
Security Analysis of DRBG Using HMAC in
NIST SP 800-90

Shoichi Hirose

Graduate School of Engineering, University of Fukui
hrs shch@u-fukui.ac.jp

Abstract. HMAC DRBG is a deterministic random bit generator us-
ing HMAC specified in NIST SP 800-90. The document claims that
HMAC DRBG is a pseudorandom bit generator if HMAC is a pseudoran-
dom function. However, no proof is given in the document. This article
provides a security analysis of HMAC DRBG and confirms the claim.

Key words: NIST SP 800-90, pseudorandom bit generator, HMAC,
pseudorandom function

1 Introduction

Background. Random bits are indispensable to every cryptographic application.
However, it is not easy to prepare sufficient amount of truly random bits in
general. Thus, most applications use a cryptographic mechanism that is called
a pseudorandom bit generator (PRBG). It stretches a short sequence of random
bits to a long sequence of bits that are indistinguishable from truly random bits
in practice.

HMAC DRBG is a deterministic random bit generator (DRBG) specified in
NIST SP 800-90 [3]. It is claimed in NIST SP 800-90 that HMAC DRBG is a
PRBG if HMAC is a pseudorandom function (PRF). However, no proof is made
public as far as the authors know.

Contribution. This article presents a security analysis of HMAC DRBG. The
result supports the claim in NIST SP 800-90 mentioned above. This article does
not provide new techniques and just uses well-known ones in the analysis. In spite
of this fact, the contribution of this paper is still important since HMAC DRBG
is expected to be widely used in practice.

HMAC DRBG consists of three algorithms. They are instantiate, reseed and
generate algorithms. The instantiate/reseed algorithm is used to produce/refresh
a secret key. The generate algorithm produces a binary sequence from a secret
key given by the instantiate or reseed algorithms. This article gives a proof for the
pseudorandomness of HMAC DRBG on the assumption that the instantiate and
reseed algorithms are ideal. Namely, a secret key given to the generate algorithm
is selected uniformly at random by each of them.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Fukui Repository

https://core.ac.uk/display/59036885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Hirose

Related Work. NIST SP 800-90 specifies four DRBG mechanisms: Hash DRBG,
HMAC DRBG, CTR DRBG and Dual EC DRBG. Hash DRBG and HMAC DRBG
are based on hash functions. CTR DRBG uses a block cipher in the counter
mode. Dual EC DRBG is based on the elliptic curve discrete logarithm problem.
A security analysis of these DRBGs was presented in [9]. However, the discussion
was quite informal. A security analysis of CTR DRBG was also presented in [7].
Brown and Gjøsteen [6] provided a detailed security analysis of Dual EC DRBG.

There also exist some other approved DRBGs in ANSI X.9.31 [2], ANSI
X.9.62-1998 [1] and FIPS PUB 186-2 [11]. The security of these algorithms was
discussed in [8] and [10].

HMAC was proposed by Bellare, Canetti and Krawczyk [5]. It was proved to
be a PRF on the assumption that the compression function of the underlying
iterated hash function is a PRF with two keying strategies[4]. Actually, HMAC
is used as a PRF in many cryptographic schemes.

Organization. This article is organized as follows. Definitions of a pseudorandom
bit generator and a pseudorandom function are given in Sect. 2. A description of
HMAC DRBG is presented in Sect. 3. Results on security analysis of HMAC DRBG
are shown in Sect. 4. Concluding remarks are given in Sect. 5.

2 Preliminaries

Let a
$← A represent that an element a is selected uniformly at random from a

set A.

2.1 A Pseudorandom Bit Generator

Let G be a function such that G : {0, 1}n → {0, 1}l. Let D be a probabilistic
algorithm which outputs 0 or 1 for a given input in {0, 1}l. The goal of D is
to tell whether a given input is G(k) for k selected uniformly at random or it
is selected uniformly at random. The advantage of D against G is defined as
follows:

Advprbg
G (D) =

∣∣∣Pr[D(G(k)) = 1 | k $← {0, 1}n] − Pr[D(s) = 1 | s $← {0, 1}l]
∣∣∣ ,

where the probabilities are taken over the coin tosses by D and the uniform
distributions on {0, 1}n or {0, 1}l. G is called a pseudorandom bit generator
(PRBG) if l > n and Advprbg

G (D) is negligible for any efficient D.

2.2 A Pseudorandom Function

Let H be a keyed function such that H : K×D → R, where K is a key space, D is
a domain, and R is a range. H(k, ·) is denoted by Hk(·). Let A be a probabilistic
algorithm which has oracle access to a function from D to R. The goal of A is
to tell whether the oracle is Hk for k selected uniformly at random or it is a

Security Analysis of DRBG Using HMAC in NIST SP 800-90 3

function selected uniformly at random. A first asks elements in D and obtains
the corresponding elements in R with respect to the function, and then outputs
0 or 1. A makes the queries adaptively: A makes a new query after receiving an
answer to the current query.

Let F be the set of all functions from D to R. The advantage of A for H is
defined as follows:

Advprf
H (A) =

∣∣∣Pr[AHk = 1 | k $← K] − Pr[Aρ = 1 | ρ $← F]
∣∣∣ ,

where the probabilities are taken over the coin tosses by A and the uniform dis-
tributions on K or F . H is called a pseudorandom function (PRF) if Advprf

H (A)
is negligible for any efficient A.

3 HMAC DRBG

HMAC DRBG is a DRBG using HMAC in NIST SP 800-90 [3]. It consists of
three algorithms: an instantiate algorithm, a reseed algorithm and a generate
algorithm. The instantiate algorithm is used to produce a secret key. The reseed
algorithm is used to refresh it. These algorithms are out of the scope of the
article. They also use HMAC to produce the secret keys. However, the security
of the outputs is not based on the secrecy and randomness of the keys given to
HMAC but the data given to HMAC via message input. From this viewpoint,
we may say that they abuse HMAC.

We only assume that the keys produced by the instantiate and reseed al-
gorithms are ideal. Namely, we assume that a secret key given to the generate
algorithm is selected uniformly at random.

The generate algorithm produces a binary sequence for a given secret key. A
description of this algorithm is given in the following part. The instantiate and
reseed algorithms are given in Appendix A for reference.

Notation. HMAC is simply denoted by H. Let n denote the output length of H.
Let null denote an empty sequence. Concatenation of binary sequences x and y
is denoted by x‖y. The symbol ‖ is sometimes omitted.

3.1 Internal State

The internal state of HMAC DRBG includes K ∈ {0, 1}n, V ∈ {0, 1}n, and a
reseed counter d ≥ 1. K and V are assumed to be secret. The reseed counter d
is an integer variable indicating the number of requests for pseudorandom bits
since instantiation or reseeding.

3.2 The Function Update

The function Update is used in the generate algorithm to produce a secret key
(K,V) for the next invocation of the generate algorithm. It is described as fol-
lows.

4 S. Hirose

Update(K, V , adin):
1. K = H(K,V ‖0x00‖adin)
2. V = H(K,V)
3. If adin = null, then return (K,V)
4. K = H(K,V ‖0x01‖adin)
5. V = H(K,V)
6. Return (K,V)

adin is an optional additional input. Update is shown in Fig. 1.

V
K

0x00

K

V

H

H

(a) If adin is an empty sequence

V
K

0x00 adin

0x01 adin

K

V

H

H

H

H

(b) If adin is not an empty sequence

Fig. 1. The function Update

3.3 The Algorithm Generate

The generate algorithm Generate produces a binary sequence s for given secret
(K,V) and an optional additional input adin. It is described as follows.

Security Analysis of DRBG Using HMAC in NIST SP 800-90 5

Generate(K, V , adin):

1. If d > w, then return an indication that a reseed is required.
2. (K,V) = Update(K,V, adin) if adin 6= null

3. tmp = null

4. While |tmp| < ` do:

(a) V = H(K,V)
(b) tmp = tmp‖V

5. s = the leftmost ` bits of tmp

6. (K,V) = Update(K,V, adin)
7. d = d + 1
8. Return s and (K,V)

The maximum sizes of parameters are given in Table 1. w is called a re-
seed interval. It represents the total number of requests for pseudorandom bits
between reseeding. If adin is not supported, then the step 6 is executed with
adin = null. Generate is given in Fig. 2.

V

K

Update
V

K

null

s

H H H

(a) If adin is not given or not supported

V

K

Update
V

K

Update

adin

s

H H H

(b) If adin is given

Fig. 2. The algorithm Generate. The update of the reseed counter d is omitted.

6 S. Hirose

Table 1. The maximum sizes of parameters

parameter maximum size

|adin| 235 bits

` 219 bits

w 248

4 Security Analysis

For simplicity, we assume that ` is a multiple of n. Thus, the output length of
Generate is `+2n. We analyze the security of a generator G : {0, 1}2n → {0, 1}w`

defined as follows:

G(K,V):
1. (K0, V0) = (K,V)
2. s = null
3. for i = 1 to w do

(a) (si,Ki, Vi) = Generate(Ki−1, Vi−1, adini−1)
(b) s = s‖si

(c) Return s

We make adini implicit in the notation of G(K,V), because the analysis given
in the remaining parts does not depend on the value of adini. It depends only
on whether adini = null or not.

4.1 If adin = null

First, notice that we cannot prove the pseudorandomness of G directly from
that of Generate. Generate is not a PRBG if adin = null. Let q = `/n and
Generate(K,V) = s1‖s2‖ · · · ‖sq‖K ′‖V ′, where sj ∈ {0, 1}n for 1 ≤ j ≤ q. Then,
V ′ = HK′(sq). Thus, it is easy to distinguish s1‖s2‖ · · · ‖sq‖K ′‖V ′ from a truly
random sequence of length ` + 2n.

We introduce two generators G01 and G02. G01 : {0, 1}2n → {0, 1}`+2n is
described as follows:

G01(K,V):
1. s = V
2. tmp = null
3. While |tmp| < ` do:

(a) V = H(K,V)
(b) tmp = tmp‖V

4. s = s‖tmp
5. K = H(K,V ‖0x00)
6. s = s‖K
7. Return s

Security Analysis of DRBG Using HMAC in NIST SP 800-90 7

G02 : {0, 1}2n → {0, 1}`+3n is described as follows:

G02(K,V) :
1. s = V
2. V = H(K,V)
3. s = s‖G01(K,V)
4. Return s

The only difference between G01 and G02 is that G02 calls HMAC more than
G01 by one time.

Let G0 : {0, 1}2n → {0, 1}w(`+n)+n be a generator which, for a given (K,V),
produces a sequence{

s1
0s

1
1 · · · s1

q+1 if w = 1
s1
0s

1
1 · · · s1

q−1‖s2
−1s

2
0 · · · s2

q−1‖ · · · ‖sw−1
−1 sw−1

0 · · · sw−1
q−1 ‖sw

−1s
w
0 · · · sw

q+1 if w ≥ 2 ,

where

1. si
j ∈ {0, 1}n,

2. s1
0s

1
1 · · · s1

q+1 = G01(K,V), and
3. si

−1s
i
0s

i
1 · · · si

q+1 = G02(si−1
q+1, s

i−1
q) for 2 ≤ i ≤ w.

A diagram of G0 is given in Fig. 3. Notice that G(K,V) is a part of G0(K,V).
It is obvious if w = 1. For w ≥ 2,

G(K,V)
= s1

1s
1
2 · · · s1

q−1‖s2
−1s

2
1s

2
2 · · · s2

q−1‖ · · · ‖sw−1
−1 sw−1

1 sw−1
2 · · · sw−1

q−1 ‖sw
−1s

w
1 sw

2 · · · sw
q

= s1
1s

1
2 · · · s1

q‖s2
1s

2
2 · · · s2

q‖ · · · ‖sw−1
1 sw−1

2 · · · sw−1
q ‖sw

1 sw
2 · · · sw

q ,

where si+1
−1 = si

q for 1 ≤ i ≤ w − 1. Thus, G is a PRBG if G0 is a PRBG. We
will discuss the security of G0 in the remaining part.

c c

V

K

G01 G02 G02 G02

.

V

K

H H H H

H

H

H

Fig. 3. A diagram of the generator G0. c represents the concatenation with 0x00. The
Update functions are surrounded by dashed rectangles.

We first show that both G01 and G02 are PRBGs if HMAC is a PRF. For an
algorithm A, let tA be the running time of A.

8 S. Hirose

Lemma 1. Let D be a distinguisher for G01 which runs in tD. Then, there exists
an adversary A for HMAC such that

Advprbg
G01

(D) ≤ Advprf
HMAC(A) +

q(q − 1)
2n+1

.

A runs in tD + O(`) and asks at most q + 1 queries.

Proof. Let F∗,n be the set of all functions from {0, 1}∗ to {0, 1}n. Let Ĝ01(ρ, ·)
be a generator obtained from G01 by replacing HMAC with a function ρ ∈ F∗,n.
Let

P0 = Pr[D(s) = 1 | (K,V) $← {0, 1}2n ∧ s ← G01(K,V)] ,

P1 = Pr[D(s) = 1 | ρ $← F∗,n ∧ V
$← {0, 1}n ∧ s ← Ĝ01(ρ, V)] ,

P2 = Pr[D(s) = 1 | s $← {0, 1}`+2n] .

Then,
Advprbg

G (D) = |P0 − P2| ≤ |P0 − P1| + |P1 − P2| .

Let Ĝ01(ρ, V) = ŝ0ŝ1 · · · ŝq+1, where ŝj ∈ {0, 1}n for 0 ≤ j ≤ q + 1. If

ρ
$← F∗,n, then Ĝ01(ρ, V) and a random sequence of length ` + 2 n is completely

indistinguishable as far as ŝj1 6= ŝj2 for every j1 and j2 such that 0 ≤ j1 < j2 ≤
q − 1. Notice that ŝj 6= ŝq‖0x00 for every 0 ≤ j ≤ q − 1. Thus,

|P1 − P2| ≤
q(q − 1)

2n+1
.

On the other hand, for |P0 − P1|, it is easy to see that we can construct an
adversary A for HMAC, using D as a subroutine, such that

Advprf
HMAC(A) ≥ |P0 − P1| ,

where A runs in tD + O(`) and asks at most q + 1 queries. ut

Lemma 2. Let D be a distinguisher for G02 which runs in tD. Then, there exists
an adversary A such that

Advprbg
G02

(D) ≤ Advprf
HMAC(A) +

q(q + 1)
2n+1

.

A runs in tD + O(`) and asks at most q + 2 queries.

Proof. The proof is similar to that of Lemma 1. ut

For w ≥ 2, let G
(w−1)
02 be a generator which calls G02 (w − 1) times succes-

sively. Namely,

G
(w−1)
02 (s1

q+1, s
1
q) = s2

−1s
2
0 · · · s2

q−1‖ · · · ‖sw−1
−1 sw−1

0 · · · sw−1
q−1 ‖sw

−1s
w
0 · · · sw

q+1 .

Security Analysis of DRBG Using HMAC in NIST SP 800-90 9

Lemma 3. Let D be a distinguisher for G
(w−1)
02 which runs in tD. Then, there

exists a distinguisher D′ of G02 such that

Advprbg

G
(w−1)
02

(D) ≤ (w − 1)Advprbg
G02

(D′) .

D′ runs in tD + (w − 2) tG02 + O(w`).

Proof. For a given input s ∈ {0, 1}`+3n, the distinguisher D′ behaves as follows:

1. Select 2 ≤ r ≤ w uniformly at random.
2. If r ≥ 3, then select s2

−1s
2
0 · · · s2

q−1, . . . , s
r−1
−1 sr−1

0 · · · sr−1
q−1 uniformly at ran-

dom.
3. Let sr

−1s
r
0 · · · sr

q+1 = s.
4. If r < w, si

−1s
i
0 · · · si

q+1 = G02(si−1
q+1, s

i−1
q) for r + 1 ≤ i ≤ w.

5. Call D with
s = s2

−1s
2
0 · · · s2

q−1‖ · · · ‖sw−1
−1 sw−1

0 · · · sw−1
q−1 ‖sw

−1s
w
0 · · · sw

q+1 .
6. Output D’s output.

Then,

Advprbg
G02

(D′)

=
∣∣∣Pr[D′(G02(K,V)) = 1 | (K,V) $← {0, 1}2n] − Pr[D′(s) = 1 | s $← {0, 1}`+3n]

∣∣∣
=

∣∣∣Pr[D(s) = 1 | (K,V) $← {0, 1}2n ∧ s ← G02(K,V)]

− Pr[D(s) = 1 | s $← {0, 1}`+3n]
∣∣∣ .

Pr[D(s) = 1 | (K,V) $← {0, 1}2n ∧ s ← G02(K,V)]

=
w∑

u=2

Pr[r = u ∧ D(s) = 1 | (K,V) $← {0, 1}2n ∧ s ← G02(K,V)]

=
w∑

u=2

Pr[D(s) = 1 | (K,V) $← {0, 1}2n ∧ s ← G02(K,V) ∧ r = u]
w − 1

=
Pr[D(s) = 1 | (K,V) $← {0, 1}2n ∧ s ← G

(w−1)
02 (K,V)]

w − 1
+

w∑
u=3

Pr[D(s) = 1 | (K,V) $← {0, 1}2n ∧ s ← G02(K,V) ∧ r = u]
w − 1

.

Pr[D(s) = 1 | s $← {0, 1}`+3n] =
w−1∑
u=2

Pr[D(s) = 1 | s $← {0, 1}`+3n ∧ r = u]
w − 1

+
Pr[D(s) = 1 | s $← {0, 1}(w−1)(`+n)+2n]

w − 1
.

10 S. Hirose

There may exist a better distinguisher for G02 than D′ with the same running
time. Thus, we have

Advprbg
G02

(D′) ≥ 1
w − 1

Advprbg

G
(w−1)
02

(D) .

The running time of D′ is at most tD + (w − 2) tG02 + O(w`). ut

Lemma 4. Let D be a distinguisher for G0 which runs in tD. Then, there exist
distinguishers D′ for G01 and D′′ for G

(w−1)
02 such that

Advprbg
G0

(D) ≤ Advprbg
G01

(D′) + Advprbg

G
(w−1)
02

(D′′) .

D′ runs in tD + t
G

(w−1)
02

+ O(w`), and D′′ runs in tD + O(w`).

Proof. Let

P0 = Pr[D(s) = 1 | (K,V) $← {0, 1}2n ∧ s ← G0(K,V)] ,

P1 = Pr[D(s) = 1 | s1
0 · · · s1

q+1
$← {0, 1}`+2n ∧ s ← s1

0 · · · s1
q−1‖G

(w−1)
02 (s1

q+1, s
1
q)] ,

P2 = Pr[D(s) = 1 | s $← {0, 1}w(`+n)+n] .

Then, there exist D′ and D′′ such that

Advprbg
G0

(D) = |P0 − P2| ≤ |P0 − P1| + |P1 − P2|

≤ Advprbg
G01

(D′) + Advprbg

G
(w−1)
02

(D′′) .

The running time of D′ is tD + t
G

(w−1)
02

+ O(w`). The running time of D′′ is
tD + O(w`). ut

The following theorem directly follows from Lemmas 1, 2, 3 and 4. It implies
that G0 is a PRBG if HMAC is a PRF.

Theorem 1. Let D be a distinguisher for G0 which runs in tD. Then, there
exists an adversary A for HMAC such that

Advprbg
G0

(D) ≤ w Advprf
HMAC(A) +

wq(q + 1)
2n+1

.

A runs in tD + w(q + 2) tHMAC + O(w`) and asks at most q + 2 queries, where
the length of each query is at most n + 8.

Remark 1. Suppose that SHA-1 is the underlying hash function of HMAC. Then,
n = 160. Suppose that w = 248 and ` = 211 × 160 (≤ 219). Then,

Advprbg
G0

(D) ≤ 248 Advprf
HMAC(A) +

1
290

,

where A runs in time tD +260 tHMAC +O(266.3) and makes at most 2050 queries.
The big-O notation is abused here. O(266.3) is upper bounded by c × 266.3 for
some positive constant c.

Security Analysis of DRBG Using HMAC in NIST SP 800-90 11

Remark 2. Suppose that SHA-256 is the underlying hash function of HMAC.
Then, n = 256. Suppose that w = 248 and ` = 219. Then,

Advprbg
G0

(D) ≤ 248 Advprf
HMAC(A) +

1
2186

,

where A runs in time tD + 260tHMAC + O(267) and makes at most 2050 queries.

4.2 If adin 6= null

If adin 6= null, then the analysis is similar but tedious. We first define several
generators.

Let g10 : {0, 1}2n → {0, 1}2n be a generator such that

g10(K,V) = V ‖H(K,V ‖0x00‖adin) .

Let g11 : {0, 1}2n → {0, 1}3n be a generator such that g11(K,V) = s, where s is
obtained as follows:

1. V1 = H(K,V)
2. V2 = H(K,V1‖0x01‖adin)
3. s = V ‖V1‖V2

Let g12 : {0, 1}2n → {0, 1}3n be a generator such that g12(K,V) = s, where s is
obtained as follows:

1. V1 = H(K,V)
2. V2 = H(K,V1‖0x00‖adin)
3. s = V ‖V1‖V2

The generators g10, g11 and g12 are depicted in Fig. 4.
Let G10 : {0, 1}2n → {0, 1}`+3n be a generator equivalent to G02 defined in

the previous subsection.

c0

H

H

H

Hc1 c0 H

g10 g11 g12

Fig. 4. A diagram of the generators g10, g11 and g12. The Update functions are sur-
rounded by dashed rectangles. c0 represents the concatenation with 0x00‖adin, and c1
represents the concatenation with 0x01‖adin.

Using the generators defined above, we further define two generators G11

and G12. G11 : {0, 1}2n → {0, 1}`+4n is described as follows: G11(K,V) =
s−2s−1 · · · sq+1, where

12 S. Hirose

1. V1K1 = g10(K,V)
2. s−2V2K2 = g11(K1, V1)
3. s−1s0 · · · sqsq+1 = G10(K2, V2)

G12 : {0, 1}2n → {0, 1}`+6n is described as follows: G12(K,V) = s−4s−3 · · · sq+1,
where

1. s−4V1K1 = g11(K,V)
2. s−3V2K2 = g12(K1, V1)
3. s−2V3K3 = g11(K2, V2)
4. s−1s0 · · · sqsq+1 = G10(K3, V3)

Now, we are ready to discuss the pseudorandomness of G(K,V). Let G1 :
{0, 1}2n → {0, 1}w(`+4n) be a generator which, for a given (K,V), produces a
sequence{

s1
−2s

1
−1 · · · s1

q+1 if w = 1
s1
−2s

1
−1 · · · s1

q−1‖s2
−4 · · · s2

q−1‖ · · · ‖sw−1
−4 · · · sw−1

q−1 ‖sw
−4 · · · sw

q+1 if w ≥ 2 ,

where

1. si
j ∈ {0, 1}n,

2. s1
−2s

1
−1 · · · s1

q+1 = G11(K,V), and
3. si

−4 · · · si
q+1 = G12(si−1

q+1, s
i−1
q) for 2 ≤ i ≤ w.

Notice that G(K,V) is a part of G1(K,V). It is easy to see if w = 1. For w ≥ 2,

G(K,V)
= s1

1s
1
2 · · · s1

q−1‖s2
−4s

2
1s

2
2 · · · s2

q−1‖ · · · ‖sw−1
−4 sw−1

1 sw−1
2 · · · sw−1

q−1 ‖sw
−4s

w
1 sw

2 · · · sw
q+1

= s1
1s

1
2 · · · s1

q‖s2
1s

2
2 · · · s2

q‖ · · · ‖sw−1
1 sw−1

2 · · · sw−1
q ‖sw

1 sw
2 · · · sw

q ,

where si+1
−4 = si

q for 1 ≤ i ≤ w−1. Thus, we discuss the pseudorandomness of G1

in the remaining part. We only present the results since the proofs are similar.

Lemma 5. Let D be a distinguisher for g10 which runs in tD. Then, there exists
an adversary A for HMAC such that

Advprbg
g10

(D) ≤ Advprf
HMAC(A) .

A runs in tD + O(n) and asks 1 query.

Lemma 6. Let g be g11 or g12. Let D be a distinguisher for g which runs in tD.
Then, there exists an adversary A for HMAC such that

Advprbg
g (D) ≤ Advprf

HMAC(A) .

A runs in tD + O(n) and asks at most 2 queries.

Security Analysis of DRBG Using HMAC in NIST SP 800-90 13

Lemma 7. Let D be a distinguisher for G11 which runs in tD. Then, there exist
D0, D1 and D′ such that

Advprbg
G11

(D) ≤ Advprbg
g10

(D0) + Advprbg
g11

(D1) + Advprbg
G10

(D′) .

D0 runs in tD + tg11 + tG10 + O(n). D1 runs in tD + tG10 + O(n). D′ runs in
tD + O(n).

Lemma 8. Let D be a distinguisher for G12 which runs in tD. Then, there exist
D1, D2 and D′ such that

Advprbg
G12

(D) ≤ 2Advprbg
g11

(D1) + Advprbg
g12

(D2) + Advprbg
G10

(D′) .

D1 runs in tD + tg11 + tg12 + tG10 + O(n). D2 runs in tD + tg11 + tG10 + O(n).
D′ runs in tD + O(n).

The following theorem directly follows from Lemmas 5, 6, 7 and 8. It implies
that G1 is a PRBG if HMAC is a pseudorandom function.

Theorem 2. Let D be a distinguisher for G1 which runs in tD. Then, there
exist adversaries A1 and A2 such that

Advprbg
G1

(D) ≤ w Advprf
HMAC(A1) + 3 w Advprf

HMAC(A2) +
wq(q − 1)

2n+1
.

A1 runs in tD + w(q + 8) tHMAC + O(w`) and asks at most q + 1 queries, and
A2 runs in tD + (w + 1)(q + 8) tHMAC + O(w`) and asks at most 2 queries.

5 Conclusion

We have shown that the binary sequence generation algorithm of HMAC DRBG
is a PRBG if HMAC is a PRF. Future work includes analysis of the instantiate
and reseed algorithms of HMAC DRBG.

Acknowledgements

The author would like to thank anonymous reviewers for their valuable com-
ments. This research was supported in part by the National Institute of Infor-
mation and Communications Technology, Japan.

References

1. American National Standards Institute. Public key cryptography for the financial
services industry: The elliptic curve digital signature algorithm (ECDSA). ANSI
X9.62-1998 (1998)

2. American National Standards Institute. Digital signatures using reversible public
key cryptography for the financial services industry (rDSA). ANSI X9.31-1998
(1998)

14 S. Hirose

3. Barker, E., Kelsey, J.: Recommendation for random number generation using deter-
ministic random bit generators (revised). NIST Special Publication 800-90 (2007)

4. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer (2006). The full version is “Cryptology ePrint Archive: Report 2006/043”
at http://eprint.iacr.org/.

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO ’96. LNCS, vol. 1109, pp. 1–15. Springer
(1996)

6. Brown, D.R., Gjøsteen, K.: A security analysis of the NIST SP 800-90 elliptic curve
random number generator. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 466–481. Springer (2007)

7. Campagna, M.J.: Security bounds for the NIST codebook-based deterministic ran-
dom bit generator. Cryptology ePrint Archive: Report 2006/379, http://eprint.
iacr.org/

8. Desai, A., Hevia, A., Yin, Y.L.: A practice-oriented treatment of pseudorandom
number generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 368–383. Springer (2002)

9. Kan, W.: Analysis of underlying assumptions in NIST DRBGs. Cryptology ePrint
Archive: Report 2007/345, http://eprint.iacr.org/

10. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Cryptanalytic attacks on pseudoran-
dom number generators. In: Vaudenay, S. (ed.) FSE ’98. LNCS, vol. 1372, pp. 168–
188. Springer (1998)

11. U.S. Department of Commerce/National Institute of Standards and Technology.
Digital signature standard (DSS). Federal Information Processing Standards Pub-
lication 186-2 (+Change Notice) (2000)

A The Instantiate and Reseed Algorithms of
HMAC DRBG

The internal state of HMAC DRBG includes K ∈ {0, 1}n, V ∈ {0, 1}n, and
a reseed counter d. data is the entropy source. adin is an optional additional
input.

The Instantiate Algorithm. The instantiate algorithm Instantiate is described as
follows:

Instantiate(data, nonce, adin):
1. seed = data‖nonce‖adin
2. K = 0x0000 · · · 00
3. V = 0x0101 · · · 01
4. (K,V) = Update(seed,K, V)
5. d = 1
6. Return (K,V) and d.

If adin is not supported, then the first step of the procedure is replaced by

seed = data‖nonce .

Security Analysis of DRBG Using HMAC in NIST SP 800-90 15

The Reseed Algorithm. The reseed algorithm Reseed is described as follows:

Reseed(K,V, d, data, adin):
1. seed = data‖adin
2. (K,V) = Update(seed,K, V)
3. d = 1
4. Return (K,V) and d.

The input (K,V) to Reseed is given by the latest Generate. If adin is not sup-
ported, then the first step of the procedure is replaced by

seed = data .

