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ABSTRACT

Aims. The effect of changing the attack angle for the interaction of a fast MHD wave with a 3D coronal loop is studied, to investigate
to what extent the properties of the excited transverse kink mode oscillations of the loop depend on this angle.
Methods. 3D numerical simulations are performed of the interaction of a fast MHD wave, generated by a pressure pulse, with a 3D
coronal loop. The loop itself is modelled as a density enhancement (with a finite plasma beta) within a magnetic arcade. The initial
pressure pulse has a width comparable to the loop diameter and is situated outside of the loop, at the same height as the loop apex.
This height is kept fixed but the (horizontal) angle between the pressure pulse and the loop is varied.
Results. We find that the global, transverse kink mode is efficiently excited for a range of attack angles and qualitatively in agreement
with theoretical expectations. The period and damping time are found to be independent of the attack angle. For larger values of the
attack angle, the global (longitudinal) slow wave is excited, whereas for intermediate values the second harmonic kink mode is also
present.
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1. Introduction

Flares and coronal mass ejections (CMEs) in the solar atmo-
sphere can impulsively excite magnetic loop oscillations. Such
coronal oscillations have now been observed with several so-
lar instruments, including the TRACE satellite (e.g. Nakariakov
et al. 1999; Aschwanden et al. 1999, 2002; Wang & Solanki
2004) and Hinode (Ofman & Wang 2008). Furthermore, these
oscillations have been successfully interpreted as MHD wave
motions (e.g. Edwin & Roberts 1983; Roberts 2004; De Moortel
2005; Nakariakov & Verwichte 2005). Thus, coronal seismol-
ogy has become a viable diagnostic technique, i.e. with realistic
modelling, we can indirectly measure the structure and physi-
cal properties of the medium through which these MHD waves
travel.

Coronal seismology was first suggested by Uchida (1970)
and later discussed by Roberts et al. (1984). Nakariakov &
Ofman (2001) used TRACE observations to demonstrate that
coronal loop oscillations can be used to determine the magnetic
field of an oscillating loop. More recently, Van Doorsselaere
et al. (2008) have made magnetic field measurements using
loop oscillations observed with Hinode/EIS. Comprehensive
reviews of coronal seismology can be found in De Moortel
(2005), Nakariakov & Verwichte (2005) and Banerjee et al.
(2007). Coronal seismology has also been developed extensively
through several theoretical studies (including Ofman 2007;
Selwa et al. 2007a; Taroyan et al. 2007; Van Doorsselaere et al.
2007; Wang et al. 2007; Ofman & Wang 2008), in particular in-
cluding the effects of curvature (Van Doorsselaere et al. 2004;
Gruszecki et al. 2007), longitudinal density variations (Erdelyi
& Verth 2007; Verth et al. 2007; Pascoe et al. 2009) and trans-
verse structuring (Arregui et al. 2007; Ballai 2007; Pascoe et al.
2007).

A key result found in these loop observations is that the os-
cillations decay rapidly within a few periods. Several proposed

theories have been put forward to explain this strong damping,
including enhanced viscosity (Nakariakov et al. 1999), wave
leakage (Brady & Arber 2005; Terradas et al. 2005a), phase mix-
ing with enhanced resistivity (Ofman & Aschwanden 2002) and
resonant absorption (Ruderman & Roberts 2002). Reviews of
the different damping mechanisms can be found in, for exam-
ple, Roberts (2004). Another unexplained property is that only
a limited number of loops are seen to oscillate under the same
impulsive excitation, i.e. there is a selectivity to the excitations.
It is most likely that a detailed and numerical treatment of a re-
alistic coronal loop, together with high-resolution and spectral
observations, is required to gain further understanding of these
issues (Roberts 2000).

The aim of this paper is to impulsively excite MHD waves
in a three-dimensional loop model, and in particular investi-
gate the importance of the attack angle in determining the ef-
ficiency of such excitations. Several authors have investigated
MHD wave excitation in 2D geometries (e.g. Selwa et al. 2005,
2006, 2007a,b; Gruszecki et al. 2006, 2008; Del Zanna et al.
2005). However, our investigation is only possible in a fully
3D model, and thus this paper represents the first such inves-
tigation of the importance of attack angle in a 3D geometry.
Other studies of 3D MHD models of wave activity in coronal
active regions were performed by Ofman & Thompson (2002),
Terradas & Ofman (2004), Miyagoshi et al. (2004) and Ofman
(2009). Ofman (2005, 2007) demonstrated the potential of such
models: that the analysis of such three-dimensional wave prop-
agation can serve as a diagnostic of active region parameters.
McLaughlin & Ofman (2008) extended these studies with the
inclusion of an individual loop density structure. This creates a
density contrast between the loop and the ambient plasma, and
this can support trapped MHD modes (Roberts et al. 1983), as
well as phase mixing (Heyvaerts & Priest 1983) and resonant ab-
sorption (e.g. Ruderman & Roberts 2002 and references therein)
in the loops.
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Fig. 1. 3D Numerical domain showing the density-loaded model coro-
nal loop (shaded region) as well as a few representative magnetic field
lines outlining the arcade structure. The colour gradient in the back-
ground represents the magnetic field strength.

Finally, Terradas et al. (2006b) studied kink modes of os-
cillation in a curved coronal loop using a 2D linear, zero β,
toroidal model with a power-law density profile. By consider-
ing linearised perturbation about this equilibrium, two types of
fundamental kink modes were found with either (mainly) hori-
zontal or vertical polarisations. It was also noted that the oscilla-
tions were damped and that this was due to resonant absorption
and wave leakage, with the former being the dominant damping
mechanism.

Wang et al. (2008) considered the observational signatures
of horizontal and vertical kink modes in their fundamental mode
and second harmonic and found that, for many combinations of
viewing angle and loop geometry, it can be difficult to distin-
guish between different types of kink mode using only a time
series of images.

The paper is organised as follows: the method of generating
an equilibrium state is described in Sect. 2. In Sect. 3 the results
are presented and Sect. 4 contains the discussion. Conclusions
are given in Sect. 5.

2. Model and equilibrium setup

The aim of our study is to examine the behaviour of oscillating
loops in a 3D coronal environment. In this first paper, we con-
sider a coronal loop which is part of an arcade structure. Figure 1
shows the coronal loop as well as a few representative magnetic
field lines in the 3D numerical domain. The magnetic field is
a 2D arcade with B ∼ 1/r (e.g. Brady et al. 2006) and a loop
of (minor) radius a within this arcade is modelled as a density
enhancement. The chosen magnetic field profile becomes sin-
gular as r → 0 and so is not used for small r where gas pres-
sure alone is used. To ensure that this deviation from equilibrium
does not affect our subsequent results, the simulations were ini-
tially run without a driver to ensure that any flows arising from
this (local) non-equilibrium are small. The profile of the den-
sity enhancement forming the 3D coronal loop is a modification
of the Epstein profile (e.g. Nakariakov & Roberts 1995) and is
given by:

ρ (x, y, z) = ρe + (ρ0 − ρe) sech2

( |r − rc|
a

)q

sech2

( |y|
a

)q

(1)

where ρ0 is the internal density, ρe is the external density, r =√
x2 + z2, rc is the major loop radius and q is a steepness pa-

rameter. The cartoons in Fig. 2 show a side and top view of the

Fig. 2. Cartoon showing a view of the coronal loop a) from the side and
b) from the top. The pressure pulse is located a constant distance d away
from the apex, at a height equal to the loop major radius h = rc. The
position of the pulse is determined by an attack angle α. The loop has
a minor radius a and the angle θ describes the position along the loop
axis.

modelled coronal loop and illustrate the definition of the angles
θ (along the loop) and α (between the loop apex and the pres-
sure pulse). In our simulations we use a density contrast ratio of
ρ0/ρe = 10 based on the value used by Nakariakov & Ofman
(2001). Figure 3 shows the density profiles corresponding to the
symmetric Epstein profile defined above (solid line, q = 1) and
the step profile which can be modelled by q → ∞ (dashed line)
and which we will use as a comparison. The temperature profile
is defined to ensure thermal pressure balance.

The simulations are performed using the MHD code
Lare3D (Arber et al. 2001) to solve the (nonlinear) 3D MHD
equations:

ρ

[
∂u

∂t
+ (u · ∇) u

]
= −∇p +

(
1
μ
∇ × B

)
× B ,

∂B
∂t
= ∇ × (u × B) + η∇2 B ,

∂ρ

∂t
+ ∇ · (ρu) = 0 ,

ρ

[
∂ε

∂t
+ (u · ∇) ε

]
= −p∇ · u + 1

σ
| j|2

where ρ is the mass density, u is the plasma velocity, B the
magnetic induction (usually called the magnetic field), p is the
plasma pressure, μ = 4π × 10−7Hm−1 is the magnetic perme-
ability, σ is the electrical conductivity, η = 1/μσ is the mag-
netic diffusivity, ε = p/ρ (γ − 1) is the specific internal en-
ergy density, where γ = 5/3 is the ratio of specific heats, and
j = ∇ × B/μ is the electric current density. The boundary con-
ditions used are line-tied (zero velocity, zero gradient for other
variables) at the lower boundary (z = 0) to simulate reflective
loop footpoints. Elsewhere, the open corona is approximated us-
ing damping layers to avoid reflection of any perturbations back
into the numerical domain. Numerical tests were carried out to
confirm that these damping layers do not affect the subsequent
dynamical evolution inside the computational domain. The nu-
merical domain is about 180× 180× 90 Mm with a resolution of
200×200×100 gridpoints. Numerical results were also checked
by doubling the numerical resolution. In this study, we model a
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Fig. 3. Density profiles corresponding to the symmetric Epstein profile
defined in Eq. (1) (solid line, q = 1) and step profile (dashed line, q →
∞).

Fig. 4. Plasma β as a function of radial distance. A finite value of β =
0.1 is used to avoid density enhancement at the loop apex driven by
the ponderomotive force. The dashed lines outline the location of the
coronal loop.

loop of length L = πrc = 130 Mm, based on the length of the
oscillating loop analysed by Nakariakov et al. (1999), and a di-
ameter 2a = 9 Mm. This diameter is about 4 times larger than
the observed diameter (≈2± 0.36 Mm) due to numerical restric-
tions. Velocities are normalised to give a kink speed of about
1 Mm s−1 at the loop apex, consistent with the kink speed esti-
mated by Nakariakov et al. (1999). We consider the medium to
be ideal and hence set η = 0.

In our simulations we use a finite value for the plasma β (the
ratio of thermal and magnetic pressures) to avoid ponderomotive
effects (Terradas & Ofman 2004). Figure 4 shows the plasma β
as a function of radial distance r; β increases with r since the
magnitude of the magnetic field, and hence the magnetic pres-
sure pmag = B2/2μ, decreases as a function of radial distance.
The temperature is chosen such that β = 0.1 at the loop apex.
Tests showed this value to be sufficiently large to counteract
ponderomotive-driven longitudinal flows and avoid the resulting
density enhancement at the loop apex.

2.1. Estimation of required pressure pulse

Although it is clear that the observed, transverse coronal loop os-
cillations are excited impulsively as a consequence of a nearby
explosive event, the exact nature of the excitation mechanism is
unclear. In this study, we choose to excite the loop oscillations
with a nearby pressure pulse. In this respect, our setup differs
from Miyagoshi et al. (2004) (who also consider a loop embed-
ded in an arcade) who trigger the oscillation in situ with a veloc-
ity perturbation at the loop apex.

To determine the size of the pressure pulse required to gener-
ate realistic loop oscillations, we can use an order of magnitude
estimate. From Newton’s second law we have that

M
V0

δt
≈ δpA, (2)

where M is the mass of the loop, V0 is the velocity of the loop,
and δt is the time that the pressure pulse, δp, is applied to the
area, A, of the loop. For a cylindrical loop of length L and radius
a, the mass is M = ρ0Lπa2, where ρ0 is the density inside the
loop. The area of loop exposed is A = 2L∗a, where L∗ is the
length hit by the pulse, giving

δp
p
≈ V0

δt
ρ0

2
L
L∗
πa
p
· (3)

Introducing the external sound speed Cs =
√
γp/ρe, this equa-

tion can be rearranged to give

δp
p
≈ γV0

C2
s

a
δt
π

2
ρ0

ρe

L
L∗
· (4)

As an illustration, taking ρ0/ρe = 10, L/L∗ ≈ 2, δt = 5 s, γ =
5/3, Cs = 0.3 Mm s−1, a = 4.5 Mm and V0 = 0.2 Mm s−1 we
obtain δp/p ≈ 100 at the loop itself, requiring δp/p ≈ 1000
at the location of a pulse of size approximately 10 Mm, located
about 40 Mm away.

3. Excitation of loop oscillations

The simulations are initially run for a number of timesteps with-
out a driver to confirm that any flows resulting from the non-
equilibrium near r = 0 are negligibly small. Subsequently,
a pressure pulse is applied inside the numerical domain (but
outside the coronal loop). This perturbation is modelled as a
Gaussian pressure enhancement (1000 times the background
value), located at the same height as the loop apex but at a dis-
tance of d ≈ 40 Mm away (see calculation above). The position
in the xy-plane is defined by an attack angle α (see Fig. 2). The
width of 10 Mm of the pressure pulse determined above is com-
parable to the loop diameter. By placing the pulse at the same
height as the loop apex we aim to predominantly excite hori-
zontal kink oscillations rather than vertical oscillations studied
elsewhere (see Sect. 1).

After the pressure enhancement is applied, it travels through
the numerical domain as a fast magneto-acoustic wave. The in-
teraction of the wave with our coronal loop leads to impulsively
excited oscillations in the loop, which we will discuss in more
detail below. Once the fast magneto-acoustic wave generated by
the pressure pulse reaches the boundaries of the numerical box,
the damping layers ensure that no perturbation is reflected back
into the domain.

We repeat our simulations for a range of different values of
α to investigate the effect of the attack angle upon the resulting
loop oscillations. We study the nature and amplitude of the os-
cillations, the dominant frequency and the signal quality (ratio
of decay time and period).
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Fig. 5. Transverse velocity signal vy (normalised to the Alfvén speed at
the loop apex) measured at the loop apex for an attack angle of a) 0 de-
grees and b) 30 degrees. The dashed lines show fits to an exponential
decay.

3.1. Kink mode

For small values of the attack angle (0–30 degrees), the loop
plasma is mainly perturbed in the y-direction, corresponding to
the transverse kink mode. Figure 5 shows the (normalised) trans-
verse velocity signal vy, measured at the loop apex for an attack
angle of 0 degrees and 30 degrees. We can see that in both cases,
the signal has two phases; an initial, aperiodic, transitory phase
during which the fast MHD wave interacts with the loop, and a
second phase in which the MHD mode is excited. This second
phase may be approximated as a damped harmonic oscillation.
The dashed line envelopes shown in both figures correspond to
an exponential damping profile fitted to the latter (periodic) part
of the vy oscillations. The transient behaviour between the ini-
tial and the periodic phase was studied for a cylindrical loop by
Terradas et al. (2007a) in terms of radiating “trig” leaky modes
(see also Cally 1986, 2003).

Figure 6 shows the periodogram of the transverse velocity
signal shown in Fig. 5(a). The spectral amplitude shows a sin-
gle peak frequency corresponding to the kink mode. The peak
is rather broad, due to a combination of the quasi-periodic na-
ture of the velocity signal, as well as its relatively short duration.
The maximum of this peak corresponds to a period of oscillation
of 165 s. Wavelet analysis confirmed that this period remains

Fig. 6. Periodogram of the transverse velocity signal measured at the
loop apex (solid line) for an attack angle of 0 degrees (see Fig. 5a). The
dotted line (normalised for clarity) corresponds to the velocity signal
located outside the loop at y = 4a.

roughly constant for the duration of the simulation. The dotted
line in Fig. 6 corresponds to the velocity signal located outside
the loop at y = 4a. It has been normalised to half the ampli-
tude of the solid line for clarity, and it shows that the kink mode
eigenfunction has tails that extend into the external medium.

In the long-wavelength limit (ka → 0), the period of the
global kink mode is given by

Pkink =
2L
Ck
, (5)

where the kink speed is

Ck =

⎛⎜⎜⎜⎜⎝ρ0C2
A0 + ρeC2

Ae

ρ0 + ρe

⎞⎟⎟⎟⎟⎠
1/2

· (6)

Normally, the kink speed for a cylindrical loop is closer to the
Alfvén speed inside the loop (Nakariakov 2007). In our simu-
lations we have ka = 0.1 and a kink speed Ck = 1.0 Mm s−1

for CA0 = 0.8 Mm s−1 and CAe ≈ 2.0 Mm s−1. (Note that the
external Alfvén speed varies due to the magnetic field profile.)
With a loop length of 130 Mm, Eq. (5) gives a kink mode pe-
riod of about 260 s. However, the period of oscillation obtained
from our simulations (about 165 s for the Epstein profile and
about 145 s for the step profile) is much shorter than the theoret-
ically predicted period of 260 s. Deriving a phase speed, using
L = 130 Mm and P ≈ 150 s we obtain Cp = 2L/P ≈ 1.7 Mm s−1.
Our phase speed is therefore higher than expected and although
still less than, it is close to the external Alfvén speed. We will
discuss this modification of the period further in Sect. 4.

If the excited transverse velocity signal is indeed the global
kink mode for the loop, the amplitude of the oscillation is ex-
pected to be largest at the loop apex and zero at both footpoints.
Figure 7 shows the spectral amplitude as a function of the angle
around the loop θ, where θ of 0 and 180 degrees correspond to
the respective loop footpoints and the apex is at 90 degrees (see
Fig. 2). The attack angle in this particular example is 0 degrees.
The crosses correspond to the actual datapoints whereas the solid
line is a smoothed fit to these points. It is clear that the amplitude
of the oscillation is indeed zero at the footpoints and has a single
maximum at the apex, corresponding to a global mode with a
wavelength of twice the loop length.
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Fig. 7. The spectral amplitude of the kink mode as a function of the
angle around the loop θ. The data points are represented by crosses and
the line is a smoothed fit. The attack angle α is 0 degrees.

Fig. 8. The spectral amplitude of the global kink mode as a function of
the attack angle α. The solid and dashed lines correspond to the Epstein
and step density profiles, respectively.

Let us now vary the attack angle α; for a range of attack
angles, we take the periodogram of the transverse velocity dis-
placement at the loop apex and determine the amplitude of the
peak in the periodogram. Figure 8 shows this maximum spectral
amplitude, measured at the loop apex, as a function of the attack
angle. For small values of attack angle, the transverse kink mode
is excited efficiently, leading to relatively high spectral ampli-
tudes. As expected, the excitation of the transverse perturbation
becomes less efficient for larger values of the attack angle. For
α = 90 degrees, the vy component is no longer excited at all.
The small increase in spectral amplitude for medium values of
α is most likely artificial. For α ≈ 30 degrees (see Fig. 5b), the
signal at the loop apex resembles a harmonic oscillation rather
quickly, whereas the signal for α = 0 degrees (see Fig. 5a) re-
mains quasi-period for a slightly longer time. The combination
of the relatively low signal quality (see below) and the “cleaner”
transverse velocity for an attack angle of 30 degrees leads to a
slightly higher peak in the corresponding periodogram. To show
that this is indeed the case, the actual maximum amplitude of
the transverse velocity perturbation at the loop apex is plotted
in Fig. 9, again as a function of the attack angle. The largest
amplitude perturbation does indeed occur for zero attack angle,

Fig. 9. The dependence of the maximum amplitude of the perturbation
on the attack angle α.

Fig. 10. The frequency of oscillation ω of the kink mode is independent
of the attack angle α.

with the transverse perturbation decreasing steadily for increas-
ing values of α. This confirms that the maximum in the spectral
amplitude around α = 30 degrees is due to the larger peak in the
periodogram and not due to an actual larger transverse perturba-
tion.

So far, we have looked at both the amplitude of the trans-
verse velocity displacement at the loop apex and the correspond-
ing spectral amplitude derived from the periodogram. Figure 10
shows the (cyclic) frequency of oscillation as a function of the
attack angle α. The frequency of the global MHD kink mode
of a coronal loop is determined entirely by the loop properties
and plasma parameters such as the internal and external Alfvén
speed. Hence, once it is properly established (i.e. after any ini-
tial aperiodic transitory phase) the frequency of this mode should
be independent of the excitation mechanism. Figure 10 confirms
this is indeed the case in our numerical simulations, with the fre-
quency ω remaining roughly constant for all values of α. The
larger attack angles (tending towards 90 degrees) have been ex-
cluded from this graph, as the amplitude of the transverse ve-
locity at the loop apex becomes very small and hence subject to
increasingly larger errors.

The final parameter we investigate is the signal quality of
the excited kink mode. We define the signal quality, Q as the
ratio of the decay time and the oscillation period (Q = τ/P).
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Fig. 11. Kink mode signal quality as a function of the attack angle. The
solid and dashed lines represent the mean values for the Epstein and
step density profiles, respectively.

For each value of the attack angle α, the decay time is estimated
by fitting the oscillations (see dashed lines in Fig. 5) to an ex-
ponential decay with decay constant 1/τ. Figure 11 shows the
kink mode signal quality as a function of the attack angle. The
crosses correspond to the Epstein profile with q = 1, whereas
the squares represent the step profile (q → ∞). The solid and
dashed lines represent the mean values for the Epstein and step
density profiles, respectively. As the exponential decay is fitted
to a small number of (decaying) peaks, the errors on the fit are
relatively large, causing the spread in the individual data points.
However, comparing with the mean value, the majority of the
datapoints are relatively close and hence the signal quality seems
largely independent of the attack angle. Although the mean value
is slightly higher for the step profile (dashed line), the scatter on
the individual data points is too large to attribute significance to
this slight difference.

3.2. Higher harmonics

So far we have only considered the global or fundamental kink
mode as this is the main focus of our study. De Moortel &
Brady (2007) report the case of a flare-induced transverse os-
cillation of a coronal loop observed by TRACE in which the
fundamental mode appeared to be absent and the oscillation was
predominantly that of the second harmonic. Multiple oscillation
modes in loops of a post-flare arcade have also been observed by
Verwichte et al. (2004).

The line-tied boundary conditions in our model are also
satisfied for higher longitudinal harmonics i.e. N > 1 where
λ = 2L/N or equivalently kN = Nπ/L. The size and location
of the pulse are the important parameters. We choose our driver
to be comparable in size and distance to the loop minor and ma-
jor radii, respectively. We would expect higher harmonics to be-
come more important for the case of a perturbation that is closer
to the loop and more localised.

The second harmonic kink mode has N = 2 or λ = L. This
mode has a node at the apex and so would not be seen in Figs. 5
and 6 even if present. Figure 12 shows the transverse velocity
signal measured at the apex and at θ = 45 degrees for an attack
angle of 45 degrees. There is no evidence for higher harmonics
in the apex signal, but the signal at θ = 45 degrees (where we
expect the second harmonic to have an anti-node) shows signs

Fig. 12. Transverse velocity signal measured at the apex (solid line) and
at θ = 45 degrees (dashed line) for an attack angle of 45 degrees.

Fig. 13. Periodogram of the transverse velocity signal measured at the
apex (solid line) and at θ = 45 degrees (dashed line) for an attack angle
of 45 degrees (see Fig. 12).

of a higher harmonic. Figure 13 shows the periodogram of these
transverse velocity signals. For the case of θ = 45 degrees there
are two strong peaks, the lower frequency mode being the funda-
mental, also observed at the loop apex, and the higher frequency
peak corresponding to the second harmonic.

Figure 14 shows the spectral amplitude of this second fre-
quency as a function of the angle around the loop θ (see Fig. 2).
The amplitude of the oscillation is zero at the footpoints and at
the loop apex. There are two anti-nodes located between these
three nodes, corresponding to a mode with a wavelength equal
to the loop length, i.e. N = 2.

The period of the harmonic is P2 = 95 s. This gives us
P1/2P2 ≈ 0.9, where the ratio is less than unity due to dispersion
(see e.g Andries et al. 2005; McEwan et al. 2006).

Figure 15 shows this maximum spectral amplitude, mea-
sured at θ = 45, as a function of the attack angle. The lowest
values of attack angle have been excluded since they efficiently
excite the global mode (see Fig. 8) but inefficiently excite the
second harmonic, and so the second harmonic peak is difficult
to resolve. The second harmonic is most efficiently excited for
attack angles α ≈ 45 degrees. This is consistent with the mode
being a transverse oscillation (more efficiently excited by lower
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Fig. 14. The spectral amplitude of the second harmonic kink mode as a
function of the angle around the loop θ for an attack angle of 45 degrees.

Fig. 15. The spectral amplitude as a function of the attack angle α for
the second harmonic (N = 2) kink mode.

values of attack angle), and being anti-symmetric about the loop
apex (requiring α � 0).

We find that the fundamental kink mode is always more effi-
ciently excited than the second harmonic. This is consistent with
Terradas et al. (2007b) who consider the energy trapped in coro-
nal loop eigenmodes when excited by an external perturbation.
They found that the energy trapped in kink oscillations decreases
with increasing N and that this trend is insensitive to the details
of the initial perturbation.

3.3. Slow mode

For small values of the attack angle, the impact of the pressure
pulse is nearly perpendicular to the plane of the loop. However,
for larger values of α the loop plasma is increasingly perturbed
in the plane of the loop. This change in the impact angle leads
to the excitation of an additional longitudinal mode, namely the
slow mode. To correctly represent the longitudinal nature of this
mode we use the velocity along the loop, Vs = Vz cos θ+Vx sin θ
as the oscillation signal. Note that there is no mode conversion
in our equilibrium as our loop is sufficiently far from β = 1 (see
Fig. 4) that the sound speed is never equal to the Alfvén speed.

Figure 16 shows the spectral amplitude of the slow mode as
a function of the angle around the loop θ for an attack angle

Fig. 16. The spectral amplitude of the slow mode as a function of the
angle around the loop θ for an attack angle of 90 degrees.

Fig. 17. The spectral amplitude of the slow mode as a function of the
attack angle α. The solid and dashed lines correspond to the Epstein
and step density profiles, respectively.

of 90 degrees, i.e. the pressure pulse is actually situated in the
plane of the loop. The amplitude of the oscillation is zero at the
footpoints and has a single maximum at the apex, corresponding
to a global mode with a wavelength of twice the loop length.
Finally, Fig. 17 shows the spectral amplitude as a function of the
attack angle α. As expected, the excitation of the longitudinal
mode is more efficient for larger attack angles and hence, the
amplitude of the excited slow mode is larger for larger values
of α.

4. Discussion

We have studied the effect of the attack angle of a pressure pulse
on a density-loaded coronal loop, embedded in an arcade mag-
netic field. These 3D simulations are a first step towards mod-
elling coronal loop oscillations within a realistic active region
environment. For small values of the attack angle, a global kink
mode is excited, which is predominantly transverse in nature.
As the value of the attack angle increases, the amplitude of the
transverse oscillation decreases but an additional (longitudinal)
slow mode is excited. In the most extreme case of a perpendicu-
lar attack angle (where the pressure pulse is situated in the plane
of the loop), the transverse oscillation is no longer excited. We

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912270&pdf_id=14
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found the second harmonic kink mode was excited in addition to
the fundamental mode for attack angles of about 45 degrees.

The slow mode was also present in 2D simulations by Selwa
et al. (2006). These authors place a pulse beneath a coronal loop,
which, as expected, excites fast (vertical) kink modes. However,
if the pulse is situated asymmetrically, the fundamental slow
mode is also found to be present. This study was extended by
Selwa et al. (2007b) who compared a straight and curved geom-
etry and conclude that the curvature facilitates the excitation of
the slow mode.

One of the most striking properties of the observed trans-
verse loop oscillations is the extremely rapid damping; in al-
most all observed examples, the oscillations are damped within
a few periods (Schrijver et al. 2002; Aschwanden et al. 2002).
Theoretically, the cause of this rapid damping is still not fully
understood and several different mechanisms have been put for-
ward as a potential explanation (Roberts 2004). In our numeri-
cal simulations, the transverse velocity signal at the loop apex is
found to exhibit a similar rapid damping, with a signal quality
generally less than two (see Fig. 11). As it is not the main focus
of this paper, we did not investigate this rapid damping in detail
but we can make a few general points. The most likely candidate
to explain the rapid damping in our numerical simulations is the
loop curvature. Damping due to lateral wave leakage in curved
coronal loops has recently been the subject of a number of pa-
pers (e.g. Brady & Arber 2005; Selwa et al. 2005, 2006, 2007a;
Verwichte et al. 2006a–c; Diaz et al. 2006; Diaz 2006; Gruszecki
et al. 2007, 2008). However, these studies are generally limited
to 2D and hence are restricted to vertically polarised kink oscil-
lations. Nevertheless, most of these studies similarly conclude
that lateral wave leakage appears to be a very effective attenu-
ation mechanism. In fact, Selwa et al. (2006, 2007a) as well as
Verwichte et al. (2007) point out that (in 2D) the leakage is “too
efficient” to explain the observed damping rates. Analysing 3D
numerical simulations of coronal loop oscillations in a magnetic
dipole, McLaughlin & Ofman (2008) also find very rapid damp-
ing, which (using a comparison with a straight cylinder) they
attribute to the loop curvature. However, due to the aspect ra-
tio of our loop (a relatively “fat” loop with a/L ≈ 0.035) the
effect of curvature is probably stronger than it would be in real-
istic coronal loops. There is likely to be a numerical component
to the rapid damping but doubling the numerical resolution did
not result in an improvement in the signal quality. Hence, the
majority of the damping must be caused by an actual physical
damping mechanism. Since our equilibrium is inhomogeneous,
resonant coupling of fast MHD waves and Alfvén waves can oc-
cur where the frequency of the global mode coincides with the
local Alfvén frequency. However, we do not resolve the resonant
layer and no significant dependence on density profile steepness
was found and hence, damping by resonant absorption does not
come into play. Although we tentatively suggest damping pre-
dominantly due to wave leakage (caused by the loop curvature),
our simulations are not designed to investigate loop damping,
as they do not have sufficient resolution to resolve other possi-
ble damping mechanisms (such as resonant absorption or phase
mixing) and hence, no definite conclusions about the damping
mechanism involved can be made here.

Clearly, the attack angle between the pressure pulse and the
coronal loop affects the amplitude of the impulsively generated,
transverse, kink mode in the coronal loop. For larger values of
the attack angle (i.e. a pressure pulse travelling nearly paral-
lel to the loop), the amplitude of the kink mode decreases and
hence is much less likely to be observed. Therefore, the attack
angle will contribute to the selectivity issue, possibly explaining

why only some loops are seen to oscillate. However, very lit-
tle information on the attack angle exists from observations and
in most cases, projection effects make it very difficult to accu-
rately determine the value of the attack angle. Observations by
STEREO/EUVI now allow for the 3D reconstruction of coro-
nal loops and hence should give a much clearer picture of the
local active region geometry (Aschwanden 2009). So far, no
flare-induced coronal loop oscillations have been observed by
EUVI but hopefully increasing solar activity in the future will
lead to actual observations of transverse loop oscillations with
STEREO/EUVI. However, the attack angle can not solely be re-
sponsible for the selectivity in oscillating loops, as in some in-
stances, neighbouring loops (for which the attack angle would
be nearly identical) do not all appear to be excited.

An unexpected feature of our numerical simulation is that
the excited kink mode period is considerably smaller than the-
oretically expected (165 s versus 260 s). This was noted previ-
ously by Miyagoshi et al. (2004) who found that for a curved
geometry, the period appears to scale as P ∼ ρ0.33

0 rather than
the expected P ∼ ρ0.5

0 , where ρ0 is the density inside the coronal
loop. Using this scaling in our study, the theoretically predicted
period (for a straight geometry) of 260 s would reduce to about
175 s, which is close to the period obtained from the numeri-
cal simulations. Comparing Fig. 8c (curved loop) and Fig. 9c
(straight loop) of McLaughlin & Ofman (2008), this scaling also
seems to be present (although it was not investigated in detail by
these authors). This strong modification of the period due to the
curvature appears to contradict the result of Van Doorsselaere
et al. (2004), who found that the periods of oscillations were
only marginally affected by the curvature. However, their anal-
ysis is valid for thin coronal loops, whereas our numerical loop
is relatively thick. This modified periodicity is a consequence of
the combination of curvature, a relatively large density contrast
(ρ0/ρe = 10) and aspect ratio (a/L ≈ 0.035). We plan to in-
vestigate this modification in more detail in a future parameter
study. Realistic coronal loops are expected to have a smaller as-
pect ratio than the one we used in our model (due to restriction in
numerical resolution) and hence, it is possible that this reduction
in period would not occur in oscillating loops strands in the solar
corona. On the other hand, several studies have recently pointed
out that the modes of oscillation do not appear to be sensitive to
fine-structure but can behave as a collective, global mode (e.g.
Diaz et al. 2005; Gruszecki et al. 2006; Luna et al. 2006; Pascoe
et al. 2007) and hence, oscillating loop strands situated close to-
gether could be affected by this modification in the periodicity.

5. Conclusions

In this paper, we have investigated the interaction of a fast
MHD wave, generated by impulsive energy deposition (pressure
pulse), with a 3D coronal loop. As the fast wave passes the coro-
nal loop, modelled as a density enhancement within a magnetic
arcade structure, a transverse loop mode is excited. Qualitatively,
our 3D simulation of the transverse, global kink mode are con-
sistent with theoretical predictions. The excited kink modes are
global modes, with a single, dominant period and maximum am-
plitudes at the loop apex. The period of the transverse kink mode
is independent of the attack angle but is substantially smaller
than theoretically predicted. This implies a phase speed close to
the external Alfvén speed, rather than the internal Alfvén speed.
This reduction in the period is due to the combination of curva-
ture, a large aspect ratio and high density contrast and will be
investigated in detail in future work by comparison with eigen-
mode calculations for our equilibrium. Comparing a modified
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(smooth) Epstein profile with a step profile density enhance-
ment, we find that the excitation and damping only weakly de-
pend on the density profile steepness. The global, transverse kink
mode is efficiently excited for a relatively wide range of attack
angles (α < 60 degrees) and hence the attack angle can at best
only partially account for the observed selectivity of the kink
mode. For the larger values of α, the global (longitudinal) slow
mode is excited. We also see that for α ≈ 45 degrees the second
harmonic kink mode is generated.

Many open questions remain and several aspects of the
model can be developed further. For example, a more typical
magnetic field structure for the solar corona (such as a dipole)
could be considered. We have used a relatively high value of
the coronal plasma beta (β ∼ 0.1 at the loop apex) to suppress
the effect of the ponderomotive force. As shown by Terradas &
Ofman (2004), for lower values of beta (β ∼ 0.01), the pondero-
motive force will have to be taken into account, or one could con-
sider loops in which beta varies as a function of height. Observed
transverse, flare-induced, kink mode oscillations manifest them-
selves by a clear, oscillatory displacement of the coronal loop(s).
In our current model, there is a transverse velocity signal at the
apex but the actual loop displacement is small and would be be-
low the resolution of current imaging instruments. Hence, larger
amplitudes will be considered (see De Moortel & Pascoe 2009)
to investigate how the actual loop displacements compare to ob-
served loop oscillations.
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