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Dr. Charalampos Kevrekidis, Dr. Ömer Coskun and Dr. Carolin Gut for the inspiring con-
versations and good moments. I especially thank Dr. Sergio Vargas for the friendship and
all the help he gave me when I first arrived in Munich. I knew the big challenge ahead of
me when I came here with a child and without your help it would have been a lot harder.

Many people from the Department of Earth & Environmental Sciences, Palaeontology
& Geobiology helped in many ways with the accomplishment of this project. Among them
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Joëlle Barido-Sottani, Joshua A. Justison, Rui Borges, Jeremy M. Brown, Wade Dismukes,
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Summary

Bayesian phylogenetic inference uses a model of sequence evolution and a multiple se-
quence alignment data to estimate posterior probabilities of phylogenetic trees and other
parameters. Such estimates are acquired through Markov chain Monte Carlo (MCMC)
algorithms. Some additional steps are necessary to infer a robust phylogenetic tree such as
convergence assessment of the MCMC, choosing a model of sequence evolution, choosing
prior probabilities for the model parameters and assessment of model adequacy between
the model of sequence evolution and the data. These steps are often overlooked in the
inference, mainly due to the lack of straightforward methods and thorough investigation
of their impact.

In this dissertation I investigated these often disregarded steps and proposed new meth-
ods to ensure a robust estimation of Bayesian phylogenetic gene trees. In Chapter 1 some
relevant background information on Bayesian inference of phylogeny is provided. Chapter
2 aimed at the development and implementation of a new method for MCMC convergence
assessment in phylogenetics. We proposed a novel method that evaluates continuous and
discrete parameters separately, additionally we proposed reliable thresholds for each con-
vergence criterion. Furthermore, we implemented the method in the easy-to-use R package
Convenience.

Chapter 3 was dedicated to assessing the nature of posterior predictive p-values in
Bayesian phylogenetic model adequacy tests. We unraveled that p-values distributions
are rather conservative for phylogenetic tree inference. This finding emphasizes that poor
model fit in phylogenetics should be taken seriously.

In Chapter 4 we assessed the effects of model over-parameterization and prior proba-
bility distribution choice for the commonly used generalised time reversible (GTR) family
of nested models. We observed that substitution model over-parameterization is not a
problem for phylogenetic inference, when a proper set of prior distributions are chosen.
Consequently, substitution model selection of common models of nucleotide substitutions
becomes an unnecessary step in Bayesian phylogenetic inference.

Finally, in Chapter 5 we tested the robustness of gene tree estimation with the newly
proposed methods of the previous chapters. We estimated the gene trees for a subset
of multiple sequence alignment from the OrthoMam database. We observed that the
lack of proper convergence assessment impacts the inferred parameters and can lead to
erroneous conclusions. Furthermore, we concluded that a considerable amount of gene tree
discordance is due to estimation errors and the most complex substitution model is still
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inadequate to the real data. Therefore, future research should focus on models of sequence
evolution that better capture the heterogeneity of real data.

This dissertation contributes to the development and improvement of Bayesian methods
to estimate phylogenetic trees. Robust methods to estimate phylogenetic trees are funda-
mental for complex evolutionary questions such as estimating the tree of life or estimating
time in evolutionary trees. It includes a novel method for MCMC convergence assessment
with thorough statistical foundation and fully automation. Furthermore, we character-
ized the distribution of posterior predictive p-values for model adequacy tests in Bayesian
phylogenetics. Additionally, we demonstrated that substitution model selection is not a
necessary step by testing the behavior of phylogenetic estimates under over-parameterized
models. Finally, we demonstrated the application of these outcomes on real data and
suggested future directions for the field of Bayesian phylogenetics.



Chapter 1

Introduction

’Nothing in biology makes sense except in the light of evolution’

Theodosius Dobzhansky, 1973

’Nothing in evolution makes sense except in the light of phylogeny’

Society of Systematic Biologists

The biodiversity observed on Earth is a result of many years of complex interactions
among organisms and the environment. The process which includes adaptation, selection
and inheritance receives the name of evolution and the most important work describing its
mechanisms is the book On the origin of species by means of natural selection [29]. The
main concept in evolution is that all forms of life are related through common ancestors and
the landscape of biodiversity changes through time with some forms of life disappearing
and others emerging. The relationship among these forms of life can be uncovered by
looking into their genetic information. The genetic contents that share a common ancestry
are called homologous and these are primary to reconstruct evolutionary histories. The
reconstructed evolutionary history is a phylogeny, a tree-like configuration as seen in Figure
1.1 where nodes represent the most common ancestor from lineages and the tips represent
the forms of life that we can observe (commonly referred as taxa). The root represents the
common ancestor among all displayed taxa, and evolutionary time goes from the root to
the tips. Reconstructing a phylogenetic tree is not a trivial problem since the number of
possible trees increases incredibly fast as the number of taxa increases. But this challenge
can be tackled with probabilistic models and modern algorithms [42].

Bayesian phylogenetic inference has become a popular method in molecular phyloge-
netics since it was implemented in the late 90’s [181, 123, 103, 113, 82]. This popularity
can be attributed to the robustness of Bayesian data analysis and the availability of user-
friendly software [132]. Over the years, the models for Bayesian phylogenetic inference
have grown in complexity. Such models are employed in biodiversity studies [25, 176, 161],
epidemiology [96, 117, 129], phylogeography [110], estimation of diversification rates [84],
divergence time estimation [136, 10]. The underlying methods that enable these complex
models to be computationally feasible are the Markov chain Monte Carlo (MCMC) algo-
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rithms. In this thesis, I explored and proposed novel improvements for several challenges of
the Bayesian method associated with estimating phylogenetic gene trees. These challenges
include convergence assessment for MCMC, selection of a substitution model, the choice of
the prior probability distribution for the model parameters and the behavior of posterior
predictive tests for model adequacy studies. Additionally, we investigated the proposed
improvements on empirical data sets. In the following sections we will present the Bayesian
phylogenetic inference method in more detail.

A B Ctip

node

branch

root

Figure 1.1: A schematic of a phylogenetic tree with tips A, B, C, two internal nodes, and
branches connecting the nodes. Time goes from the root in direction to the tips. The
internal node represents the most recent common ancestor among the lineages.

1.1 Phylogenetic gene trees

Phylogenetic gene trees represent hypotheses about the evolutionary relationship among
genes. Such relationships reflect the evolutionary history that led to the emergence of the
given genes. Gene trees and species trees do not necessarily share the same evolutionary
history. The process of evolution of genes commonly involves gene loss and gene duplica-
tion, incomplete lineage sorting, horizontal gene transfer, besides different genes usually
evolve under different rates and moreover genes that are in close spatial regions can un-
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dergo recombination [157]. All this together contributes to the incongruence between gene
and species trees. Such incongruence imposes an obstacle to reconstruct the evolutionary
relationship among species. To overcome this problem and infer species trees, researchers
have adopted two possible strategies: 1) assuming that all genes follow the same evolu-
tionary history (super-matrix approach) 2) allow genes to evolve with different histories, in
a process known as the multispecies coalescent. In the super-matrix approach, the align-
ments for different genes are concatenated generating a big matrix of multiple genes. The
big matrix is then used to perform the phylogenetic inference. The problem with this ap-
proach is that it assumes all genes follow the same evolutionary history. The multispecies
coalescent process, on the contrary, accounts for different evolutionary histories among
different genes. The multispecies coalescent incorporates ancestral polymorphisms in the
process of species tree inference. The most commonly used MSC method, ASTRAL, is a
summary method, which means that the gene trees are first estimated and then summa-
rized using quartets to estimate the species tree with branch lengths being the coalescent
times. Hence, the multispecies coalescent process requires robust gene trees to infer the
species tree.

Figure 1.2: The example of incongruent gene trees and the species tree. On the left panel,
four gene trees are displayed, with gene 1 and gene 2 showing the same evolutionary history;
and gene 3 and gene 4 with same evolutionary history. The right panel shows the species
tree with the different gene trees inside it. On the species tree we can observe incomplete
lineage sorting and an event of gene flow. Extracted from [119]

Bayesian inference provides a robust method for inferring phylogenetic gene trees. First,
because of the requirement of an explicit model of sequence evolution, i.e., the evolutionary
assumptions are defined and specified. Second, due to the nature of the method, uncertain-
ties are intrinsically estimated. The results from a Bayesian phylogenetic inference are not
simply point estimates, but rather distributions. In that sense, a Bayesian phylogenetic
tree is estimated together with its posterior probability. The posterior probability of a
phylogenetic tree is the probability that the tree is correct, supposing the model is correct.
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Within the different methods to estimate phylogenies, this property is only intrinsic to the
Bayesian method [80].

1.2 Bayesian Inference

Bayesian inference makes use of Bayes’ theorem [12, 102] to estimate posterior probabilities
of model parameters based on the data and prior information. The posterior probabilities
are updated with the joint probability of prior and data according to Bayes’ theorem as
follows:

P (H | D) =
P (H)× P (D | H)

P (D)
(1.1)

where H is the hypothesis; D is the data; P (H | D) is the posterior probability of
the hypothesis given the data; P (H) is the prior probability distribution of the hypothesis;
P (D | H) is the probability of observing the data given the hypothesis, i.e., the likelihood;
P (D) is the marginal likelihood of the data.

In phylogenetic inference the parameter of interest to be estimated is frequently the
phylogenetic tree. The data are typically DNA nucleotide sequence alignments for the
taxa of interest. The description of the process of sequence evolution that gives rise to
the phylogenetic tree is comprised in the substitution model. The parameters from the
substitution model and the phylogenetic tree are jointly estimated using Bayes’ theorem.

The prior probability distribution (or just prior) comprises the former knowledge about
the parameters to be estimated. The priors can be classified according to the researcher’s
degree of certainty about the parameter. In this classification the three categories for priors
are: (a) an informative prior, when there is a high degree of certainty about the model
parameters; (b) a weakly informative prior, when some information is known; and (c) a
diffuse prior, when there is a lot of uncertainty about the parameters [169].

For many practical applications of Bayesian inference, including phylogenetic inference,
the marginal likelihood becomes a multi-dimensional integral. This means that calculating
the integral is virtually impossible. Other methods are used in combination with Bayes’s
theorem to overcome this problem. Such a method is the Markov chain Monte Carlo
(MCMC) sampling method. We will discuss the MCMC in more detail in the next section.

1.3 MCMC

The Markov chain Monte Carlo (MCMC) algorithms is a method to simulate stochastic
processes with an underlying stationary distribution. Such methods are used as a numerical
approximation for problems in statistical inference with multi-dimensional integrals [56]. A
sequence X1, X2, X3, ... is a Markov chain if the probability of the state Xn+1 depends only
on the state Xn. The most common MCMC method is the Metropolis-Hastings algorithm
[148]. The algorithm follows these steps:
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1. Generate an initial value for the model parameter (x).

2. Propose a new value x
′
.

3. Calculate the acceptance ratio R:

R = min (1,
f(x

′
)×Q(x | x′

)

f(x)×Q(x′ | x)
), (1.2)

where f(x) is the target distribution and Q is the transition kernel.

4. Draw a number u from an Uniform distribution between 0 and 1.

5. If u ≤ R, accept the new value and set x = x
′
. Otherwise keep the value of x.

6. Go back to step 2 and repeat for many iterations.

The algorithm above will result in a collection of values for each parameter, this collec-
tion is called sample. A very important step after the MCMC is checking for convergence.
Convergence aims at checking that sufficiently many samples were taken and the sample
is representative of the posterior distribution [66]. Checking for convergence in Bayesian
phylogenetics is particularly challenging. That is due to the discrete nature of phylogenetic
trees, which are frequently the parameter of interest that researchers wish to estimate.

The common practice in phylogenetics is to visually inspect the trace plots of the
continuous parameters [134, 144, 173]. Trace plots are plots of sampled states per iteration.
They are a good tool for checking MCMC mixing status, i.e., the level of autocorrelation
between consecutive samples. Figure 1.3 shows an example of a trace plot for the tree
length of a single chain MCMC. The Figure shows an example of good mixing, which can
be evaluated by the lack of plateaus and directional change. Figure 1.4, in contrast, shows
the example of a bad mixing MCMC chain.

1.4 Substitution model

Substitution models are the basis for phylogenetic trees reconstruction. The substitution
model describes how changes in nucleotides (for DNA tree-based reconstruction) happen
over evolutionary time. The most commonly used substitution models are the family of
Generalized Time Reversible (GTR) [165] nested models. These models assume that:

a) neutrality, selection does not play a role in the substitutions;

b) the sites on the alignment evolve independently, i.e., the changes in one site do not
affect the probabilities of changes in other sites;

c) the number of sites is finite, over the course of evolution a single site can undergo
multiple changes;
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Figure 1.3: An MCMC trace plot with good mixing of the tree length for a single chain.
The MCMC iterations are on the x-axis. The tree length values that were sampled during
the MCMC are on the y-axis.

d) time-reversibility, i.e., the direction in which evolution occurs does not matter.

These models are also designed to be stationary, meaning that the expected value does not
change over time.

The rate matrix Q is a matrix that governs the rates at which the possible states change
from one to another. In the case of DNA sequence evolution, there are four possible states
which are the nucleotides A, C, G and T. The Q matrix takes the following form:

Q =


−µA µAC µAG µAT

µCA −µC µCG µCT

µGA µGC −µG µGT

µTA µTC µTG −µT

 (1.3)

QGTR =


• rACπC rAGπG rATπT

rACπA • rCGπG rCTπT

rAGπA rCGπC • rGTπT

rATπA rCTπC rGTπG •

 (1.4)

with µij being the instantaneous rate of change from i to j and µi the rate of not
changing out of state i. The transition rate matrix is a matrix of probabilities of transition



1.4 Substitution model 7

0 20 40 60 80 100

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

Iterations

Tr
ee

 le
ng

th

Iterations

Tr
ee

 le
ng

th

Figure 1.4: An MCMC trace plot with bad mixing of the tree length for a single chain.
The MCMC iterations are on the x-axis. The tree length values that were sampled during
the MCMC are on the y-axis.

between states for a given time t, it can be computed by exponentiating the rate matrix
as follows:

P (t) =


pAA(t) pAC(t) pAG(t) pAT (t)
pCA(t) pCC(t) pCG(t) pCT (t)
pGA(t) pGC(t) pGG(t) pGT (t)
pTA(t) pTC(t) pTG(t) pTT (t)

 = eQt =
∞∑
n=0

Qn t
n

n!
(1.5)

The time unit is often measured in expected number of changes per site. This measure
is represented in the tree as branches lengths. The branches display evolutionary distances
among sequences. They are calculated as the product of the mean rate of substitutions
and the time.

Another property of these substitution models is ergodicity, i.e., it is always possible
to move from state i to state j (even if it takes more steps). This property results in an
equilibrium in which the frequencies of states (πA, πC , πG and πT ) do not change.

The most simple substitution model within the family of Generalized Time Reversible
(GTR) nested models is the Jukes-Cantor (JC) model [86]. The JC model assumes that
the base frequencies (πA, πC , πG and πT ) are equal and the transition rates among the
nucleotides is also equal. The transition matrix for the JC model takes the form:
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P (t) =



1
4
+ 3

4
e−tµ 1

4
− 1

4
e−tµ 1

4
− 1

4
e−tµ 1

4
− 1

4
e−tµ

1
4
− 1

4
e−tµ 1

4
+ 3

4
e−tµ 1

4
− 1

4
e−tµ 1

4
− 1

4
e−tµ

1
4
− 1

4
e−tµ 1

4
− 1

4
e−tµ 1

4
+ 3

4
e−tµ 1

4
− 1

4
e−tµ

1
4
− 1

4
e−tµ 1

4
− 1

4
e−tµ 1

4
− 1

4
e−tµ 1

4
+ 3

4
e−tµ


(1.6)

with µ being the rate of substitution. The relationship between µ and branch length
(v) is given by v = 3

4
tµ. The JC model is the simplest among the GTR family because it

has no free parameters to be estimated. On the contrary, the GTR model [165] is the most
complex within its family, because all parameters have to be estimated from the data. As
a consequence of the complexity of the model, the GTR does not have an algebraic form
for the transition probability matrix, therefore, its transition matrix must be computed
numerically.

Other models with increased complexity were proposed over the years following the JC
model. For the purposes of this thesis, I will focus on both the JC and GTR models. These
two models represent the most simplistic and most complex assumptions within a family
of nested models.

The assumptions of the models are usually a simplification of the complex process that
generates the observed data. For example, the assumption that all sites in an alignment
evolve under the same rates is contradicted by the information that researchers have about
the different codon positions. Scientists have observed that for protein coding genes the
third codon position mutates faster than the first position, which mutates faster than the
second position [13]. In order to account for that rate variability, [177] proposed the among
site rate variation (ASRV) model. The ASRV model implementation is done by a discrete
gamma model with four categories. The underlying gamma distribution has mean one, as a
result the shape parameter (α) and the rate parameter (β) have equal values. The amount
of rate variation increases with lower values of α [179]. Another model that incorporates
observed features of the data is the invariant sites model [2, 62]. This model enables a
proportion of the sites to be invariant. In that way, a group of sites will be considered
variable, and another group will be considered fixed.

1.5 Aims of the Study

This study aimed at addressing methodological challenges of the Bayesian phylogenetic
method. The first Chapter was dedicated to developing a robust and statically grounded
method to assess convergence of Bayesian phylogenetic inference using MCMC. The second
Chapter focused on characterizing the behavior of model adequacy tests using posterior
predictive simulations. Next, we investigated the necessity of performing model selection
in Bayesian phylogenetic inference. The last Chapter combined all previous results into
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estimating phylogenetic gene trees for an empirical dataset. Overall, our aim was to im-
prove the robustness of the Bayesian phylogenetic method and guide the advancements in
future work.



Chapter 2

Convergence Assessment for
Bayesian Phylogenetic Analysis using
MCMC simulation

2.1 Abstract

1. Posterior distributions are commonly approximated by samples produced from a
Markov chain Monte Carlo (MCMC) simulation. Every MCMC simulation has to be
checked for convergence, i.e., that sufficiently many samples have been obtained and
that these samples indeed represent the true posterior distribution.

2. Here we develop and test different approaches for convergence assessment in phyloge-
netics. We analytically derive a threshold for a minimum effective sample size (ESS)
of 625. We observe that only the initial sequence estimator provides robust ESS
estimates for common types of MCMC simulations (autocorrelated samples, adap-
tive MCMC, Metropolis-Coupled MCMC). We show that standard ESS computation
can be applied to phylogenetic trees if the tree samples are converted into traces of
absence/presence of splits.

3. Convergence in distribution between replicated MCMC runs can be assessed with
the Kolmogorov-Smirnov test. The commonly used potential scale reduction factor
(PSRF) is biased when applied to skewed posterior distribution. Additionally, we
provide how the distribution of differences in split frequencies can be computed ex-
actly akin to standard exact tests and show that it depends on the true frequency of
a split. Hence, the average standard deviation of split frequencies is too simplistic
and the expected difference based on the 95% quantile should be used instead to
check for convergence in split frequencies.

4. We implemented the methods described here in the open-source R package Convenience
(https://github.com/lfabreti/convenience), which allows users to easily test for con-
vergence using output from standard phylogenetic inference software.

https://github.com/lfabreti/convenience


2.2 Introduction 11

2.2 Introduction

In the last two decades, Bayesian inference has become a widely used framework for per-
forming statistical analyses in phylogenetics and macroevolutionary biology [131, 104].
The goal of a Bayesian analysis is to compute the posterior probability distribution of the
parameters given the observed data. Unfortunately, we cannot compute this posterior dis-
tribution analytically for virtually all realistic and empirically interesting models. Instead,
one often applies sampling based methods such as Markov chain Monte Carlo sampling
[MCMC, 125, 69]. MCMC algorithms produce (autocorrelated) samples from the desired
posterior distribution. Thus, the frequency of parameter samples corresponds to their pos-
terior probability. As with any stochastic sampling based method, the researcher needs to
make sure that (a) sufficiently many samples have been obtained, and (b) the samples are
indeed representative of the posterior distribution. The process of determining whether
these conditions have been met is called convergence assessment.

Convergence assessment is a widespread problem for Bayesian analyses using MCMC
methods (although one should check for convergence when using any stochastic search al-
gorithms). Every class and lecture about MCMC methods teaches practitioners to check
for convergence but in practice these checks are neither standardized nor consistently per-
formed [66]. Unfortunately, traditional MCMC convergence assessment methods from the
statistical community have several shortcomings when applied to Bayesian phylogenet-
ics. First, phylogenetic trees are a very peculiar and difficult type of parameter for which
common convergence tests that assume continuous parameter values cannot be applied.
Thus, specific methods which transform phylogenetic trees into distances have been pro-
posed [e.g., 101]. Second, all widely used convergence assessment approaches used in
phylogenetics require manual interaction, often through visual inspection [134, 173, 144].
Visual inspection renders convergence assessment irreproducible by reviewers and other re-
searchers. Moreover, visual inspection makes it unfeasible to apply convergence assessment
for genomic datasets with thousands of parameters (e.g., each gene tree and gene-specific
substitution model parameters) and for simulation studies with hundreds or thousands of
MCMC runs.

In this manuscript we aim to develop a convergence assessment approach for phyloge-
netics that fulfills the following criteria: (i) it checks whether a single MCMC run needs
to be run longer; (ii) it compares multiple independent MCMC runs to check if one of the
runs got trapped in an area of parameter space and thus did not sample from the tar-
get posterior distribution; (iii) it uses statistically motivated and mathematically derived
thresholds, (iv) with longer MCMC runs the chance of convergence increases towards one
and does not plateau at a 5% rejection level; and (v) it can be applied without manual
interactions. Our motivation and final goal is to provide a tool that, if used and its output
provided in publications that used MCMC simulations in phylogenetics, we as readers or
reviewers could easily verify if convergence was achieved.
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2.3 Materials and Methods

As we stated above, convergence assessment consist of checking whether (1) enough samples
have been obtained, and (2) if these samples represent the true posterior distribution. The
first aspect concerns the precision of the estimators (e.g., the posterior mean or the
95% credible interval). A common question is: “Has the MCMC simulation run long
enough?” Or in other words, “Would more samples and/or a longer MCMC run change
the estimates?” The most frequent approach to answer this question in phylogenetics
is to assess whether the effective sample size (ESS) is larger than 200 [144]. That is, if
samples obtained from the chain are equivalent to 200 or more independent samples from
the posterior distribution, then one assumes that the MCMC has been run long enough.
However, this threshold of 200 samples is arbitrary, as stated in [144]. Here, we turn the
question around and ask instead “How many samples do I need to obtain a sufficiently
precise estimate?” We will derive the number of effective samples needed to obtain a
specified precision. We assume, following standard statistical practice, that our parameter
estimates will not change once this precision has been reached [60]. Thus, as suggested
by [144], a single MCMC run has been run sufficiently long if the ESS is larger than our
derived threshold value. So far, the ESS for convergence assessment is primarily applied to
continuous model parameter but not phylogenetic trees [but see 101, 173]. Thus, we will
develop and test a new method to compute the ESS for splits of a phylogeny.

The second aspect concerns the reproducibility of the stochastic sampling algorithm.
It could be the case that the MCMC simulation got stuck in some area of the parameter
space and never converged to the true posterior distribution. Therefore, we will adopt a
test that compares samples from two independent MCMC simulations. In phylogenetics,
the often used approach to compare samples from two independent MCMC simulations
is the potential scale reduction factor [PSRF, 53] and the average standard deviation of
split frequencies [ASDSF, 98]. Neither the PSRF nor ASDSF have clear and statistically
motivated thresholds. Furthermore, the PSRF is very dependent on the shape of the
posterior distribution (see Supplementary Material section S6). Therefore, the PSRF does
not fulfill our criteria of a robust convergence assessment method that would eventually
accept the samples if the MCMC were run sufficiently long and sampled from the true
distribution. Instead, we propose to use the Kolmogorov-Smirnov test [KS-test, 94, 156].
The ASDSF also has shortcomings which we will address here.

2.3.1 Precision of an estimator to assess sufficiently many sam-
ples

Ideally we would like to compute our parameter estimates as precisely as possible. However,
in many situations, such as when the parameter estimate is computed using numerical
methods, we can not obtain the estimated value with arbitrary precision. Instead, we
content ourselves if the computed parameter estimates is precise to, for example, a certain
number of significant digits. The number of significant digits depends on the sample
variance. For example, if we want to estimate the average body size of a population then
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we might want to have at least a precision on the scale of centimeters, but if we want
instead to estimate the average flight distance of migrating birds, then a precision up
to a few meters could be completely sufficient. Similarly, no one would trust the mean
estimate from only a handful of observations but most people would trust an estimate of a
population mean if hundreds of observation have been taken. Given these considerations,
we specify the number of samples needed from an MCMC based on the desired precision.

Our threshold value for the ESS is derived from the standard error of the mean (σx̄),
which is defined as σx̄ = σ√

N
where σ is the standard deviation of the sample and N the

sample size. σx̄ measures the error associated with the estimated mean value; or, in other
words, the precision of the mean estimator. Both the variance and the sample impact how
precise the mean estimate can be. For example, a sample x from a distribution with a larger
variation has a higher error associated with the mean (or lower precision) than a sample
from a distribution with lower variation. Therefore, we define an acceptable standard error
to have a width smaller than or equal to 1% of the width of the 95% probability interval
of the true distribution. If we assume a normal distribution as our reference distribution,
then the width of the 95% probability interval is approximately equal to 4σ (see Figure
S1). Thus, we derive a threshold value for the ESS based on the specified precision of σx̄

as

σx̄ ≤
σ√
ESS

1%× 4× σ ≤ σ√
ESS

ESS ≥ 625 . (2.1)

We will use this threshold value of a minimum required ESS of 625 as our reference, but
other researchers could derive their own justified threshold for the ESS by specifying a
different allowed standard error σx̄. Table 4.1 shows some examples of the width of σx̄

regarding the 95% probability interval and ESS values.

Table 2.1: List of minimum ESS thresholds based on precision of σx̄.

Width of σx̄ ESS

0.5% 2500

1% 625

1.77% 200

2% 156.25

5% 25
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2.3.2 Assessing ESS estimation of continuous parameters

The ESS plays a fundamental role in assessing convergence. Therefore it is crucial that
we can estimate the ESS correctly. The ESS can be defined as the number of samples N
taken from an MCMC simulation divided by the autocorrelation time (τ)

ESS =
N

τ
. (2.2)

Most methods estimate the autocorrelation time τ instead of computing the ESS directly.
Nevertheless, Equation 2.2 shows that both the ESS and τ are directly correlated. The
ESS (or τ) can be estimated using different approaches [for an overview, see 167]. We
investigated three different commonly used ESS estimation implementations: (1) the R

package CODA [138]; (2) the R package MCMCSE [43]; and (3) our own re-implementation in R

of the ESS computation algorithm implemented on the software Tracer [144]. CODA esti-
mates the autocorrelation as an auto-regressive process and estimates the spectral density
at frequency 0 [65, 167]. MCMCSE uses a batch means approach to estimate the autocorrela-
tion time [55, 44]. Tracer uses the initial sequence estimator [158]. We will address these
different methods by the names of the tools in which they were implemented (CODA, MCMCSE
and Tracer). We test below common variants of MCMC algorithms used in phylogenetics
(e.g., Metropolis-Coupled MCMC [54, 5] and adaptive MCMC [63, 64] as well as specific
parameters such as the phylogeny).

Autocorrelated Samples: Samples obtained from an MCMC simulation are rarely (not
to say never) drawn independently. For that reason, it is important to evaluate the ESS
estimation in the case of autocorrelated samples. Unfortunately, we never know the true
autocorrelation τ for a specific MCMC algorithm because it both depends on the imple-
mentation and data. Therefore, we developed two new algorithms that mimic an MCMC
simulation and produce an autocorrelated sample with specified and known autocorrela-
tion time τ . The first algorithm (Algorithm 1) generates N iid values and resamples these
values while sampling each value at least once and keeping the order of the original val-
ues. The second algorithm (Algorithm 2) generates a sequence of N ∗ τ samples where
the (i + 1)th sample is either drawn from the chosen distribution with probability α = 1

τ

or set to the same value as the i-th sample with probability 1 − α. Although these two
algorithms work differently, they produce samples with the same characteristics of auto-
correlated samples by, on average, τ identical values consecutively. Such a behavior can
be observed in MCMC samples specifically for phylogenetic trees, but also for continuous
parameters when the acceptance rate is low. We included both algorithms for completeness
although we present here only the results based on Algorithm 1.

We simulated 1,000 replicates with an ESS ofN = {100, 200, 300, 400, 500, 625, 800, 1000}
with samples drawn from a normal distribution with mean µ = 0 and variance σ2 = 1 and
varied the autocorrelation time (ACT) between τ = {1, 5, 10, 20, 50, 100, 250, 500, 750, 1000}.
An ACT of τ = 1 is equivalent to independent sampling and thus represents a baseline
comparison (see Supplementary Material Section S2). Only Tracer produced robust ESS
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Algorithm 1 Simulating samples from an MCMC algorithm with known autocorrelation
time by resampling iid values.

1: Inputs:
N : the effective number of samples.

τ : the autocorrelation time.

2: Initialize:
n← N ∗ τ // the total number of correlated samples
m← n−N // the number of samples to add

3: X ∼ norm(N) // generate N values from some distribution
4: i ∼ sample(1 :N,m, replace = TRUE) // Draw m indices between 1 and N
5: all← c(1 :N, i) // merge the newly sampled indices i with all possible indices 1 to N
6: s← sort(all, increasing=TRUE) // sort the indices in increasing order
7: a← X[s] // create the trace of samples using the independent sample X and the indices s

8: return vector of autocorrelated samples a

Algorithm 2 Simulating samples from an MCMC algorithm with known autocorrelation
time by accepting new values with probability α = 1

τ
.

1: Inputs:
N : the effective number of samples.

τ : the autocorrelation time.

2: Initialize:
n← N ∗ τ // the total number of correlated samples
α← 1

τ // the acceptance probability

3: X[1] ∼ norm(1) // generate a single value from some distribution
4: for i in 2 :n do // generate correlated samples
5: p ∼ unif(1, 0, 1) // draw a uniform random number between 0 and 1
6: if α ≥ p then
7: X[i] ∼ norm(1) // generate a new single value from some distribution
8: else
9: X[i]← X[i− 1] // stay at the previous value
10: end if
11: end for

12: return vector of autocorrelated samples X
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Figure 2.1: The estimated ESS for autocorrelated samples. The x-axis is the true ESS
used to generate the sample, the y-axis is the estimated ESS. The left panel displays the
ESS estimated using CODA, the central panel displays the ESS estimated using MCMCSE and
the right panel displays the ESS estimated according to Tracer. The different colored dots
represent different autocorrelation times. The blues dots are the cases that the samples
have autocorrelation of 1. As the colors get lighter, the autocorrelation time increases.

estimates for all values of τ (Figure 2.1). MCMCSE was robust to most values of the ACT,
except for values of τ around 50 where the ESS were overestimated (Figure 2.1 and Fig-
ure S3). Our more focused results show that we might have overlooked other problematic
ranges for MCMCSE and the apparent deviation for τ = 50 is a reproducible outlier. In-
terestingly, CODA performed particularly bad for large τ . Thus, we recommend the use of
Tracer to evaluate ESS values of MCMC samples over MCMCSE and CODA.

Samples from Metropolis-Coupled MCMC: In Bayesian phylogenetics, Metropolis-
coupled MCMC (MC3 or MCMCMC) is applied frequently to improve mixing of MCMC
chains and thus efficiency [5, 128]. An MC3 algorithm consists of K independent MCMC
chains but samples are only taken from the currently active/cold chain. The MC3 algorithm
proposes swaps between chains every S iterations. For more details about different MC3

algorithms, e.g., swap frequencies and acceptance frequencies, we refer the reader to [5]
and [128].

The samples from an MC3 algorithm might show different characteristics, for example,
when the autocorrelation structure is seemingly broken due to swaps between chains. This
behavior could mislead the estimation of the ESS. Therefore, we evaluated the ESS estima-
tion accuracy for MC3 samples with different swap frequencies. First, we developed a new
algorithm with a know autocorrelation τ to mimic MC3 (Algorithm 3). Our MC3 algorithm
generates K independent MCMC chains using either Algorithm 1 or Algorithm 2. Then,
swapping between these independent chains is performed by randomly selecting one of the
chains after every S iterations. Note that our Algorithm 3 treats all chains as cold chains
and thus always accepts a jump. However, the important feature that we want to test
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here is the discontinuity introduced by the jumps between chains, and if this discontinuity
introduces problems for ESS estimation methods. Thus, we choose to neglect that heated
chains traverse the parameter space faster than cold chains. The effect would most likely
be irrelevant since our Algorithm 1 and Algorithm 2 produce independent samples once a
new sample is accepted.

Algorithm 3 Simulating samples from an MC3 algorithm with known effective sample
size.
1: Inputs:

N : the effective number of samples.
τ : the autocorrelation time.
K: number of chains.
S: swap frequency between chains.

2: Initialize:
n← N ∗ τ // the total number of correlated samples
c← 1 // the current chain index

3: for i in 1 :K do // generate independent chains
4: chain[i]← sampleMCMC(N, τ) // use Algorithm 1 or Algorithm 2
5: end for
6: X[1]← chain[c][1] // start with the first value of the first chain
7: for i in 2 :n do // generate the Metropolis-coupled chain
8: if (i % S) == 0 then // check if we swap at this iteration
9: tmp← c // initialize the new chain index
10: while tmp == c do
11: tmp ∼ sample(1 : K) // randomly draw a chain new index
12: end while
13: end if
14: X[i]← chain[c][i] // take the i-th value of the current chain c
15: end for

16: return vector of autocorrelated samples X

In this evaluation of the three ESS estimation methods, we simulated 1,000 replicates
of MC3 samples using Algorithm 3 with the standard number of chains K = 4 and an ar-
bitrarily chosen ACT of τ = 20. We varied the swap frequency S = {1, 2, 5, 10, 20, 50, 100}
in our simulations.

To derive an expectation of how many effective samples we should get using our MC3

algorithm, let us consider a window of τ samples. In our independent MCMC chains it
takes, on average, τ iterations until we obtain a new value. We swap exactly every S
iterations and therefore we swap τ

S
times within a window of size τ . For every time that

we swap to a chain that we did not visit yet within the window τ we obtain a new value.
Hence, in our sample from the MC3 algorithm we expect that we have, on average, at least
one independent value and at most K independent values within τ iterations. We derive
our expectation of the ESS under the MC3 algorithm as

ESSMC3 = min(K,max(1,
τ

S
))×N . (2.3)
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Figure 2.2: Evaluation of ESS estimation when samples are generated using our MC3

algorithm (Algorithm 3). The x-axis shows the true ESS used to generate the K = 4
different chains. The y-axis shows the estimated ESS value for samples from the MC3

chain. The colored dots show the average ESS estimate over 1,000 replicates. The dashed
lines show the expectation for the ESS for each swap value, the expectations for the swaps
of 1, 2 and 5 have equal values, thus they are represented by the same dashed line, the
same happens for the swaps 20, 50 and 100.

We observed that all three methods perform virtually identical for samples from our
MC3 algorithm (Figure 2.2). Surprisingly, we never estimated the ESS of the MC3 algo-
rithm as high as K ×N (the number of chains times the ESS per chain). This, in fact, is
very reassuring because it indicates that too frequent swapping will not artificially inflate
ESS values.

Samples from adaptive MCMC: Almost all implementations of MCMC algorithms in
phylogenetics and macroevolution use some type of adaptive MCMC [151, 16, 74, 78]. An
adaptive MCMC algorithm changes the tuning parameter of the proposal distribution every
κ iterations. For example, the window size of the sliding window proposal could be updated
to achieve a target acceptance probability of 0.45 [182, 73]. Thus, the autocorrelation time
τ changes during the MCMC simulation. Tuning is performed during a pre-burnin phase
where no samples are taken from the MCMC simulation or during the actual MCMC
simulation if the tuning parameter is guaranteed to stabilize (i.e., converge) and tuning
is performed with low frequency, e.g., τ < κ.

Here we only consider the second case where tuning is performed during the actual
MCMC simulation while taking samples because the first case is equivalent to samples
from a standard MCMC simulation. We sampled from 1,000 replicate MCMC simulations
where the total chain length was broken into five intervals. During each interval, we
generated samples from an MCMC simulation with τ = {50, 40, 30, 20, 10}, that is, in the
first interval we had a higher autocorrelation and in the last interval we had the lowest
autocorrelation. The size of the intervals varied between κ = {50, 100, 200, 500, 1000}. We
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expect a true ESS of

ESSκ =
5∑

i=1

κ

τi
(2.4)

because in every interval i of size κ we should obtain κ
τi

independent samples.
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Figure 2.3: Evaluation of the estimated ESS for samples from adaptive MCMC simulations.
The MCMC simulation was tuned every κ iterations in a total of four times. Within each
of the five intervals we used an autocorrelation of τ = {50, 40, 30, 20, 10}. The x-axis shows
the tuning frequency and the y-axis shows the estimated ESS. The colored dots show the
average ESS of 1,000 replicates. The grey line shows the expected ESS values.

We observed that all three methods produce comparable estimated ESS values when
samples are taken from an adaptive MCMC algorithm (Figure 2.3). However, for the
adaptive MCMC samples CODA was slightly more conservative than Tracer and MCMCSE

compared to our previous experiments. Furthermore, all three methods produced lower
ESS estimates than our analytical expectation. This underestimation could be due to fact
that all ESS methods compute an average autocorrelation time τ for all samples and not
per-window estimates. Our observed estimated ESS values are closer to

ESSκ = 5× κ

τ̄
(2.5)

where τ̄ is the average autocorrelation time. Thus, ESS estimates are not inflated and
instead conservative when samples are taken from adaptive MCMC algorithms.

Assessing ESS estimation of discrete parameters

Tree topologies are arguably the most important but also most difficult parameter of
Bayesian phylogenetic analyses [66]. Tree topologies can be considered as categorical pa-
rameters and thus standard ESS estimation algorithms for continuous parameters do not
apply. Therefore, we transform the samples of tree topologies into traces of absence/p-
resence of splits (see also [49]). For each split that was sampled at least once during the
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MCMC simulation, we construct a trace that has a 1.0 if the split is present in the currently
sampled tree and 0.0 otherwise. Hence, we obtain one discrete trace per split.

The three ESS estimation methods introduced above are derived for parameters drawn
from continuous distributions. Whether these methods also work well for discrete, binary
samples has not been studied. We approximate the sampled split frequencies using samples
from a binomial distribution with probability p corresponding to the true posterior prob-
ability of the split. Different splits are clearly not independent because they are extracted
from the same tree topologies. We show the results assuming independence of splits here
for simplicity. In the Supplementary Material we provide the results where we simulated
draws from the posterior distribution of trees and extracted splits from the trees.

Following our approach for continuous parameters, we simulated 1,000 replicates and
sampled from our MCMC algorithm (Algorithm 1) with a true ESS of N = 625 (see Equa-
tion 2.2) and an autocorrelation of τ = {1, 5, 10, 20, 50}. We varied the true probability of
the split p between 0.001 and 0.999 in increments of 0.001.
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Figure 2.4: Evaluation of ESS estimation for samples taken from a binomial distributions
with different autocorrelation times and varying probability p. The true ESS was N = 625
and p varied from 0 to 1 with steps of size 0.001. The colored dots show average ESS
estimates for 100 replicates. The dashed line shows the true ESS value for the initial
sample.

The efficiency of all methods dropped drastically once the true posterior probability
gets close to either zero or one (Figure 2.4). This is expected because once the posterior
probability is very close to zero or one, it is very likely that all samples either include or
exclude the split. The ESS estimation methods are not designed to work well if all or all
but one sample are zero (or one, respectively). It is intrinsically impossible to tell if all
samples were identical because they are autocorrelated or because they truly should be the
same. Thus, we suggest to exclude splits and parameters that have a posterior probability
of p < 0.01 or p > 0.99.

In conclusion, Tracer had an overall high precision in recovering the true ESS also
when samples are binary (Figure 2.4). As before, we observed that CODA performs badly
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when the ACT was high. Similarly, MCMCSE performed poorly for an ACT of 50. Thus,
Tracer is the only method we tested that is robust under all circumstances.

2.3.3 Reproducibility of MCMC runs

In the previous section we focused on the precision of parameter estimates, which concerns
the question of whether we have run the MCMC simulation long enough or if we need to
run the MCMC simulation longer. In this section, we focus on the second question: “Are
our parameter estimates reproducible?” Our estimates are reproducible if the MCMC
simulation has converged to the true posterior distribution and did not get stuck in some
other area of the parameter space. For example, single MCMC runs can achieve a high
effective sample size but have sampled posterior probabilities that do not reflect the true
posterior probabilities because the MCMC simulation got trapped in an “island in tree-
space” [72, 175].

In practice, we can never know with absolute certainty that our MCMC simulation has
converged to the true posterior distribution. Instead, one commonly compares multiple
independent MCMC runs. In phylogenetics, the two most commonly used approaches to
compare independent MCMC runs are the potential scale reduction factor [PSRF, 53] for
continuous parameters and the average standard deviation of split frequencies [ASDSF,
134, 98] for tree topologies.

The PSRF computes the ratio of the variance of samples between chains over the
variance of samples within a chain. If this ratio converges towards one, i.e., if the variance
between independent chains is the same as the variance within a chain, then all MCMC
simulation have presumably sampled from the same distribution and thus have converged
to the true posterior distribution. However, the PSRF is problematic for two reasons: (1)
there is no clear threshold and in practice values between 1.003 and 1.3 have been used [171];
and (2) the PSRF is very sensitive to the shape and variance of the posterior distribution
and large independent samples (N > 1, 000) from the same distribution can yield a PSRF
clearly larger than one (see Supplementary Figure S6). Thus, we discourage the use of the
PSRF for assessing convergence of Bayesian phylogenetic MCMC simulations. Instead,
we suggest using the Kolmogorov-Smirnoff test (KS), as described in [20]. The KS test
assesses if two samples are drawn from the same distribution but has —to our knowledge—
not been used for convergence assessment in phylogenetics [but see 20, for examples of the
KS test for convergence assessment outside phylogenetics]. Below, we discuss and explore
below the behavior of the KS test to assess convergence for continuous parameters.

The ASDSF computes the posterior probability of each sampled split in a Bayesian
phylogenetic MCMC simulation. Then, the difference between the posterior probabilities
per split for two runs are computed. We support the underlying idea of the ASDSF to
break the sampled phylogenies into splits and use the frequencies of observing each split.
However, computing the average difference between splits is problematic because (1) if the
frequency of one split differs strongly (e.g., a frequency of one in the first run but zero
in the second run) and all other splits have identical frequencies, then the ASDSF will be
low enough to wrongly signal convergence; and (2) the expected difference between two
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MCMC samples for the same split depends on the true posterior probability of the split
(see below). We introduce our alternative version of the ASDSF below.

2.3.4 Assessing reproducibility of continuous parameter estima-
tes

The two-sided KS test for two samples constructs the empirical cumulative distribution
function of the samples. The test statistic D is the largest difference of the two empirical
cumulative distribution functions F1 and F2, D = maxx |F1(x)− F2(x)|. The D statistic
shows a significant departure from the expectation that both samples were drawn from the

same distribution if D >
√
− ln(α

2
)× 1

2
× m+n

m×n
at a significance level α, assuming that the

first sample has an ESS of n and the second sample an ESS of m.
If we would use the standard approach to define the threshold forD based on the number

of samples, then we would reject on average α pairs of MCMC simulation regardless of how
long we ran the MCMC simulations. To circumvent this problem, we fix α = 0.01 and
N = 625 (see Equation 2.2) so that Dcrit = 0.0921. Thus, with more effective samples we
should obtain a more precise estimate of D and therefore avoid incorrectly rejecting runs
that had truly converged as often.

We assessed the false-rejection rate and power of the KS test with our threshold Dcrit

by simulating 1,000 replicated pairs of samples with N = {100, 200, 625, 1000} iid values
drawn from a normal distribution. The first normal distribution had a mean µ1 = 0
and standard deviation σ = 1. The mean of the second normal distribution differed by
µ2 = {0.0, 0.04, 0.08, . . . , 0.8}, thus representing that the two means differed by 0% to 20%
of the 95% probability interval.

When the samples where drawn from the same distribution (µ1 = µ2), then we observed
a false rejection rate of 0.01 for a sample size of 625 (Figure 2.5). This rejection rate is
exactly expected for an α = 0.01. If we increased the sample size to 1,000, then the false
rejection rate decreased to 0.0003. Thus, more samples, i.e., longer MCMC runs, will
increase the chances that the chains are assessed as converged if the samples are truly
from the same distribution. When the mean of the distributions have a 10% difference
(µ2 = µ1 + 0.1× 4× σ), then we correctly rejected convergence with a rate of 0.9974 for a
sample size of 625 and 0.9995 for a sample size of 1,000.

In the previous section we defined that our mean estimate is precise enough if the
standard error is smaller than 1% of the 95% probability interval. Here we showed that the
KS test has very strong power to reject runs if the true means of the samples was different
by 10% or more, and has an acceptable power of 0.95 when the means are different by
8% (Figure 2.5). Increasing the ESS further would both decrease the standard error of
the mean, i.e., increase our precision, and slightly increase the power to correctly reject
convergence when the samples are truly from different posterior distributions.

The KS test is well established for testing if two samples are drawn from the same
underlying distribution, which we also illustrated in Figure 2.5. However, the KS test is
less established as a convergence assessment tool for autocorrelated samples drawn from
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Figure 2.5: Testing the power of the Kolmogorov-Smirnov test statistic to distinguish
between samples from two different distributions. The two samples were drawn from dif-
ferent normal distributions with different mean values. For each combination of difference
in means, 1,000 replicates were tested and the frequency of rejecting the null hypothesis
that both samples were drawn from the same distribution was computed (y-axis). The
x-axis displays the difference in the means of the distributions with regard to the 95%
probability interval of the normal distribution with mean 0 and standard deviation 1.
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MCMC simulations [but see 20]. Therefore, we explored if autocorrelation affects the
behavior of the KS test. We performed the same test as before (1,000 replicates, two
samples from normal distributions where the mean changed by µ2 = µ1 +X × 4× σ) but
introduced autocorrelation of τ = {1, 5, 10, 20, 50} into the samples using Algorithm 1. We
observed that there is no impact of using autocorrelated or uncorrelated samples for the
false rejection rate and power of the KS test (Figure 2.6 for N = 625).
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Figure 2.6: Kolmogorov-Smirnov test to detect difference in distribution for autocorrelated
samples. The two samples were drawn from different normal distributions with different
mean values and different ACT values. Here we only show the results for N = 625. For
each combination of difference in means, 1,000 replicates were tested and the frequency
of rejecting the null hypothesis that both samples were drawn from the same distribution
was computed (y-axis). The x-axis displays the difference in the means of the distributions
with regard to the 95% probability interval of the normal distribution with mean 0 and
standard deviation 1.

2.3.5 Assessing reproducibility of discrete parameter estimates
(split frequencies)

Phylogenetic trees and split frequencies do not yield continuous distributions which can be
compared using the KS test. Instead, one often plots the split frequencies of one run against
a second run (xy-plot). If there is a strong deviation from the diagonal line, then the two
runs are assessed as non-converged. Quantitatively, one can compute the average [98] or
maximum [72] deviation of split frequencies. However, an under-appreciated characteristic
is that the expected difference, or standard error, of split frequencies depends strongly on
the true split frequency.

In our view, the ASDSF is not sensitive enough to detect outliers in estimated split
frequencies. For large trees with many splits, there will be many splits with a very low
frequency. These splits overwhelm the computation of ASDSF and outliers, such that
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even a difference in posterior probability as large as 1.0 in one run and 0.0 in the second
might not be detected. Another unsolved issue with the ASDSF is that no theory for a
threshold is provided and the default thresholds are applied to all tree sizes. Additionally,
the difference for each split has equal weight although the stochastic difference in split
frequencies depends on the true split frequency.

Samples of split frequencies can be treated as a series of 1.0 and 0.0 (presence and
absence, as we did above). Thus, we can consider samples of split frequencies as draws
from a binomial distribution. For a binomial distribution, we can actually apply an exact
test and compute the expected difference based on a given quantile analytically. We call
this test the expected difference of split frequencies (EDSF) because it represents the
difference in split one expects to obtain from two samples and given a specific quantile and
true split frequency. Note, the EDSF should not be interpreted as the expected value (first
moment) of the distribution of difference of split frequencies.

Let us denote the difference of split frequencies between two samples for a split with
true frequency p as ∆sf

p . We compute the EDSF for ∆sf
p as follows. First, we compute all

possible outcomes of split frequencies between two runs with absolute difference | i
N
− j

N
| and

their corresponding probabilities Pbinom(i|N, p)× Pbinom(j|N, p). Then, we order the pairs
of split frequency differences and probabilities by the size of the split frequency difference
and sum the probabilities. Thus, we can compute any quantile of expected split frequency
differences. For our purposes, we define that two samples of phylogenetic trees are from
the same underlying posterior distribution if all splits have a difference smaller than the
95% quantile of ∆sf

p for N = 625 and p = p̂1+p̂2
2

, where p̂i is the estimated split frequency
for run i.
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Figure 2.7: The expected difference in split frequencies for ESS of 100, 200 and 625. The
x-axis is the true value of the split frequency. The y-axis is the expected difference in split
frequencies. The effect of increasing the ESS is the decrease of differences in frequency of
sampled splits.
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Figure 2.7 shows curves of the expected difference in split frequencies (EDSF) for dif-
ferent samples sizes. As expected, the EDSF is smallest when the true split frequency is
close to the boundaries zero or one, and largest when the true split frequency p = 0.5.
Moreover, the EDSF decreases for larger sample sizes (i.e., larger ESS). Interestingly, for
all possible true split frequencies we expect at most a difference of 0.056 (or 0.1 and 0.14)
if we have 625 independent samples (or 200 and 100 respectively).

2.4 Convenience: Implementation of convergence as-

sessment and interpretation of output

We implemented the methods described here in the stand-alone R package Convenience.
Convenience is open-source and can be downloaded and installed from https://github.com-
/lfabreti/convenience. Currently, Convenience supports the output file formats from
RevBayes [78], MrBayes [151], BEAST [16] and PhyloBayes [107]. Additionally, it is also
possible to assess convergence in outputs containing only continuous or discrete parameters
(trees).

The main function of Convenience is checkConvergence(), which runs the complete
convergence assessment pipeline and the thresholds established in this article.

> t e s t convergence <− checkConvergence ( ” convenience/example/” )

The checkConvergence() function checks first the best burn-in value. If the burn-in
is greater than 50%, the function stops and tell the user that the burn-in is too large.
Otherwise, the function continues the convergence assessment by applying the described
methods to the continuous and discrete parameters. In addition, the user has the pos-
sibility to use each method separately in different functions and change the thresholds
as suited. A more detailed explanation of the functions can be found in the tutorial at
https://revbayes.github.io/tutorials/convergence/.

Once the convergence assessment has been performed, the user has the option to print
or plot the results. Convenience produces four main plots:

> plotEssContinuous ( t e s t convergence )
> p l o tE s s Sp l i t s ( t e s t convergence )
> plotKS ( t e s t convergence )
> p l o tD i f f S p l i t s ( t e s t convergence )

plotEssContinuous displays the ESS values for all continuous parameters and all
MCMC replicates within one plot (Figure 2.8a). If MCMC convergence has been achieved,
then all ESS values in this histogram are on the right side of the minimum ESS threshold.
plotEssSplits displays the ESS values for all splits and all MCMC replicates (Figure
2.8b). Again, if MCMC convergence has been achieved, then all ESS values in this his-
togram are on the right side of the minimum ESS threshold. plotKS displays the KS-score
for all continuous parameters and all pairwise comparisons of MCMC replicates (Figure
2.8c). If MCMC convergence has been achieved, then all KS scores in this histogram are

https://github.com/lfabreti/convenience
https://github.com/lfabreti/convenience
https://revbayes.github.io/tutorials/convergence/
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Figure 2.8: The plots generated with Convenience for summarizing and visualizing the re-
sults from the convergence assessment. Here we used the MCMC example in the RevBayes
tutorial https://revbayes.github.io/tutorials/ctmc/, see [73]. Top-left: the histogram of
estimated ESS values for the model parameters (continuous parameters). Top-right: the
histogram of calculated ESS for the splits. In both histograms the dashed lines represents
the minimum ESS threshold of 625. Bottom-left: histogram of the Kolmogorov-Smirnov
(KS) test for the model parameters, the dashed line represents the threshold for the KS
test. Bottom-right: the observed difference is split frequencies in the green dots and the
maximum threshold for split frequencies based on the expected difference between split
frequencies (EDSF) in the gray curve. For all plots the gray area shows where the values
should be if the analysis achieved convergence.

https://revbayes.github.io/tutorials/ctmc/
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on the left side of the maximum KS threshold. plotDiffSplits displays the difference in
split frequencies for all splits and all pairwise comparisons MCMC replicates (Figure 2.8d).
If MCMC convergence has been achieved, then all differences in split frequencies are below
the maximum split frequency threshold.

In summary, applying Convenience is fully automatic. Thus, the package can be
used interactively or in batch-mode (e.g., on computer clusters). If an MCMC analysis
includes a plot similar to Figure 2.8, then it is easy to verify convergence assessment. The
text output of Convenience can be easily parsed to perform hundreds or thousands of
convergence assessments.

2.5 Discussion and conclusions

2.5.1 Convergence thresholds for nuisance parameters

In many phylogenetic analyses, there are some focal parameters and other parameters are
nuisance parameters. For example, in a traditional phylogeny estimation analysis, the
phylogenetic tree is the focal parameter and the substitution model parameters might be
nuisance parameters. So far, the thresholds used in convergence assessment are applied
equally to all parameters. That is, one requires that all parameters have an ESS> 625
(or whichever other threshold was used). One might argue that checking for convergence
for the nuisance parameters is not as relevant as checking for convergence for the focal
parameters. Thus, it could be possible to use more relaxed thresholds for the nuisance
parameters. However, we find no theoretical support for treating nuisance and focal pa-
rameters differently. Whether relaxing the precision, and consequently the ESS, for the
nuisance parameters can affect the convergence of the focal parameters needs to be further
investigated. For now, we advise on using the same criteria for all underlying parameters
of the model.

2.5.2 Future directions

Our approach and evaluation presented here has several limitations and is only another
small step towards robust and automatic convergence assessment. First, we did not test
how well either of these methods perform when the posterior distribution is multi-modal.
Second, parameter non-identifiability might confuse convergence assessment tests. For ex-
ample, hidden Markov models can produce seemingly multi-modal posterior distributions
if the hidden state is arbitrarily labelled and not ordered [105, 7]. Third, we currently
reject convergence if a single MCMC run did not converge or produced a different poste-
rior distribution. When MCMC mixing is very challenging, it might happen that many
replicated MCMC runs are performed and only a small subset converged. Thus, it would
be desirable to automatically identify the subset of MCMC runs that converged.
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2.5.3 Conclusions

Convergence assessment should be a mandatory, objective, simple and reproducible step
in any Bayesian analysis that relies on samples from the posterior distribution. In this
manuscript we presented and explored our approach, which is implemented in the R package
Convenience. We identified two crucial aspects when running an MCMC simulation: (i)
Has the MCMC ran long enough?; and (ii) Do the samples represent the true posterior
distribution?

We addressed the first question by focusing on the precision of the posterior mean
estimate. If we have sufficiently many samples from the posterior distribution, then our
standard error of the mean estimate will be sufficiently small. Thus, one only needs to
check if the effective sample size is large enough and we provide some objective criteria to
choose a threshold for the minimum ESS. If we accept an SEM of 1% of the 95% credible
interval, then a minim ESS of 625 is required. We tested three commonly used methods to
estimate the ESS: spectral density estimators of an auto-regressive process (CODA), batch
means (MCMCSE), and initial sequence estimator (Tracer). Our assessment included: (a)
independent samples; (b) autocorrelated samples; (c) samples from Metropolis-Coupled
MCMC simulations; and (d) samples from adaptive MCMC simulations. We found that
only the initial sequence estimator (Tracer) was robust in all scenarios and for all ranges
of autocorrelations.

Focusing on phylogenetic applications, we showed that samples from the posterior dis-
tribution of phylogenetic trees can be converted into binary traces of absence/presence
of splits. We tested such approach for cases where the ESS of the trees was known and
concluded that the estimated ESS of splits is a good proxy for the ESS of trees. The ESS
estimation works robustly on these discrete, binary traces and can be applied in the same
way.

We addressed the second question by focusing on reproducibility of multiple MCMC
runs. We observed that the commonly used potential scale reduction factor (PSRF) is not
robust to the shape of the posterior distribution. For example, samples from a lognormal
distribution yield a PSRF that is asymptotically significantly larger than 1.0. We suggest
the Kolmogorov-Smirnov test instead, which we showed to work well also for autocorrelated
samples.

We modified the average standard deviation of split frequencies (ASDSF) to use in-
stead an analytically derived expected difference between split frequencies (EDSF). We
demonstrated that the EDSF depends on the true frequency of a split, and thus the same
thresholds for all splits cannot be used.



Chapter 3

The Expected Behavior of Posterior
Predictive Tests and its Unexpected
Interpretation

3.1 Abstract

Poor fit between models of sequence or trait evolution and empirical data is known to
cause biases and lead to spurious conclusions about evolutionary patterns and processes.
Bayesian posterior prediction is a flexible and intuitive approach for detecting such cases of
poor fit. However, the expected behavior of posterior predictive tests has never been char-
acterized for evolutionary models, which is critical for their proper interpretation. Here,
we show that the expected distribution of posterior predictive p-values is generally not
uniform, in contrast to frequentist p-values used for hypothesis testing, and extreme poste-
rior predictive p-values often provide more evidence of poor fit than typically appreciated.
Posterior prediction assesses model adequacy under highly favorable circumstances, be-
cause the model is fitted to the data, which leads to expected distributions that are often
concentrated around intermediate values. Non-uniform expected distributions of p-values
do not pose a problem for the application of these tests, however, and posterior predictive
p-values can be interpreted as the posterior probability that the fitted model would predict
a dataset with a test statistic value as extreme as the value calculated from the observed
data.

3.2 Introduction

Statistical models are mathematical abstractions of reality that employ simplifying as-
sumptions to capture important features of complex systems. As long as such assumptions
do not depart from reality too strongly, statistical models can provide important insights
into the systems they represent. However, if assumptions violate reality in meaningful
ways, models lose both utility and reliability [51, 24].
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Applied statistical fields, including phylogenetics and molecular evolution, need tools
to assess when their models fail as meaningful abstractions of reality. The use of these tools
is often referred to as testing absolute model fit or testing model adequacy. In a Bayesian
framework, one way to test a model’s absolute fit is through posterior prediction [152, 14].

Posterior prediction involves fitting a Bayesian model with parameters θ to observed
data y. We then draw S values of θ from the posterior distribution, p(θ|y), and based
on these posterior draws (θ1 · · · θS), we simulate S predictive datasets (yrep1 · · · y

rep
S ) of the

same size as y. To perform a posterior predictive check of our model, we start by selecting
a test statistic, T (y), that can be calculated on the observed and predictive datasets in
order to compare them. One way to summarize the comparison between T (y) and T (yrep1...S)
is to calculate the fraction of predictive datasets that have test statistic values smaller
or larger than the observed. If smaller, we can define the posterior predictive p-value
as P (T (yrep) < T (y)|y) and, if larger, P (T (yrep) > T (y)|y) [see 83, for a description of
different posterior predictive p-values]. In either case, particularly large or small p-values
indicate poor fit between the model and data.

The steps outlined above describe the mechanics of performing posterior prediction,
but the more formal mathematical description of the quantity being estimated by this
procedure is given by

p =

T (y)∫
−∞

 ∞∫
−∞

p(T (yrep)|θ)p(θ|y)dθ

 dT (yrep). (3.1)

Here, integration inside the parentheses describes the posterior predictive distribution of
test statistic values, T , based on the posterior distribution of θ, while the outer integration
describes calculation of the lower tail-area probability of this distribution with an upper
limit defined by the empirical test statistic value, T (y).

Despite statistical literature discussing the behavior of posterior predictive tests in
general (e.g., [124]), expected distributions have never been characterized for posterior
predictive p-values in phylogenetics and molecular evolution. Therefore, we aim to charac-
terize the expected distributions of posterior predictive p-values for phylogenetics, compare
such distributions across different types of test statistics, and understand how different pa-
rameters affect these expectations. To do so, we performed a broad set of simulations and
posterior predictive analyses. We used the same model for simulation and analysis, and we
drew parameter values for simulation from the prior distributions of the model parameters.

Our results convincingly demonstrate that posterior predictive p-values should not be
interpreted like p-values from frequentist hypothesis tests. If misinterpreted in this way,
posterior predictive tests will not be used to greatest effect and the strength of evidence
for poor model fit will be underestimated because the expected distributions of posterior
predictive p-values are, in many cases, highly non-uniform with a concentration of values
near 0.5.
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3.2.1 Definition and Comparison of p-values

While posterior predictive p-values are called p-values because they involve the calculation
of tail-area probabilities, they are distinct from several other types of p-values that we
describe here for clarity.

The traditional frequentist p-value used in a hypothesis testing framework is defined
as the probability of obtaining a test statistic value, T (yrep) that is as or more extreme
than the observed test statistic value, T (y), if the null hypothesis (with a value of θ fixed a
priori) is true. If we focus on the probability of obtaining observations that are smaller than
the observed, the frequentist hypothesis testing p-value can be described by the cumulative
distribution function,

p =

T (y)∫
−∞

f(T (yrep)|θ)dT (yrep). (3.2)

Note that θ, and correspondingly the distribution of T (yrep), does not depend at all on y
in this case.

The parametric bootstrap p-value is similar in formulation to the frequentist p-value
for testing a null hypothesis, but with estimated parameter θ̂. That is, instead of assuming
a value of θ that is fixed a priori, we use the maximum-likelihood estimate, θ̂, based on y:

p =

T (y)∫
−∞

p(T (yrep)|θ̂)dT (yrep) (3.3)

Parametric bootstrapping is a frequentist analogue to posterior predictive model checking,
but does not involve prior distributions or integration across different values of θ. The
estimated value of θ̂ and the distribution of T (yrep) do depend on y in this case.

The prior predictive p-value [19] is the Bayesian equivalent of the traditional frequentist
hypothesis test, in the sense that the (probabilities of) parameter values defining the model
are fixed a priori and do not depend on the observed data, y. The main difference is that,
in the case of the prior predictive p-value, the cumulative distribution function is computed
while integrating over different values of θ weighted by the prior probability of each, p(θ),

p =

T (y)∫
−∞

 ∞∫
−∞

p(T (yrep)|θ)p(θ)dθ

 dT (yrep). (3.4)

A graphical depiction of the similarities and differences across p-values is given in Figure
1.
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Table 3.1: Settings for simulations and posterior predictive analyses.

Setting Substitution
Model

Number of
taxa

Number of sites Mean branch
length

1 (Baseline) JC 16 100 0.1
2 JC 64 100 0.1
3 JC 16 1000 0.1
4 JC 16 100 0.02
5 GTR++I 16 100 0.1

3.3 Results

The expected distribution of posterior predictive p-values varies by both test statistic
and simulation condition, but is typically non-uniform (Figs. 2 and 3). Instead, these
distributions are more concentrated around intermediate values, with fewer values near
0 or 1. This expectation has gone unappreciated in the discussion and applications of
these tests to phylogenetics and molecular evolution [e.g., 14, 21, 24], but has important
consequences for how results are interpreted.

In this study, we investigated the expected behavior of both data- and inference-based
test statistics. Briefly, data-based test statistics can be calculated directly based on the
properties of sequence alignments (e.g., the variance in GC content across sequences),
while inference-based test statistics are calculated based on the properties of inferences
conditional on those alignments and a model (e.g., the 99th percentile in the ordered vector
of RF distances describing distances between trees sampled from the posterior distribution).
Despite these differences, both types of test statistics have expected distributions that
exhibit the same concentration of posterior predictive p-values near intermediate values.

While most test statistics have non-uniform expected distributions, ancillary test statis-
tics (those statistics whose probability distributions do not depend on model parameters)
should have uniform expected distributions [124, 50], because fitting the model has no ef-
fect for these statistics. This expectation explains the distributions of p-values for statistics
based on GC content in our results (Fig. 2). Mean GC content is an ancillary statistic
of the Jukes-Cantor model (JC), since this model assumes equal nucleotide frequencies,
and we see roughly uniform expected distributions for Mean GC when using JC. However,
Mean GC content is not ancillary for the GTR+I+G model, so the expected distribution
is more concentrated around 0.5 in this case (bottom right of Fig. 2). Variance in GC
content across sequences is ancillary for both models, since both assume that GC content
does not vary across the tree, resulting in consistently uniform expected distributions.

Inference-based test statistics, by definition, depend on parameters of the model and
cannot be ancillary. As a result, expected distributions of posterior predictive p-values for
these statistics are never uniform (Fig. 3) and are always more concentrated near 0.5 than
0 or 1. Expected distributions for inference-based statistics tend to be more consistent
than for data-based statistics, although some become markedly more peaked when dataset
size increases either in terms of number of sites or number of taxa.

Several statistics, both data- and inference-based, have expected p-value distributions
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that are essentially fixed at 0.5 for some conditions (e.g., the effect of more taxa on the
number of invariant sites or the topological entropy; Figs. 2 and 3). Posterior predictive p-
values can be interpreted as the posterior probability of observing a test statistic value that
is as extreme as the observed value [50], so these (nearly) invariant distributions may indi-
cate that fitted models almost always predict datasets with (nearly) the same test statistic
value as the observed. This interpretation makes sense for both the number of invariant
sites and entropy test statistics with large numbers of taxa in our simulations (“Setting
2̈ın Table 3.1, “More Taxäın Figs. 2 and 3). For datasets simulated with these conditions,
nearly every site in the alignment will have some variation, causing the number of invariant
sites to be approximately 0 for all observed and posterior predictive datasets. Similarly,
these conditions lead to very diffuse posterior distributions of phylogenetic topologies, such
that every topology sampled from the posterior distribution is unique and the estimated
entropy is the same across datasets.

Expected p-value distributions for some test statistics are multimodal (e.g., the mini-
mum pairwise difference statistic; Fig. 2). Multimodal distributions typically occur with
discrete test statistics that adopt a small number of possible values. Such distributions are
not unique to phylogenetics and molecular evolution and present no particular difficulties
for interpretation [50]. However, these expected distributions are worth bearing in mind
when interpreting such values in empirical studies. In these cases, small changes in test
statistic values can lead to seemingly large changes in p-values.

While p-values have received the most attention as a way to summarize the results
of posterior predictive tests, an alternative approach is the use of effect sizes [33, 83].
Briefly, effect sizes measure the distance between the empirical test statistic value and the
median of the posterior predictive distribution, normalized by the standard deviation of the
posterior predictive distribution. Effect sizes are useful for understanding the magnitude of
the discrepancy between the observed and predicted values, even when the observed value
is highly improbable given the model. We used the same set of simulations and analyses to
characterize the expected distributions of effect sizes (Figs. 4 and 5). These expected effect
size distributions make sense in light of the expected distributions of p-values, although
there is a preponderance of values near 0 rather than near 0.5. Due to the way effect
sizes are calculated, their expected distribution is not uniform even when the expected
distribution of p-values is uniform. As an example, see the distributions of expected effect
sizes for Mean GC content for any of the analyses employing a JC model (Fig. 4). As with
expected distributions of p-values, many of the distributions of effect sizes are multi-modal,
due to the discrete nature of many test statistics. However, in all cases, these values are
nearly always < 2.0. This result stands in contrast to our experiences analyzing empirical
data sets, where effect sizes are frequently ≫ 10.0 [33].

3.4 Discussion and Conclusions

P -values by definition represent the probability, conditional on the model, of observing
data that are more extreme than what has actually been observed. A p-value that is very
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small or very large indicates that the observed dataset is an outlier relative to model expec-
tations and possibly reflects poor absolute model fit. In a standard frequentist hypothesis
test, the model corresponds to the null hypothesis and poor model fit would lead to its
rejection. Frequentist p-values for hypothesis testing are explicitly constructed to have
uniform distributions in order to control false positive rates. Importantly, this uniformity
of p-values stems from the use of fixed (i.e., not fitted) parameter values.

Posterior predictive p-values, on the other hand, use model parameter values that have
been fitted to the observed data (Fig. 1). The probability that the observed data are
more extreme than expected is always reduced relative to tests using fixed values, because
the model is given the opportunity to explain the data as well as possible. Thus, expected
distributions of posterior predictive p-values tend to be concentrated around 0.5 [124, Figs.
2 and 3], although the precise shape can vary by both test statistic and analysis condition.
In practice, non-uniform distributions can be precisely what we want if our goal is to
assess the ability of our model to capture certain aspects of our observed data [50]. If our
model always does a good job of predicting these features, then the expected distribution
of posterior predictive p-values should reflect that.

We focused here on posterior predictive p-values, computed in a Bayesian framework,
but similar considerations apply to p-values from parametric bootstrapping analyses (Fig.
1) conducted in a frequentist framework. Since parametric bootstrapping also involves
fitting a model to a dataset, it should also produce expected distributions of p-values
that are non-uniform. In fact, expected distributions from parametric bootstrapping may
be much more concentrated than those from posterior prediction, because the effect of
posterior uncertainty keeps the expected distributions from becoming too peaked in a
Bayesian setting.

If posterior predictive p-values are misinterpreted as frequentist hypothesis testing p-
values, the evidence for poor model fit will usually be underestimated. A posterior predic-
tive p-value of 0.05 typically has a < 5% probability of occurring when the assumptions of
an analysis exactly match the data-generating process. However, again, it is best to avoid
framing posterior predictive tests in frequentist hypothesis testing terms. The goal of pos-
terior predictive tests should not be to reject a model as “true“[51], since we know that
none of the models fully represent the complexity of real evolutionary processes. Rather,
these tests indicate the extent to which the model’s simplifications are problematic for
explaining important features of the data.

In the course of this study, we simultaneously characterized expected distributions of
posterior predictive p-values for multiple test statistics and our results demonstrate that
many of these test statistics are correlated. Strong correlations mean that a count of the
number of statistics with small p-values is not an effective way to measure the overall
degree of fit between model and data. Small p-values for posterior predictive tests with
two uncorrelated test statistics would provide more insight than small p-values for many
such tests with highly correlated test statistics.

Empirical application of posterior predictive tests in phylogenetics and molecular evo-
lution has frequently resulted in extremely small p-values across many different datasets
using a variety of different test statistics [e.g., 106, 45, 185, 33, 146, 36, 83]. Based on



36 3. Posterior Predictive Tests

Table 3.2: Parameters of phylogenetic models and their associated prior distributions.

Parameter Description Prior Distribution Parameters of the
distribution

Ψ Topology of the tree Uniform Num. of Taxa=16
or 64

bl Branch lengths Exponential λbl =10 or 50
π Equilibrium base

frequencies
Dirichlet απ=(1,1,1,1)

er Exchangeabilities Dirichlet αer=(1,1,1,1,1,1)
α Shape of the

Gamma
distribution

Exponential λα=0.05

I Proportion of
invariant sites

Beta (αI , βI)=(10,20)

the nature of the expected distributions that we have characterized here, these empirical
results often represent even stronger evidence than has been appreciated that commonly
applied models in phylogenetics are seriously inadequate. An important future direction
will be to more comprehensively characterize those aspects of empirical datasets that are
consistently fit poorly by commonly employed models of sequence and trait evolution. This
characterization can guide the most efficient development of effective new models.

To our knowledge, this paper is the first characterization of the expected distribution
of posterior predictive p-values for models commonly used in phylogenetics and molecular
evolution. Our hope is that the results presented here clarify the interpretation of empirical
assessments of absolute model fit using posterior predictive tests. These tests can highlight
important mismatches between model assumptions and the actual biological processes that
shape genome sequences. Critical thought must be given to how models are applied in order
to gain insight into evolutionary patterns and processes [24].

3.5 Materials and Methods

3.5.1 Data Simulation

To understand the expected distributions of posterior predictive p-values when analysis
conditions precisely match those under which the data were generated, we first simulated
alignments of DNA sequences using a baseline set of conditions: a JC model [87] of sequence
evolution, a 16-taxon tree from a uniform distribution, alignments with 100 sites, and
exponentially distributed branch lengths with a mean of 0.1 (Table 3.1, Setting 1). We
then simulated alignments under four additional sets of conditions that varied each baseline
setting individually. We increased the size of the tree to 64 taxa (Setting 2), increased the
length of the alignment to 1,000 sites (Setting 3), reduced the mean branch length to
0.02 (Setting 4), and used the General Time-Reversible model (GTR) [166] with Gamma-
distributed rate variation among sites as four discrete rate categories (Γ) [178, 180] and
a proportion of invariable sites (I) [3, 61] (Setting 5). For each setting, we simulated
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10,000 alignments in RevBayes [75] by randomly drawing parameter values from the prior
distribution associated with each parameter (see Table 3.2 for details about the parameters
and their prior distributions). Parameter values were drawn separately for each dataset.

Once datasets were simulated, we conducted Bayesian Markov chain Monte Carlo
(MCMC) analyses using RevBayes [75] to estimate posterior distributions of tree topolo-
gies and model parameter values for each simulated dataset. We then drew samples from
these posterior distributions to generate posterior predictive datasets and compared each
original dataset to its corresponding posterior predictive distribution using a variety of test
statistics [83]. Details of these analyses are provided below.

Table 3.3: Moves used during Markov chain Monte Carlo (MCMC) analyses. Jukes-Cantor
analyses used only the first three moves.

Function in RevBayes Description Parameter
to change

Weight

mvNNI Nearest-neighbor
interchange move

Ψ num. of taxa

(e.g., 16, 64)
mvSPR Subtree

prune-and-regraft
move

Ψ num. of taxa x
0.1

(e.g., 1.6, 6.4)
mvBranchLengthScale Scaling move on the

branch lengths
bl num. of taxa

(e.g., 16, 64)
mvBetaSimplex Scaling move on

nucleotide
frequencies

π 2.0

mvDirichletSimplex Scaling move on
nucleotide
frequencies

π 1.0

mvBetaSimplex Scaling move on
exchangeabilities

er 3.0

mvDirichletSimplex Scaling move on
exchangeabilities

er 1.5

mvScale Scaling move on
shape parameter

α 2.0

mvBetaProbability Scaling move on
proportion of
invariable sites

I 2.0

3.5.2 Markov Chain Monte Carlo Analyses

We performed MCMC analyses in RevBayes [75] for each simulated dataset using the same
conditions under which they were simulated (see Table 3.1). Prior distributions were the
same as those from which parameter values were drawn for simulation (Table 3.2). For
all analyses, we estimated the tree topology and branch lengths. For analyses of datasets
simulated under Setting 5 with a GTR+Γ+I model, we also estimated the equilibrium
base frequencies, the exchangeabilities, the shape parameter of the Γ distribution, and the
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proportion of invariable sites (I; Table 3.2). Each analysis involved a burn-in phase of 200
iterations, followed by MCMC sampling for 10,000 iterations. The moves used for each
parameter, and their associated weights, are provided in Table 3.3. A subset of runs from
different conditions were spot checked to ensure that the MCMC settings were sufficient
to achieve good convergence of both scalar parameter values and tree topologies. MCMC
analyses conducted for use with posterior predictive analyses involving data-based test
statistics used two independent replicate analyses and automatic tuning of moves every
200 generations during both the burn-in and sampling phases. Analyses conducted for
use with posterior predictive analyses involving inference-based test statistics used a single
replicate and only used automatic tuning during the burn-in phase.

3.5.3 Posterior Predictive Analyses and p-values

To perform posterior predictive analysis on each of the simulated datasets, we used the P3

(Phylogenetic Posterior Prediction) workflow implemented in RevBayes [83]. Phylogenetic
posterior predictive analyses involve four steps: (1) estimating posterior distributions of
phylogenetic trees and model parameters from input data (see above), (2) simulating new
(posterior predictive) data using parameter values drawn from the estimated posterior
distributions, (3) computing test statistics for both the original and simulated data, and (4)
calculating p-values and effect sizes to summarize the (dis)similarity between original and
simulated data. Some test statistics, known as inference-based (see below), may depend
on characteristics of the inferences drawn from data. To calculate these, an additional
step (3a) is necessary that involves running MCMC analyses on each simulated, posterior
predictive dataset. For step (2), we simulated 1,001 posterior predictive datasets when
using data-based test statistics and 501 posterior predictive datasets when using inference-
based test statistics.

The P3 workflow has a number of test statistics (Tables 3.4 and 3.5) available that
summarize characteristics of alignments. Some of these statistics (data-based, Table 3.4)
are calculated directly from the alignment itself, while others (inference-based, Table 3.5)
are calculated based on characteristics of inferences drawn from the alignment. We used
all test statistics currently implemented in P3 in RevBayes. For any of these statistics,
p-values can be used to assess whether the “observedälignment is similar to the posterior
predictive alignments [33, 83]. P -values indicate what percentage of posterior predictive
test statistic values are more extreme than the observed value.

P -values near 0 or 1 indicate that the observed value falls in a tail of the posterior pre-
dictive distribution. Midpoint p-values are particularly useful for discrete test statistics,
where ties can be observed between posterior predictive and observed values. In such a case,
the midpoint p-value will consider half of the tied posterior predictive values to be more
extreme than observed and half to be less extreme than observed. In this study, we specif-
ically focused on the lower, one-tailed, midpoint p-value. All 10,000 simulated datasets
were analyzed to characterize the behavior of posterior predictive analyses for data-based
test statistics, while 1,000 datasets were analyzed for inference-based test statistics due to
their more computationally intensive calculation.
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Table 3.4: Descriptions of data-based test statistics.

Test Statistic Description Reference
Number of invariant sites Number of columns in the

alignment that show no
variation in nucleotide content

[83]

Max invariant block length The maximum number of
consecutive sites with no
variation

Max pairwise difference The scaled number of
mismatches between the pair
of sequences with the greatest
number of mismatches

[83]

Max variable block length The maximum number of
consecutive sites with
variation

Min pairwise difference The scaled number of
mismatches between the pair
of sequences with the fewest
number of mismatches

[83]

Mean GC content GC content averaged across
all sequences

[83]

Variance in GC content Variance in GC content across
sequences in an alignment

[83]

Theta Watterson’s measures the
genetic diversity in a given
population

[174]

Tajima’s D Accounts for how much the
variability observed is due to
chance

[164]

Tajima’s Average number of pairwise
differences across sequences in
an alignment

[133, 93]

Multinomial likelihood Measures the ability of the
model to account for different
site pattern frequencies

[59]

3.5.4 Effect Sizes

While we have largely focused our attention in this study on the distribution of posterior
predictive p-values, because such values have received the most attention in the statistical
literature, an alternative measure of absolute model fit is the posterior predictive effect
size [PPES; 33, 83]. Complementary to posterior predictive p-values, posterior predic-
tive effect sizes capture the magnitude of differences between observed and expected test
statistic values on a broader scale. While posterior predictive tests using two different test
statistics for the same dataset may both produce p-values of 0, one observed value may
fall just outside the tails of the corresponding posterior predictive distribution, while the
other observed value may be very, very far away from its predicted values. Effect sizes
differentiate between these two situations, and are calculated as

PPES =
|T (y)−M(p(T (yrep)|y))|

σ(p(T (yrep)|y))
(3.5)
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Table 3.5: Descriptions of inference-based test statistics, originally described by Brown
(2014).

Test Statistic Description
Mean RF Mean RF [149] distance between trees sampled from the

posterior distribution
Quant 25 25th percentile in the ordered vector of RF distances between

trees sampled from the posterior distribution
Quant 50 50th percentile in the ordered vector of RF distances between

trees sampled from the posterior distribution
Quant 75 75th percentile in the ordered vector of RF distances between

trees sampled from the posterior distribution
Quant 99 99th percentile in the ordered vector of RF distances between

trees sampled from the posterior distribution
Quant 999 999th 1000-quantile in the ordered vector of RF distances

between trees sampled from the posterior distribution
Entropy Gain in information about the tree topology provided by the

data
Mean TL Mean length of trees sampled from the posterior distribution
Var TL Variance in the length of trees sampled from the posterior

distribution

where y is the observed dataset, yrep is a posterior predictive dataset, T (y) is a test statistic
calculated with y, p(T (yrep)|y) is the posterior predictive distribution of T , M is the median
of a distribution, and σ is the standard deviation of a distribution. In other words, a
posterior predictive effect size is the absolute value of the difference between the observed
test statistic value and the median of the posterior predictive distribution of test statistic
values, normalized by the posterior predictive distribution’s standard deviation. Using
the same simulations and analyses that we used to understand the expected behavior of
posterior predictive p-values, we also examined the expected distributions of posterior
predictive effect sizes.
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Figure 3.1: Schematic of workflows to estimate expected distributions for different types of
p-values. The depictions of expected distributions are generalizations, intended to highlight
important differences among different types of p-values.



42 3. Posterior Predictive Tests

Multinomial Likelihood

Tajima's Pi

Tajima's D

Theta

Variance in GC Content

Mean GC Content

Min Pairwise Difference

Max Variable Block Length

Max Pairwise Difference

Max Invariant Block Length

Number of Invariant Sites

Multinomial Likelihood

Tajima's Pi

Tajima's D

Theta

Variance in GC Content

Mean GC Content

Min Pairwise Difference

Max Variable Block Length

Max Pairwise Difference

Max Invariant Block Length

Number of Invariant Sites

0.0 0.5 1.0

P-value

Te
st

S
ta

tis
tic

JC / 16 / 1000 / 0.1

0.0 0.5 1.0

P-value

JC / 64 / 100 / 0.1

0.0 0.5 1.0

P-value

JC / 16 / 100 / 0.1
Baseline

0.0 0.5 1.0

P-value

Te
st

S
ta

tis
tic

JC / 16 / 100 / 0.02

0.0 0.5 1.0

P-value

GTR+I+G / 16 / 100 / 0.1

More
Sites

More
Taxa

More
Complex

Model

Shorter
Branch
Lengths

Figure 3.2: Distributions of posterior predictive p-values for data-based test statistics. The
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as: Model / Number of Taxa / Number of Sites / Mean Branch Length. Results from
the baseline setting (Setting 1 in Table 3.1) are shown in the middle. The other settings
modified one condition of the baseline, indicated by the labels next to arrows.
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Figure 3.3: Distributions of posterior predictive p-values for inference-based test statistics.
The labels and layout are the same as in Fig. 2.
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Chapter 4

Nucleotide Substitution Model
Selection is not Necessary for
Bayesian Inference of Phylogeny with
Well Behaved Priors

4.1 Abstract

Model selection aims to choose the most adequate model for the statistical analysis at hand.
The model must be complex enough to capture the complexity of the data but should be
simple enough to not overfit. In phylogenetics, the most common model selection scenario
concerns selecting an appropriate substitution and partition model for sequence evolution
to infer a phylogenetic tree. Here we explored the impact of substitution model over-
parameterization in a Bayesian statistical framework. We performed simulations under
the simplest substitution model, the Jukes-Cantor model, and compare posterior estimates
of phylogenetic tree topologies and tree length under the true model to the most complex
model, the GTR+Γ+I substitution model, including over-splitting the data into additional
subsets (i.e., applying partitioned models). We explored four choices of prior distributions:
the default substitution model priors of MrBayes, BEAST and RevBayes and a newly devised
prior choice (Tame). Our results show that Bayesian inference of phylogeny is robust
to substitution model over-parameterization but only under our new prior settings. All
three default priors introduced biases for the estimated tree length. We conclude that
substitution and partition model selection are superfluous steps in Bayesian phylogenetic
inference pipelines if well behaved prior distributions are applied.
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4.2 Introduction

At the heart of all model-based phylogenetic inferences lies the substitution model. The
substitution model defines the rate of substitutions between any pair of states (e.g., be-
tween nucleotides) and thus the probabilities of substitutions given a branch length. Many
different substitution models have been suggested over time, e.g., the Jukes-Cantor (JC)
model [86], the Kimura two parameter (K2P) model [90], the Kimura three parameter
(K3P) model [91], the Felsenstein (F81) model [41], the Hasegawa-Kishino-Yano (HKY85)
model [68], and the general time reversible (GTR) model [165]. Additionally, phyloge-
netic substitution models often incorporate different rates among sites [the +Γ model, 177]
and/or a proportion of invariable site [the +I model, 2, 62]. With this diversity of substi-
tution models, a researcher is left with the daunting task to choose the “best” substitution
model for the specific dataset at hand.

An under-parameterization (i.e., oversimplified) substitution model can bias phylogeny
estimation [159]. This problem was demonstrated in several applications, e.g., [109], [160],
[27], [89]. These studies concluded that phylogenetic inference with different substitution
models can result in a significant difference of the tree topology and/or branch lengths, with
the more complex models performing better in all cases. The observed biases introduced
due to under-parameterized substitution models has led to the development of methods for
substitution model selection [140, 79, 139, 28, 88]. It has become common practice to select
the best fitting substitution model before estimating a phylogenetic tree. For example, in
2014, the paper describing the software ModelTest [140] was among the the 100 most cited
papers of all time [170].

There are several problems with the current approach of substitution model selection in
phylogenetics pipelines. First, the current approach is circular because the model selection
step [e.g., in ModelTest and its successors, 140, 139, 28] requires a phylogeny [18]. This
phylogeny is often estimated using fast but less accurate models and methods [e.g., using
Neighbor-Joining, 141]. Using the wrong phylogeny could lead to biased model selection.
Second, the current approach does not incorporate uncertainty in the estimated phylogeny,
branch lengths and substitution model parameters [135, 18]. The crucial issue with substi-
tution model selection is that considerable shortcuts are taken because the analysis using a
single substitution model can take weeks to months. Performing full inferences and model
selection, e.g., computing Bayes factors for each substitution model [73], increases the
computation time by several factors even using parallel computations [77]. Full substitu-
tion model selection is infeasible and (almost) never applied because of this computational
demand.

Is substitution model selection in Bayesian phylogenetic inference a necessary step,
or could simply the most complex, e.g., the GTR+Γ+I substitution model, be used?
It has been shown that an under-parameterized substitution model can bias phylogeny
estimation [see 159, for a review] but does an over-parameterized (i.e., too complex)
substitution model also biases phylogenetic inference? Surprisingly, this question has re-
ceived rather little attention and only two studies have partially addressed this question
[81, 111]. First, [81] studied the posterior probabilities of bipartitions under simple and
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complex substitution models. They concluded that Bayesian inference is more sensitive to
under-parameterization than to over-parameterization with regard to tree topology. Sec-
ond, [111] specifically studied the impact of model misspecification on Bayesian inference
of phylogeny. They show that model over-parameterization does not bias bipartition pos-
terior probabilities and has little to no effect on branch lengths. The observed effect on
branch lengths was a decrease in precision. Therefore, [111] conclude with a warning to
not assume the most complex model because of the “imprecision that may result from
over-parameterization”. Thus, substitution model selection remains common practice in
phylogenetic inference.

Furthermore, in most phylogenetic analyses, the sequence alignment is divided into
several data subsets, e.g., a multi-locus dataset divided by gene or codon position. Each
data subsets can either receive its own substitution model or share the substitution model
with another data subset (so-called partition models, [135]). The partition model accom-
modates process heterogeneity along molecular data and improper data partitioning and
application of under-parameterized substitution model can bias phylogenetic inferences
[23]. The number of possible partition models to choose from is significantly larger than
the number of available substitutions models. If selecting the best substitution model
for a single locus is already burdensome and computationally extremely demanding, then
selecting the best partition model is clearly infeasible without even more drastic short-
cuts. Nevertheless, several methods have been developed for partition model selection
[e.g., 99, 100] and are commonly applied in phylogenetic inference pipelines. Until today,
there has been no study to evaluate if over-parameterization, i.e., assuming a separate
GTR+Γ+I substitution model per data subset, biases phylogenetic inference.

In this study, we will investigate the effect of model over-parameterization on Bayesian
phylogenetic analysis. Specifically, we focus on the question if substitution model selec-
tion is a necessary step for Bayesian phylogenetic inference. Can we simply use the most
complex substitution model and partition model and thus avoid the danger of under-
parametrized models? Here, we explore this question using simulations. We simulated
data under the simplest model and inferred the phylogenies under (a) the true model, (b)
an over-parameterized substitution model, and (c) an over-parameterized partition model.
Moreover, we tested different choices of prior distributions for the over-parametrized sub-
stitution model. The advantage of using simulations over previous studies using empirical
data [e.g., 1] is that we know the true parameters (i.e., the true phylogeny and branch
lengths) and the true model. Therefore, we are able to assess if over-parametrization biases
our results or leads to less precise estimates (i.e., higher uncertainty and larger credible
intervals). We assessed biases by comparing bipartition posterior probabilities and tree
lengths between analyses under the true substitution model and an over-parametrized
model.
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Figure 4.1: Summary of the simulation and analyses used in this study. The first step
contains the simulation of data matrices under the Jukes-Cantor (JC) substitution model.
The next step contains the phylogenetic inference under the different settings (GTR+Γ+I
with four different prior settings and the partition model). The comparisons between the
true and over-parameterized models are summarized in the results.
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4.3 Methods

We performed a simulation study to understand how the estimated tree topology and
tree length are affected under an over-parameterized substitution model (within the GTR
family of nested substitution models). Our approach is depicted in Figure 4.1. The data
sets were simulated under the simplest substitution model, the Jukes-Cantor substitution
model (JC). We over-parameterized the substitution model by using the most parameter
rich commonly used substitution model, the GTR+Γ+I substitution model, to perform
the phylogenetic inference. The simulation with the simplest substitution model in com-
bination with the inference with the most complex comprise the most extreme case of
over-parameterization of common substitution models, and therefore the most conserva-
tive scenario to evaluate the effects of substitution model over-parameterization. If we
find no impact of substitution model over-parameterization for this extreme scenario, then
there is no impact of substitution model over-parameterization for less extreme cases.

We varied the prior probability distributions for the over-parameterized model ac-
cording to the default settings of three commonly used Bayesian phylogenetic software
(MrBayes, BEAST and RevBayes). These default prior distributions for the Bayesian phy-
logenetic software were extracted for: a) MrBayes v3.2 [151]; b) the RevBayes protocol
described in [73]; c) BEAST using BEAUTi [17]. The difference in default prior distribu-
tions among these popular software packages reflects the uncertainty about good prior
choices in the field, and our choice of these three example does not represent a favor for or
against any of these choices. We included another prior distribution (called “Tame” in this
manuscript). Additionally, we performed inference under an over-partitioned scheme for
the novel prior setting where each data subset received its own separate GTR+Γ+I sub-
stitution model. Next, we compared posterior probabilities of bipartitions and tree length
credible intervals between the models used for inference. The following sections explain in
more detail the methods used in this study.

4.3.1 Simulation Settings for the Datasets

We simulated data matrices by first drawing all parameters from their prior distribution.
The substitution model was set to the JC model of sequence evolution [86]. The JC
substitution model is the simplest model within the GTR family of nested models and
has no free substitution model parameters (all base frequencies are fixed to 1

4
and all

relative exchangeability rates are fixed to 1
6
). Therefore, the prior distributions for the

simulations were the tree topology prior and the branch lengths prior. We assumed a
uniform distribution on tree topology, i.e., each topology had equal prior probability. We
chose two different tree sizes, 16 and 64 taxa, to explore the impact of tree size. The prior
distribution for the branch lengths was an exponential distribution with either a mean of
0.1 or 0.02, which impacts the total number of substitutions expected along the phylogeny
and therefore the informativeness of the data sets (Figure S1). We defined the number
of sites to be 100 or 1000 to explore the impact of the amount of data. In summary, we
simulated data sets under all possible combinations of mean branch length, number of taxa
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and number of sites, yielding eight different simulation scenarios which are displayed in
Table 4.1. We simulated 1000 replicates for the data set with 16 taxa and 500 replicates
for the data sets with 64 taxa. The simulations were performed using RevBayes [74] and
all scripts are available at https://github.com/lfabreti/SM-over-parameterization.

Table 4.1: The different settings for the simulation of data matrices under the Jukes-Cantor
substitution model. The first column shows the index of the simulation setting. The second
column is the number of taxa, followed by the number of sites and the mean branch length.
The gray cells highlight the changes in the settings for each simulation setting.

Simulation setting Number of taxa Number of sites Mean branch length

1 16 100 0.1
2 16 100 0.02
3 16 1000 0.1
4 16 1000 0.02
5 64 100 0.1
6 64 100 0.02
7 64 1000 0.1
8 64 1000 0.02

4.3.2 Prior Distributions on the Substitution Model Parameters

In Bayesian inference, the prior probability distribution defines the researcher’s belief
about the parameter quantity before the data are taken into account. All parameters and
hyper-parameters from a model need to be assigned to a prior probability distribution. The
best approach to define a prior probability distribution for a given parameter is an open
debate in Bayesian inference [114, 127, 52, 112, 9]. In some situations in phylogenetics, the
researcher has reliable information to make strong assumptions about the prior distribution
for a given parameter. For example, informative prior distribution are commonly used in
divergence time estimation using node calibrations where fossil information is used to
define minimum and maximum bounds on the age of a given node [137, 172]. If no reliable
information about parameter values is available, then the prior should be designed to have
little effect on the estimated parameters [186, 4]. Next, we will discuss the default priors
for the GTR+Γ+I model adopted by three commonly used Bayesian phylogenetic software
(MrBayes, BEAST and RevBayes) and our proposed prior scheme (Tame).

The GTR model has four equilibrium base frequencies and six rates of changes between
bases (exchangeability rates). The among site rate variation model (ASRV) and the in-
variant sites model have each one parameter, the shape parameter α and the probability

https://github.com/lfabreti/SM-over-parameterization
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of a site being invariant, respectively. All default prior distributions assign equal proba-
bilities for all four base frequencies (Table 4.2). The main differences in the prior schemes
assessed here lie in the exchangeability rates and the α parameter of the among site rate
variation model. To aid grasping the impact of the different prior distribution choices, we
provide figures depicting the behavior of each induced parameter given the prior settings
(Figures 4.2 and 4.3).
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Figure 4.2: The prior distribution of the exchangeability rates. Here we show the two
commonly used prior distributions on exchangeability rates; the Dirichlet distribution and
the gamma distribution. The gamma distribution has a shape 0.05 and scale parameter 10
for the rates A↔C, A↔T, C↔G and G↔T; the rate A↔G has a different scale of 20; the
rate C↔T is set to 1 for normalizing the rates. These densities are produced by simulating
1× 106 samples from the corresponding distributions.

We compared the profile of two different prior distributions on the exchangeability
rates, a flat Dirichlet(1,1,1,1,1,1) distribution and a gamma(k=0.05, θ=10 or 20) distribu-
tion. The prior schemes for the Tame, MrBayes and RevBayes use the former, while BEAST
assumes the latter. Note that the prior settings Tame, MrBayes and RevBayes require that
the sum of all rates equals to 1.0 while BEAST rescales the rates internally and fixes the rate
between C↔T to 1.0. Figure 4.2 shows the distribution for the six exchangeability rates
for each prior assumption. The Dirichlet prior distribution results in an equal distribution
with a mean of ≈ 0.16 for all six rates, which is expected since the concentration parame-
ter is the same for all categories. The gamma prior distribution used in BEAST yields four
equal distributions with a mean of ≈ 0.07 for the rates A↔C, A↔T, C↔G and G↔T. The
induced prior distribution for the rate A↔G is slightly larger due to the scale parameter
θ=20, which results in a mean of ≈ 0.1. We observed the largest difference for the relative
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rate C↔T with a mean of ≈ 0.6 and the values are concentrated on higher rates. Note
that the rate C↔T is originally set to 1.0 and used to normalize the exchangeability rates.
All other unscaled exchangeability rates have a prior mean of 1.0 (for A↔G) and 0.5 (for
all other rates) but an induced relative mean which is clearly different from 1

6
.

The prior distributions for the shape parameter, α, of the gamma distribution used
to model among site rate variation, differs considerably among standard Bayesian phylo-
genetic inference software (Table 4.2). MrBayes v3.2 uses a uniform(0,200) distribution
as a prior distribution for α, which has a mean of 100. Note that more recent versions
of MrBayes, starting with version 3.2.2, assume an exponential prior distribution. The
RevBayes protocol establishes a biologically motivated prior distribution as a lognormal
distribution with median 1.5 and standard deviation 0.587405 [73]. This prior distribution
was designed to specify a 95% prior distribution which ranges from a 3-fold to 100-fold
difference between the lowest and highest rate categories [73]. BEAST uses by default an
exponential(λ=1) prior distribution for α with a mean of 1.0.

The induced prior distributions of the four rate categories for each prior distribution on
α are shown in Figure 4.3. One might expect that small values for α, or even converging
towards 0.0, result in no rate variation. However, the contrary is true. Smaller values
of α result in more distinct distributions for the four discretized gamma quartiles, which
translates into more rate variation across sites. Both the RevBayes and BEAST prior settings
assign more prior probability to smaller values for α resulting in larger variation between
the rate categories. The MrBayes prior setting results in more uniformity among the
categories, but still expecting some rate variation a priori. We propose a prior that results
in less a priori expected rate variation between the rate categories, namely a uniform(0,
1 × 108) distribution (Figure 4.3 upper panel). This exploration shows the usefulness to
examine the induced prior distribution of the model parameters.

4.3.3 Phylogenetic Inference Settings

Phylogenetic inference was performed in a Bayesian Markov chain Monte Carlo (MCMC)
framework implemented in RevBayes and MCMC convergence was assessed using the R

[143] package Convenience [38]. Each simulated dataset was analyzed under two substitu-
tion models: either JC or GTR+Γ+I. The JC substitution model represents the true model
whereas the GTR+Γ+I represents the over-specified substitution model. We applied four
different prior schemes to the GTR+Γ+I, as described in Table 4.2. The total number of
replicated inferences per simulated condition was 1000 for the data with 16 taxa and 500
for the data with 64 taxa. Additionally, we used a partition model, for the data sets with
1000 sites, with two equal-sized data subsets evolving independently under a GTR+Γ+I
with the Tame prior scheme. For these partition models we only used the simulated data
with 1000 because splitting 100 sites results into unrealistically small data subsets. In this
case, we performed 500 inference replicates for the data with 16 taxa and 300 for the data
with 64 taxa. We used two replicated MCMC runs for each inference and samples were
taken at every 20th iteration. The criteria for convergence assessment were the default from
Convenience as described in [38]. This strict convergence assessment turned out very use-
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Figure 4.3: The induced prior distributions of the four rate categories from the among site
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distribution with λ=1, as it is done in BEAST.
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ful as several runs showed outlier behavior which could be attributed to non-convergence.
The total number of MCMC iterations varied based on the convergence status. We started
with 100,000 iterations and increased this value for analyses that did not converge. The
maximum number of iterations used was 400,000. The moves during the MCMC followed
the scheme on Table 4.3. The moves on the tree parameter varied according to the size of
the dataset. For a dataset with 16 taxa, each iteration had 76 moves, whereas a dataset
with 64 taxa had 244 moves per iteration. The inference with the BEAST prior setting
yielded a different move scheme for the exchangeability rates because each parameter had
its independent prior distribution instead of a compound prior distribution. In this case,
each of the estimated rates (A↔C, A↔G, A↔T, C↔G and G↔T) was assigned with a
scale move with weight two.

4.3.4 Evaluation of bias and uncertainty in estimated parameters

The two key parameters of interest for most phylogenetic studies are the tree topology
and the branch lengths. Therefore, we focused our evaluation of the effect of over-
parameterization on these two parameters. The tree topology was translated into its
bipartitions, which are subsets of the full tree. We analyzed two outcomes of the MCMC
output: (1) the posterior probability of bipartitions and (2) the 95% credible interval for
the tree length. These estimates were compared between the inference under the true
model (JC) and the over-parameterized models (GTR+Γ+I). If over-parameterization is
not problematic, then the estimates under the GTR+Γ+I model will not deviate from the
estimates under the JC substitution model.

The posterior probability of any given bipartition was compared to whether the bi-
partition was true, i.e., present in the true tree. Thus, we obtained the frequency of
a bipartition being true given its posterior probability. For a more stable computation
of the frequencies, we binned bipartition into 20 equal-sized bins for posterior probabil-
ities between 0.0 and 1.0, e.g., the first bin for bipartitions with posterior probabilities
0.0 ≤ PP < 0.05. The expected behavior is that the overall frequency over all replicates
of a bipartition being true is equal to the posterior probability [81]. For example, if we
observe thousands of bipartitions with probability ξ, e.g., 0.2, then we expect ξ percent
of these bipartitions to be true, e.g., 20% of the bipartitions. We evaluated the behavior
of the posterior probabilities vs. frequency of being true for all five inference scenarios.

The 95% credible interval was used as a measure of the precision of the estimated tree
length. Larger credible intervals imply more variance in the estimated tree length. The
reference for the size of the credible interval was the inference under the true model, i.e.,
the model used for simulating the data (JC). We compared the size of the credible interval
for the tree length between the analysis under JC and GTR+Γ+I, with the four different
prior schemes. Additionally, we explored further the posterior probability distributions of
the tree length across the inference settings by examining one example dataset for each
simulated scenario. If over-parameterization is not a problem, then the estimated 95%
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credible interval between the inferences under the JC substitution model (the true model)
and the GTR+Γ+I substitution model (the over-parameterized model) should match and
the estimates should be seen on the 1:1 line. Conversely, we would expect that if over-
parameterization adds uncertainty in our estimates, then we should obtain larger 95%
credible intervals for the analyses under the GTR+Γ+I substitution model.

4.4 Results

4.4.1 Accuracy of Posterior Probability of Bipartitions
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Figure 4.4: The relationship between posterior probability of bipartitions and the biparti-
tion was correct. The expected behavior is that, on average, the posterior probability and
the frequency how often a bipartition with this posterior probability is indeed correct are
exactly correlated following the 1:1 line. The different panels show each of the 8 settings
in which the data were simulated. The first row corresponds to the simulated trees with
16 taxa, while the second row corresponds to the simulated trees with 64 taxa. The mean
branch lengths (BL) for the data sets are on top of each column. The two first columns
display the data sets with 100 sites, the two other columns show the data sets with 1000
taxa. The symbols represent the different models and prior settings used for the inference
(Table 4.2). All models, including the over-parameterized models, produced statistically
consistent estimates of the bipartition posterior probabilities.
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We observed no major deviation from the expected behavior under all conditions (Fig-
ure 4.4, the expected behavior was that the bipartitions fall on the 1:1 line). The minor
variation observed in Figure 4.4 is due to the intrinsic randomness of the bipartition pos-
terior probability estimates obtained from the MCMC samples and is also observed for the
inference under the true model (JC). Adding more replicates would improve the fit to the
diagonal line, but the underlying behavior is already observable with the current amount of
replicates, which took several months on our local High Performance Cluster to complete.
We note that estimated bipartition probabilities for the simulations with 64 taxa are more
accurate, which is due to the larger number of bipartitions in each dataset.

Our results agree with previous observations by [81] and [111]. These two previous
studies also showed that substitution model over-parametrization has no effect on esti-
mated bipartition posterior probabilities. Our study clearly corroborates this finding; even
a severe over-parameterization of the substitution model does not impact estimated bi-
partition posterior probabilities. Furthermore, we observed no difference in the estimated
bipartition posterior probabilities based on the prior distribution setting used. We also
did not observe any impact of the alignment length, number of taxa and branch length
prior on the accuracy of the estimated bipartition posterior probabilities. This indicates
that, at least for our simulations, the choice among common default prior distributions on
the substitution model parameters does not impact the accuracy of bipartition posterior
probabilities.

Similarly, we observed no biases in the posterior probabilities of bipartitions (Figure 4.5)
for the inference under the partition model. Figure 4.5 shows the same variation around
the diagonal line as Figure 4.4 due to the intrinsic stochasticity of the MCMC samples
and is also observed for the inference under the true model (JC). This effect is larger for
the simulated data sets with 16 taxa, because these simulations have less bipartitions in
each replicate. These results for the over-splitted partition model are not surprising as we
have seen in Figure 4.4 that even very small datasets of only 100 sites are not impacted by
substitution model over-parameterization. Therefore, it is logical that over-splitting and
over-parameterization of partition models is not a problem if the size of each data subset
is not too small. We conclude that over-parameterization of the substitution and partition
models does not affect the posterior probability of bipartitions, and therefore, the tree
topology.

4.4.2 Accuracy of Estimated Tree Length

We observed an impact of substitution model over-parametrization on the width of the
credible interval of the tree length (Figure 4.6). The 95% credible interval of the tree
length was very similar between JC and GTR+Γ+I for all simulated matrices with 1000
sites (Figure 4.6). However, with less data (100 sites), the choice of prior distribution had
an observable impact on the estimated tree length and the resulting 95% credible interval
(Figures S2-S5). Only our newly proposed Tame prior settings produced unbiased estimates
of the 95% credible interval.

We noticed the largest deviation between the true model (JC) and the over-parameterized
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Figure 4.5: The relationship between posterior probability of bipartitions and the biparti-
tion being correct under the partition model. The expected behavior is that the posterior
probabilities of the bipartitions and the frequency that a bipartition with this posterior
probability was correct follows the 1:1 line. The different panels show each of the 4 settings
in which the data was simulated. The first row corresponds to the simulated trees with
16 taxa, while the second row corresponds to the simulated trees with 64 taxa. The mean
branch lengths (BL) for the data sets are on top of each column. For the over-partitioned
model, we only used data sets with 1000 sites. The symbols represent the models for the
inference, JC or the over-partitioned GTR+Γ+I model (using the Tame prior settings for
both data subsets).
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Figure 4.6: The width of the 95% credible interval for the tree length for the inference
with Jukes-Cantor (JC) against the inference with GTR+Γ+I. On the x-axis we show the
estimated 95% credible interval size for the JC substitution model (true model). On the
y-axis we plot the estimated 95% credible interval for the over-parametrized substitution
model. If over-parametrization has no impact, then all 95% credible interval sizes would
follow the diagonal line (dashed line). The first row corresponds to the simulated trees with
16 taxa, while the second row corresponds to the simulated trees with 64 taxa. The mean
branch lengths (BL) for the data sets are on top of each column. The two first columns
display the data sets with 100 sites, the two other columns show the data sets with 1000
taxa. The symbols represent the different prior settings for the inference under GTR+Γ+I
(Table 4.2). Separate plots for each model are shown in Figures S2-5.
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models (GTR+Γ+I) when we used a mean of 0.02 for the branch lengths in our simulated
trees. The estimated 95% credible interval was larger for the over-parameterized models.
The trees simulated with a branch length prior with mean 0.02 had shorter branches and
the prior distribution on branch lengths was further away from the true values (Table 4.1
and 4.2, Figure 4.6 and 4.7). The trees simulated with a branch length prior with mean
0.1 had a matching prior distribution in the inference. Thus, we observed some interac-
tion between the branch length prior and the prior distribution on the substitution model
parameters.

16 taxa

64 taxa

100 sites 1000 sites

Beast

RevBayes

MrBayes

Tame

JC

Prior

BL 0.1 BL 0.02 BL 0.1 BL 0.02

Beast

RevBayes
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0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Tree length

Figure 4.7: Comparison between prior and posterior distributions for the tree length. The
first row corresponds to a simulated tree with 16 taxa, while the second row corresponds to
a simulated tree with 64 taxa. The mean branch lengths (BL) for the data sets are on top
of each column. The two first columns display the data sets with 100 sites, the two other
columns show the data sets with 1000 taxa. The posterior distributions represented corre-
spond to the inference performed under the true model (JC) and the over-parameterized
model (GTR+Γ +I) with the 4 different prior settings (Table 4.2).

We showed one example data set for each simulated scenario to demonstrate more
clearly the impact of substitution model over-parameterization on the estimated tree length
(Figure 4.7). We observed that the posterior distribution inferred under the GTR+Γ+I
substitution model with the Tame prior settings matches the posterior distribution inferred
under the JC substitution model (the true model) for all scenarios. We observed the most
extreme deviation between the posterior distribution inferred under the JC substitution
model (the true model) and the inferred posterior distribution of the tree length under the
MrBayes, RevBayes and BEAST prior scheme for 64 taxa, 100 sites and mean branch length
0.02. In this scenario, the posterior distribution of the over-parameterized substitution
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model is widest and shifted in location. Thus, for the MrBayes, RevBayes and BEAST prior
schemes we observed biases and more uncertainty in the estimated parameters.
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Figure 4.8: Posterior distributions for the rate categories for the among site rate variation
model. The posterior distributions correspond to the inference performed under the over-
parameterized model (GTR+Γ +I) with the four different prior settings (Table 4.2). The
left panel shows the posterior distributions for one replicate data with 64 taxa, 100 sites
and mean branch length 0.02, whereas the right panel the replicate data has 1000 sites.
The posterior distributions are more sensitive to the prior (Figure 4.3) when the dataset
was smaller.

We plotted the estimated posterior distribution of the rate categories for the among site
rate variation model to elucidate the problem of overestimated posterior distribution of the
tree length and interaction of parameters (Figure 4.8). Note that under the true model,
all four rate categories should be equal to 1.0. The MrBayes, RevBayes and BEAST prior
settings yielded four gamma quartiles with slight (MrBayes) to large (RevBayes and BEAST)
differences a posteriori in relative site rates (Figure 4.8). When the sites are estimated
to fall into the lower rate category, then longer branches are required to obtain the same
amount substitutions. This results in larger branch lengths, as seen in Figures 4.6 and 4.7.

Additionally, we tested all possible combinations of the JC and GTR substitution mod-
els with the ASRV model and/or the invariant sites model to further evaluate the effect
of the inappropriate prior distribution on α (Figures S8-S11). For each simulation setting
(Table 4.1) we randomly selected one example simulated dataset and then performed the
inference under the following models: JC+I, JC+Γ, JC+Γ+I, GTR, GTR+I, GTR+Γ,
GTR+Γ+I. The results show that the 95% credible interval for the tree length was overes-
timated only when we added the ASRV model with the MrBayes, RevBayes and BEAST prior
settings. This result further corroborates that the bias on the tree length is exclusively
linked with the prior distribution on α of the ASRV model.
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Figure 4.9: The width of the 95% credible interval for the tree length for the inference
with Jukes-Cantor (JC) against the inference with the over-splitted GTR+Γ+I partitioned
model. The first row corresponds to the simulated trees with 16 taxa, while the second
row corresponds to the simulated trees with 64 taxa. The mean branch lengths (BL)
for the data sets are on top of each column. For the over-partitioned model, we only
used data sets with 1000 sites because splitting 100 sites results into unrealistically small
data subsets. On the x-axis we show the estimated 95% credible interval size for the JC
substitution model (true model). On the y-axis we plot the estimated 95% credible interval
for the over-partioned model. If over-parametrization has no impact, then all 95% credible
interval sizes would follow the diagonal line (dashed line).
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Finally, we observed no biases in the accuracy of the tree length (Figure 4.9) for the
inference under the partition model. Recall that we used the Tame prior settings for each
data subset in our partition model, and used only datasets with 1000 sites equally divided
into two subsets of each 500 sites. Since our results using the Tame prior on very small
datasets of 100 sites showed no impact of substitution model over-parameterization (Fig-
ure 4.9), it is expected that the over-splitted and over-parameterized substitution model
produces robust estimates of the tree length. In conclusion, Figures 4.6 and 4.9 demon-
strate that Bayesian inference of phylogeny is robust to substitution and partition model
over-parameterization; however, only if well behaved prior distributions are chosen.

4.5 Discussion and Conclusions

The main purpose of selecting a substitution model is to avoid model misspecification.
Assuming an under-parameterized substitution model has been shown to bias phyloge-
netic inference [159]. However, the question whether over-parameterization of substitu-
tion models biases phylogenetic inferences has received much less attention. Under- and
over-parameterization of substitution models could be avoided if we would know the true
substitution model. Since we do not know the true substitution model, it is common
practice to perform substitution model selection before estimating a phylogeny. Common
substitution model selection approaches, e.g., ModelTest [140], jModelTest [139] and
jModelTest 2 [28], employ shortcuts (e.g., do not take uncertainty in parameter estimate
into account and optimize only some parameters) and are philosophically questionable
(e.g., they require a phylogeny to perform the model selection step). In this manuscript
we argue that substitution model selection is not necessary and can be avoided if the most
complex substitution model (e.g., the GTR+Γ+I substitution model) with well behaved
prior distribution is applied.

Applying the most complex substitution model comes with the cost that both the like-
lihood calculation is slower and there are more parameters to be estimated. If we could
be absolutely certain that a simpler substitution model suffices, then we could save com-
putation time by applying this simpler substitution model. However, given the shortcuts
and philosophical shortcomings of substitution model selection procedure and uncertain-
ty/disagreement in selection substitution models [1], we argue that it is safer to err on
the side of a too complex substitution model at a small amount of extra computational
cost. Similarly, we argue that model averaging approaches [e.g., 79, 18] are not necessary
—because our results show that there is no difference in estimated phylogenies between
different models if well behaved prior distributions are chosen— and only unnecessarily
increase computational demands due to more complex model averaging algorithms (e.g.,
reversible jump MCMC which is prone to poor MCMC convergence).

Furthermore, multi-locus datasets are used in phylogenetics since several decades where
each locus evolves under a substitution process that is either independent or shared among
loci [135]. The shortcuts taken to select the best partition model are more severe due to
computational reasons [e.g., 47] and their impact is less explored. In our simulation study
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we explored an extreme scenario where both the substitution model was over-parameterized
and the locus was over-splitted. In line with our results on substitution model over-
parameterization of single loci, we found that Bayesian analysis with a well behaved prior
distribution does not bias phylogenetic inference. That means, one does not need to worry
about assuming too many division of the data into subsets, although more data subsets
come with a higher computational cost owed to the additional parameters.

In general, our results show that over-parameterization is not a problem in Bayesian
inference if well behaved prior distributions are chosen, and these results could apply to
models beyond substitution models. On the contrary, standard phylogenetic models are
likely to be over-simplified and inadequate [34, 71, 147]. There exist several extensions
to standard phylogenetic substitution models, such as the CAT model [108] and Markov
modulated substitution models [7]. None of these more complex models are contained
in substitution model selection approaches and our efforts should go into developing and
testing more realistic substitution models.

Several previous studies have shown that Bayesian phylogenetic inferences can produce
unrealistic long trees [22, 120, 145, 184]. These studies identified the prior distribution
on the tree length as being responsible for the unrealistically large posterior estimates of
the tree length. In our simulations, we noticed that if the true value for the tree length
was far outside the center of prior distribution, then estimates of the tree length using
phylogenetic analysis with the default prior settings for MrBayes, BEAST and RevBayes

were significantly biased. These previous studies by [22], [120] and [184] used MrBayes

and therefore the results are likely influenced by an interaction of the tree length prior
distribution and ASRV prior distribution (see also [37]). Our proposed prior distribution
(the Tame prior setting) does not show this interaction between tree length prior distribution
and ASRV prior distribution and might alleviate the problem of unrealistically long trees.

In this manuscript we focused exclusively on over-parameterization of substitution mod-
els and the choice of prior distributions in a Bayesian inference framework. Our results
may not be directly comparable to a Maximum likelihood (ML) framework and over-
parameterization could still be a problem. In a ML framework, nuisance parameters, such
as the substitution model parameters, are estimated to a single value that maximizes
the likelihood instead of integrating over the uncertainty, which is done in a Bayesian
framework. Therefore it is possible that a Bayesian inference is less impacted by over-
parameterization as the uncertainty in the rate variation among sites could be large, but
a ML inference on the other hand is impacted. A similar simulation study as ours could
provide an answer to the question if over-parameterization is a problem for phylogenetic
inference in a Maximum likelihood framework.

In conclusion, we found that over-parameterization is not a problem for Bayesian phy-
logenetic inference and does not bias tree topology estimates or branch length estimates if
well behaved prior distributions are chosen. Our results corroborate previous findings by
[81] and [111] on the robustness of estimating phylogenetic trees using over-parameterized
substitution models. Here we additionally explored the impact of substitution model over-
parameterization on estimates of the tree length (and thus by proxy on branch lengths)
under different prior settings. We show that tree lengths estimates are more sensitive to
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substitution model over-parameterization and the choice of prior distributions. These prior
distribution might result into unforeseen side-effects, for example, an informative prior dis-
tribution on the among site rate variation leads to more sensitivity to the prior on the tree
length. We propose and tested a new choice of prior distribution, the Tame priors, which
are well behaved. Our new choice of prior distribution can be applied to partition models
and renders selection of the best partition scheme unnecessary. In general, substitution
models are most likely too simple and our worries should focus on developing more realistic
substitution models instead of selecting between a set of unrealistic substitution models.
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Table 4.2: Description of the (default) prior settings for the commonly used phylogenetic
tools and the proposed prior. The first column displays the name of the prior setting. The
following columns are the parameters for the GTR+Γ+I model.

Prior Branch
length

Equilibrium
base
frequencies

Exchangeability
rates

Alpha
parameter

Proportion
of invariant
sites

Tame Exponential
(λ=10)

Dirichlet
(1,1,1,1)

Dirichlet
(1,1,1,1,1,1)

Uniform
(0, 1× 108)

Beta
(α=1,β=1)

MrBayes Exponential
(λ=10)

Dirichlet
(1,1,1,1)

Dirichlet
(1,1,1,1,1,1)

Uniform
(0,200)

Uniform
(0,1)

RevBayes Exponential
(λ=10)

Dirichlet
(1,1,1,1)

Dirichlet
(1,1,1,1,1,1)

Lognormal
(µ=ln(1.5),
σ=0.587)

Beta
(α=1,β=1)

BEAST Exponential
(λ=10)

Uniform
(0,1)

Gamma
(k=0.05,
θ=10 or 20)

Exponential
(λ=1)

Uniform
(0,1)

Table 4.3: Description of the move settings during the MCMC. Each row corresponds to
a model parameter, the second column shows the move applied to the parameter and the
third column shows the weight for the moves. The tree topology moves were the Nearest
Neighbor Interchange (NNI) and Subtree Pruning and Re-Grafting (SPR).

Parameter Move Weight

Tree NNI (Nearest Neighbor
Interchange)

# taxa

SPR ( Subtree Pruning
and Re-Grafting)

# taxa
2

Branch length Branch length scale # branches

Equilibrium frequencies Beta simplex 4.0
Dirichlet simplex 2.0

Exchangeability rates Beta simplex 6.0
Dirichlet simplex 3.0

Exchangeability rates
(BEAST)

5 scale moves 2.0

Alpha Scale 4.0

Proportion of invariant Beta probability 4.0



Chapter 5

Evaluating Gene Tree Discordance on
Mammalian Orthologous Markers

5.1 Abstract

Gene tree discordance imposes a challenge for species tree reconstruction. Although there
are biological reasons to cause gene trees to disagree, the methods that estimate these
trees are not error free. We investigated the possible reasons for gene tree discordance
for a subset of multiple sequence alignments of the OrthoMam database. The first step
was to estimate the gene trees under the Bayesian phylogenetic method. We started our
investigation by exploring the Markov chain Monte Carlo (MCMC) performance with the
methods for convergence assessment implemented in Convenience. Next, we assessed the
inferred posterior probability of clades for well-established mammalian orders. Then, we
evaluated the possibility of incomplete lineage sorting for the orders with most conflicting
gene tree signal and performed posterior predictive tests of model adequacy for all gene
trees. Our results showed that incomplete lineage sorting is improbable for the analyzed
orders and, furthermore, the model failed to adequately describe the data for all tested
genes.

5.2 Introduction

Reconstructing the species evolution history is of major interest for taxonomic, conserva-
tion and evolutionary research [162]. An imposing challenge for species tree inference in
the phylogenomic era is that different genes do not necessarily share the same genealogy
[32]. Some explanations for gene tree discordance are methodological such as errors in
gene tree inference and false recovered orthology. Other explanations are biological events
such as horizontal gene transfer and incomplete lineage sorting (ILS) [155, 126]. Current
phylogenetic methods do not incorporate all possible sources of gene tree discordance, but
some methods account for biological discordance reasons. Such a method is the multi-
species coalescent (MSC). The MSC models the species tree and the gene trees in a joint
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process, while allowing gene trees to follow different histories. Recent studies have demon-
strated that the MSC method is statistically consistent, in contrast to the concatenation
(or super-matrix) method [118, 150, 95].

A drawback from the MSC method is that its statistical consistency had been demon-
strated for simulation studies where the gene trees were known, and ILS played an impor-
tant role. Therefore, the MSC requires the presence of ILS and the true gene trees to infer a
robust species tree. While biological reasoning for gene tree discordance has received much
attention, methodological reasons have rather been under-looked. A primary source of er-
ror for the Bayesian phylogenetic inference is the poor assessment of Markov chain Monte
Carlo (MCMC) convergence. Here we investigate the robustness of Bayesian phylogenetic
gene tree estimation using mammalian orthologous markers. Our approach includes as-
sessing the convergence status of the analyses using the method developed in Fabreti and
Höhna [39]. Then, we assessed the estimated posterior probabilities of some mammalian
orders for different gene trees. These orders are widely accepted as monophyletic, and the
gene trees should reflect this expectancy. Next, we calculated the coalescent unit times
leading to some orders to verify how likely was that such lineages present ILS. Furthermore,
we performed model adequacy posterior predictive simulations for each gene to evaluate
how fit was the model to the data set.

Our results showed that proper convergence assessment has an impact on the recovery of
phylogenetic relationships. Moreover, the discordance in gene trees could not be explained
alone with ILS. We observed poor model fit for all tested genes, suggesting that current
commonly used models of sequence evolution fail to capture the complexity of real data.

5.3 Methods

We explored the robustness of gene tree inference for a subset of orthologous markers
from mammals. Mammals are a vastly studied group with well-curated available data
sets. The subset of genes was taken from OrthoMam v10c database [154]. OrthoMam is a
database of mammalian orthologous markers. The database includes 14509 CDS (coding
sequences) alignments with up to 116 taxa. To test the robustness of current gene tree
estimation methods, we selected a sample of 180 CDS alignments with the greatest number
of sampled taxa. We performed the Bayesian phylogenetic gene tree estimation with the
software RevBayes [74]. The substitution model for the gene tree inference was set to
GTR+Γ+I [165, 177, 2, 62], which is the most complex model within the commonly used
GTR family of nested models. The prior distributions for the model parameters were
set as described in chapter 4. The MCMC settings were varied to improve the MCMC
convergence success rate, as explained in the next section. The convergence assessment
was performed using the R package Convenience [39]. The methods implemented in
Convenience provide a robust assessment of Effective Sample Size (ESS) for both the
continuous parameters and the topology. Besides, Convenience compares multiple MCMC
replicates to test whether independent runs converge to the same posterior distributions.
After trying different MCMC settings, we ended up with a total of 29 analyses that achieved
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the convergence status according to Convenience.

After the evaluation of convergence for the gene tree inferences, we explored the accu-
racy of the inferred trees by assessing the estimated posterior probability of mammalian
orders that have been established as monophyletic. The criterion to include orders was
those with at least two specimens present in the list of all taxa. This resulted in 12 or-
ders, namely: Afrotheria, Artiodactyla, Carnivora, Chiroptera, Eulipotyphla, Lagomorpha,
Marsupialia, Perissodactyla, Primates, Rodentia, Scandentia and Xenarthra. The follow-
ing taxa were single representatives of their order: Galeopterus variegatus, Manis javanica
and Ornithorhynchus anatinus. We did not include these taxa in the analysis, because the
posterior probability of a clade with a single taxon is always one. We further explored the
gene trees by visually inspecting the maximum a posteriori (MAP) tree.

To investigate the possibility of ILS in some lineages leading to the orders of the mam-
mal evolutionary tree, we estimated the branches leading to Rodentia and Eulipotyphla
in coalescent unit times. Rodentia and Eulipotyphla were the two orders with most gene
trees showing low support for their monophyly. Three gene trees resulted in posterior
probabilities below 0.5 for the monophyly of Rodentia, whereas Eulipotyphla had a total
of five gene trees not supporting its monophyly. ILS is more probable to occur when the
divergence time among lineages is very short and the effective population size (Ne) is large.
We can calculate the distance among lineages in terms of coalescent unit times (tcoal) by
dividing the number of generations since the divergence of the lineages (t) by Ne [32]:

tcoal =
t

Ne

(5.1)

The coalescent unit times are a normalization of branch lengths by population sizes. Small
coalescent unit times correspond to higher probability of observing ILS for the correspond-
ing branch.

Additionally, we assessed the model adequacy for each gene tree by performing posterior
predictive tests [152, 14] on RevBayes [70]. Posterior predictive simulations consist of
simulating data sets based on the posterior distributions of the inference of the empirical
data. Then, summary test statistics compare the simulated data with the empirical one
to evaluate how they deviate from one another. This comparison is done by calculating
p-values, i.e., the fraction of simulated data test statistics that are smaller or larger than
the empirical test statistic. If the p-value is particularly small or large, the model is poorly
fitted to the empirical data. The test statistics can be classified in focal and ancillary
statistics. The focal statistics are those that are directly affected by the model, e.g., the
number of invariant sites when the Invariant sites model (I) [2, 62] is applied. On the
other hand, the ancillary statistics are those that are not particularly accounted for in the
model, e.g., the variance of GC content across sequences, since the model does not assume
variance in GC content across the tree.
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5.3.1 Assessing MCMC performance

We estimated the unrooted gene trees with an initial MCMC setting of two replicate
runs each with 50 × 103 iterations and the moves strategies described in Table 5.2. We
assessed the convergence status of the MCMC output with the R package Convenience

[39]. This initial analysis was performed for 178 different alignments, however for this batch
of analysis only 19 achieved convergence. This MCMC settings yielded a 10.6% rate of
convergence success. This low rate of convergence success showed that the MCMC settings
were unsatisfying for the tested data set. Next, we investigated the MCMC performance
for different settings of iterations and moves.

We chose four alignments that had the maximum number of taxa within the data set to
initially test the MCMC settings. Our first approach was to increase the MCMC iterations
and assess the convergence status of the output. Table 5.1 shows the characteristics of the
four chosen genes, such as number of taxa and number of sites, and the number of MCMC
iterations each gene required for achieving convergence.

Table 5.1: Description of the characteristics of the four alignments used to test the MCMC
settings. The last column shows the number of MCMC iterations necessary for each align-
ment to achieve convergence.

Gene name Number of taxa Number of sites MCMC iterations
to converge

COL14A1 116 5397 100× 103

PDK4 116 1236 150× 103

FBXL3 116 1290 > 200× 103

HNF1B 116 1680 > 200× 103

Since half of our small, tested data set converged for an MCMC with up to 150× 103

iterations, we increased the data set to 20 alignments to check the rate of success of con-
vergence for this MCMC setting. Only four out of the 20 alignments achieved convergence,
yielding a rate of success of 20%. Table 5.3 shows the number of parameters that failed
for each of the tested criteria for the 16 analysis that did not converge.

For the initial set of four alignments, two failed to converge even with 200× 103 itera-
tions. Figure 5.1 shows the convergence assessment for these alignments. The continuous
parameters have achieved the minimum ESS and the comparison between their distribu-
tions for different MCMC runs are within the threshold. But the tree parameters (splits)
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Table 5.2: Description of the move settings during the MCMC. Each row corresponds to
a model parameter, the second column shows the move applied to the parameter and the
third column shows the weight for the moves. The tree topology moves were the Nearest
Neighbor Interchange (NNI) and Subtree Pruning and Re-Grafting (SPR).

Parameter Move Weight

Tree NNI (Nearest Neighbor
Interchange)

# taxa

SPR ( Subtree Pruning
and Re-Grafting)

# taxa

Branch length Branch length scale # branches

Equilibrium frequencies Beta simplex 3.0
Dirichlet simplex 3.0

Exchangeability rates Beta simplex 3.0
Dirichlet simplex 3.0

Alpha Scale 2.0

Proportion of invariant Beta probability 2.0

Table 5.3: The number of parameters that failed each convergence criterion for all 16 gene
trees that failed convergence. ESS is the effective sample size. KS is the Kolmogorov-
Smirnov test.

Gene tree # ESS fails for
continuous
parameters

# KS fails for
continuous
parameters

# ESS fails for
splits

# difference
between splits

fails
CCDC136 1 0 40 14
CC2D1A 0 0 66 84
SLC9A5 0 0 52 1
TOR1A 0 0 41 22
TPMT 0 0 1 0
ITPKA 0 0 3 7
LOXL4 0 0 9 0
SCARB2 0 51 0 262
WDFY2 0 0 89 22
SERBP1 0 0 102 88
STRA8 0 0 1 1
TMEM219 0 0 8 0
FXYD4 0 0 0 2
GABRA2 4 0 18 15
CCL28 0 0 10 0
HNF1B 0 0 36 0
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have failed to achieve the minimum ESS and the comparison between runs shows that the
difference in split frequencies is above the accepted threshold. This is an expected behavior
since phylogenetic tree spaces are very large and the most challenging parameter to sample
in phylogenetic analyses [98]. For this reason, we investigated next MCMC settings that
would improve the sampling of trees.
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Figure 5.1: Convergence assessment for two analysis that failed to converge with 200× 103

iterations. The top row shows the results for the gene HNF1B, while the bottom row for
the gene FBXL3. The first two columns present the plots for the continuous parameters
and the last two columns for the splits.

We tested two MCMC alternatives for one of the alignments that did not converge,
namely HNF1B. First, we performed a Metropolis-coupled MCMC (MC3 or MCMCMC)
[5, 128]. Second, we used the original MCMC settings and added the Subtree Swap [35]
move with weight # taxa. We implemented a modified Subtree Swap move that performs on
unrooted trees, since the original implementation was set for ultrametric trees. Figure 5.2
shows the convergence assessment of the tree parameters for these two alternative MCMC
configurations. The analysis including the Subtree Swap move improved the reproducibility
between MCMC replicates, but the ESS for the single replicates still showed values below
the desired threshold. The MC3 analysis showed a performance worse than the original
MCMC settings (Figure 5.1 bottom row) with the comparison between MCMC replicates
presenting values higher than the original setting.

Our next attempt was to change the weights on the moves and run the MCMC for
100 × 103 iterations. Table 5.4 summarizes the weights on all the moves used in the
MCMC. We changed the strategy of the moves on the tree by increasing the weight on
the NNI move and decreasing the weight on the SPR move. We also slightly increased the
weight on the branch length. For the equilibrium frequencies and exchangeability rates
we chose to use just one move called Simplex element scale with weight 2.0. We kept the
strategy on α and decreased the weight on the proportion of invariants to be the drawn
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Figure 5.2: Comparison of convergence assessment for the splits between two different
MCMC strategies. The first row presents the convergence assessment for the analysis
performed with MC3, while the strategy for the second row was to add the move Subtree
Swap.

probability of being invariable. This new strategy increased overall the moves taken on
the tree, while decreasing the moves on the continuous parameters. We tested the new
MCMC arrangement on 20 new alignments. Eight of which achieved convergence. The
rate of success for the new settings is 40%. This shows significant improvement in the rate
of convergence with the new MCMC settings. But further investigations are needed to
increase more the rate of success.

5.4 Results

5.4.1 Posterior probability of mammalian orders

The posterior probabilities (PP) of the 12 mammalian orders is depicted in Table 5.5. The
posterior probabilities under 0.5 are highlighted in red. The sampled taxa for all genes
were not the same. Therefore, the genes that had no representatives of a given order have
the − sign on the table. The orders Xenarthra, Marsupialia, Carnivora and Scandentia
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Table 5.4: Description of the updated move settings during the MCMC. Each row corre-
sponds to a model parameter, the second column shows the move applied to the parameter
and the third column shows the weight for the moves. The tree topology moves were the
Nearest Neighbor Interchange (NNI) and Subtree Pruning and Re-Grafting (SPR).

Parameter Move Weight

Tree NNI (Nearest Neighbor
Interchange)

# taxa ∗ 2

SPR ( Subtree Pruning
and Re-Grafting)

# taxa∗2
10

Branch length Branch length scale # taxa ∗ 2
Equilibrium frequencies Simplex element scale 2.0

Exchangeability rates Simplex element scale 3.0

Alpha Scale 2.0

Proportion of invariant Beta probability probability of invariant

have posterior probabilities 0.85 or higher for all genes that these orders were present. All
the other orders show at least one gene with low posterior probability. Figure 5.3 shows
the histograms of posterior probabilities for each order. Eulipotyphla shows the least
agreement among the tested genes, with approximately 44% of the genes with posterior
probability lower than 0.9.

We assessed the impact of convergence assessment in the posterior probabilities by
summarizing the posterior probabilities for the 12 orders for 29 analysis that did not
converge. Figure 5.4 shows the histograms of posterior probabilities for each order. All
orders apart from Marsupialia and Scandentia show analysis with posterior probabilities
below 0.85. The most prominent changes occur for Primates and Rodentia. For these
groups, there is a shift from a high peak in high PP to intermediate and low PP values.

5.4.2 Gene trees with conflicting clades

A total of eleven gene trees presented posterior probability below 0.5 for at least one of
the tested orders. Apart from the low posterior probability for the orders, the gene trees
also presented conflicting topologies and the placement of groups along the tree varied. We
evaluated the topologies for the gene trees with low posterior probability for three orders:
Rodentia, Lagomorpha and Eulipotyphla. We used the tree in Figure 5.5 as a reference
for the expected species tree. This species tree was constructed by pruning the whole
tree provided in [188]. The whole tree in [188] was inferred from a Bayesian molecular-
clock dating approach for 4705 mammalian species. We further used this time tree to
approximate the divergence time between groups of interest. Finally, we compared the
expected species tree with the species tree inferred with the 29 gene trees generated in the
present study.
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Figure 5.3: Histograms of posterior probabilities for the clades corresponding to the mam-
malian orders for the 29 analyses that achieved convergence. A probability of one means
full support for the clade across the entire posterior distribution of topologies. A proba-
bility of zero means no support for the clade. If the histogram is bimodal, this indicates
that there is discordance among the gene trees in support of the order.

Rodentia and Lagomorpha Three gene trees inferred very low posterior probabilities
for the clade Rodentia, one of which also inferred posterior probability of 0 for the clade
Lagomorpha. The maximum a posteriori (MAP) tree for these analysis are shown in Fig-
ure 5.6. For these three gene trees, the sampled taxa from Lagomorpha appears within
rodents. The gene tree for the gene CROT (Figure 5.6A) displays Lagomorpha as a sister
group to the suborder Ctenohystrica. For the gene GP6 (Figure 5.6B) the taxon Tupaia
chinensis that belongs to the order Scandentia is grouped together with rodents and Het-
erocephalus glaber (Lagomorpha). The gene ZYG11B (Figure 5.6C) shows Lagomorpha
and Rodentia as early branchings in the tree and both orders are not monophyletic. The
sampled taxa are not equal among the three genes, the gene GP6 has the lowest number
of sampled taxa with 92 in total. Besides no representatives of the orders Marsupialia
and Eulipotyphla are included. The gene trees for CROT and ZYG11B have 112 and 114
taxa, respectively. In this case, all orders have at least one representative taxon sampled.
Apart from the recovered monophyly of the orders, these gene trees are also different for
the placement of the groups along the tree. The gene trees for CROT and GP6 are more
similar to the expected topology of the species tree (Figure 5.5). While the gene ZYG11B
differs more from the expected species tree, for example with Scandentia as a sister group
to Primates.
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Figure 5.4: Histograms of posterior probabilities for the clades corresponding to the mam-
malian orders for 29 analysis that did not achieve convergence. A probability of one means
full support for the clade across the entire posterior distribution of topologies. A proba-
bility of zero means no support for the clade. If the histogram is bimodal, this indicates
that there is discordance among the gene trees in support of the order.

Eulipotyphla The order Eulipotyphla has in total three sampled species for the Or-
thoMam database, namely: Condylura cristata, Erinaceus europaeus and Sorex araneus.
Five gene trees presented low posterior probability for the monophyly of the group. There-
fore, Eulipotyphla was the tested order with the highest number of gene trees with low
support for the monophyly of the group. The MAP trees for these gene trees are shown
in Figures 5.7 and 5.8. The gene MATK (Figure 5.7A) recovered E. europaeus as sister
taxa to the grouping of Lagomorpha and Scandentia. For this gene tree there is only
one sampled species for the orders Lagomorpha and Scandentia. The group E. europaeus,
Lagomorpha and Scandentia is placed as sister to Rodentia. Finally, the species C. cristata
appears as sister to the whole Euarchontoglires group. The gene MAP3K1 (Figure 5.7B)
places the taxa belonging to Eulipotyphla within Laurasiatheria, in accordance with the
expected species tree. But C. cristata is not grouped together with E. europaeus and S.
araneus. Instead C. cristata is a sister branch to Scrotifera and separated from the other
Eulipotyphla taxa. The gene NECTIN1 (Figure 5.7C) recovered S. araneus grouped with
Dasypus novemcinctus (Xenarthra) and this clade as sister to Chiroptera. E. europaeus
and C. cristata are grouped together as a clade, but the position within Laurasiatheria is
in disagreement with the expected species tree. The gene tree for LARP4 (Figure 5.8A)
shows the clade formed by E. europaeus and C. cristata separated from S. araneus. This
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gene tree recovered Eulipotyphla as an early branching in the tree and closer related to
Marsupialia. Finally, the gene tree for TMCO4 (Figure 5.8B) presents S. araneus as a
sister taxa to Lagomorpha and C. cristata within Laurasiatheria.

5.4.3 Coalescent unit times

We estimated the coalescent unit times for the branches leading to Rodents and Eulipoty-
phla for different possible value of effective population size. For the divergence times we
used the time tree from [188]. The approximate estimated time for the branch that leads to
the first split within Rodentia is 5.5 million years, and 3.8 million years for Eulipotyphla.
We approximated the generation time to be 100 days for Rodentia [121] and 253 days for
Eulipotyphla [163]. From Equation 5.1 we estimated the coalescent unit times for both
orders as seen in Tables 5.6 and 5.7.

As expected from Equation 5.1, tcoal is inversely proportional to Ne. Therefore, larger
Ne values produce smaller tcoal values. Precisely, tcoal above five indicates high probability
of lineages having coalesced. Since this is expected after ∼ 5Ne [32] and coalescent times
are proportional to the effective population size. The estimated tcoal for Rodentia indicates
that the effective population size for the lineage leading to rodents would require values in
the magnitude of 107 to support ILS in that branch.

Table 5.6: Estimated coalescent unit times for the order Rodentia for different effective
population sizes (Ne).

Ne Coalescent unit time

104 1992.5
5× 104 398.5
105 199.2
106 19.9
107 1.9

Table 5.7: Estimated coalescent unit times for the order Eulipotyphla for different effective
population sizes (Ne).

Ne Coalescent time units

104 542.2
5× 104 108.4
105 54.2
106 5.4
107 0.54
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5.4.4 Model adequacy

We calculated p-values for ten focal statistics and four ancillary statistics as shown in
Table 5.8. The p-values below 0.025 or above 0.975 are colored in red. We evaluated
the gene trees separately between the ones that showed no small posterior probability
for the mammalian orders (well behaved) and the ones that showed at least one posterior
probability below 0.5 for one of the orders (poor behaved). Furthermore, we looked at focal
and ancillary test statistics separately for these two groups. The histograms of p-values
for the focal statistics are shown in Figures 5.9 and 5.10. The histograms for the ancillary
statistics are shown in Figures 5.11 and 5.12. Overall, the well-behaved analyses and the
poorly behaved analyses show no clear difference in model fit for the tested statistics.
Among the focal test statistics, the maximum GC is the only statistic that seems to show
better fit for the well-behaved analyses. On the other hand, the multinomial-likelihood
showed more intermediate p-values for the poorly behaved analyses. For the ancillary test
statistics, the well-behaved analyses showed more intermediate p-values than the poorly
behaved analyses for all cases. But the sample size for the analyses was rather small and
more replicates are needed to see clearer tendencies. Importantly, not a single analysis
showed an appropriate model fit for all tested statistics.

5.5 Discussion

Our results demonstrate the importance of proper convergence assessment in Bayesian
phylogenetic tree inference, where the lack of convergence can lead to spurious topologies
and false conclusions about evolutionary relationships. We tested different MCMC settings
to obtain a good rate of convergence success. Our investigation suggests that arbitrarily
increasing the number of MCMC iterations does not produce a better rate of convergence
success. Instead, a better approach is to propose more moves at each iteration. The most
challenging parameter for convergence purposes, and yet the object of interest in most
phylogenetic studies, is the topology. Our newly implemented Subtree Swap move seemed
to perform better than the inference with only NNI and SPR and much better than the
inference using MC3. However further investigations of MCMC moves for topologies are
necessary to grant optimal settings for convergence with real data sets.

After testing miscellaneous MCMC settings, we ended up with 29 gene trees that
achieved convergence according to the criteria in Fabreti and Höhna [39]. For these 29
analyses we evaluated the posterior probability of mammalian orders. Our results show
that eleven gene trees present very low support for the monophyly of at least one of the
tested mammalian orders. We further investigate the coalescent unit times for the branches
leading to two orders: Rodentia and Eulipotyphla. Incomplete lineage sorting is perhaps
the most prominent hypothesis for explaining conflict among gene trees. For incomplete
lineage-sorting alone to explain the conflicts in our gene trees, we would need to have
effective population sizes on the order of 107. Estimates of effective population size for ro-
dents show results in the order or 105 [168, 183]. Although there are no reliable estimates
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for Eulipotyphla, we have no reason to believe that past populations presented such large
effective population sizes. Since the necessary effective population size for ILS presented
improbable values, we conclude that the conflict in the gene trees cannot be explained due
to ILS alone. The lack of ILS support in older splits within mammals had been previously
shown in Scornavacca and Galtier [155], where ILS was found to be only a minor contri-
bution of the conflicting phylogenetic signal in mammals. Furthermore, Scornavacca and
Galtier [155] compared the gene tree discordance for exons within the same gene and exons
from different genes. They observed that the amount of discordance was similar for the
two groups. This finding could be explained by recombination (biological explanation) or
error in the estimation of the gene trees (methodological explanation).

We verified the second hypothesis by exploring the model adequacy of the substitution
model to the empirical data. We observed that not a single gene showed proper model
fit. Both gene trees with conflicting posterior probability for one of the mammalian orders
and the gene trees with no conflict showed poor model fit. Our results for the posterior
predictive p-values presented extreme values for both focal and ancillary test statistics.
The extreme values for the focal statistics should be considered as a stronger signal of
model inadequacy, since the distributions of these p-values under the null hypothesis have
been shown to be non-uniform (Chapter 3 ).

Overall, the results here presented suggest that a considerable amount of gene tree
discordance is due to methodological grounds. The current commonly used sequence evo-
lution models do not adequately reflect the heterogeneity in real data, and therefore future
research should focus on the aspects of the model that are failing to capture the complexity
of real data.
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Figure 5.5: Species tree reconstructed based on the analysis performed in [188] for the 116
species evaluated in the present study. The different colors represent the 12 mammalian
orders relevant for this study.
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Figure 5.6: Maximum a posteriori gene trees for the genes CROT(A), GP6(B) and
ZYG11B(C).
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Figure 5.7: Maximum a posteriori gene trees for the genes MATK(A), MAP3K1(B) and
NECTIN1(C).
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Figure 5.8: Maximum a posteriori gene trees for the genes LARP4(A) and TMCO4(B).
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Figure 5.9: Histograms of posterior predictive mid-point p-values for the focal test statistics
for the well behaving gene trees.
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Figure 5.10: Histograms of posterior predictive mid-point p-values for the focal test statis-
tics for the poor behaving gene trees.
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Figure 5.11: Histograms of posterior predictive mid-point p-values for the ancillary test
statistics for the well behaving gene trees.
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Figure 5.12: Histograms of posterior predictive mid-point p-values for the ancillary test
statistics for the poor behaving gene trees.



Appendix A

Supplementary Information Chapter
2

A.1 Precision of an estimator to assess sufficiently

many samples

µ

+2 σ−2 σ

SEM

Figure A.1: Schematic of a posterior distribution with mean estimate µ and 95% credible
interval. Here, we chose a normal distribution to represent the posterior distribution. The
shaded area shows the 95% credible interval, which has a width of ± 2 σ. The dashed
line represents the mean (µ) of the distribution. The darker shaded area represents the
standard error of the mean. If the SEM is smaller or to 1% of the 95% credible interval
size, then we accept the mean estimate as sufficiently precise.
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A.2 ESS Estimates for Independent Monte Carlo Sam-

ples

We assessed the ability of CODA, MCMCSE and Tracer to estimate the true Effective Sample
Size (ESS) from an independent sample. This represents the case where we thinned our
MCMC samples and all values are virtually independent. Furthermore, in this first test
case we were interested in whether the shape of the distribution had an impact on the
efficiency of the method. Thus, we used a normal distribution with mean 0 and standard
deviation 1, a lognormal distribution with mean 0 and standard deviation 1 (both on the
log scale) and an exponential distribution with rate 1. For each distribution we simulated
1,000 replicates of N = {100, 200, 300, 400, 500, 625, 800, 1000} independent and identically
distributed (iid) samples (i.e., N is equal to the true ESS). Then, we estimated the ESS
of these simulated samples using CODA, MCMCSE and Tracer.
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Figure A.2: Estimated Effective Sample Sizes (ESS) for independent samples from different
continuous distributions. We used CODA, MCMCSE and Tracer to estimate the ESS and
evaluate their accuracy. The x-axis is the true ESS used to generate the sample, the y-axis
is the average estimated ESS. The samples were simulated under a normal, lognormal and
exponential distribution (from left to right).

All three methods perform comparably well and appear sufficiently precise and robust
(Figure A.2). Neither the number of samples nor the choice of the shape of the underlying
distribution impacted the accuracy. Thus, we will only use the normal distribution in
the following experiments. Tracer always had the lowest estimated ESS and thus is the
most conservative of the three methods. CODA, on the other hand, had the highest overall
precision.
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A.3 ESS Estimation with MCMCSE

Figure 1 (central panel) shows that for an autocorrelation time (ACT) of τ = 50, MCMCSE
overestimates the ESS. To better understand this unusual behavior, we explored new values
of τ closer to 50. The simulation was done in the same fashion as for Figure 1. We simulated
1000 replicates for ESS values between N = {100, 200, 300, 400, 500, 625, 800, 1000} and
ACT varying between τ = {10, 20, 30, 40, 45, 50, 60, 65, 70}. For τ = {50, 60, 65} and N >
200 the ESS is overestimated (Figure A.3).

MCMCSE uses as default the batch means approach to estimate the autocorrelation time
and, consequently, the ESS. Such approach has been shown to not consistently estimate
the variance when the number of batches is fixed [58, 57, 44]. This could explain why we
observed overestimation of the ESS for some ACT values. Further investigation of this
behavior should be performed. For now, we advise users to avoid the batch mean approach
to estimate the ESS.
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Figure A.3: Estimated ESS from MCMCSE for independent samples from a nor-
mal distribution with a known ACT. The autocorrelation varied between τ =
{10, 20, 30, 40, 45, 50, 60, 65, 70} and is represented by the colored dots. The x-axis is the
true ESS used to generate the sample, the y-axis is the average estimated ESS.
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A.4 ESS Estimation of Samples from a Binomial Dis-

tribution

Figure A.2 shows the estimation of the ESS for a normal, lognormal and exponential
distribution. The same tests were performed for the binomial distribution for different p
and the results are shown in Figure A.4. For each value of p and sample size, we replicated
1000 test to calculate the mean estimated ESS. The estimation of the ESS is not influenced
by the probability of success(p) from the binomial distribution, since all plots in Figure
A.4 exhibit the same tendency.
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Figure A.4: The estimated Effective Sample Size (ESS) for samples drawn from a binomial
distribution with different probabilities of success (p). The p is indicated on top of each
plot. For each plot we varied the size of the sample drawn (true ESS) from 100 to 10,000.
We then calculated the ESS with three methods: CODA, MCMCSE and Tracer. The blue
dots correspond to CODA, the purple dots to MCMCSE and the orange dots to Tracer.
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A.5 ESS of splits from samples of trees

Phylogenetic MCMC approaches sample phylogenetic trees and thus splits only indirectly.
Different splits are not independent of another as some splits are mutually exclusive and
cannot co-occur. Here we investigated if the independence assumption of splits is problem-
atic. Instead of simulating the splits with a know ESS as in the main text, we simulated
draws of trees with known ESS. We used unrooted trees with 4, 5 or 6 taxa. We assumed
an equal probability of 1

n
for each tree. Note that this does not imply that each split had

equal probability because uneven splits with one large and one small clade are consistent
with more trees.

As before, we simulated samples with true ESS values ofN = {100, 200, 300, 400, 500, 625, 800, 1000}
for the trees. Additionally, we sampled auto correlated traces using Algorithm 1 with ACT
values of τ = {1, 5, 10, 20, 50}. We simulated 100 replicates for each combination of N and
τ . For each trace of trees we constructed all possible traces of splits. Then, we calculated
the mean ESS over all splits and replicates as our main objective here was to evaluate the
bias of estimating ESS values.

Figure A.5 shows the mean ESS value for different combination of N and τ . The
results match our observations of our previous tests on autocorrelated continuous traces
(Figure 1). The mean estimate is slightly underestimated across the different number of
taxa and thus a slightly conservative estimate. Reassuringly, the ESS estimates of splits
are a good proxy for the ESS of trees.
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Figure A.5: The mean estimated ESS for all splits over 100 replicates of simulated trace
of trees. The true ESS corresponds to N = {100, 200, 300, 400, 500, 625, 800, 1000}. The
autocorrelation assumed values of τ = {1, 5, 10, 20, 50}. The left panel displays the results
for the case of 4 taxa, the middle panel for 5 taxa and the right panel for 6 taxa.
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A.6 Potential Scale Reduction Factor (PSRF)

In phylogenetics, the only (or at least most widely) used convergence assessment method
for continuous parameters between replicated MCMC runs is the potential scale reduction
factor [PSRF, 53]. We tested the PSRF under different common statistical distributions
(normal distribution, gamma distribution and lognormal distribution). In practice, we
never know the true shape of the posterior distribution when using empirical data. It is
possible that the posterior distribution is well approximated by a normal distribution, but it
is similarly possible that the posterior distribution is skewed and thus better approximated
by a lognormal or gamma distribution.

We generated two sets of values, according to the same distribution, to compare the
performance of evaluating the variance within each set and between sets. Each set had
1 × 105 values drawn from the specified distribution. The distributions used were the
normal, lognormal, exponential and gamma. For each distribution, we used different values
of variance (1.0, 4.0, 25.0, 100.0) to compare the behavior of the PSRF when the variance
of the set of values changes. For the normal and exponential distributions the PSRF
values varied from 1.001 to 1.019 as we increased the size of the samples. The values for
both distribution had a maximum difference of 0.01 and increasing the variance of the
samples did not affect the estimated PSRF values. In the tests for the lognormal and
gamma distribution, the PSRF values varied according to the variance of the sample, as it
is shown in Figure A.6

Surprisingly, we observed that the PSRF does not converge towards 1.0 with increasing
sample size if the distribution is heavily skewed (Figure A.6). For example, when we
simulated values from a gamma distribution with θ = 10 and varied κ, PSRF values
were comparably high (PSRF > 1.05). Similarly, when we used simulated values from
a lognormal distribution, PSRF values never converged towards 1.0 and the asymptotic
PSRF increased with higher variances. Thus, we conclude that the PSRF is not universally
applicable in phylogenetics and other approaches, such as the Kolmogorov-Smirnov test,
are superior.

Figure A.6 shows the PSRF values calculated for 3 different distributions: normal,
lognormal and exponential. The mean PSRF was calculated by comparing 1 × 105 times
two sets of values drawn from the same distribution with equal parameters. We used 4
different variance values (1.0, 2.0, 5.0 and 10.0) for each distribution to compare how they
affect the PSRF estimate.

A.7 Estimating burn-in length

Most recorded samples from an MCMC algorithm in phylogenetics do not start with a
random draw from the posterior distribution. Instead, most MCMC algorithms are either
initialized with fixed starting values [151, 16] or random values drawn from the prior
distribution [74]. It is therefore necessary to remove the first X% of samples as burn-in
to obtain an unbiased approximation from the posterior distribution. In phylogenetics,
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Figure A.6: The potential scale reduction factor (PSRF) values calculated for two samples
drawn under the same distribution. The variance of the distributions assumed values of 1,
4, 25 and 100, as is shown on top of each plot. The plotted values correspond to the mean
of 1 × 105 replicates. The black squares represent the values calculated from a lognormal
distribution. The green figures correspond to the Gamma distribution. The circle, the
cross and the diamond correspond to scales parameters of 0.1, 1 and 10, respectively.

a common burn-in is either 10% or 25%, depending on the arbitrary preference of the
software developer.

To make the burn-in selection slightly less arbitrary, we developed the following proce-
dure. We search for the optimum burn-in value defined as the lowest burn-in that passes
the convergence tests. We start with no burn-in and increase it by 10% up to a maximum
of 50% of the chain. If more than 50% of the chain has to be discarded, the MCMC spent
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too much time outside of the stationary distribution and the whole analysis should be
redone and/or run longer.

Algorithm 4 Estimating the burn-in length.

1: Inputs:
X: the samples.

2: Initialize:
n← length(X) // the total number of correlated samples

3: for i in {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} do // generate independent chains
4: Y ← X[(i∗n) :n] // retrieve the post-burnin samples
5: if convergence(Y ) == pass then // check for convergence
6: break // stop
7: end if
8: end for

9: return i
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B.1 Variable sites in simulated data sets
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Figure B.1: Histogram of relative number of variable sites in the data sets for each simu-
lation scenario. The data were simulated in RevBayes [74]. The first row corresponds to
the simulated trees with 16 taxa, while the second row corresponds to the simulated trees
with 64 taxa. The mean branch lengths (BL) for the data sets are on top of each column.
The two first columns display the data sets with 100 sites, the two other columns show the
data sets with 1000 taxa.
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Figure B.2: The 95% credible interval for the tree length for the inference with Jukes-
Cantor [JC, 86] against the inference with GTR+Γ+I [165, 177, 62] under the Tame prior.
On the x-axis we show the estimated 95% credible interval size for the JC substitution
model (true model). On the y-axis we plot the estimated 95% credible interval for the
over-parametrized substitution model. The first row corresponds to the simulated trees
with 16 taxa, while the second row corresponds to the simulated trees with 64 taxa. The
mean branch lengths (BL) for the data sets are on top of each column. The two first
columns display the data sets with 100 sites, the two other columns show the data sets
with 1000 taxa.
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Figure B.3: The 95% credible interval for the tree length for the inference with Jukes-
Cantor [JC, 86] against the inference with GTR+Γ+I [165, 177, 62] under the MrBayes

prior [151]. On the x-axis we show the estimated 95% credible interval size for the JC
substitution model (true model). On the y-axis we plot the estimated 95% credible interval
for the over-parametrized substitution model. The first row corresponds to the simulated
trees with 16 taxa, while the second row corresponds to the simulated trees with 64 taxa.
The mean branch lengths (BL) for the data sets are on top of each column. The two first
columns display the data sets with 100 sites, the two other columns show the data sets
with 1000 taxa.
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Figure B.4: The 95% credible interval for the tree length for the inference with Jukes-
Cantor [JC, 86] against the inference with GTR+Γ+I [165, 177, 62] under the RevBayes

prior [73]. On the x-axis we show the estimated 95% credible interval size for the JC
substitution model (true model). On the y-axis we plot the estimated 95% credible interval
for the over-parametrized substitution model. The first row corresponds to the simulated
trees with 16 taxa, while the second row corresponds to the simulated trees with 64 taxa.
The mean branch lengths (BL) for the data sets are on top of each column. The two first
columns display the data sets with 100 sites, the two other columns show the data sets
with 1000 taxa.
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Figure B.5: The 95% credible interval for the tree length for the inference with Jukes-
Cantor [JC, 86] against the inference with GTR+Γ+I [165, 177, 62] under the BEAST prior
[17]. On the x-axis we show the estimated 95% credible interval size for the JC substitution
model (true model). On the y-axis we plot the estimated 95% credible interval for the over-
parametrized substitution model. The first row corresponds to the simulated trees with
16 taxa, while the second row corresponds to the simulated trees with 64 taxa. The mean
branch lengths (BL) for the data sets are on top of each column. The two first columns
display the data sets with 100 sites, the two other columns show the data sets with 1000
taxa.
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Figure B.6: Comparison of mean tree length between [JC, 86] and GTR+Γ+I [165, 177, 62]
for the data sets with 16 taxa, 100 sites and mean branch length 0.02. The x-axis represents
the mean tree length for the inference under JC, while the y-axis represents the mean tree
length for the inference under GTR+Γ+I. Each plot displays the means for the inference
with the four different prior schemes.
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Figure B.7: Comparison of mean tree length between [JC, 86] and GTR+Γ+I [165, 177, 62]
for the data sets with 64 taxa, 100 sites and mean branch length 0.02. The x-axis represents
the mean tree length for the inference under JC, while the y-axis represents the mean tree
length for the inference under GTR+Γ+I. Each plot displays the means for the inference
with the four different prior schemes.
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B.4 Further exploration of model combinations
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Figure B.8: Posterior distributions for tree length for one example of each data set. Each
line corresponds to a different model (JC, JC+I, JC+Γ, JC+Γ+I, GTR, GTR+I, GTR+Γ,
GTR+Γ+I; [86, 165, 177, 62]). The GTR models followed the Tame prior setting. The first
row corresponds to the simulated trees with 16 taxa, while the second row corresponds to
the simulated trees with 64 taxa. The mean branch lengths (BL) for the data sets are on
top of each column. The two first columns display the data sets with 100 sites, the two
other columns show the data sets with 1000 taxa.
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Figure B.9: Posterior distributions for tree length for one example of each data set. Each
line corresponds to a different model (JC, JC+I, JC+Γ, JC+Γ+I, GTR, GTR+I, GTR+Γ,
GTR+Γ+I; [86, 165, 177, 62]). The GTR models followed the MrBayes prior setting. The
first row corresponds to the simulated trees with 16 taxa, while the second row corresponds
to the simulated trees with 64 taxa. The mean branch lengths (BL) for the data sets are
on top of each column. The two first columns display the data sets with 100 sites, the two
other columns show the data sets with 1000 taxa.
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Figure B.10: Posterior distributions for tree length for one example of each data set.
Each line corresponds to a different model (JC, JC+I, JC+Γ, JC+Γ+I, GTR, GTR+I,
GTR+Γ, GTR+Γ+I; [86, 165, 177, 62]). The GTR models followed the RevBayes [73]
prior setting. The first row corresponds to the simulated trees with 16 taxa, while the
second row corresponds to the simulated trees with 64 taxa. The mean branch lengths
(BL) for the data sets are on top of each column. The two first columns display the data
sets with 100 sites, the two other columns show the data sets with 1000 taxa.
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Figure B.11: Posterior distributions for tree length for one example of each data set. Each
line corresponds to a different model (JC, JC+I, JC+Γ, JC+Γ+I, GTR, GTR+I, GTR+Γ,
GTR+Γ+I; [86, 165, 177, 62]). The GTR models followed the BEAST [17] prior setting. The
first row corresponds to the simulated trees with 16 taxa, while the second row corresponds
to the simulated trees with 64 taxa. The mean branch lengths (BL) for the data sets are
on top of each column. The two first columns display the data sets with 100 sites, the two
other columns show the data sets with 1000 taxa.
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B.5 Convergence assessment example
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Figure B.12: Convergence assessment plots using the package Convenience [38] for one
example MCMC from Figure 7. The first column shows the plots for the assessment of
convergence for the continuous parameters. The second column displays the assessment
of the splits in the tree. In all plots the values are within the gray shaded area, which
indicates that convergence was achieved.



Appendix C

Lessons Learned from Organizing
and Teaching Virtual Phylogenetics
Workshops

C.1 Abstract

In 2020 and 2021, the COVID-19 pandemic led to an abrupt overhaul of many academic
practices, including the transition of scientific events, such as workshops, to a fully vir-
tual format. We describe our experiences organizing and teaching online-only statistical
phylogenetics workshops and the lessons we learned along the way. We found that online
workshops present some specific challenges, but format choices and rigorous planning can
alleviate many of the concerns typically associated with a virtual medium. In addition,
online workshops have unique advantages such as the flexibility they offer to participants
and instructors and their accessibility to non-traditional and underprivileged audiences.
We hope that our experience will encourage workshop organizers to consider online-only
events as an integral part of potential training opportunities rather than simply a stop-gap
solution for unusual circumstances. In addition, we hope to prompt broader discussion
about integrating aspects of online workshops into traditional in-person courses to make
training opportunities more flexible and inclusive.

C.2 Introduction

Phylogenetic analysis of biological data often requires a high level of expertise not only
in the statistical framework underlying applied models and approaches, but also in the
specific software implementations and their wide range of available options. This, in turn,
leads to a high barrier to entry for researchers interested in using phylogenetic programs
and packages. As a result, developer teams spend considerable effort creating materials
and opportunities for new users to learn how to use complex software tools so that they can
apply phylogenetic methods to their own data. Workshops are perhaps the most common
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mechanism used by scientific software developers to expand their user base and provide
expert training to empiricists. These events are an opportunity for scientists to directly
interact with the developers and obtain deeper insight into the software. At the same time,
these short courses also enable developers to learn more about the needs of users work-
ing with empirical data. Moreover, many software developers gain valuable experience in
teaching and pedagogy as instructors in hands-on workshops. Participants and instructors
recognize the value these experiences can have in improving software, building the knowl-
edge base of scientists at all levels, and creating opportunities for networking that often
lead to fruitful collaborations.

This work focuses on workshops dedicated to RevBayes [76], a broadly used Bayesian
phylogenetic software tool that enables inference of evolutionary parameters under com-
plex, hierarchical models. The RevBayes developer team provides extensive, publicly avail-
able documentation and user tutorials for a wide range of analyses and applications via the
project website1. Since 2013, RevBayes has been featured in over 40 workshops2, either as
standalone events, or part of more general courses, such as the Woods Hole Workshop on
Molecular Evolution3 and the Bodega Bay Workshop in Applied Phylogenetics4.

In early 2020, the onset of the COVID-19 pandemic required instructors to cancel in-
person workshops and innovate ways to deliver training materials to practitioners [116,
142, 6]. The majority of workshop participants are early career researchers, many of whom
attend workshops to deliberately meet planned professional goals, such as attaining skills to
complete dissertation research or seeking out postdoctoral research opportunities. Thus, a
year without workshop opportunities may be a significant setback to many scientists early
in their training. Rather than canceling all of our planned workshops, the RevBayes team
opted to transition to fully online events, and we have recently completed two so-called
“Stay-at-Home RevBayes” workshops. Our experiences and the feedback from participants
have been very positive, and we believe that this format has unique advantages and a few
challenges when compared to traditional, in-person workshops.

This paper describes our experience organizing the Stay-at-Home RevBayes online
courses, explains the rationale behind some of our choices, and provides suggestions for
future workshop organizers. Our goal is to share our experience organizing and teaching
a technical software workshop in an online format, as well as demonstrate some of the ad-
vantages and challenges of such a course. In particular, we believe that online-only events
remain relevant beyond the specific context of the pandemic, and that they should not
be dismissed in a rush to get back to previous practices. Furthermore, as we transition
back to planning in-person activities, we hope to stimulate discussions among the develop-
ers of phylogenetic methods on new approaches for enhancing workshop experiences and
inclusivity, while creating broadly accessible learning opportunities.

1The RevBayes Project Website: http://revbayes.com
2RevBayes Workshops: http://revbayes.com/workshops
3Workshop on Molecular Evolution, Woods Hole, MA, USA: https://molevolworkshop.github.io
4Workshop in Applied Phylogenetics, Bodega Bay, CA USA: http://treethinkers.org

http://revbayes.com
http://revbayes.com/workshops
https://molevolworkshop.github.io
http://treethinkers.org
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C.3 The Stay-at-Home RevBayes Workshops

The primary goal of all RevBayes workshops is to provide participants with a solid founda-
tion in the theory and application of phylogenetic methods—as well as practical knowledge
of the software implementation—so that they will be able to analyze their own data us-
ing complex models and Bayesian statistics. To achieve this goal, the RevBayes team
has developed a rich library of tutorials5 providing extensive details about various phy-
logenetic analyses. When presenting this material in an in-person setting, we are often
constrained by time and only able to spend a couple of hours on each topic during a five-
to seven-day workshop. However, a virtual course offers the opportunity to spread the
material over several weeks, enabling participants to work at their own pace and review
what they have learned before moving on to the next tutorial. Thus, the format of the
Stay-at-Home RevBayes Workshops included a mix of synchronous meetings (using the
Zoom video-conference service), detailed tutorials and pre-recorded videos, and real-time
discussions via Slack (an online instant messaging platform), all spread out over five to
six weeks (we discuss the communication tools used in more detail in Sections C.3.2 and
C.4.3). An overview of the core workshop components is provided in Box 1.

[frametitle=Box 1: Overview of the main components of the Stay-at-Home RevBayes
Workshops, skipabove=, skipbelow=, roundcorner=5pt, linewidth=0.5pt, frametitlerule=true,
frametitlebackgroundcolor=gray!30 ]

• Course website67: The workshop description, application link, schedule, and materials
are provided on a public website for each course.

• Introductory synchronous session (Zoom): Participants and instructors introduce them-
selves, then instructors give an orientation on the workshop format and procedures, offer
an overview of RevBayes and the Rev language, and check that all participants succeeded
in installing the required software.

• Introductory lectures : Participants work through previously published videos providing
background on the theory of Bayesian phylogenetics.

• Asynchronous completion of RevBayes tutorials : Participants work at their own pace
to learn a curated set of methods and analyses in RevBayes (Fig. C.1). Each lesson
includes:

– Detailed online tutorial : Each online tutorial provides the theory and background
for a specific model or statistical method and a step-by-step explanation of how the
corresponding analysis is performed in RevBayes.

– Video guide: Each online tutorial links to a series of videos (hosted on YouTube)
created by a RevBayes instructor walking the viewer through each section of the
lesson and providing additional details.

• Communication: Instructors are available to answer participants’ questions and engage
in group discussions via the course messaging tool (Slack) and regular office hours (on
Zoom).

5RevBayes Tutorial Library: http://revbayes.com/tutorials
6Stay-at-Home RevBayes Workshop Summer 2020: http://revbayes.com/workshops/online2020.

html
7Stay-at-Home RevBayes Workshop Spring 2021: http://revbayes.com/workshops/online2021.

html

http://revbayes.com/tutorials
http://revbayes.com/workshops/online2020.html
http://revbayes.com/workshops/online2020.html
http://revbayes.com/workshops/online2021.html
http://revbayes.com/workshops/online2021.html
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• Final group synchronous session (Zoom): Participants and instructors discuss the course
materials, common issues faced during the workshop, and future directions for new
methods or applications in Bayesian phylogenetics.

• One-on-one meetings : Each participant is paired with an instructor to meet via Zoom
and discuss the participant’s plan for applying RevBayes to their own data.

C.3.1 Workshop Content

We created a syllabus that included four introductory lectures and eight detailed tutorials.
At the start of the workshop, participants learned about the course format, timeline, and
content in a synchronous meeting. Additionally, during the first synchronous session, we
included a background lecture on RevBayes and the Rev language. Clearly outlining the
structure, tools, and course expectations early helps build participant trust and comfort
[187], which is key when in an online format or using new tools. It was important to
include lectures on basic probability theory and Bayesian phylogenetics—as background
knowledge on these topics is required to correctly assess models and inference output in
RevBayes—and thus it is fortunate that this material was already available online. In
2018, Paul Lewis recorded a series of lectures entitled “Phylogenetics 101” (or Primer
on Phylogenetics)8 for Phyloseminar, an online seminar on phylogenetics topics created
by Frederick Matsen in 20099. These lectures begin with topics as fundamental as the
definition of conditional probability, and, by building upon that foundation, culminate in
the construction of complex phylogenetic models and the assessment of their statistical
properties. For the RevBayes virtual workshop, these lectures provided participants with
an accessible introduction to (or review of) the core theory in Bayesian phylogenetics.

After completing the introductory material and installing RevBayes, the workshop par-
ticipants were assigned a series of tutorials. The lessons began with an introduction to
Markov chain Monte Carlo (MCMC) in RevBayes and then increased in complexity to
include analyses of datasets combining fossil and extant taxa [48, 11], polymorphism aware
phylogenetic methods [30, 31, 15], and posterior predictive analysis [71] (Fig. C.1). For
each tutorial, we created a video guide (hosted on YouTube) that walked through each step
and concept. The videos were time-stamped or recorded in segments so that video links
could be placed at each section heading of the online tutorials. For example, in the “Intro-
duction to Posterior Prediction” tutorial10, each section links to a YouTube video where
the tutorial author describes the contents of that section. The video guides emulate how
we often walk participants through a tutorial during an in-person workshop, with features
like “pause” and “replay” that are not really possible in a synchronous class. During these
demonstrations, we are often able to insert practical tips and other topics that might not
fit naturally into the written tutorial and thus enhance the content. For instance, we can

8Primer on Phylogenetics (YouTube Playlist): https://www.youtube.com/playlist?list=

PLztACvN0g42vSxiQ4tM0sQTddMx-V40LE
9Phyloseminar: http://phyloseminar.org

10Introduction to Posterior Prediction: http://revbayes.com/tutorials/intro_posterior_

prediction

https://www.youtube.com/playlist?list=PLztACvN0g42vSxiQ4tM0sQTddMx-V40LE
https://www.youtube.com/playlist?list=PLztACvN0g42vSxiQ4tM0sQTddMx-V40LE
http://phyloseminar.org
http://revbayes.com/tutorials/intro_posterior_prediction
http://revbayes.com/tutorials/intro_posterior_prediction
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Figure C.1: The Stay-at-Home RevBayes Workshop focused on eight core topics, each with
a detailed tutorial and accompanying video guide. The goal of the course is to provide
enough time for participants to complete the tutorials while considering how the methods
will be applicable to their own data and research questions.

remind the audience of the difference between stochastic (i.e., estimated) and constant
(i.e., fixed) parameters, which use a different syntax in the Rev language and can be con-
fusing to inexperienced users. The extensive details included in each tutorial may also be
somewhat intimidating to new users and the video guides serve as a way to ease learners
into the material. Participants were provided with a suggested timeline for completing
each component of the course. After completing the set of tutorials curated for the online
course, workshop participants were then given time to explore the other tutorials on the
RevBayes site or to start analyzing their own data.

The core content created for the Stay-at-Home RevBayes Workshops is accessible to
anyone at any time. Thus, researchers are able to work through the tutorials and videos
even if they are not part of a workshop. Nevertheless, registering and committing to a
course—online or in-person—provides a timeline and structure, as well as access to experts
in the field for guidance, and these facilitate completion of learning goals.

C.3.2 Workshop Interactions

Phylogenetics workshops offer participants the unique opportunity to learn methods and
software directly from experts and developers. Moreover, these kinds of courses enable
researchers from diverse fields and backgrounds to build connections that can often lead
to exciting new collaborations. While online workshops do allow attendees to interact via
text chats, such spontaneous interactions may not come as easily in a virtual medium—
particularly across multiple time zones—as they would when meeting in person. Traditional
activities amenable to, or even fostering, spontaneous discussions, such as breaks or meals,
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must be rethought and deliberately executed. We therefore used a variety of activities and
tools (described in detail in this section) to provide participants direct access to instructors
and create ways to engage and network with one another.

Prior to the start of the workshop, all participants and instructors were asked to create
an introduction slide that was then shown during our first synchronous session (Fig. C.2).
All synchronous meetings were held on Zoom11 and the introductory session provided space
for participants and instructors to get to know one another. We used break-out rooms in
Zoom to hold small group discussions to enable more casual conversations among partic-
ipants and instructors. These interactions were also included to help reduce participants’
hesitancy to ask questions or request help during the course.

The first synchronous meeting provided a detailed overview of the workshop format and
introduced participants to our primary communication tool: Slack12. The workshop Slack
space included a separate channel for each tutorial, as well as channels for participants to
discuss general questions on phylogenetics and Bayesian theory, technical issues (e.g., soft-
ware installation problems), and the RevBayes interpreted language. Importantly, Slack
offered a private communication platform that helped participants feel more comfortable
asking questions and a mechanism for sharing links to synchronous Zoom meetings and
other course materials. In addition, after the conclusion of each workshop, the associated
Slack space remained open for several months, providing the opportunity for participants
to refer back to previous answers and discussions, as well as ask follow-up questions.

While the participants worked through the material on their own time, we held regular
“office hours” via Zoom (each scheduled for one hour), where they were invited to raise
issues and ask questions about the workshop content. In the first edition of the workshop,
these meetings were held every week. In the second workshop, synchronous sessions were
mirrored because of less time-zone overlap, thus office hours were reduced to every two
weeks to avoid overloading instructors.

At the conclusion of the multi-week Stay-at-Home RevBayes course, we held a final syn-
chronous session to address remaining questions about the tutorials and discuss RevBayes
and Bayesian phylogenetic inference in general. In the first edition of the workshop, this
final session was held over several days. Based on feedback from the participants, this
session was reduced to two hours in the second workshop.

We then arranged a one-on-one meeting between each participant and an instructor
selected based on the participant’s specific interests and dataset. The one-on-one meetings
allowed participants to troubleshoot analyses applied to their own data under the guidance
of a workshop instructor and collaborate to devise creative solutions to unique biological
problems. Both participants and instructors found these meetings to be one of the most
valuable interactions in the workshop.

In summary, we held scheduled sessions and optional office hours on Zoom and created
a Slack space for communication throughout the duration of the course. Additionally, each
participant met in a one-on-one meeting with an instructor at the end of the workshop.

11Zoom: https://zoom.us
12Slack: https://slack.com

https://zoom.us
https://slack.com
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Figure C.2: An example of an introduction slide by workshop instructor Carrie Tribble.
All instructors and course participants used the same slide template. In the first meeting
on Zoom, everyone was able to introduce themselves using their slide.

We believe that all of these elements have important and non-overlapping roles. In our
experience, questions raised on the Slack forum tended to be shorter and more narrowly
focused on the workshop material, such as technical issues or specific analysis choices in the
tutorials. Synchronous sessions attracted broader, more open-ended questions and provided
an opportunity for instructors to discuss general guidelines, best practices, or exciting
future directions for methods development. Finally, the one-on-one meetings ensured that
all participants left the workshop with actionable advice on how to apply the teachings on
their own datasets, even if they did not feel comfortable raising questions in front of the
whole group.

C.3.3 Flipping the Workshop Format

In our experience, the intense schedule of most in-person workshops is very tiring for
both instructors and participants, making it difficult for some participants to complete all
the activities and tutorials. Even when all activities are completed, an extremely heavy
schedule can lead to lower understanding and long-term retention of important concepts.
Since online workshops are not constrained by the physical presence of participants at the
venue, it was easier to extend the workshop schedule to run over several weeks and develop
material amenable to a flipped-workshop format.

A flipped-classroom format [92, 97, 130]—where lectures and tutorials are pre-recorded
and synchronous sessions can be used for questions and discussion—was an optimal ap-
proach for several reasons. First, it is widely acknowledged that online meetings require
more focus and are more tiring than in-person meetings [leading to so-called “Zoom fa-
tigue“; 8]. Therefore, we limited synchronous sessions to material that could not be covered
in other ways. In addition, recording video tutorials and lectures creates a bank of teaching
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materials that can easily be reused for future workshops, whether virtual or in-person, and
made freely accessible online to both participants and non-participants. This ensures that
time and effort invested by the instructors has a lasting impact beyond the participants
of the current workshop, making it much easier to organize subsequent events, even if the
original instructors are unavailable. Finally, a flipped format allows participants to make
their own choices about the proposed material, spending more time on topics they find rel-
evant, interesting, or challenging and skipping topics they have already mastered or that
do not apply to their research. In turn, this means that instructors are free to offer a wider
range of topics, since they need not be relevant to all participants.

Since the flipped format used synchronous meetings for discussion, we encouraged par-
ticipants to form study groups and work through the material together, much like what
might happen at a traditional in-person workshop; however, this rarely happened in our
experience. It is possible that such groups connected through other communication chan-
nels that were not visible to us, or that participants simply preferred to work through the
material with their own local colleagues, whose research interests are closer to their own.
This lack of group work likely also reflects limitations intrinsic to online-only, asynchronous
communication. Online events may thus be less likely to foster close relationships between
participants, although we could not assess whether this impacted the learning process.

Participant engagement can take three forms: learner-to-learner, learner-to-instructor,
and learner-to-content; students value all three forms and broad engagement is critical
for learning [122]. In general, participant engagement during the Stay-at-Home RevBayes
Workshops was somewhat varied. This manifested as a core group of learners active on
open Slack channels and asking questions during synchronous meetings, a subset of partic-
ipants communicating primarily via direct messages to instructors and in the one-on-one
meeting, and a small number of participants who were unable to fully participate because
of unexpected changes to their local circumstances. Aside from the last group, similar
patterns happen in on-site workshops. Although we believe the online format was not
hugely detrimental to engagement, an online format provides overall less opportunity for
participation than an on-site workshop, making it vital that interactions are engaging and
meaningful.

In order to remain flexible, we only required attendance at the first and last sessions.
Participants were made aware of this requirement before the event and attendance was very
good (only 2 or 3 participants were unable to join). While office hours were not mandatory,
we saw consistent attendance from many of the participants: the usual participation was
around 10 participants (out of 20) in the first workshop, and around 4 for each of the
two sessions (out of 25) in the second workshop. Overall, we found that having a formal
round of introductions at the start of the workshop, as well as encouraging everyone to
keep their camera on if possible during synchronous sessions, helped both participants and
instructors to engage in the event.
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C.4 Practical Considerations When Organizing a Vir-

tual Workshop

Although the logistics involved in organizing an online workshop are reduced compared to
an on-site event, there are still some key elements that must be considered to ensure that
a workshop is accessible and successful.

C.4.1 Time Zones

At first glance, online events seem extremely accessible no matter where in the world
interested participants are located. However, the diversity of participants’ and instructors’
locations means that holding synchronous activities in an online setting requires working
to identify times that work for everyone. Thus, paying careful attention to overlap among
the participants’ and instructors’ time zones is critical for promoting communication and
engagement.

Figure C.3 shows the geographic distribution of the workshop participants and instruc-
tors. All the time zones are described in reference to Coordinated Universal Time (UTC).
While the first iteration of the Stay-at-Home RevBayes Workshop attracted applications
from all over the world, we restricted our participant selection to applicants residing in
a specific time-zone range (from UTC-7 to UTC+3). Since most of the instructors also
reside in those time zones, we were able to schedule synchronous meetings during a time
that worked well for everyone involved. Because time zones prevented us from including
a wider distribution of participants in the first course, the second iteration of the Stay-at-
Home RevBayes Workshop specifically targeted applications from researchers based from
UTC+4 to UTC+14 (including UTC-10).

In general, the set of time zones involved in the workshop will determine whether
a synchronous session can accommodate everyone involved, or if replicate sessions must
be offered at different times. For instance, it became clear early on that it would not be
possible to find a single time for synchronous meetings during our workshop for participants
in Asia and the Pacific, since our instructor team is based in Europe and North America.
Thus, we held duplicate sessions that involved different combinations of instructors and
participants. In order to ensure continuity across these duplicate sessions, we recorded the
sessions or took notes to share the discussion with participants not in attendance.

Ultimately, confusion is difficult to avoid when holding events spanning time zones. To
mitigate scheduling complications, we announced session times using UTC and provided
links to online time-zone conversion services (e.g., World Time Buddy13). Whether single
or replicate sessions are chosen, announcing meeting times well in advance is critical, so
that participants can plan their attendance around other commitments they may have.
Additionally, it is also useful to send a notification about the synchronous session via Slack
30 minutes or an hour ahead of time to ensure that everyone is aware of the upcoming
meeting, even if they accidentally miscalculated the time-zone adjustment.

13World Time Buddy: https://www.worldtimebuddy.com

https://www.worldtimebuddy.com
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Figure C.3: Locations of participants and instructors from both Stay-at-Home RevBayes
Workshops. Instructors (yellow circles) primarily reside in the United States and Europe.
Participants from the Summer 2020 workshop (blue triangles) were based in North America,
South America, and Europe. Participants from the Spring 2021 workshop (red squares)
attended from Asia, Australia, New Zealand, and Hawaii. The black line dividing the map
approximately delineates the boundary between UTC+3 and UTC+4 time zones, which
determined the selection of participants in the two workshops. We designed logos (shown
in the bottom-left and top-right corners) for each workshop that were inspired by current
events.

C.4.2 Participant Recruitment and Selection

We created an application form using the online service Qualtrics14. Using this form,
we asked applicants to rate their previous knowledge of Bayesian phylogenetics theory and
applications and describe their learning goals, research questions, and datasets. Applicants
were also required to indicate the time zone in which they would be residing during the
workshop. Examples of the application form and participant confirmation form can be
found in the Supplementary Materials.

We advertised the workshops using Twitter and the Evolution Directory15. For the first
Stay-at-Home RevBayes Workshop, we advertised generally and this resulted in over 300
applications from all over the globe. When soliciting applications for the second virtual
course, we contacted applicants from the first round who resided in our targeted time zones

14Qualtrics: https://www.qualtrics.com
15The Evolution Directory: https://evol.mcmaster.ca/evoldir.html

https://www.qualtrics.com
https://evol.mcmaster.ca/evoldir.html
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(UTC+4 to UTC+14) and encouraged them to reapply. Additionally, our advertisements
specified that preference would be given to applicants from Asia and Pacific time zones and
we received just over 100 applications in the second round. Applicants’ responses indicated
that they all felt comfortable with the prospect of participating in an online course, which
likely contributed to the success of our workshops.

When organizing an online or in-person workshop, the number of participants and
instructors involved is an important consideration. Adding instructors to the team comes
at a very low cost for an online event, and we found that having a broad team of instructors,
both in terms of geographical location and expertise, was very helpful in spreading the
amount of work and ensuring that instructors would be responsive to questions. Since there
is similarly little additional cost in adding participants, it can be tempting to expand the
number of participants well beyond the usual attendance of on-site workshops. However,
we decided to keep the number of participants low (20-25 participants) to guarantee that
synchronous sessions could remain interactive and personal. Thus, we chose to provide the
materials created for this workshop freely online, to ensure that unselected applicants and
future students could still benefit from our efforts.

Selecting just 20-25 participants from the large pools of applications was difficult. We
created a list of selected participants that maximized the geographic and institutional
representation within the time-zone range for each workshop. Our hope is that by working
with researchers from a wide array of institutions, they will be equipped with the knowledge
to communicate what they learn to their colleagues and local communities. Although we
selected participants at a variety of career stages (graduate students, postdocs, professors),
we primarily focused on early career scientists, since they are usually more closely involved
in setting up and running analyses and would, in our opinion, benefit the most from getting
hands-on experience with the software. Since our workshops focused on learning to apply
phylogenetic methods in RevBayes, we also prioritized applicants with datasets ready (or
soon-to-be ready) for analysis. Finally, although we provided the Phyloseminar lectures for
background on phylogenetic theory, our workshop did not focus heavily on this topic. As
such, we preferred applicants who already had some knowledge of phylogenetic methods. In
general, the specific goals and aims of the workshop should guide the participant selection
process.

C.4.3 Technical Tools

For many university researchers and educators, the sudden switch to virtual learning and
collaboration in the spring of 2020 was essentially a crash course on various tools for online
communication. Because of our experiences teaching and collaborating remotely, we felt
equipped to host a virtual workshop with participants from all around the world. We
were fortunate to have access to institutional licenses for Zoom and Qualtrics, otherwise
we would have had to opt for alternative services or purchase licenses specifically for the
course. The global shutdown in response to the spread of COVID-19 additionally made
Zoom a familiar tool for all workshop participants. Thus, this was the ideal service for our
synchronous meetings.
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In addition to Zoom, we relied heavily on Slack for communication among instructors
and participants during the course. This service enables real-time chat that can be orga-
nized by topic and is much better suited to a virtual workshop format than email. Our
workshop Slack space was created using the free version, which limits access to only the
10,000 most recent messages. Thus, participants and instructors must be made aware that
not all of the messages will be accessible and they may have to save discussions they would
like to view again.

We used several other tools and services for generating content for these virtual work-
shops including Google Docs for organizing information and sharing documents, YouTube
for hosting recorded videos, and Open Broadcaster Software (OBS) for recording video
tutorial guides. Open Broadcaster Software16, in particular, is an extremely useful and
flexible program for recording (and streaming) technical videos demonstrating software
usage. This open-source and free tool is frequently used by video-game enthusiasts to live
stream or record screencasts of game play, thus it is ideally suited for creating video tu-
torials on phylogenetic applications that require interacting with different platforms (e.g.,
RevBayes, R, text editors, etc.).

C.4.4 Inclusivity and Accessibility

Online courses have the potential to enable participation from a much larger and diverse
pool of scientists than most face-to-face workshops. However, it is important to develop
a course timeline and format that enables flexibility and to carefully consider factors that
may limit access to materials and communication. There are ways we can improve future
virtual courses to make them more inclusive and accessible, however, we gained some key
insights that are unique to the online-workshop format.

When recruiting participation from a global audience, it is important that efforts to
make a workshop inclusive and accessible are mindful of the availability of required tools
and software. This consideration is not limited to scientific software, but also any tool
or service used for communication and coordination. For instance, Google services (Docs,
Forms, YouTube) are blocked in China, requiring alternative tools or work-arounds to
connect participants to materials hosted on Google sites. Announcing the required tools
before the start of the workshop is essential so the participants can make the necessary
arrangements or contact the organizers if there are issues.

There can be substantial monetary costs associated with in-person workshops that are
significantly reduced in a virtual setting. These costs (e.g., renting the venue and audio-
visual equipment) are often, in turn, passed on to participants if the workshop organizers
do not have access to funding or resources on site. Furthermore, an online format does not
require travel and lodging (sometimes totaling several thousand dollars), reducing poten-
tially prohibitive participant costs, particularly for researchers from countries with lower
cost of living. Both Stay-at-Home RevBayes Workshops were offered free-of-charge be-
cause the instructor team is supported by grants and other sources of funding for which

16Open Broadcaster Software: https://obsproject.com

https://obsproject.com
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delivering workshops is a stated goal. Additionally, the size of the instructor team and
online flipped-workshop format significantly reduced the workload, requiring a lower time
commitment from instructors and organizers. For everyone involved, a virtual course ad-
ditionally eliminates administrative and geographical burdens associated with traveling
internationally (obtaining visas can be difficult or impossible depending on an individual’s
citizenship and the location of the workshop), making it much easier to reach scientists
from regions where international travel is heavily restricted.

Ultimately, an online and flipped-format course can operate with much more scheduling
flexibility than on-site workshops. Our choice to use a flipped-workshop format in com-
bination with a limited number of synchronous sessions was designed to take advantage
of this flexibility and allow both instructors and participants to easily combine workshop
attendance and other professional or personal responsibilities. This created an opportu-
nity to include both instructors and participants who might not have been able to leave
at-home duties (e.g., caregiving, teaching) for an in-person course. Because of this, our
synchronous Zoom meetings occasionally welcomed cameos from small children and other
family members.

When delivering content to people in their homes (or local offices or cafes) across mul-
tiple continents over several weeks, it should be expected that real-life issues will interfere
and take some participants or instructors away from the course. For example, on August 10,
2020, during the first Stay-at-Home RevBayes Workshop, a severe thunderstorm (called
a “derecho”) hit the Midwestern United States. The storm swept through Iowa in the
middle of one of the workshop’s synchronous meetings and four workshop instructors lost
power to their homes for over 72 hours. In other instances, participants faced unexpected
changes to their work responsibilities, family emergencies, or pandemic-related effects in
their regions. During our introductory sessions, we discussed the possibility of unplanned
issues, letting the participants know that we would work to adapt to such interruptions
and make sure all participants were able to meet their learning goals.

Workshop Code of Conduct

In recent years, workshop organizers and venues have worked to develop policies and pro-
cedures to ensure that in-person courses are safe and welcoming to all participants. It is
critical that these efforts are not neglected for a virtual workshop. For the Stay-at-Home
RevBayes courses, we developed a code of conduct17 that provided a clear policy on ha-
rassment and discrimination (the code of conduct is also provided in the Supplementary
Materials). This was adapted from the Safe Evolution18 policies developed by the Soci-
ety of Systematic Biologists, the American Society of Naturalists, and the Society for the
Study of Evolution for virtual and in-person activities. This code applied to all interac-
tions during the workshop, including synchronous sessions, but also the Slack forum as
well as private messages between participants and/or instructors. Upon acceptance to the

17RevBayes Virtual Workshop Code of Conduct: http://revbayes.com/workshops/code_of_

conduct/virtual_coc
18Safe Evolution: https://www.evolutionmeetings.org/safe-evolution.html

http://revbayes.com/workshops/code_of_conduct/virtual_coc
http://revbayes.com/workshops/code_of_conduct/virtual_coc
https://www.evolutionmeetings.org/safe-evolution.html
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workshop, participants were required to agree to the policies stated in the code of conduct
via the attendance confirmation form (see Supplementary Materials). Then, during our
introductory meeting, we reintroduced the policies, discussed the procedures for reporting
any discriminatory behavior or harassment, and stated that repeated violations of the code
would lead to removal from the workshop. A clearly stated code of conduct communicates
to participants that they will be treated respectfully during the workshop, creates a more
inclusive culture [46, 40], and helps to reduce participants’ hesitancy to post questions or
start discussions during our meetings or on Slack.

C.5 Perspectives

In total, we received over 400 applications for the Stay-at-Home RevBayes Workshops and
it is clear that there is a world-wide demand for accessible training in phylogenetic methods.
Assessing the overall success of workshops, whether online or on-site, is generally tricky,
particularly since some benefits of the training may not be apparent to participants until
they are more advanced in their research projects. However, feedback from our workshop
participants (via a formal survey and informal comments during meetings and on Slack)
indicated that many workshop attendees felt that they gained a deeper understanding of
applications in Bayesian phylogenetics and RevBayes, and that they would recommend
attending future editions of the virtual workshop to colleagues (see the example workshop
feedback form in the Supplementary Materials). Furthermore, our instructor team also
appreciated the increased flexibility and the lower intensity of the format. All of the
instructors from the 2020 team were interested in teaching an online workshop in the
future and all who were available returned for the second offering.

While we feel that many of the choices we made in organizing two virtual RevBayes
workshops led to successful outcomes, we recognize that there are unique challenges associ-
ated with an online setting and several ways we can improve future courses. For example,
we plan on expanding the bank of recorded materials to cover more topics so that we can
meet the needs of a broader audience of researchers. It will additionally be important to
ensure that the videos and tutorials are kept up-to-date as RevBayes is under continued
development.

Another area of improvement is apparent from the map in Figure C.3. Although we had
participation from 24 different countries throughout the two workshops, there are distinct
parts of the world that are not represented among our workshop participants. We must do
more work to reach scientists residing in Africa, parts of Central and South America, and
Asia, to ensure that residents of these regions interested in learning about RevBayes are
connected to workshop opportunities. For instance, we need to broaden our approach to
advertising future workshops by posting to mailing lists or communication platforms pop-
ular in these areas and by directly contacting local scientists and organizations. Moreover,
our instructor team is primarily based in Europe and the US, reflecting the composition of
the developer team involved in the RevBayes project. This ultimately created scheduling
difficulties and limited synchronous interactions during the Asia/Pacific workshop. In the



C.5 Perspectives 123

future, expanding the RevBayes developer community will improve these issues and may
also help reach participants from currently underrepresented regions.

We also hope to improve on how we assess learning outcomes and facilitate participant
engagement, which can be difficult for online courses. Providing a practical education
and hands-on assistance is a common challenge for online teaching [115, 130]. In an in-
person workshop, instructors and teaching assistants are able to walk around the room
as participants are working through the material and assess progress or answer questions
on the spot; this is not possible in an online format. However, it may be possible to
encourage more engagement by actively following-up with participants, or implementing
lightweight asynchronous follow-up activities such as journaling [26] after each section of the
material. Through Slack, instructors could lead discussions, checking that participants were
successful with the activities and encouraging discussion about the analyses. Additionally,
we could facilitate participant engagement by integrating more discussion questions into
the tutorial activities and encouraging participants to report and interpret their analysis
results.

Although we encouraged participants to work in groups, the format and geographic
distribution likely prevented this from occurring. These types of groups regularly form at
in-person workshops, aiding in both material comprehension and community building. It
is possible that participants will be more receptive to forming groups if this is facilitated
by the workshop’s structure and instructor team. Thus, in the future, we are interested in
developing ways to help participants form collaborations early on in the course. Lastly, as a
result of increased online instruction, there are many innovative strategies and techniques,
such as HyFlex learning or utilizing cloud computing resources, that could be implemented
in future workshops [see 67, 116].

As vaccination efforts reach more and more parts of the globe, there is an under-
standable desire to return to the old “normal” and to put everything associated with the
pandemic behind us, including online teaching. However, although in-person workshops
offer opportunities for networking and interactions that are difficult to facilitate in an on-
line setting, they also tend to select participants with specific characteristics: the ability
to pay for the event and the travel expenses, the ability to travel internationally without
a heavy administrative burden, and no medical needs or personal responsibilities requiring
their presence at home. Online workshops can reach beyond these traditional audiences
and offer training to more diverse populations of scientists with less access to such courses
locally.

Online events also help limit carbon-emitting air travel and thus lower the contribution
of our scientific community to the climate crisis [85, 153]. A geographically dispersed au-
dience for an in-person workshop leads to excessive carbon emissions from travel. Locally
based workshops with an emphasis on land-based travel can have a lower environmental
impact, but such events are limited to areas with a high concentration of researchers, cre-
ating inequality in access to training. Additionally, regional workshops may still require
considerable air travel if instructors are not all based in the same area. Thus, online or hy-
brid workshops have the greatest potential to reduce the carbon footprint of phylogenetics
workshops.



124 C. Lessons leraned

The complexity and difficulty of statistical phylogenetics software continues to increase
and workshops will remain an extremely important mechanism for researchers to learn how
to use analysis tools. In this paper, we have focused on the distinct benefits and challenges
of virtual workshops, but it is important to note that no learning format is effective for
all people, as can be evidenced by the numerous formats that arose in the evolutionary
biology community during the COVID-19 pandemic. The formats range from completely
synchronous workshops over that take place over a few days (e.g., Taming the BEAST
Online 19 or the Sydney Phylogenetics Workshop 20) to completely asynchronous where
the provided materials are accessed by the participants on their own timelines (e.g., SLiM
Workshop 21). The RevBayes workshop sits between these two extremes by offering both
synchronous and asynchronous portions. Any choice of format comes with its own logis-
tical requirements, pedagogical considerations, and impacts the level of accessibility, thus
the format should be tailored to the overall goals of each workshop. We felt that the hy-
brid format provided a balance of independence and autonomy while also giving adequate
access to research experts for guidance through the material. Nevertheless, the value of
in-person learning and networking is undeniable. Thus, the RevBayes developer commu-
nity plans to offer both in-person and virtual workshops in the future to strengthen our
connections with scientists using statistical phylogenetics to answer biological questions.
Many lessons learned from our virtual workshop can be extended to in-person settings. A
flipped classroom format allows participants to engage with the material beforehand and
seek deeper understanding during synchronous sessions with instructors. We believe this
format can help participants achieve learning outcomes and could be adopted for in-person
workshops. Additionally, having recorded content creates a bank of reference material for
both participants and non-participants long after any workshop concludes. The materials
developed for online courses thus present exciting opportunities for organizers of in-person
workshops to consider alternative pedagogical practices that may enhance learning in a
face-to-face course. By diversifying the formats of the workshops we offer, we not only
open educational opportunities to a broader range of learners, but we can also improve
how we teach concepts and methods across all courses.

In conclusion, we believe that virtual courses on phylogenetic analyses and approaches
are more than a workaround for the current circumstances and offer numerous unique
advantages. We hope that our experiences will inspire other methods developers in our
community to explore this format further and that online workshops will become an integral
part of scientific training in the future.

19Taming the BEAST Online: https://bsse.ethz.ch/cevo/taming-the-beast/overview-2021.

html
20Sydney Phylogenetics Workshop: https://meep.sydney.edu.au/workshops
21SLiM Workshop: http://benhaller.com/workshops/workshops.html

https://bsse.ethz.ch/cevo/taming-the-beast/overview-2021.html
https://bsse.ethz.ch/cevo/taming-the-beast/overview-2021.html
https://meep.sydney.edu.au/workshops
http://benhaller.com/workshops/workshops.html


Concluding Discussion

Bayesian phylogenetic inference is a widespread method in evolutionary biology. Its suc-
cess among researchers can be attributed to the robustness of the method and the ap-
plication in different fields of evolutionary research. Despite great advancements in the
field over the past two decades, some methodological questions remained unresolved. Here
we addressed some of these questions, namely convergence assessment of Markov chain
Monte Carlo (MCMC) algorithms in phylogenetics, posterior predictive tests of substitu-
tion model adequacy and its interpretation in phylogenetic inference, substitution model
over-parameterization and the impact of prior probability distributions, and the applica-
tion of such results in the gene tree inference of an empirical dataset. The results presented
in this dissertation contribute to the advance of the robustness of Bayesian phylogenetic
methods.

The conundrum of convergence assessment in phylogenetics has been dealt with rather
vague methods. Such methods relied on visual inspection and arbitrary thresholds [134,
144, 173]. These practices imposed a challenge for reliability and reproduction of phyloge-
netic studies. Besides these problems, visual inspection becomes a hurdle for the analysis
of multiple inferences in the phylogenomic era. Here, we tackled this problem by develop-
ing a novel method for convergence assessment with clear thresholds and automation. We
tested commonly used methods to estimate the effective sample size (ESS) for different
MCMC algorithms and found that Tracer performed better for all tested scenarios. Ad-
ditionally, we proposed the Kolmogorov-Smirnov [94, 156] test for the reproducibility test
of continuous parameters of multiple MCMC chains. Furthermore, we implemented the
transformation of tree topologies into traces of presence/absence of splits to facilitate the
convergence assessment of these difficult discrete parameters. This transformation made
it possible to address the reproducibility of MCMC chains with the newly implemented
expected difference of split frequencies (EDSF). All these methods were implemented in an
easy-to-use R package called Convenience that can facilitate the testing for convergence
for output from different standard phylogenetic inference software.

Our next contribution was regarding the testing of model adequacy in Bayesian phyloge-
netics. We characterized the expected behavior of the distributions of posterior predictive
p-values for different simulation scenarios. This was achieved by simulating data under
different conditions, performing the phylogenetic inference and then, performing the pos-
terior predictive analysis. We observed that the distribution of p-values for the focal test
statistics are mostly concentrated around 0.5. While the distribution of p-values for the
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ancillary test statistics are uniformly distributed. The conclusion from these findings is
that when performing posterior predictive analysis, the finding of outlier p-values is a very
strong signal that the model failed to capture a feature from the data.

The simulation study presented in Chapter 4 had the goal of answering whether an
over-parameterized substitution model biases Bayesian phylogenetic inference. Moreover,
if selecting a substitution model is a necessary step in phylogenetic inference. Previous
studies had demonstrated that under-parameterization is a problem for tree topology and
branch length inference [109, 160, 27, 89, 159]. But the problem of over-parameterization
received rather little attention, with two studies partially addressing the question [81, 111].
Additionally to the over-parameterized setting for performing phylogenetic inference, we
explored different prior distribution schemes. Our results showed that substitution model
over-parameterization does not bias Bayesian phylogenetic inference under the Tame prior
scheme, with all other prior schemes resulting in biased tree length estimates. The findings
in this chapter corroborate the idea that substitution model selection is not necessary for
Bayesian phylogenetic inference [1]. Instead of wasting time and resources with the model
selection step, researchers should use the most complex substitution model with the proper
prior scheme.

The last chapter of this dissertation incorporated the findings of the previous chap-
ters in the exploration of Bayesian phylogenetic gene tree discordance for empirical data.
The results show that proper convergence assessment is an essential step of phylogenetic
inference. When convergence is not properly assessed, results can lead to false evolution-
ary conclusions and the amount of gene tree discordance can be overestimated. After the
proper analysis of convergence of the phylogenetic gene trees, we evaluated the amount of
gene tree discordance among the data and the possible explanations for such discordance.
We observed no support of incomplete lineage sorting in the analyzed data and further
investigated the model adequacy by performing posterior predictive tests. Our results
show that the model failed to capture the features of all investigated genes. We concluded
that future research should focus on improving the models of sequence evolution to better
capture the heterogeneity present in real data.

The results presented in this dissertation contribute to further development of robust
Bayesian phylogenetic inference. We tackled methodological gaps in convergence assess-
ment, substitution model adequacy and choice of substitution model. After applying the
proposed advancements in real data, we provided insights for future research.
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[16] R. Bouckaert, J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard,
A. Rambaut, and A. J. Drummond. BEAST 2: a software platform for Bayesian
evolutionary analysis. PLoS Computational Biology, 10(4):e1003537, 2014.

[17] R. Bouckaert, T. G. Vaughan, J. Barido-Sottani, S. Duchêne, M. Fourment,
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[75] S. Höhna, M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, B. R. Moore,
J. P. Huelsenbeck, and F. Ronquist. RevBayes: Bayesian phylogenetic inference
using graphical models and an interactive Model-Specification language. Syst. Biol.,
65(4):726–736, July 2016.
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[162] G. J. Szöllősi, E. Tannier, V. Daubin, and B. Boussau. The Inference of Gene Trees
with Species Trees. Systematic Biology, 64(1):e42–e62, 07 2014.

[163] R. Tacutu, D. Thornton, E. Johnson, A. Budovsky, D. Barardo, T. Craig, E. Diana,
G. Lehmann, D. Toren, J. Wang, V. E. Fraifeld, and J. P. de Magalhães. Human
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