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Abstract 

   This paper presents the development of a practical method, by using prepared tabulated data, to 

calculate the mode I stress intensity factor (SIF) for an inner surface circumferential crack in a finite 

length cylinder. The crack surfaces are subjected to an axisymmetric stress with an arbitrary biquadratic 

radial distribution. The method was derived by applying the authors’ weight function for the crack. This 

work is based on the thin shell theory and the Petroski-Achenbach method. Our method is valid over a 

wide range of mean radius to wall thickness ratio, Rm/W ≥ 1, and for relatively short cracks with a/W ≤ 

0.5. The difference between the SIF obtained by our method for the geometry and that from finite element 

analysis is within 5%. The method we developed describes the effect that cylinder length gives on the SIF. 

This effect needs to be considered for cylinders shorter than non-dimensional cylinder length βH≤ 5. 
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1.   Introduction 

   The stress intensity factor (SIF) of an inner surface circumferential crack in a cylinder is one of the 

fundamental quantities for evaluating the structural integrity of cracked pressure vessels. Under an 

assumption of infinite lengths, Nied [ 1 ] obtained analytical SIF solutions to uniform and linear stress 

distribution on the crack surfaces, and Wu [ 2 ] and Fett [ 3 ] gave a weight function for evaluating the 

SIF of the crack loaded with an arbitrary stress distribution on its surfaces. However, the infinite length 

assumption is not valid for a good many actual pressure vessels that have finite lengths. For this reason, 

we developed a weight function for the crack that enables evaluation of the influence of cylinder length 

on the SIF. It is based on the theory of the cylindrical shell and compliance [ 4 ]． As a result of the SIF 

calculation using our weight function, we found that the SIF of the crack for short cylinders is larger than 

for long cylinders when the annular cross-section of a cylinder and the applied stress distribution are the 

same. This indicates that the design engineers may be erring on the dangerous side, if they apply a SIF 

solution for the crack obtained under the assumption of infinite cylinder length. Thus we think that it is 

useful to present our weight function which allows evaluation of the SIF including the effect of cylinder 

length in a ready-to-use form. 

   Since our weight function is based on the cylindrical shell theory, there is an applicable range for the 

mean radius to wall thickness ratio Rm/W that comes from the theory. A tentative guideline is given as 

Rm/W ≥ 5.5 [ 5 ] (for non-dimensional crack length a/W ≤ 0.6). This number is based on concrete 
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numerical evaluation, though it may be argued that Rm/W = 5.5 is out of the application range according 

to the shell theory. There is the possibility of extending the range of application by adding more rigorous 

numerical studies and this will be useful if the weight function is applicable to more thick(er)-walled 

cylinders. 

   In this paper, the applicable application range of our weight function for the crack is examined 

rigorously via comparisons between the SIF obtained by our weight function and those obtained by Finite 

Element Analysis (FEA). Subsequently, a method that enables immediate SIF evaluation with prepared 

tabulated data for the crack under an arbitrary biquadratic stress distribution on the crack surfaces is 

presented. The method is applicable to structures within the new application range. 

2.   Weight function for a circumferential crack in a finite-length cylinder 

   We derived a closed form SIF equation of a circumferential crack in a finite-length cylinder 

corresponding to an axisymmetric bending problem as shown in Fig. 1(a) as a product of  ψf, a 

geometrically defined parameter described in the Appendix and KM, SIF of an infinite length 

edge-cracked beam under pure bending moment M0 [ 5 ], [ 6 ]. 
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Here, Z = W2/6 is the section modulus and FM is the infinite length edge-cracked beam’s correction factor 

for finite width and under pure bending. The moment M0 is related to the linear stress distribution σ(x) by 

Eq. (2), whose inner and outer stress difference is 2σ0, and is given by Eq. (3), taking the curvature effect 
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into account. M0 as well as Z is a quantity per unit circumferential length. 
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   The first step in the derivation of Eq. (1) was to replace the cylindrical shell by a beam on an elastic 

foundation and the cracked part by a rotary spring (whose compliance is equal to the compliance 

increment Δλ due to the presence of a crack for an infinitely long beam under pure bending). Then 

through some further steps, we found that the approximate value of the desired SIF could be evaluated as 

the SIF of an edge cracked beam under pure bending (ψf⋅M0). The validity of the equation was shown in 

our previous paper [ 5 ]. 

   On the other hand, our weight function to evaluate the SIF corresponding to a problem shown in Fig. 

1(b) was derived by applying the Petroski-Achenbach method to the SIF solution KM0 given by Eq. (1) 

and taking the crack opening displacement corresponding to Eq. (1) v(x; a) as  
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where x = 0 shows the mouth point. Here E' = E (Young’s modulus) for plane stress and E'=E/(1-ν2) for 

plane strain, with ν being Poisson’s ratio. Coefficient C3 was obtained from Eq. (4) as follows by using 

crack mouth opening displacement (CMOD),δ(a): v at x = 0. 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−= )(2

8
')(1)( 03 a

a
EaK

a
aC M δπ  (5) 

Taking into account that CMOD of an edge-cracked strip under pure bending M0, δbeam, is given by a 
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closed form equation [ 7 ] and that δ(a) = ψf ⋅δbeam(a) is analogous to Eq. (1), all the unknowns in Eq. (4) 

and (5) were determined. 

   By substituting v(x; a) into Eq. (6), the desired weight function w(x; a) was obtained. By applying 

this w(x; a) to Eq. (7), the SIF of the crack under an arbitrary stress distribution σ(x) on the crack surface 

( Fig.1(b)) can be evaluated. 
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Here, Ri is the inner radius of the cylinder. The formal definition of w is as follows [ 4 ]: 

}])(2)2([))(2(2{)(

))(2(2

][);(

f
ff

f
f

f
2

∂ξ
∂ψψ

∂ξ
∂

∂ξ
∂ψ

∂ξ
∂ψψ

ψπ

⋅−+⋅+⋅+⋅−+⋅⋅⋅×−+

⋅−+⋅⋅⋅=

⋅⋅−⋅

xaaxaWVVxaFxaxa

xaaWxFx

FxaWaax

M

M

Mw

 (8) 

where ξ = a/W and V in Eq. (8) is a non-dimensional function of ξ that defines δbeam in Eq. (9) [ 7 ]. 
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The actual formulation of FM, ψf and V used for numerical studies in the following sections is given in the 

Appendix. 

3.   Application range of the weight function for circumferential crack in finite length cylinders 

3.1 Effect of mean radius to wall thickness ratio Rm/W on the SIF 

   Since our weight function is based on the cylindrical shell theory, there is an applicable range for the 

mean radius to wall thickness ratio Rm/W that comes out of the theory. A tentative guideline is given as 
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Rm/W ≥ 5.5 [ 6 ] (for non-dimensional crack length a/W ≤ 0.6) as a result of numerical studies, although 

Rm/W = 5.5 may be too small to apply the shell theory. It may be possible to extend the range of 

application by adding more rigorous numerical studies. 

   First, we studied the practical application limit of our weight function from the standpoint of Rm/W. A 

circumferentially cracked long cylinder under uniform tension σm was chosen as a benchmark problem 

for this purpose, because an analytical solution, Kanal, has been obtained under an infinite cylinder length 

assumption by Nied [ 1 ]. SIF evaluated by our weight function, KMeshii, was compared with Kanal for the 

crack with a/W = 0.1, 0.2, 0.3, 0.4, 0.5 in a cylinder of Rm/W = 0.61, 0.75, 0.93, 1.17, 4.50, 9.50 

(inner/outer radius ratio Ri/Ro = 0.1, 0.2, 0.3, 0.4, 0.8, 0.9), and summarized in Fig. 2. In all cases we 

used σm = 9.8 MPa, wall thickness W = 10 mm, cylinder length H=150 mm, Young's modulus E=206 GPa 

and Poisson's ratio ν = 0.3. 

   It can be seen from Fig. 2 that Rm/W ≥ 0.93 is necessary in order to make the difference between 

KMeshii and Kanal  be 5% or less for the evaluated case. Therefore, we chose Rm/W =1 as a tentative 

candidate of the application limit and proceeded to further studies. The range apparently exceeds the one 

expected from the cylindrical shell theory. 

   Next we investigated the case where the length of the cylinder is finite. In this case, the solutions from 

our method are compared with those from FEA as there are no analytical solutions. We first looked at the 

accuracy of our FEA solutions before examining the effect of the cylinder length on the SIF. A 
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circumferentially cracked long cylinder (H = 150 mm) under uniform tension σm = 9.8 MPa was chosen 

again as a benchmark problem. KFEA: SIF evaluated from FEA results was compared with Kanal: Nied’s 

analytical solution [ 1 ] (obtained with the assumption of infinite cylinder length) for cracks with a/W = 

0.1, 0.2, 0.3, 0.4, 0.5 in a cylinder of Rm/W =9.5, 4.5, 2, 1 (Ri/Ro = 0.9, 0.8, 0.6, 0.33). E and ν are 

identical to those in the previous cases. SIF by FEA was evaluated by applying displacement correlation 

technique (DCT) to the displacements of the crack tip singular elements. The final SIF solution KFEA is 

the converged value obtained through the process of singular element refinement. Kanal for Ri/Ro = 0.33 

was interpolated from the values for Ri/Ro = 0.3 and 0.4. 

   The difference between KFEA and Kanal was 1% or less (max. 0.86%) for cases shown in Fig. 3, thus the 

validity of KFEA was confirmed. An identical procedure will be used to evaluate KFEA in the following 

paragraph. 

3. 2 Effect of the cylinder length 

   In the above study we chose H/W= 15 intuitively, for cylinders with various Rm/W, to satisfy the long 

cylinder assumption from the practical point of view. However, if we start to work on giving a SIF 

solution given in a table, it will be useful to know the specific cylinder length that satisfies the infinite 

length assumption. Labbens et al. [ 8 ] pointed out that the infinite length assumption is satisfied for thin 

cylinders with length of βH ≥ 5 (β is a quantity which is used in replacing the cylindrical shell by a beam 

on an elastic foundation and its definition is given in the Appendix). We studied the cylinder length that 
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satisfies the infinite length assumption, including thick-walled cylinders. In this study, we also checked to 

see if the tentatively set application range Rm/W ≥ 1 for our weight function is valid for finite length 

cylinders. 

   SIF changes due to varying H/W = 4, 10 and 15 for cracks of a/W = 0.1, 0.3 and 0.5 in cylinders of 

Rm/W = 1, 2, 4.5 and 9.5, respectively, were evaluated for three stress distributions on the crack surfaces; 

i) uniform stress distribution σm = 9.8 MPa, ii) linear stress distribution whose inner and outer stress 

difference 2σ0 =19.6 MPa, iii) quadratic stress distribution σ(x) = 98 ( 1 - x/W )2 MPa. Studies on cases of 

(Rm/W, H/W) =(9.5, 12), (4.5, 8), (2, 6) were added to those above, because we thought βH = 5 to be a key 

value. We also added the case of (Rm/W, H/W) = (1, 2) as a data for βH < 5. 

   For each case, KFEA: SIF obtained from FEA+DCT and KFett: SIF evaluated from Fett’s weight 

function were compared with KMeshii: SIF by our weight function (Eq. (8)). This is shown in Figs. 4-6. In 

these figures, we chose KMeshii as a reference value instead of KFEA because we thought continuity to be 

the preferable characteristics for the value. KFett, also a candidate for the reference value in this respect, 

was excluded because it does not properly evaluate the effect of cylinder length on the SIF. 

   Note that we also evaluated the SIF by Wu’s weight function [ 2 ] but it was not included in the 

figures, because Rm/W ≤ 2 is out of their application range. Nied’s analytical solutions (under infinite 

cylinder length assumption) KNied for uniform stress distribution [ 1 ] was also excluded from the figures, 

after we confirmed the difference between KNied and KFett as below 1% for the cases we studied. 
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   From Figs. 4-6, it is very clear that cylinder length affects the SIF. If we focus our attention on KFEA, 

we see that the difference between KMeshii and KFEA is as small as 5%, or less, for the examined cases, 

which suggests that KMeshii can account for the cylinder length accurately enough for practical use. We 

emphasize that this is also true for thick-walled cylinders up to Rm/W = 1. As we checked the validity of 

KMeshii, the application range of the infinite cylinder length assumption can now be read from the 

difference between KFett and KMeshii. From Figs. 4-6, a guideline  βH ≥ 5 (which Labbens et al. [ 8 ] 

proposed for thin-walled cylinders) seems to be valid for thick-walled cylinders up to Rm/W = 1, though 

parameter β has no more meaning than a formal expression for thick-walled cylinders. 

   Note that there exists a minimum cylinder length for the difference between KFEA and KMeshii in order 

to satisfy the value of 5% or less. If we select βH ≥ 2.5 as this minimum cylinder length, we can see from 

Figs. 4-6 that the desired accuracy can be expected for thick to thin cylinders including Rm/W = 1. In this 

case, better accuracy is expected for thin-walled cylinders. In summary, from a practical standpoint our 

weight function is applicable for Rm/W ≥ 1, 0.1 ≤ a/W ≤ 0.5 and βH ≥ 2.5. 

4.   SIF for an inner surface circumferential crack in a finite-length cylinder 

   Now that the application range of our weight function has become clear from the studies above, we 

will present our weight function in more practical form for engineers. We will derive a method which 

enables immediate SIF evaluation for the crack in cylinders satisfying the applicable range. That is, we 

will give a dimensionless geometric function Kj in tables, which gives SIF K(a) for a circumferential 
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crack subjected to crack face loading σ(x) defined by the following equation. 
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Here, Kj(j=0~4), kj(j=0~5) was defined as follows. 
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Kj is a non-dimensional function of dimensionless parameters ξ = a/W, βW (eventually Rm/W) and βH. Kj 

for various ξ, βW and βH are shown in Tables 1-6.  

   Note that the non-dimensional cylinder length βH can be written as βH = [3(1-ν2)]1/4(H/W)/(Rm/W)1/2 

according to the definition of β  in the Appendix and that it is a function of Rm/W. As Kj (j = 0~4) for βH = 

5 coincides with those for βH = 10 to two significant figures as in Tables 1-6, βH ≥ 5 as an infinite 

cylinder length criteria was reconfirmed for various Rm/W. 

   When we examine Kj for a specific geometry, we can see that Kj > Kj+1 for j = 0~3. In this case, Kj ( j 

= 2~4) corresponding to the higher order stress term σj ( j = 2~4) was less than approximately one-tenth 

of K0. This suggests the fact that the error in SIF due to stress linearization (popular for design engineers) 

is about 10%. 

5.  Conclusions 

   This paper presents a method to calculate the mode I SIF with prepared tabulated data for an inner 

surface circumferential crack in a finite-length cylinder. The cracks are subjected to axisymmetric stress 

with an arbitrary biquadratic radial distribution. The method can take into account the effect of various 
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geometric parameters (including cylinder length) on the SIF. The method, derived by applying the 

authors’ weight function for the crack, was expected to be restricted according to the theory of cylindrical 

shell. However, difference in SIF obtained from our method and FEA for a geometry satisfying Rm/W ≥ 1, 

0.1 ≤ a/W ≤ 0.5, βH ≥ 2.5 was small as 5% or less. This fact suggests that our SIF method is applicable to 

wider range of geometry than expected. Moreover, validity of an infinite cylinder length criteria  βH ≥ 5 

(which was proposed for thin-walled cylinders) for thick-walled cylinders up to Rm/W = 1 was shown, 

though parameter β has no more meaning than a formal expression for thick-walled cylinders. 
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Appendix 

      β which appears in the text of this paper is a parameter defined in replacing the problem of a cylinder 

with axisymmetric bending loads on its edges (Fig. A1 left) with the problem of a beam on an elastic 

foundation with bending loads on its ends (Fig. A1 right). β is defined as follows, by formally writing the 
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flexural rigidity of the prismatic beam as D = EW3/12(1-ν2) [ 10 ], 
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)2cos(coshsinsinh
sinsinh

f −+Δ⋅++
+

=
HHDHH

HH
ββλβββ

ββψ  (A2) 

{ }
)2/cos(

)2/sin(1199.0923.0
2

tan2)(
4

πξ
πξπξ

πξ
ξ

−+
⋅=MF  (A3) 

2
2

)1(
66.04.27.18.0)(
ξ

ξξξ
−

++−=V  (A4) 

[ ] 2

22

22 6
)21()1(

)25.044.0)(1(1
'2

)1215.1()( ⎟
⎠
⎞

⎜
⎝
⎛⋅

+−
+−+

⋅=Δ
WE ξξ

ξξξξπξλ  (A5) 

 

 



 

T. Meshii et al., Engineering Fracture Mechanics, Vol. 68, No. 8, pp. 975-986 (2001. 5). 

 14

List of tables and figures 

Table 1 Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder (Rm/W 

=10, ν = 0.3) 

Table 2 Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder (Rm/W 

=8, ν = 0.3) 

Table 3 Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder (Rm/W 

=6, ν = 0.3) 

Table 4 Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder (Rm/W 

=4, ν = 0.3) 

Table 5 Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder (Rm/W 

=2, ν = 0.3) 

Table 6 Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder (Rm/W 

=1, ν = 0.3) 

Fig. 1 A cylinder with a circumferential crack under arbitrary stress distribution 

Fig. 2  Effect of Rm/W on SIF under uniform stress distribution (H/W = 15, ν = 0.3) 

Fig. 3 Comparison of SIF of circumferential crack in a long cylinder under uniform stress (H/W =15, ν = 

0.3) 

Fig. 4 Effect of cylinder length on SIF under uniform stress distribution (ν = 0.3) 
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Fig. 5 Effect of cylinder length on SIF under linear stress distribution (ν = 0.3) 

Fig. 6 Effect of cylinder length on SIF under quadratic stress distribution (ν = 0.3) 

Fig. A1 Replacement of axisymmetric bending problem of a cylinder by a beam on an elastic foundation 
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Table 1  Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder 

(Rm/W =10, ν = 0.3) 

βH ξ     K 0    K 1    K 2    K 3    K 4
10 0.1 0.658414 0.039620 0.003027 0.000253 0.000022

0.2 0.996956 0.116991 0.017668 0.002931 0.000510
0.3 1.358750 0.230173 0.051177 0.012598 0.003267
0.4 1.777830 0.384610 0.111557 0.036146 0.012391
0.5 2.240890 0.582462 0.206808 0.082710 0.035146

5 0.1 0.658547 0.039625 0.003028 0.000253 0.000022
0.2 0.997654 0.117047 0.017674 0.002932 0.000510
0.3 1.360640 0.230394 0.051214 0.012606 0.003268
0.4 1.781770 0.385215 0.111692 0.036182 0.012401
0.5 2.247970 0.583792 0.207174 0.082829 0.035189

4 0.1 0.659352 0.039657 0.003030 0.000253 0.000022
0.2 1.001880 0.117382 0.017712 0.002937 0.000511
0.3 1.372140 0.231741 0.051442 0.012651 0.003278
0.4 1.806000 0.388931 0.112520 0.036399 0.012464
0.5 2.291910 0.592050 0.209448 0.083568 0.035453

3 0.1 0.662462 0.039782 0.003037 0.000253 0.000022
0.2 1.018500 0.118697 0.017861 0.002957 0.000514
0.3 1.418490 0.237167 0.052359 0.012833 0.003317
0.4 1.907100 0.404438 0.115979 0.037307 0.012725
0.5 2.483590 0.628071 0.219368 0.086796 0.036606  

 

Table 2  Non-dimensional stress intensity factor for circumferential crack in a finite length (Rm/W =8, ν 

= 0.3) 

βH ξ     K 0    K 1    K 2    K 3    K 4
10 0.1 0.656131 0.039532 0.003022 0.000253 0.000022

0.2 0.986629 0.116195 0.017578 0.002919 0.000509
0.3 1.332410 0.227166 0.050675 0.012500 0.003244
0.4 1.724800 0.376676 0.109812 0.035692 0.012261
0.5 2.148590 0.565535 0.202209 0.081226 0.034619

5 0.1 0.656279 0.039537 0.003023 0.000253 0.000022
0.2 0.987394 0.116256 0.017585 0.002920 0.000509
0.3 1.334430 0.227403 0.050715 0.012508 0.003247
0.4 1.728910 0.377309 0.109953 0.035729 0.012272
0.5 2.155750 0.566883 0.202581 0.081347 0.034662

4 0.1 0.657174 0.039573 0.003025 0.000253 0.000022
0.2 0.992031 0.116623 0.017627 0.002926 0.000510
0.3 1.346790 0.228851 0.050960 0.012556 0.003258
0.4 1.754250 0.381202 0.110822 0.035958 0.012338
0.5 2.200250 0.575265 0.204892 0.082100 0.034932

3 0.1 0.660632 0.039712 0.003033 0.000253 0.000022
0.2 1.010280 0.118070 0.017792 0.002948 0.000513
0.3 1.396780 0.234711 0.051952 0.012753 0.003300
0.4 1.860680 0.397558 0.114474 0.036916 0.012613
0.5 2.396080 0.612150 0.215064 0.085412 0.036116  
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Table 3  Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder 

(Rm/W =6, ν = 0.3) 

βH ξ     K 0    K 1    K 2    K 3    K 4
10 0.1 0.652631 0.039397 0.003015 0.000252 0.000022

0.2 0.971336 0.115018 0.017447 0.002902 0.000506
0.3 1.294590 0.222854 0.049957 0.012359 0.003215
0.4 1.651180 0.365675 0.107393 0.035063 0.012081
0.5 2.025170 0.542916 0.196067 0.079246 0.033916

5 0.1 0.652799 0.039403 0.003015 0.000252 0.000022
0.2 0.972189 0.115086 0.017455 0.002903 0.000506
0.3 1.296780 0.223111 0.050001 0.012367 0.003217
0.4 1.655470 0.366336 0.107541 0.035102 0.012092
0.5 2.032300 0.544265 0.196440 0.079367 0.033959

4 0.1 0.653825 0.039445 0.003018 0.000252 0.000022
0.2 0.977390 0.115499 0.017502 0.002909 0.000507
0.3 1.310230 0.224692 0.050268 0.012421 0.003228
0.4 1.682050 0.370434 0.108457 0.035343 0.012162
0.5 2.077020 0.552721 0.198777 0.080129 0.034232

3 0.1 0.657768 0.039603 0.003027 0.000253 0.000022
0.2 0.997819 0.117121 0.017686 0.002934 0.000511
0.3 1.364730 0.231097 0.051353 0.012636 0.003275
0.4 1.794210 0.387723 0.112324 0.036360 0.012455
0.5 2.275030 0.590167 0.209125 0.083503 0.035440  

 

Table 4  Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder 

(Rm/W =4, ν = 0.3) 

βH ξ     K 0    K 1    K 2    K 3    K 4
10 0.1 0.646295 0.039154 0.003001 0.000251 0.000022

0.2 0.945175 0.113011 0.017223 0.002873 0.000502
0.3 1.232960 0.215839 0.048789 0.012130 0.003166
0.4 1.537080 0.348638 0.103648 0.034089 0.011803
0.5 1.843660 0.509664 0.187037 0.076334 0.032881

5 0.1 0.646499 0.039162 0.003002 0.000251 0.000022
0.2 0.946165 0.113090 0.017232 0.002874 0.000502
0.3 1.235380 0.216125 0.048838 0.012139 0.003168
0.4 1.541540 0.349331 0.103804 0.034130 0.011815
0.5 1.850630 0.510991 0.187406 0.076454 0.032924

4 0.1 0.647735 0.039212 0.003005 0.000251 0.000022
0.2 0.952217 0.113572 0.017287 0.002881 0.000503
0.3 1.250290 0.217886 0.049137 0.012199 0.003181
0.4 1.569340 0.353645 0.104772 0.034386 0.011888
0.5 1.894460 0.519349 0.189726 0.077213 0.033196

3 0.1 0.652487 0.039403 0.003016 0.000252 0.000022
0.2 0.976075 0.115473 0.017503 0.002910 0.000507
0.3 1.311220 0.225083 0.050360 0.012442 0.003233
0.4 1.688160 0.372084 0.108912 0.035476 0.012203
0.5 2.091590 0.556934 0.200161 0.080625 0.034420  
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Table 5  Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder 

(Rm/W =2, ν = 0.3) 

βH ξ     K 0    K 1    K 2    K 3    K 4
10 0.1 0.629187 0.038504 0.002965 0.000249 0.000022

0.2 0.882734 0.108241 0.016691 0.002803 0.000492
0.3 1.099730 0.200687 0.046268 0.011635 0.003059
0.4 1.312210 0.315015 0.096250 0.032164 0.011252
0.5 1.515970 0.449442 0.170647 0.071039 0.030998

5 0.1 0.629462 0.038516 0.002966 0.000249 0.000022
0.2 0.883961 0.108340 0.016703 0.002804 0.000492
0.3 1.102430 0.201010 0.046323 0.011646 0.003061
0.4 1.316630 0.315717 0.096410 0.032206 0.011264
0.5 1.522090 0.450640 0.170985 0.071151 0.031038

4 0.1 0.631123 0.038583 0.002970 0.000249 0.000022
0.2 0.891442 0.108943 0.016772 0.002814 0.000493
0.3 1.119010 0.203004 0.046665 0.011714 0.003076
0.4 1.344140 0.320083 0.097402 0.032470 0.011341
0.5 1.560590 0.458184 0.173110 0.071852 0.031291

3 0.1 0.637582 0.038844 0.002985 0.000250 0.000022
0.2 0.921525 0.111369 0.017050 0.002851 0.000499
0.3 1.188810 0.211392 0.048103 0.012002 0.003139
0.4 1.466050 0.339433 0.101799 0.033637 0.011679
0.5 1.740490 0.493430 0.183040 0.075129 0.032473  

 

Table 6  Non-dimensional stress intensity factor for circumferential crack in a finite length cylinder 

(Rm/W =1, ν = 0.3) 

βH ξ     K 0    K 1    K 2    K 3    K 4
10 0.1 0.592321 0.037127 0.002890 0.000244 0.000021

0.2 0.778424 0.100306 0.015809 0.002687 0.000475
0.3 0.914655 0.179523 0.042732 0.010939 0.002909
0.4 1.042680 0.274248 0.087213 0.029799 0.010573
0.5 1.168000 0.384456 0.152780 0.065228 0.028920

5 0.1 0.592670 0.037141 0.002890 0.000244 0.000021
0.2 0.779786 0.100420 0.015822 0.002689 0.000475
0.3 0.917238 0.179849 0.042790 0.010950 0.002911
0.4 1.046360 0.274869 0.087358 0.029839 0.010585
0.5 1.172490 0.385400 0.153055 0.065320 0.028953

4 0.1 0.594786 0.037228 0.002895 0.000244 0.000021
0.2 0.788120 0.101116 0.015904 0.002700 0.000477
0.3 0.933245 0.181870 0.043145 0.011023 0.002927
0.4 1.069460 0.278763 0.088270 0.030085 0.010657
0.5 1.200970 0.391381 0.154800 0.065908 0.029169

3 0.1 0.603064 0.037570 0.002915 0.000246 0.000022
0.2 0.822199 0.103966 0.016237 0.002745 0.000484
0.3 1.002390 0.190601 0.044681 0.011334 0.002996
0.4 1.174990 0.296553 0.092439 0.031213 0.010988
0.5 1.338010 0.420166 0.163199 0.068739 0.030204  
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Fig. 1 A cylinder with a circumferential crack under arbitrary stress distribution 
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Fig. 2  Effect of Rm/W on SIF under uniform stress distribution (H/W = 15, ν = 0.3) 
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Fig. 3 Comparison of SIF of circumferential crack in a long cylinder under uniform stress (H/W =15, ν = 

0.3) 
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Fig. 4  Effect of cylinder length on SIF under uniform stress distribution (ν = 0.3)  
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Fig. 5  Effect of cylinder length on SIF under linear stress distribution (ν = 0.3) 
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Fig. 6  Effect of cylinder length on SIF under quadratic stress distribution (ν = 0.3) 
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Fig. A1 Replacement of axisymmetric bending problem of a cylinder by a beam on an elastic foundation 

 

 


