.2 −0.005 0.25 31.0 25 38 3.81
0.3 −0.001 0.16 26.4 21 32 3.34

Glass 4 0.10 −0.12 0.001 438 383 500 36.8
0.15 −0.10 0.001 335 270 390 36.6
0.20 −0.07 0.001 275 215 355 43.1

Soybean 0.15 0.1 −0.015 0.40 119 97 142 13.45
0.2 −0.010 0.30 65 58 82 5.09
0.3 −0.008 0.20 53 51 58 2.52

Table 3. Comparison in terms of number of iterations
for 2-bit parity problem. SIG, ATAN, and LOG indicate
sigmoid, arctangent, and logarithmic activation func-
tions respectively.

Convergence time

η FAF SIG ATAN LOG

0.1 322 17994 4865 6940
0.3 170 5335 1373 1879
0.5 94 3080 807 1040

Tables 2 & 4, respectively and that for 4-bit parity
problem are listed in Tables 2 and 5 respectively. It is
clear that FAF is faster than others AFs. Usually, BP
(with SIG, ATAN, and LOG) needs very long time
to converge for 4-bit parity problem. Especially, BP
with SIG function cannot even converge within 5000
and 30,000 iterations for 3-bit and 4-bit problems.
The test set is the same as training set, the testing
accuracy is same with one exception in case of 4-bit
parity problem. In this case, conventional sigmoid
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Fig. 4. Convergence curve for 2-bit parity problem.

Table 4. Comparison in terms of iteration for 3-bit bit
parity problem.

Converge time

η FAF SIG ATAN LOG

0.1 198 31200 6600 12000
0.3 106 8270 3100 3800
0.5 92 9227 1800 2600

Table 5. Comparison in terms of number of iteration
for 4-bit bit parity problem.

Converge time

η FAF SIG ATAN LOG

0.1 812 110000 15000 26000
0.3 731 80700 10300 12800
0.5 514 75300 5860 8450

function can classify 15 patterns and it cannot reach
even less than a sum square error of approximately
0.04. ATAN and LOG AFs often classify 15 patterns
for most of the trials out of 16 patterns and they
need long training time to classify all the patterns.
But FAF can easily classify all the 16 patterns for all
20 runs.

(b) Breast cancer

The first 350 patterns belong to train, and the last
174 patterns are used for testing. A NN size of 9-4-2
(9 inputs, 4 hidden neurons, and 2 outputs) is taken.
An error of 2 is taken to stop the training. This algo-
rithm can classify 172.5 patterns on an average out of
174 patterns for 10 runs. Table 6 shows the average

Table 6. Comparison in terms of number of iteration
for Breast Cancer problem.

Convergence time

η FAF SIG ATAN LOG

0.10 6.2 14.5 34.1 31.5
0.15 5.4 10.5 24.9 27.2
0.20 5.1 7.40 24.1 22.4

results for all AFs starting with different initial con-
ditions. The training is started with same initial con-
ditions in a run for all AFs. The result proved that
the FAF needs smaller average iteration than others.
Since this is an easy problem there is less variation in
the average number of iterations at different learn-
ing rate as observed in Table 6. The accuracies for all
the AFs including FAF are approximately the same
(172.5/174 = 99.13%) since there is less noise in this
problem.

(c) Diabetes

The first 384 patterns belong to training set, and the
last 192 patterns are used for testing. A NN size of
8-4-2 is taken. An error of 8 is taken to stop the train-
ing. The FAF has attained average number of iter-
ations as 34.5, 26.6, and 25.5 for learning rate 0.05,
0.75, and 1.0 respectively as listed in Tables 2 & 7.
They are smaller than other AFs used independently
in the training as shown in Table 7. It is important to
note that the ATAN and LOG functions need larger
number of average iterations at increasing learning
rate while FAF needs smaller number of iterations.
The error at which the training was stopped was cho-
sen as 8, because ATAN and LOG AF cannot reach
a significant amount lower than 8. Also it is easy to
compare FAF with others as well. The testing accu-
racy (TA) is approximately 76% for FAF on average.

Table 7. Comparison in terms of number of iterations
for Diabetes problem.

Converge time

η FAF SIG ATAN LOG

0.05 34.5 86.1 63.4 63.0
0.075 26.6 43.6 103.1 89.6
0.10 17 43.7 93.9 68.4
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Table 8. Comparison n terms of number of iterations
for heart disease problem.

Converge time

η FAF SIG ATAN LOG

0.1 9.2 20 10.5 12.2
0.2 8.6 15.9 16.0 14.1
0.3 9.1 10.9 22.1 16.0

The TA is 77.5% for SIG on average and 76% for
both ATAN and LOG. This is the problem where
FAF gives comparable results. Diabetes is one of the
hard problems in machine learning. There is much
noise in the data set. Therefore, classification per-
formance is limited. This is not inherent problem of
FAF.

(d) Heart Disease

The first 151 patterns are taken as training set and
a NN size of 13-4-2 is used in the experiment. The
average results in terms of number of iterations are
shown in Tables 2 and 8. It is clear from the Table 8
that FAF is better than others at different learning
rates. The average number of iterations are 8.6, 15.9,
16, and 14.1 obtained with FAF, SIG, ATAN and
LOG respectively at η = 0.2. Therefore, FAF is faster
than other AFs. Last 76 patterns are used for testing.
The TA is approximately 83% on average for all AFs.
The average values are approximately same since rel-
atively less distinct values are observed in errors and
numbers of iterations across different trials.

(e) Iris

The entire data set is taken as training and testing
sets. A NN size of 4-3-3 is chosen for training. This is
a three class problem. The average results are listed
in Tables 2 and 9. It is clear that FAF is faster than
all other AFs as shown in Table 9. For example FAF
is 3 times faster than SIG, 1.6 times than ATAN and
1.5 times than LOG AFs at 0.1 learning rate.

(f) Wine

A 13-4-3 NN is used for training. The results are
shown in Tables 2 and 10. The first 178 patterns
are used for training. This is also a three class prob-
lem. Here, FAF is 1.51 times, 2.77, and 3.30 times

Table 9. Comparison in terms of number of iteration
for iris data set.

Converge time

η FAF SIG ATAN LOG

0.1 42.2 126 69.8 63.7
0.2 39.4 51.3 60.2 51.5
0.3 38.8 44.8 56.7 53.0

Table 10. Comparison in terms of number of iterations
for wine data set.

Converge time

η FAF SIG ATAN LOG

0.1 45.1 68.1 125.2 148.8
0.2 31.0 37.2 60.8 84.4
0.3 26.4 27.8 36.8 47.8

faster than SIG, ATAN and LOG AFs respectively
at 0.1 learning rate as shown in Table 10. For the
same reason as diabetes, we consider last error of 1
so that we can compare the results of FAF with oth-
ers. The comparison was not possible especially with
ATAN and LOG smaller than this error. The last 53
patterns are used for testing. The averages TAs are
approximately 100%, 100%, 98%, and 98% for FAF,
SIG, ATAN and LOG AFs respectively.

(g) Glass

The first 107 examples are used as training set and
a NN size of 9-7-6 is used for training. This is a six
class problem. The average results in terms of num-
ber of iterations are listed in Table 2 and 11 as well.
This is only the problem where approximately sim-
ilar results (number of iterations) are obtained for
all AFs including FAF. The reason behind this may

Table 11. Comparison in terms of number of iterations
for glass data set.

Converge time

η FAF SIG ATAN LOG

0.10 438 439 441 439
0.15 334 336 355 347
0.20 275 270 366 347
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Table 12. Comparison in terms of number of iterations
for soybean data set.

Converge time

η FAF SIG ATAN LOG

0.10 119 147 137 159
0.20 65 80 71 74
0.30 53 64 57 58

be the class distribution. They are not well and uni-
formly distributed over all classes. Some classes have
very few examples. But the error of FAF is much
smaller than the others. Last 53 patterns are used for
testing. The average accuracies obtained with FAF,
SIG, ATAN, and LOG are respectively 70.5%, 66%,
65%, and 65%. Here the average accuracy of FAF is
much better than other AFs in terms of TA.

(h) Soybean

The first 342 examples are used as training set and a
NN size of 82-40-19 is chosen for training. The results
and comparisons are furnished in Tables 2 and 12
respectively. The FAF is 1.23, 1.15, and 1.33 times
faster than SIG, ATAN and LOG AFs respectively
at 0.1 learning rate. FAF has approximately similar
results with others at other learning rates. The aver-
ages TAs are approximately 93% for both FAF and
SIG. The reason behind this may be the class distri-
bution over all examples as for glass problem. ATAN
& LOG achieve TAs of 92% and 92.5% respectively.

4.3. Mackey-Glass (MG) chaotic time
series prediction problem

We have applied this method to MG chaotic time
series prediction problem. This is because most of
the literature uses this kind of time series. The MG
chaotic time series is generated by the following dif-
ferential equation.

ẋ = βx(t) +
αx(t − τ)

1 + x10(t − τ)
(5)

where α = 0.2, β = −0.1, τ = 17. x(t) is a quasi-
periodic and chaotic with a fractal dimension 2.1 for
the above parameters. The input to an artificial neu-
ral network (ANN) consists of four past data points,
x(t), x(t−6), x(t−12), and x(t−16). During training,
the true value of x(t + 6) was used as target value.

The data for MG time series was obtained by apply-
ing the fourth-order Runge-Kutta method to equa-
tion (5) with initial condition x(0) = 1.2, x(t−τ) = 0
for 0 ≤ t < τ , and the time step is one. The training
data consisted of first 500 examples. The following
500 data points were used as test set.

This is a continuous problem and different from
classification problem. The input and output are con-
tinuous. Remarkable results are obtained for this
problem as listed in Table 13. An average number
of iterations obtained with FAF is 8.4 for learning
rate of 0.1, and with two constants of λ1 = 0.4 and
λ2 = 0.15. The results are compared with other AFs
in Table 14. FAF is clearly 5, 2, and 2 times faster
than SIG, ATAN and LOG AFs respectively for a
learning rate of 0.1. It is clear that FAF is faster
than others by a wide margin.

4.4. Learning characteristics

In this section, we explain two things — the weight
update process during training and the effect of vary-
ing the number of hidden units in training. We have
presented the theoretical reasons why FAF becomes
faster in Sec. 3. Here we will describe the experimen-
tal evidence of the theoretical explanation using two
bit parity problem. Figure 5 explains the update pro-
cedure of FAF and BP algorithms for two bit parity
problem. It is clear that FAF updates very quickly,
while BP does not contribute to update process yet.

Table 13. Results in terms of number of iterations for
MG chaotic time series prediction problem.

Constants Iteration

η λ1 λ2 Mean Mn Mx SD

0.1 0.4 0.15 8.4 7 11 0.99
0.2 0.3 0.12 7.7 7 9 0.67
0.3 0.3 0.10 6.3 6 8 0.59

Table 14. Comparison in terms of number of iterations
for MG chaotic time series prediction problem.

Converge time

η FAF SIG ATAN LOG

0.1 12 65.5 23.8 24.4
0.2 9 32.7 17.9 16.7
0.3 8 23.2 16.8 15.6
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Fig. 5. Weight update process in FAF and BP for 2-bit
parity problem.

That is why absolute weight of BP does not start
to change. BP takes long time to converge. It shows
the efficiency of FAF with respect to standard BP.
The absolute value of weight was computed by tak-
ing the root mean square of weights in the network.
The Fig. 5 shows only the initial stage of training for
simplicity sake.

It is interesting to observe the impact of varying
the number of hidden units in FAF. We consider two
problems – one from parity i.e., two bit parity and
another from disease diagnosis i.e., diabetes prob-
lems. This is because entire picture of the impact of
varying hidden unit may be come out together.

Tables 15 and 16 describe the variation of hid-
den units with the variation of learning rates. The
network size 2-3-2 indicates the two input-three

Table 15. Variation of hidden unit with learning rate
for two-bit parity problem.

Network size

η 2-3-2 2-4-2 2-5-2

0.1 Mean 312 310 297
Min 241 247 238
Max 412 390 383
SD 32.76 22.58 12.64

0.3 Mean 169 164 162
Min 126 121 116
Max 210 194 187
SD 22.64 18.78 11.21

0.5 Mean 91 92 90
Min 81 86 83
Max 99 105 101
SD 11.90 10.60 6.59

Table 16. Variation of hidden unit with learning rate
for diabetes problem.

Network size

η 8-5-2 8-6-2 8-7-2

0.05 Mean 26.35 26.35 25.8
Min 24 24 23
Max 29 30 29
SD 1.31 1.57 1.61

0.1 Mean 15.45 15.1 14.9
Min 15 14 14
Max 16 16 16
SD 0.51 0.45 0.72

0.2 Mean 13.35 13.2 13.2
Min 13 13 13
Max 14 14 14
SD 0.48 0.41 0.41

hidden unit-two output network. We observe that
the number of iterations is slightly decreases with the
increase of number of hidden unit for both the prob-
lems. This is because the network now has the more
flexibility (more weights) to map the given function.
For example, the average number of iterations was
312, 310 and 297 for 2-3-2, 2-4-2, and 2-5-2 network
respectively as listed in Table 15. Similar observation
was found for diabetes problem as shown in Table 16.
The BP with higher number of hidden does not sig-
nificantly speed up the training. The main point here
is that the speed of training was not significantly
improved with the increase of hidden units.

4.5. Further comparisons

In this section, we first report the comparative tim-
ings of FAF, SIG, ATAN and LOG AFs to con-
verge. Secondly, we compare FAF with some exist-
ing algorithms. We have compared the time required
to complete a training session for all AFs. We have
just computed the time in a training session and
multiplied with the average iteration as listed in
Table 17. A programming language executes each
instruction within nanosecond depending upon the
machine. Our program adds several instructions in a
backpropagation algorithm to form FAF. Since FAF
requires less iteration, the total execution time in fact
is relatively less than other algorithms as depicted
from the table. The execution time depends upon
the machine and software used for the algorithm.
Therefore it may differ from machine to machine,
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Table 17. Comparison in term of execution time
(seconds).

Problems FAF SIG ATAN LOG

2-bit 0.89 30.71 7.83 11.38
3-bit 1.11 115.54 24.71 41.46
4-bit 11.43 1347.44 139.28 214.96
Cancer 2.03 3.17 8.27 7.83
Diabetes 13.17 23.15 27.45 29.44
Heart 1.45 1.73 1.79 1.59
Iris 5.48 8.37 7.61 7.45
Wine 6.68 6.78 11.73 13.65
Glass 38.42 38.94 37.02 45.13
Soybean 54.51 54.92 52.95 57.25
Time series 6.87 25.08 9.20 9.61

Table 18. Performance comparison of FAF with other
existing algorithms in terms of number of iteration.

Algorithm XOR IRIS

FAF 90 (100%) 38.8 (100%)
BP 3080 (100%) 44.8 (100%)
Quick prop 62.88 (56.67%) 671.14 (96.67%)
RPROP 82.36 (46.67%) 402.30 (90%)
SARPROP 243.60 (90%) —
LM 12 (35%) —
MGFPROP 562.87 (100%) 430.20 (100%)
DWM 275.43 (100%) 813.70 (100%)
MDPROP 83.93 (100%) 394.38 (100%)

software to software. We have run the program in
MATLAB environment.

There are some existing algorithms involv-
ing the fastness such as Quickprop,20 RPROP,21

SARPROP,22 Levenberg–Marquardt (LM),23

DWM,7 MGFPROP,7 and MDPROP7 algorithms. It
is very difficult to compare with the other algorithm
unless the setup of all algorithms becomes same. It
is usual that each algorithm is different setup from
others. However, FAF is compared with the avail-
able algorithms found in the literature. The most
of the algorithms are found in reference number 3
and XOR and IRIS problems are used. Therefore, we
have compared with these two problems as listed in
Table 18 (reported in Ref. 3 except FAF). We found
that FAF exhibits quite competitive result except
Quickprop, RPROP and LM and MDPROP algo-
rithms for XOR problem. Although LM is the fastest
algorithm so far, its global convergence is poor as
indicated by the parentheses (35%). The percentage

inside the parentheses indicates the counts the per-
centage of runs (over 30 different runs) that success-
fully converge to the system error of less than 10−3

as reported in Ref. 3. RPROP is variable step size
algorithm and the weight update does not include
the magnitude of error gradient whereas MDPROP
include a magnified gradient function and determin-
istic weight modification (DWM). SARPROP is the
modification of RPROP using simulated annealing.
Although they are faster algorithm, they are not
completely free from local minima. Their global con-
vergences are poor such as Quickprop 56.67% and
RPROP 46.67% for XOR problem. FAF outperforms
all algorithms in terms of number of average itera-
tions as shown in the table for the IRIS problem. In
this case Quickprop and RPROP achieve 96.67% and
90% convergence — not 100%, while FAF achieves
100% convergence with only 38.8 iterations.

5. Discussion

In this technique user needs to select two linear con-
stants λ1 and λ2. One can run FAF without making
any adaptive technique in η. It is enough to maintain
at a small suitable value. We have shown the learn-
ing characteristics at different η to make sure about
the fastness and performance of FAF. We have three
observations on the user specified parameters.

(a) We have observed the inverse relationship
between λ2 and η as shown in Fig. 6. Smaller
is suitable for FAF. The value of λ2 becomes less
than 1 for all problems except parity problems.
These values were selected by limited number of
initial trials. We observed that the small positive
values of λ2 are suitable for faster and better per-
formance. Negative values of λ2 are not suitable
since it slows down training. However, we did not
optimize it.

(b) The linear relationship was also observed
between — λ1 and η as shown in Fig. 6 (shown
for 4 different problems). The negative values of
λ1 are chosen since the error is reduced quickly
in course of training and TA is seen to be good
also. However, we suggest that the absolute value
of λs should be decreased with the increase of η

for better results. We observed an exception for
MG time series problem where λ1 was selected
within small positive values since this is a contin-
uous problem – different from classification ones.
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Fig. 6. Dependency of lambda parameter with learning
rate.

One can select λ1 less than 0.25 since the maxi-
mum value of derivative of sigmoid AF - O(1-O)
is 0.25. So the selection is not critical.

(c) The learning rate should be smaller for accept-
able results for FAF. This is true for all other
AFs as well. The learning rate varies from 0.05
to 0.3 for all problems except parity problems.
The η varies from 0.1 to 0.5 for parity problems.

There is a marginal increase in error at the begin-
ning of training for only 2-bit parity problem. This
may be due to the use of steeper linear line in the out-
put layer. Another reason may be the limited number
of weights (2-2-2 = 8). Sometimes insufficient weight
makes the learning hard. However, this is allowable
if error is expected to reduce quickly in the following
few cycles.

We found few important observations as below:

(i) The FAF shows faster and better results than
other AFs for parity problems. SIG AF requires

long training time to converge whereas FAF
needs much smaller number of iterations. For
4-bit parity problem, FAF classifies always 16
patterns and other AFs fail for that.

(ii) The FAF shows better performance for all two-
class and more than two-class problems such as
Wine, Iris, Glass, and Soybean. Also TA of FAF
was better than others except diabetes problem.
Since diabetes is a hard problem and percentage
of noise added in it is larger than others. The
testing accuracies for Glass problem are higher
than others by a wide margin.

(iii) Exceptional results were obtained for MG
chaotic time series prediction problem. The con-
vergence time and prediction accuracies are bet-
ter by a wide margin than other AFs.

6. Conclusion

This paper proposes a new hybrid activation function
by combining the conventional AFs. The sigmoid,
tan hyperbolic and linear AFs are fused together to
compute final activation in a NN. This is similar to
yet different from other existing algorithms. Promis-
ing and interesting results are obtained with differ-
ent kinds of real world benchmark problems such as
parity problem, cancer, diabetes, heart disease, iris,
wine, glass, soybean and MG chaotic time series pre-
diction problems. Almost in every cases FAF achieves
faster training. One of the main points in this paper
is the joint use of two linear constants (λ1, λ2) in
opposite sign. MG time series problem was an excep-
tion and FAF gives faster with it with the same sign
of linear constants. FAF is a useful technique for
faster training. The testing accuracies are also val-
idated through a series of simulation and they are
better than other methods. This may reduce the ter-
rible long training time and tediousness in trial. A
nice further study may be the selection of optimal
values of user defined parameters (η, λ1, λ2) using
genetic algorithm.
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