Thirty years of knowledge on sourdough fermentation: A systematic review

Kashika Arora, Hana Ameur, Andrea Polo, Raffaella Di Cagno, Carlo Giuseppe Rizzello, Marco Gobbetti

PII: S0924-2244(20)30720-2

DOI: https://doi.org/10.1016/j.tifs.2020.12.008

Reference: TIFS 3060

To appear in: Trends in Food Science & Technology

Received Date: 26 July 2020

Revised Date: 26 November 2020

Accepted Date: 10 December 2020

Please cite this article as: Arora, K., Ameur, H., Polo, A., Di Cagno, R., Rizzello, C.G., Gobbetti, M., Thirty years of knowledge on sourdough fermentation: A systematic review, *Trends in Food Science & Technology* (2021), doi: https://doi.org/10.1016/j.tifs.2020.12.008.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

- Thirty years of knowledge on sourdough fermentation: a systematic review 1
- Kashika Arora^{a,1}, Hana Ameur^{a,1}, Andrea Polo^a, Raffaella Di Cagno^a, Carlo 2
- Giuseppe Rizzello^b, Marco Gobbetti^{*a} 3
- *Corresponding Author 4
- *E-mail: Marco.Gobbetti@unibz.it 5
- ^aFaculty of Science and Technology, Libera Università di Bolzano, Piazza 6
- Università, 5 39100 Bolzano, Italy 7
- ^bDepartment of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via 8
- G. Amendola, 165/a 70126 Bari, Italy 9
- ¹These authors equally contributed to this work. 10
- 11
- 12
- 13

14 ABSTRACT

Background: Sourdough is one of the oldest examples of natural starters, mostly used for making fermented baked goods as an alternative to baker's yeast and chemical leavening. Almost 30 years of research have accumulated showing its performance. Time is mature to elaborate collectively these data and to draw conclusions, which would represent milestones for scientists, industries and consumers.

20 Scope and approach: With the scope of highlighting its microbiological, biochemical, 21 technological and nutritional potential, we used "sourdough" as the only keyword and the PRISMA flow diagram to retrieve, select and systematically review 1,230 peer reviewed 22 23 research articles from four databases (Google Scholar, Scopus, PubMed and ScienceDirect). Key findings and conclusions: The literature states that sourdough baked goods underwent 24 25 characterization in almost 50 countries and all continents, mainly dealing with salty (breads and 26 substitutes) and sweet products. Converging data defined optimal use conditions, most common microbiological and biochemical characteristics, criteria for selecting and re-using starters, and 27 versatility of sourdough for making baked goods with a relevant number of flour 28 species/varieties and agro-food by-products. Because of the unique microbial composition and 29 functionality, sourdough has claimed as an irreplaceable starter for improving the sensory, 30 31 rheology and shelf life attributes of baked goods. The most recent literature showed how the 32 sourdough fermentation mainly increased mineral bioavailability, enabled fortification with 33 dietary fibers, lowered glycemic index, improved protein digestibility and decreased the content of anti-nutritional factors. This knowledge is solid for delivering to industries and consumers, 34 and to face new research challenges starting from a consolidated state of the art. 35

- 36 *Keywords:* Sourdough; Lactic acid bacteria; Yeasts; Starters, Glycemic index; Protein
- 37 digestibility.

38

Journal Prevention

39 **1. Introduction**

A widely accepted technical definition describes the sourdough as a mixture of flour and water,
spontaneously fermented by lactic acid bacteria and yeasts, and having acidification and
leavening capacities (Gobbetti, 1998). Sourdough is one of the oldest examples of natural
starters, mostly used for making leavened baked goods as an alternative to baker's yeast and
chemical leavening.

Leavening/fermentation and bread have always been central elements of the history, whose 45 narration reflects the human spirituality and civilization. Probably, Egypt is the motherland of 46 sourdough bread (Guidotti, 2005). In the Egyptian dialect, the pronunciation of ferment and 47 bread uses the same Arabic term aish, which means life. Since centuries, the Catholic religion 48 magnifies leavening and bread with meanings and metaphors; one of the most representative is 49 "food of eternal life". In the *Tacuina Sanitatis* (11th century), the bread becomes the key element 50 of many religious reproductions, already assuming a nutritional meaning: "white bread improves 51 human wellness, but it had to be completely fermented". To date baked goods and, in particular, 52 leavened bread are fundamental foods for planet sustenance. UNESCO includes the bread within 53 the list of the intangible heritage of humanity. The leavened/fermented bread is a basic 54 component of the Mediterranean diet, somewhat representing the modern projection of the 55 Benedictine monastic diet (Archetti, 2014). 56

Despite this historical traceability and the central role of leavened baked goods in almost all
dietary habits, the sourdough fermentation attracted the scientific attention not more than 30
years ago. Spicher and the Spanish group coordinated by Benedito de Barber were the first who
consistently studied the sourdough's world (e.g., Barber, Torner, Martínez-Anaya, & de Barber,
1989; Spicher, 1987). The first landmark description of *Lactobacillus sanfranciscensis*

(Fructilactobacillus sanfranciscensis) appeared in 1971 (Sugihara, Kline, & Miller, 1971). 62 Compared to researches dealing with other fermented foods and beverages (e.g., cheeses, yogurt, 63 sausages and wine), the temporal delay was mainly because the almost unique use of baker's 64 65 yeasts, which accompanied the industrial and artisanal manufacture of baked goods until late 1900s. Since approximately 1990, a systematic research activity begun aiming at rediscovering 66 the potential of sourdough fermentation and allowing the inevitable technology transfer. The 67 initial focus was on the technological effects of sourdough fermentation with respect to flavor, 68 rheology and shelf life (e.g., delay of staling, spoilage prevention), and on the microbial 69 interactions in such complex ecosystem. Concomitantly, the abundant microbial diversity and, in 70 71 particular, the succession of dominating and sub-dominating populations of lactic acid bacteria promoted studies on the sourdough assembly and composition. The house microbiota, type of 72 73 flour, additional ingredients and tap water were the main microbial sources and/or drivers to 74 establish the potential of this natural starter. More recently, the focus shifted towards the multiple nutritional advantages offered by sourdough fermentation with respect to the other leavening 75 agents. A number of reviews succeeded focusing specific aspects (see Corsetti & Settanni, 2007; 76 De Vuyst, Van Kerrebroeck, & Leroy, 2017; Gänzle, Loponen, & Gobbetti, 2008; Gobbetti, 77 1998; Katina, 2005; Minervini, De Angelis, Di Cagno, & Gobbetti, 2014), but none 78 79 systematically reviewed the overall literature and no comprehensive data are yet available on 80 technological and nutritional issues, which unequivocally claim the sourdough potential. 81 Here, we systematically reviewed the sourdough literature since the last 30 years with the aim of reporting and definitively highlighting the microbial diversity, and the technological and 82 nutritional potential of this natural starter. We believe that we have now sufficient literature data 83

to solidify this fundamental step forward for microbiologists, technologists, nutritionists, food
science and industry and for society as a whole.

86 2. Literature search methodology

The timeline for our literature survey was set to the last 30 years (January 1990 - February 2020), 87 using only "sourdough" as keyword. Additional literature with respect to this keyword was only 88 89 used for limited and specific purposes (flour microbiota and other ingredients). Peer reviewed research articles sourced from four databases: Google Scholar, Scopus, PubMed and 90 ScienceDirect. The PRISMA flow diagram (Supplementary Figure 1) shows the screening 91 criteria and lists the number of research articles considered in our systematic review. Initially, 92 "sourdough" as search keyword from all databases resulted in 3,116 research articles. The 93 94 elimination of duplicates reduced the number to 1,468. The screening strategy included full text 95 research articles only in English language, and excluded reviews, book chapters, thesis dissertations and conference proceedings. Applying our screening criteria, the final number was 96 97 1,230. The supplementary Dataset lists all the literature references used in this review, including those reported in the Reference section. We know that some authors, even using sourdough, 98 currently refer to flour lactic acid fermentation, especially when the focus is on selected starters. 99 Obviously, these few research articles remained out from our Dataset because we made the 100 101 choice to refer strictly to sourdough. 102 Starting from 1990 and grouping sourdough research articles every five years, except for 2020

because incomplete, the number increased, respectively, from 33, 56, 130, 251, 372 to 582,

104 which gives an order of magnitude of the growing interest (Supplementary Figure 2).

105 **3. Baked goods and flours**

106 A relevant number of research articles (280) dealt with the microbiological, biochemical and/or technological features of typical/traditional sourdough baked goods, which spread in 47 countries 107 and all continents (Figure 1). The major part (246) characterized salty products (breads and 108 109 substitutes), the remaining (24) dealt with sweet baked goods or both the categories (10). In Europe, Italy was the leading country with the characterization of more than 30 traditional 110 varieties of salty and sweet sourdough baked goods. Emblematic reports (Lattanzi et al., 2013; 111 112 Minervini et al., 2012) showed the distinguishing compositional and functional features of sourdoughs used for making 19 typical breads and 18 sweet baked goods. Almost the same 113 approach distinguished sourdoughs used for traditional French breads (baguettes), brioches and 114 115 rolls (e.g., Lhomme et al., 2015). Remaining in Europe, studies from Germany, Belgium, Scandinavia and the Baltic area mainly deepened the sourdough rye bread tradition (e.g., Ua-116 117 Arak, Jakob, & Vogel, 2017). In Asian countries, Iranian Barbari, Chinese steamed and Indian 118 Bhatura sourdough breads underwent investigation (e.g., Zhang, Zhang, Sadiq, Arbab, & He, 2019). In Africa, Egyptian Balady, Sudanese Kisra and Ethiopian Injera sourdough breads were 119 some of the most popular (e.g., Baye, Mouquet-Rivier, Icard-Vernière, Rochette, & Guyot, 120 2013). The main sourdough products in South America were Mexican Tortillas, while industrial 121 sourdough breads, rolls, crackers and cookies attracted the interest in United States. Almost all 122 123 the 280 articles concluded on the uniqueness of the microbial composition and functionality of 124 each sourdough for every baked good. With an increasing trend, some recent research articles (16) dealt with the use of sourdough also for making pasta. The sourdough fermentation affected 125 both sensory and rheology attributes. 126

127 The proof of the irreplaceable sourdough potential comes from the extraordinary number of128 flours and agro-food by-products successfully fermented (Supplementary Figure 3). Apart from

129 the variable processing, the common purpose of these research articles was to exploit the sourdough potential for increasing the technological and nutritional attributes of conventional 130 and non-conventional flours, and to recycle agro-food by-products. In detail, flours from 23 131 species/varieties of cereals, also using sprouted seeds, 10 pseudo-cereals, 19 varieties of legumes 132 and 25 miscellaneous vegetables were suitable for sourdough fermentation. While the research 133 activity in the interval 1990 - 1999 mainly dealt with soft and durum wheat and rye, the most 134 135 recent research articles enlarged the spectrum of cereal flours and mainly concerned legumes and pseudo-cereals, also used for gluten-free formulations, and other vegetable matrices. This trend 136 found a consolidation starting from 2007. In particular, the sourdough was the natural starter to 137 138 ferment 19 Italian varieties of legume flours, which, after fermentation, were suitable for using alone or better in combination with cereal flours (Curiel et al., 2015). Sourdough fermentation of 139 140 legume flours increased the contents of free amino acids (FAA), γ -amino butyric acid (GABA), 141 polyphenols, dietary fibers (DF) and bioavailable minerals, promoted antioxidant activities and the in vitro protein digestibility, and lowered the glycemic index (GI) (Coda, Rizzello, & 142 Gobbetti, 2010; Gabriele et al., 2019; Rizzello, Calasso, Campanella, De Angelis, & Gobbetti, 143 2014). Starting approximately from the last decade, several research articles (30) demonstrated 144 how the sourdough fermentation was the unique tool for improving the rheology, sensory, shelf 145 146 life and nutritional attributes of gluten-free formulations made of mixtures of rice, corn and 147 several pseudo-cereals. Numerous and heterogeneous agro-food by-products were recyclable by sourdough fermentation, almost all milling by-products and a diversity of other miscellaneous 148 agricultural wastes. In practice, the sourdough fermentation was the irreplaceable technique for 149 getting a consistent increase of the bran content in various baked good formulations (Pontonio et 150 151 al., 2020). At the same time, the sourdough fermentation had the potential to inhibit the lipase

activity of the cereal germ, which allowed a prolonged shelf life and its use as nutrient-rich

153 ingredient in bread making formulas (Rizzello, Nionelli, Coda, De Angelis, & Gobbetti, 2010).

154 **4. Using conditions**

Once prepared, the use of mature sourdough depends on the tradition and type of baked goods. A 155 156 scientifically accepted classification of sourdough categorizes three types. Type I with almost 157 daily back slopping to keep the microorganisms in an active metabolic state; type II with propagation at relatively high temperatures (>30°C) and long fermentation time (up to 5 days), 158 mainly acting as acidifying and aroma carrier; and type III corresponding to the dried sourdough 159 used as flavoring agent (De Vuyst & Neysens, 2005). The 272 research articles consulted for this 160 paragraph all referred to type I sourdough, although the other two types recently achieved some 161 industrial relevance. A variable number (2 to 10) of back slopping (refreshments) may precede 162 163 the final sourdough fermentation before baking but the most common practice is the one-step process. The median time used for sourdough fermentation is 4 h, with extreme values of 1 to 8 164 h, which, respectively, correspond to the mixed use with baker's yeast or to long-time traditional 165 protocols for making specific baked goods (Figure 2A). Usually, the time of fermentation is set 166 for achieving suitable acidification, leavening power and cell densities of lactic acid bacteria and 167 yeasts. Prolonged time of fermentation (up to 24 h) accompanied the sourdough fermentation of 168 agro-food by-products (e.g. wheat germ, brewer's spent grains) to render them suitable as 169 ingredients for bread making (Rizzello et al., 2010). The most common temperature used for 170 sourdough fermentation is 30°C (Figure 2A), with variations that range from 22 to 40°C, which 171 undoubtedly affect the overall biochemical and sensory characteristics (Vrancken, Rimaux, 172 Weckx, Leroy, & De Vuyst, 2011). Commonly, the percentage of sourdough inoculum varies 173 from 10 to 25%, some outlier procedures also consider percentages less than 5 or up to 50% 174

175	(Figure 2B). The median value is 20%. The percentage of sourdough inoculum has proven to
176	influence not only the fermentation rate but also the synthesis of exopolysaccharides (EPS)
177	(Kaditzky & Vogel, 2008), vitamin content (Batifoulier, Verny, Chanliaud, Rémésy, & Demigné,
178	2005), and sensory and rheology attributes (Katina, Heiniö, Autio, & Poutanen, 2006).
179	Regardless of the protocol used, the median cell densities found after sourdough fermentation are
180	log 8.5 and 6.5 CFU/g for lactic acid bacteria and yeasts, respectively (Figure 2B). These values
181	allow an estimated ratio of 100:1. For several sourdoughs, it narrows to 10:1. Usually, these two
182	ratios underlie the optimal sourdough performance as long as the cell densities of lactic acid
183	bacteria and yeasts are not below log 8.0 and 6.0 CFU/g, respectively. Exceptionally, lactic acid
184	bacteria are detectable below log 3.0 CFU/g or above log 9.0 CFU/g, which are, respectively, the
185	cases of using commercial dried sourdoughs (Principato, Garrido, Massari, Dordoni, & Spigno,
186	2019) or starter cultures directly added to the dough (Pontonio et al., 2015). The same variations
187	almost characterized yeasts, but with cell numbers less than log 5.0 CFU/g the leavening power
188	worsens. Depending on the type of process and traditional products, the use of sourdoughs may
189	be as firm or semi-liquid preparations. The major part of firm sourdoughs has dough yield (DY)
190	of 150 - 160, while the range for semi-liquids largely varies in the interval 200 - 300.
191	Exceptionally, DY of 500 has been used to render gluten-free the durum wheat flour when
192	treated with a mixture of selected lactic acid bacteria and fungal proteases (Rizzello et al., 2007).
193	Future prospects on using conditions are particularly relevant both as fundamental research and
194	to enlarge applications. Not forgetting that all fermentations need some time to achieve the best
195	sensory, rheological and nutritional effects, fundamental research should strengthen its efforts to
196	shorten times and to lower temperatures (e.g., room temperature) of fermentation, and the setup

of the resulting processes has to proceed with the continuous transfer to industrial and artisanalplants.

199 **5.** Microbiological and biochemical characteristics

We found 312 research articles that, in most of the cases, combined the microbiological and 200 201 biochemical characterization of sourdoughs. Regarding the microbiological characterization, 233 202 research articles used culture-dependent methods, 29 dealt with culture-independent techniques, and 50 used both the approaches (Supplementary Figure 4). The pioneer study for culture-203 independent methods was by Ehrmann et al., (1994) who developed a technique based on reverse 204 dot blot assay, which allowed the direct identification of lactic acid bacteria without cultivation 205 (Ehrmann, Ludwig, & Schleifer, 1994). Following approaches included PCR-DGGE (Gatto & 206 207 Torriani, 2004), direct extraction of total microbial DNA from sourdough (Settanni, Massitti, 208 Van Sinderen, & Corsetti, 2005) and TTGE (Ferchichi, Valcheva, Prévost, Onno, & Dousset, 2007), but only from 2010 onwards culture-independent methods, mainly based on high 209 throughput sequencing, became common approaches to study the sourdough microbial assembly 210 and diversity. To date, no studies are yet available using meta-genome approaches and 211 fundamental research should certainly move in this direction to better deepen the sourdough 212 microbiota assembly and functionality. The main secret for sourdough performance lies in 213 microbial diversity. Exceptionally, sourdoughs harbor few species. In most of the cases, complex 214 microbial consortia colonized this ecosystem. Up to 59 bacterial genera were detectable in 215 sourdoughs: 10 belonging to lactic acid bacteria and 49 to other bacteria (Supplementary Table 216 1). Most of these other bacteria behave within the community as satellite members (sub-217 218 dominant populations), whose eco-physiological role is worthwhile to deepen. The genus 219 Lactobacillus is largely the most abundant in sourdough, with 82 species being variously

220 detectable (Figure 3A). Based on the recent revision of the taxonomy for the genus *Lactobacillus* (Zheng et al., 2020), which also includes sourdough species, we reported also the new names in 221 correspondence of the first citation throughout text or figures. Sixteen species were identifiable 222 in more than 15 worldwide sourdoughs, meaning that they are the most common representatives 223 of this community. Lactobacillus plantarum (Lactiplantibacillus plantarum) reported in 142 224 research articles, Lactobacillus brevis (Levilactobacillus brevis) (93), L. sanfranciscensis (90) 225 226 and Lactobacillus fermentum (Limosilactobacillus fermentum) (56) were the most common isolates, showing how nomadic species (L. plantarum) or hetero-fermentative species dominated. 227 As shown in Figure 3B, 80 species of yeasts were identifiable worldwide in sourdoughs. They 228 229 mainly belong to Saccharomyces, Candida, Kazachstania, Torulopsis, Yarrowia and Pichia genera. Although stable associations with lactic acid bacteria for making sweet baked goods also 230 231 comprised Kazachstania exigua or Kazachstania humilis, the species usually identified is 232 Saccharomyces cerevisiae. The current debate regards the existence of S. cerevisiae wild strains or the environmental cross contamination because of the concomitant use of baker's yeast. 233 Notwithstanding the remarkable role of the house microbiota and additional ingredients, several 234 lactobacilli are described as resilient and resistant in flours and grains, which explain and mirror 235 partly the same dominant microbiota identifiable in sourdoughs. Indeed, competitive 236 Lactobacillus species already present in the rye flour (e.g., L. sanfranciscensis and L. fermentum) 237 238 became dominant during sourdough fermentation (Meroth et al., 2003). Durum wheat autochthonous Enterococcus faecium and Pediococcus pentosaceus rapidly acidified the dough, 239 making the ecosystem suitable for sourdough maturation by other Lactobacillus species (Corsetti 240 et al., 2007). The large microbial diversity affecting organic wheat, spelt and rye flours shaped 241 the subsequent composition of the sourdough microbiota (Stanzer et al., 2017). The variable 242

microbial dynamics of several spelt sourdoughs reflected the flour autochthonous microbiota, 243

- which, in turn, depended on flour origin, cultivation practices and storage conditions (Korcari et 244
- al., 2020). Assessing the microbial dynamic of wheat grains after harvesting and during storage, 245
- E. faecium, Enterococcus durans, L. brevis, Lactobacillus pentosus (Lactiplantibacillus 246

pentosus) and Lactobacillus paracasei (Lacticaseibacillus paracasei) demonstrated a remarkable 247

capability to overcome these stressing conditions (Gaglio et al., 2020). 248

249 Some biochemical parameters, relatively simple to determine, commonly describe the sourdough performance. With differences related to type of flour and protocol used, the median value for 250 pH is 4.1, with the most common range between 3.4 and 4.9 (Figure 4A). Extremely low values 251 252 of pH (\leq 3.0) were only detectable using particular ingredients (e.g., brewer's spent grains) and long-time fermentation (48 h) (Waters, Jacob, Titze, Arendt, & Zannini, 2012). Combined with 253 254 the above values of pH, the most common interval for total titratable acidity (TTA) is 4.0 to 25.0 255 ml of 0.1 M NaOH/10 g of dough, with a median value of 11.0 ml of 0.1 M NaOH/10 g of dough. Extremely high values of TTA (40.1 ml of 0.1 M NaOH/10 g of dough) were observable 256 during long time (seven days) hemp sourdough fermentation (Nionelli et al., 2018). Although 257 TTA gives some indirect information on the ratio between lactic and acetic acids, their direct 258 determination is also quite common. The concentration of lactic acid ranges from 15 to 150 mM, 259 with a median value of 75 mM, while that of acetic acid is within 1 - 50 mM, with a median 260 261 value of 20 mM (Figure 4B). The general belief is that higher the level of acetic acid, better the 262 corresponding flavor of sourdough. Therefore, interventions to favor the acetate kinase pathway (e.g., use of external electron acceptors and sugar pentoses, and other metabolisms able to re-263 oxidize NADH) became routine in sourdough processing (De Vuyst et al., 2002; Gobbetti, 264 Lavermicocca, Minervini, De Angelis, & Corsetti, 2000; Korakli, Rossmann, Gänzle, & Vogel, 265

266 2001). The most recommended quotient of fermentation (QF, molar ratio between lactic and acetic acids) is below 5.0. Although with large fluctuations from 0.25 to 20, the elaboration of 267 literature data allowed the calculation of a median value of 4.4. As products deriving from 268 primary and secondary proteolysis through the activities of flour and microbial enzymes, the 269 concentration of total FAA is another biochemical indicator. Because of the marked influence by 270 type of flour, parameters of fermentations and strains used the concentration of FAA after 271 272 sourdough fermentation largely varies from 390 to 5,000 mg/kg, with a median value of 1,360 mg/kg. A consistent increase with respect to the initial flour concentration would guarantee the 273 accumulation of enough FAA acting as flavor precursors. As mainly synthesized through the 274 275 alcoholic fermentation, the median value for ethanol concentration is 771 mM, with much lower levels in baked goods because of the evaporation during baking. 276 An important step forward in both fundamental and applied researches should allow, as already 277

done for other food and beverage processes, the development of automatized equipment, which
permit a rapid and simple monitoring of the main sourdough biochemical performance, so that,
even in the smallest industrial plants, a sufficient autonomy in the management of this natural
starter would be possible.

282 6. Use of starters and criteria for selection

The use of newly prepared sourdoughs with selected lactic acid bacteria and yeasts became a common practice for increasing the performance and/or for targeting specific attributes. We retrieved 124 research articles dealing with this practice. Some (31) used autochthonous bacterial isolates but the major part transferred strains from other food ecosystems. All including, the selection considered a quite large spectrum of genera (e.g., *Bifidobacterium, Enterococcus, Lactococcus, Leuconostoc* and *Pediococcus*) but inevitably the major part of strains was from

289 Lactobacillus. In particular, strains of L. plantarum (73 research articles), L. brevis (34) and L. sanfranciscensis (31), which agrees with the dominance of these species within the sourdough 290 microbiota (see paragraph 5). Recently, also non-conventional starters from Leuconostoc and 291 292 Weissella genera showed interesting capability of adaptation and performances (Montemurro et al., 2020). The combination of multiple selected strains is the most common practice with the 293 aim of reproducing the natural sourdough fermentation. For autochthonous strains, the usual 294 295 procedure concerns the isolation from flours or traditional sourdoughs, selection, propagation using several back slopping and re-use in the form of selected sourdough. The main sources for 296 isolation, which almost coincided with the matrices subjected to sourdough fermentation, were 297 298 cereals (mainly soft wheat), pseudo-cereals, legumes and milling by-products (e.g., wheat germ) (Supplementary Figure 5). Selection criteria are the most diverse, including technological, 299 biochemical and nutritional attributes. Nevertheless, acidification and growth rates are the most 300 301 screened performances, trying to speed up the sourdough fermentation for making it suitable at artisanal and, especially, at industrial levels. Other largely used criteria consider antifungal 302 303 activity, EPS formation, synthesis of volatile components, and proteolysis. Focusing on nutritional attributes, synthesis of GABA (Coda et al., 2010) and angiotensin I-converting 304 enzyme (ACE) inhibitory and antioxidant peptides (Rizzello, Cassone, Di Cagno, & Gobbetti, 305 2008; Coda, Rizzello, Pinto, & Gobbetti, 2011), degradation of phytic acid (Lopez et al., 2000)) 306 307 and acrylamide (Bartkiene et al., 2017), and digestibility (Mamhoud et al., 2016) are those 308 criteria mostly assessed for selection. Although with less abundant research articles (63), the selection also concerned yeasts. 309

- 310 Saccharomyces, Candida and Kazachstania were the most targeted genera, with the highest
- number of research articles dealing with *S. cerevisiae*.

Undoubtedly, a wider diffusion of ready-to-use starters will contribute to the wider diffusion ofsourdough and to the manufacture on a larger scale of related baked goods.

314 **7. Rheology, sensory and shelf life attributes**

An abundant literature dealt with rheology (323 research articles), sensory (227) and shelf life (152) attributes of sourdough fermentation. Several research articles focused on more than one of these attributes and the common aim was to show how the sourdough behaved with respect to baker's yeast. Temporarily speaking, most of the literature on rheology and sensory attributes is retrievable in the period from 2005 to 2015, almost converging on the convenient use of sourdough.

321 7.1. Rheology attributes

Compared to baker's yeast, the sourdough fermentation improved the rheology attributes of 322 bread, Panettone, flat bread (Piadina), bread rolls, toast bread, burger buns, pizza, biscuits, cakes, 323 crackers and puff pastry. The improvement targeted various attributes, mainly regarding texture 324 (hardness, adhesiveness, resilience, cohesiveness, chewiness, springiness and gumminess), 325 326 shape, specific volume, crust and crumb color, moisture retention, and crumb structure. Pioneer 327 research articles (Corsetti, Gobbetti, Rossi, & Damiani, 1998; Crowley, Schober, Clarke, & Arendt, 2002) undoubtedly showed the increased bread specific volume and the reduced crumb 328 firmness over time. These superior attributes mainly relied on physicochemical changes of the 329 protein network, which facilitated the larger dough expansion during fermentation (Clarke, 330 Schober, & Arendt, 2002). Slice profiles generated from digital image analysis showed that 331 typically sourdough breads had higher numbers of smaller halos than breads leavened with 332 baker's yeast. Usually, crumb holes of relatively small size (1-2 mm) are desirable, while large 333

334 and irregularly distributed voids are unpleasant. These effects on rheology were also strain dependent, and Lactobacillus amylovorus (Ryan et al., 2011), L. plantarum (Moore, Dal Bello, & 335 Arendt, 2008), L. brevis (Nami, Gharekhani, Aalami, & Hejazi, 2019) and Leuconostoc citreum 336 (Coda et al., 2018), among the others, showed appreciated performance. Other research articles 337 (Chen, Levy, & Gänzle, 2016; Katina et al., 2009) proved the beneficial effects of EPS-338 producing strains in terms of specific volume and firmness. An abundant literature (125 research 339 340 articles) was also dealing with the rheology of baked goods made with non-conventional flours 341 (legumes and pseudo-cereals) and milling by-products (bran and germ). For instance, the use of a legume sourdough, consisting of chickpea, lentil and bean flours (15% wheat replacement), 342 343 allowed the manufacture of bread with higher specific volume than the control bread made with the same percentage of unfermented legume flours (Rizzello, Calasso, et al., 2014). Compared to 344 native legume flours, texture instrumental analysis demonstrated that sourdough fermentation 345 346 improved the bread softness (hardness decreased by ca. 30%) and crumb elasticity. Resilience, springiness and cohesiveness of breads fortified with fermented legume flours were comparable 347 to those of conventional wheat flour bread. The addition of buckwheat sourdough strengthened 348 the gluten network and decreased elasticity (Moroni, Zannini, Sensidoni, & Arendt, 2012). 349 Wheat bread formulations with up to 10% incorporation of brewer's spent grains fermented with 350 sourdough resulted in dough with improved handling properties (Waters et al., 2012). Bread 351 352 fortified with sourdough fermented bran had higher specific volume, lower resilience and cohesiveness, and higher hardness, gumminess and chewiness than wheat bread made with 353 baker's yeast (Pontonio et al., 2020). Sourdough fermentation overcame the quality losses in 354 sugar-reduced cakes, biscuits and burger buns allowing the similar specific volume of full-sugar 355 control and contributed to softer crumb (Sahin et al., 2019). Other research articles (30) 356

addressed the rheology of gluten-free breads made with buckwheat, chia, sorghum, teff, chestnut,
quinoa and other gluten-free matrices. Rheology improvements were observable using
sourdough fermentations, in particular with *L. plantarum* (Moore et al., 2008) and *L. amylovorus*(Axel et al., 2015).

361 7.2. Sensory attributes

362 Most of the research articles (180) faced descriptive panel analyses, while others (47) deepened the sensory attributes through the determination of volatile components (VOC). Comparing 363 sourdough vs. baker's yeast breads and merging research articles that used the same descriptive 364 approach up to 27 sensory attributes made possible the differentiation (Figure 5). Acidic taste 365 and smell, intense aftertaste and aroma, attractiveness, pronounced crumb and crust color, crust 366 367 crispness, freshness, fruitiness, high porosity and sourness were the main sensory attributes, 368 which clearly described the uniqueness of sourdough breads. If these are the main sensory traits, they combine with VOC of various chemical classes. Overall, mass spectrometry analyses 369 identified ca. 90 VOC in sourdough breads (mainly from wheat flour): alcohols, carbonyls 370 (aldehydes and ketones), esters, acids and miscellaneous components (Figure 6). We elaborated 371 the dataset from 47 research articles drawing a heat-map, which correlates the VOC prevalence 372 373 to the dominant sourdough lactic acid bacteria and yeasts. The synthesis of VOC is clearly species specific, being evident how Lactobacillus acidophilus, L. brevis, Lactobacillus curvatus 374 (Latilactobacillus curvatus), L. fermentum, Lactobacillus helveticus, Lactobacillus sakei 375 (Latilactobacillus sakei), L. sanfranciscensis and, mainly, L. plantarum contribute to higher and 376 wider spectrum of VOC with respect to baker's yeast. The liberation of FAA (e.g., Phe, Leu, Cys 377 and Orn) per se contributed to bread flavor (Thiele, Gänzle, & Vogel, 2002). The conversion of 378 Glu to Gln by L. sanfranciscensis and Lactobacillus reuteri (Limosilactobacillus reuteri) 379

increased their acid tolerance and, concomitantly, affected the dough flavor (Vermeulen, Gänzle, & Vogel, 2007). Cell-free extracts from sourdough lactic acid bacteria were essential sources of glutamate dehydrogenase and cystathionine- γ lyase, which synthesized key VOC during sourdough fermentation (Cavallo et al., 2017). The sourdough fermentation with *L. reuteri* converted FAA to γ -glutamyl dipeptides, which improved the taste intensity (Zhao & Gänzle,

2016). The unequivocal conclusion was that sourdough confers a unique and superior flavor and

taste, especially because of the liberation of FAA during fermentation, which act as precursors of

387 VOC or directly affect the flavor intensity.

388 *7.3. Shelf life*

Staling and fungal contamination are the main causes for decreasing the shelf life of baked 389 390 goods, whose relevance varies depending on the product and duration of storage. Compared to 391 fermentation by baker's yeast, sourdough L. sanfranciscensis and L. plantarum delayed bread staling by decreasing the rate of firmness and starch retro-gradation (Corsetti, Gobbetti, 392 Balestrieri, et al., 1998). The use of a selected sourdough targeting pentosan hydrolysis delayed 393 bread firmness and staling (Corsetti et al., 2000). The combination of wheat bran, enzymes (a-394 amylase, xylanase and lipase) and sourdough exhibited least changes in crumb firmness, 395 amylopectin crystallinity and rigidity of polymers, which all delayed staling (Katina, 396 Salmenkallio-Marttila, Partanen, Forssell, & Autio, 2006). The synergistic effect of sourdough 397 and transglutaminase, an enzyme able of catalyze the formation of protein cross-links resulting in 398 extensive nets, was also promising (Scarnato et al., 2017). In other cases, a delayed staling was 399 observable combining the sourdough fermentation with non-wheat ingredients such as wheat 400 germ (Rizzello et al., 2011) or flaxseeds (Quattrini et al., 2019), and millet (Wang et al., 2019) 401 and chestnut (Rinaldi et al., 2017) flours. Although neither the staling mechanisms nor the 402

403 microbial activities were completely understood, the incontestable evidence is that sourdough404 baked goods have delayed staling.

With the extension of the shelf life for responding to consumer expectations, the fungal 405 contamination became the major cause of spoilage for baked goods. Concomitantly, the 406 reduction, or better, the elimination of chemical preservatives was another issue raised by 407 industries. Twenty-five years ago, a pioneer research article already proved the capability of 408 409 sourdough fermentation to some extent inhibit fungal spoilage through the synthesis of a mixture 410 of acetic, caproic, formic, propionic, butyric and n-valeric acids (Corsetti, Gobbetti, Rossi, et al., 1998). Later on, phenyllactic and 4-hydroxy-phenyllactic acids, which also acted as antifungal 411 412 compounds, were identifiable during sourdough fermentation with L. plantarum (Lavermicocca et al., 2000). Other strains of L. plantarum also synthesized cyclic dipeptides (L-Leu-L-Pro and 413 L-Phe-L-Pro) with antifungal activities (Dal Bello et al., 2007). A very abundant literature 414 415 regarding the antifungal properties of other lactic acid bacteria species, likely L. amylovorus (Axel et al., 2015), L. paracasei (Mantzourani et al., 2019), Lactobacillus hammesii 416 (Levilactobacillus hammesii) (Quattrini et al., 2019), and L. reuteri (Axel et al., 2016), 417 succeeded. Supplementary Figure 6 lists the antifungal compounds variously discovered during 418 time. The list includes 34 carboxylic acids, and 31 proteins and peptide derivatives liberated 419 during sourdough fermentation or derived from vegetable and water-soluble extracts of flours, 420 421 and used in combination with sourdough. The current trend is to combine the inhibitory activities from lactic acid bacteria, yeasts (e.g., ethyl acetate from Wickerhamomyces anomalus and 422 Meyerozyma guilliermondii (Coda, Cassone, et al., 2011; Coda et al., 2013) and natural matrices 423 (e.g., legumes, flours, milling by-products and essential oils) (Debonne et al., 2018; Ricci et al., 424 2019; Rizzello et al., 2015), and using innovative active packaging technologies with oxygen 425

absorbers or antimicrobial releasers (Noshirvani et al., 2017). A number of research articles (e.g.,
Rizzello, Lavecchia, et al., 2015; Ryan et al., 2011) showed how this bio-preservation, at semiindustrial or industrial plants, allowed an extension of the shelf life for weeks with an antifungal
activity similar or better than that of chemical preservatives. Further efforts in this direction are
warranted to manufacture long shelf life leavened baked goods free from chemicals, which
reflects the main consumer expectations.

432 8. Nutritional attributes

Once demonstrated conclusive effects on sensory, rheology and shelf life attributes, most of the research activities moved forward nutritional aspects. We retrieved 527 research articles, with a relevant temporal increase from 2005-2009 to 2015-2019, having in this last interval the highest peak of 231 publications. Nutritional attributes mainly concerned sourdough breads made with various types of flours. The world cloud of Figure 7 shows the nutritional features faced during time. We decided to review systematically those issues that are more consistent.

439 8.1. *Mineral bioavailability*

Phytic acid (myo-inositol hexaphosphate) is a natural constituent of cereals, pseudo-cereals and 440 441 legumes, where it forms insoluble complexes with minerals and other compounds, thus decreasing their dietary bioavailability/bioaccessibility (Martínez et al., 1996). Enzymes 442 responsible for the hydrolysis of phytic acid are phytases (myo-inositol hexakisphosphate 443 phosphohydrolase; EC 3.1.3.8/EC 3.1.3.26), which sequentially release soluble inorganic 444 phosphate, low size inositol phosphate and myo-inositol. Research articles (103), mainly from 445 the last decade, approached this issue determining the residual content of phytic acid or the 446 mineral, mainly iron, bioavailability in doughs and breads subjected to sourdough fermentation. 447

A marked increase of the mineral bioavailability resulted because of the sourdough acidification, 448 which indirectly activates the flour endogenous phytases, and the microbial enzyme activities. In 449 general, the most suitable level of acidification is in the range 4.3-4.6 and decreases in phytic 450 acid content are above 70% (Larsson & Sandberg, 1991). A large spectrum of minerals became 451 bioavailable, mainly including calcium, sodium, magnesium, iron, and zinc (Di Cagno et al., 452 2008). The literature describes 30 species of lactic acid bacteria and 5 species of yeasts, and an 453 454 overall number of 146 strains, which, presumptively, harbor phytase activities (Supplementary Table 2). Eighteen species are only belonging to the Lactobacillus genus. Although most of these 455 research articles did not demonstrate the presence of the enzyme and an indirect activation of the 456 457 flour endogenous phytases might had overlapped the microbial activities, all data emphasized how the sourdough fermentation is the unique tool for increasing the mineral bioavailability of 458 459 baked goods made with cereal, pseudo-cereals and legumes.

460 8.2. Dietary fibers

The World Health Organization recommends a DF daily intake of 25 g/day, but the effective 461 consumption is markedly lower. Dietary interventions for increasing the DF intake are, therefore, 462 desirable. We retrieved 60 research articles dealing with the effect of sourdough fermentation on 463 total DF, ratio between water-soluble and -insoluble DF, and individual fractions. Although 464 cereals and pseudo-cereals per se are sources of DF (e.g., hemicellulose, resistant starch, β -465 glucans, arabinoxylans) (Williams, Mikkelsen, Flanagan, & Gidley, 2019), the common strategy 466 was to increase the DF content of baked goods, including gluten-free products, through the 467 fortification with various percentages of bran (5-20%), wheat germ (4-7.5%), brewer's spent 468 grains (5-20%) or mixing cereal, pseudo-cereal and legume flours. Nevertheless, the 469 modifications of the traditional recipes negatively affect the sensory and rheology attributes, and 470

the ratio between water-soluble and -insoluble DF, in several cases, needs some changes. The
use of sourdough faced all these aspects. Emblematic research articles demonstrated that
sourdough fermentation allowed the fortification with bran up to the concentration of 20%
(Salmenkallio-Marttila, Katina, & Autio, 2001), the increase of DF in almost all gluten-free
products (Di Cagno et al., 2008) and incremented the aliquot of water-soluble DF in cereal and
legume mixtures (Chinma et al., 2016). Furthermore, it allowed the exploitation of matrices

arrow naturally rich in DF (e.g., fava bean, hemp) (Wang et al., 2018) without compromising the

478 sensory and rheology features of baked goods.

479 *8.3. Glycemic index*

Glycemic index (GI) is a numerical value assigned to foods based on their capability to increase 480 the blood glucose levels after consumption. According to the Harvard Medical School, foods 481 482 rank into high (\geq 70), moderate (between 69 and 55) and low (\leq 55) GI. The calculation of GI in foods introduces the concept of Glycemic Load (GL), which estimates how the quantity of 483 484 carbohydrates in foods raises the blood glucose levels depending upon the type of carbohydrate present in that food and, thus, each food (or carbohydrate) exhibits different glycemic response 485 (Eleazu, 2016). The literature shows 52 research articles focusing on GI or GL as influenced by 486 487 sourdough fermentation; 40 dealt with *in vivo* challenges and 12 used *in vitro* approaches. Overall, *in vivo* challenges recruited healthy volunteers, with numbers ranging from 15 to 25 and 488 an average age of 20-60 years. Volunteers, mostly under double blind conditions, consumed 489 sourdough bread or control bread started with baker's yeast, after an overnight fasting of 10-12 490 h. Before analyses, the collection of blood samples was every 15 min; within an overall timing of 491 2-3 h. Using data from 22 in vivo challenges, Figure 8 shows the box plots for GI of sourdough 492 vs. baker's yeast breads. Median values clearly indicate how only the sourdough fermentation 493

has the capability to shift the bread GI from high to moderate. The same trend was observed for 494 gluten-free products where excess of calories and carbohydrates are the main nutritional 495 constraints (Wolter, Hager, Zannini, & Arendt, 2014). When sourdough fermentation combines 496 with the addition of DF (5% - 10%), the GI decreases to values lower than 55, which rank these 497 baked goods as low GI foods, recommendable for all dietary habits. Apart from in vivo or in 498 *vitro* approaches, the main issue, from the pioneer study of Liljeberg, Lönner, & Björck (1995) 499 500 to the last reports (e.g., Rizzello et al., 2019), was not only to demonstrate the lowering of GI but 501 also to explain the mechanisms behind. Biological acidification (Liljeberg & Björck, 1998), increased resistant starch (Liljeberg, Åkerberg, & Björck, 1996), liberation of peptides, FAA, 502 503 polyphenols and water-soluble DF (Nilsson, Östman, Preston, & Björck, 2008), fast gastric emptying, stimulation of satiety hormones (Rizzello et al., 2019) and use of fermentable cereal, 504 DF and legumes mixtures were all factors/interventions that, also concomitantly, improved this 505 506 nutritional attribute. Recent advances in clinical studies show that GI and GL responses after bread ingestion also rely on gut microbiome functionality, which highlights the importance of 507 personalized dietary recommendations (Korem et al., 2017), and suggests to assess the effects 508 sourdough baked goods on gut microbiome composition and functionality (under investigation in 509 the author's laboratory). 510

511 8.4. Protein digestibility

Empirical and *in vitro* scientific evidences all agree that sourdough fermentation associates to an improved bread digestibility, mainly related to proteins. The literature shows 27 research articles dealing with this issue, 25 using *in vitro* approaches and only 2 setting *in vivo* challenges. Almost all *in vitro* investigations concluded that the *in vitro* digestibility of protein (IVPD), expressing the stability of protein hydrolysates and how they withstand digestive processes, increased with

517 sourdough fermentation. This apart from the flours and products. Other indices improved with sourdough, especially under prolonged fermentation. In particular, the amount of protein 518 required to provide the minimal essential amino acid pattern (chemical score, CS); the protein 519 nutritional quality based on the amino acid profile after hydrolysis (protein efficiency ratio, 520 PER); and the nutritional index (NI), which normalizes the qualitative and quantitative variations 521 of the protein compared to its nutritional status. Recently, also the addition of dried fruits was a 522 523 suitable technological option for increasing the content of essential amino acids. For instance, the pistachio powder added to flour or semolina remarkably increased the content of lysine in 524 sourdough baked goods (Gaglio et al., 2019). The sourdough fermentation with the addition of 525 526 dried pear and orange resulted in a significant increase of the FAA concentration, including two essential amino acids such as valine and methionine (Yu et al., 2018). Skrede, Sahlstrm, 527 Ahlstrøm, Connor, & Skrede (2007) used mink (Mustela vison) as an animal model to 528 529 demonstrate that sourdough fermentation had positive nutritional implications by limiting the effects of anti-nutrients, and improving digestibility and energy utilization. Rizzello et al. (2019) 530 recruited 36 healthy volunteers who underwent an *in vivo* challenge in response to bread 531 ingestion. Sourdough bread with moderate acidification stimulated more appetite and induced 532 lower satiety. The sourdough bread with most intense acidic taste induced the highest fullness 533 perception in the shortest time. Gall bladder response did not differ among breads, while gastric 534 535 emptying was faster with sourdough vs. baker's yeast breads. Oro-cecal transit was prolonged for baker's yeast bread and faster for sourdough breads, especially when made with long-time 536 fermentation whose transit lasted ca. 20 min less than baker's yeast bread. Differences in 537 carbohydrate digestibility and absorption determined different post-prandial glycaemia 538 responses. Sourdough breads showed the lowest values. After ingesting sourdough breads, which 539

had the highest total FAA content, the levels of FAA in blood plasma maintained constantly at 540 high levels for extended time. While the improvement of the digestibility is evident, the 541 mechanisms promoting this are less definable. Biological acidification per se or through the 542 indirect activation of flour endogenous proteases, secondary proteolysis through a portfolio of 543 lactic acid bacteria peptidases and, more in general, modification of the gluten network, which 544 becomes more susceptible to digestive enzymes, are some plausible explanations. 545 546 As the triggering factor for several disorders, gluten as well was targeted. A number of research articles (41) aimed at exploiting the potential of sourdough fermentation for its degradation. The 547 main evidences concerned the elimination of traces of gluten, which prevented cross 548 549 contamination in gluten-free products (Di Cagno et al., 2008), the partial hydrolysis of gluten (Rizzello, Curiel, et al., 2014), which improved the digestibility, and the full gluten digestion for 550 rendering gluten-free baked goods made with soft or durum wheat flour (Rizzello et al., 2007). 551 552 Selected strains of lactic acid bacteria, combined with food-grade fungal proteases, were capable of decreasing the residual content of gluten to less than 10 ppm under semi-liquid sourdough 553 fermentation lasting ca. 24 h. Three clinical challenges (Di Cagno et al., 2010; Greco et al., 2011; 554 Mandile et al., 2017), based on immunological and serological analyses and biopsy specimens on 555 celiac patients, demonstrated the absolute safety of baked goods made with fully hydrolyzed soft 556 and durum flours. 557

558 8.5. Degradation of anti-nutritional factors

Although very rich in nutrients, cereals, pseudo-cereals and legumes also contain anti-nutritional factors (ANF), which in part limits their consumption or cause severe disorders. Apart from phytic acid (already discussed in paragraph 8.1), raffinose, condensed tannins, vicine and convicine, saponins and trypsin inhibitors are the main ANF, whose presence and amount

563 depend on the vegetable matrix. Raffinose is not digestible by pancreatic enzymes but fermentable by gas-producing bacteria in the large intestine, causing gut disorders. Condensed 564 tannins and trypsin inhibitors inhibit digestive enzymes leading to poor digestibility of proteins 565 and other nutrients. Biologically active glycosides such as saponins, vicine and convicine cause 566 the hemolysis of red blood cells and form complexes with nutrients, preventing their absorption. 567 In particular, vicine and convicine are precursors of the aglycones divicine and isouramil, the 568 569 main causing agent of fauvism, a genetic condition leading to severe hemolysis after fava bean 570 ingestion. While heat treatments fully inactivate trypsin inhibitors, the others ANF are heat resistant. De-hulling, soaking, germination, air classification and extrusion are only in part 571 572 effective in decreasing the content of ANF, therefore, other options, including sourdough fermentation, underwent investigation. We retrieved 58 research articles dealing with the 573 capability of sourdough fermentation to degrade ANF. Apart from lactic acidification, mainly 574 575 sourdough lactic acid bacteria harbor a portfolio of enzymes, likely α -galactosidase, β glucosidase and tannases, which have the potential to counteract the presence of several AFN. 576 Sourdough fermentation with selected L. plantarum fully degraded vicine and convicine within 577 48 h, with aglycone derivatives not detectable (Rizzello, Losito, et al., 2016). Ex-vivo assays on 578 human blood confirmed the lack of toxicity of sourdough fermented fava bean. The sourdough 579 fermentation of whole grains of wheat, barley, chickpea, lentils and quinoa, and yellow and red 580 581 lentil, white and black bean, chickpea, and pea flours decreased the concentrations of raffinose (62-80%), condensed tannins (23%), trypsin inhibitors (23-44%) and saponins (68%) 582 (Montemurro, Pontonio, Gobbetti, & Rizzello, 2019). The combination of gelatinization and 583 sourdough fermentation further lowered the residual concentrations of condensed tannins (62%) 584 and trypsin inhibitors (70%) (De Pasquale, Pontonio, Gobbetti, & Rizzello, 2020). Literature 585

data came to the convergent belief that, as mild and cost-effective bioprocessing, the sourdough
fermentation is the most promising option to degrade a large spectrum of ANF for industrial
applications.

Although the fundamental research has yet to discover some of the sourdough potential dealing with nutritional attributes, currently it would be worthwhile to correctly and convincing deliver the above nutritional findings both to industries and, especially, consumers.

592 9. Conclusions

Almost 30 years of research activity on sourdough fermentation, with more than 1,200 research 593 articles published, is a suitable time to get some conclusions, which would represent milestones 594 for scientists, industries and consumers. Because of its unique and complex microbial 595 596 composition, which establishes itself with the baker care, the sourdough has undoubted 597 advantages with respect to any other leavening agents, in terms of sensory, rheology, shelf life and multiple nutritional attributes. While further nutritional features need consolidation or 598 discovering, one of the interim prospects would concern the investigation of the complex 599 metabolic interactions among dominant lactic acid bacteria and yeasts and less abundant satellite 600 members, which should depict what we may define the sourdough fermentome. This will 601 602 improve the performance and, at the same time, will favor longer stability and shorter time of fermentation, which certainly will spread the use at artisanal and industrial levels. 603

604 **Declaration**

605 There is no conflict of interest in submission of this manuscript.

606 Funding sources

This research did not receive any specific grant from funding agencies in the public, commercial,or not-for-profit sectors.

609 Author contributions

Kashika Arora: Conceptualization, Investigation, Writing - original draft preparation. Hana
Ameur: Conceptualization, Investigation, Writing - original draft preparation. Andrea Polo:
Conceptualization, Investigation, Writing – review and editing. Raffaella Di Cagno: Writing –
review and editing. Carlo Giuseppe Rizzello: Writing – review and editing. Marco Gobbetti:
Conceptualization, Investigation, Writing - original draft preparation, Supervision.

615 **References**

- 616 1. Archetti, G. (2014). La civiltà del pane. Storia, tecniche e simboli dal Mediterraneo
- 617 all'Atlantico. In *Proceedings of the International Conference, Brescia, 1-6 December*
- 618 2014, Fondazione Centro Italiano di Studi sull'Alto Medioevo, Centro Studi Longobardi,
- 619 *Ricerche, Spoleto* (p. 2076). Retrieved from http://hdl.handle.net/10807/122721
- 620 2. Axel, C., Brosnan, B., Zannini, E., Peyer, L. C., Furey, A., Coffey, A., & Arendt, E. K.
- 621 (2016). Antifungal activities of three different *Lactobacillus* species and their production
- 622 of antifungal carboxylic acids in wheat sourdough. *Applied Microbiology and*
- 623 *Biotechnology*, 100, 1701–1711. https://doi.org/10.1007/s00253-015-7051-x
- 624 3. Axel, C., Röcker, B., Brosnan, B., Zannini, E., Furey, A., Coffey, A., & Arendt, E. K.
- 625 (2015). Application of *Lactobacillus amylovorus* DSM19280 in gluten-free sourdough
- bread to improve the microbial shelf life. *Food Microbiology*, 47, 36–44.
- 627 https://doi.org/10.1016/j.fm.2014.10.005
- 4. Barber, S., Torner, M. J., Martínez-Anaya, M. A., & de Barber, C. B. (1989). Microflora

629		of the sour dough of wheat flour bread IX. Biochemical characteristics and baking
630		performance of wheat doughs elaborated with mixtures of pure microorganisms.
631		Zeitschrift Für Lebensmittel-Untersuchung Und -Forschung, 189, 6–11.
632		https://doi.org/10.1007/BF01120439
633	5.	Bartkiene, E., Bartkevics, V., Krungleviciute, V., Pugajeva, I., Zadeike, D., &
634		Juodeikiene, G. (2017). Lactic acid bacteria combinations for wheat sourdough
635		preparation and their influence on wheat bread quality and acrylamide formation. Journal
636		of Food Science, 82, 2371-2378. https://doi.org/10.1111/1750-3841.13858
637	6.	Batifoulier, F., Verny, M. A., Chanliaud, E., Rémésy, C., & Demigné, C. (2005). Effect
638		of different breadmaking methods on thiamine, riboflavin and pyridoxine contents of
639		wheat bread. Journal of Cereal Science, 42, 101–108.
640		https://doi.org/10.1016/j.jcs.2005.03.003
641	7.	Baye, K., Mouquet-Rivier, C., Icard-Vernière, C., Rochette, I., & Guyot, J. P. (2013).
642		Influence of flour blend composition on fermentation kinetics and phytate hydrolysis of
643		sourdough used to make injera. Food Chemistry, 138, 430-436.
644		https://doi.org/10.1016/j.foodchem.2012.10.075
645	8.	Cavallo, N., De Angelis, M., Calasso, M., Quinto, M., Mentana, A., Minervini, F.,
646		Cappelle, S., & Gobbetti, M. (2017). Microbial cell-free extracts affect the biochemical
647		characteristics and sensorial quality of sourdough bread. Food Chemistry, 237, 159–168.
648		https://doi.org/10.1016/j.foodchem.2017.05.089
649	9.	Chen, X. Y., Levy, C., & Gänzle, M. G. (2016). Structure-function relationships of
650		bacterial and enzymatically produced reuterans and dextran in sourdough bread baking
651		application. International Journal of Food Microbiology, 239, 95–102.

652	https://doi.org/10.1016/j.ijfoodmicro.2016.06.010
653	10. Chinma, C. E., Anuonye, J. C., Ocheme, O. B., Abdullahi, S., Oni, S., Yakubu, C. M., &
654	Azeez, S. O. (2016). Effect of acha and bambara nut sourdough flour addition on the
655	quality of bread. LWT - Food Science and Technology, 70, 223–228.
656	https://doi.org/10.1016/j.lwt.2016.02.050
657	11. Clarke, C. I., Schober, T. J., & Arendt, E. K. (2002). Effect of single strain and traditional
658	mixed strain starter cultures on rheological properties of wheat dough and on bread
659	quality. Cereal Chemistry, 79, 640-647. https://doi.org/10.1094/CCHEM.2002.79.5.640
660	12. Coda, R., Cassone, A., Rizzello, C. G., Nionelli, L., Cardinali, G., & Gobbetti, M. (2011).
661	Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during
662	sourdough fermentation: Identification of novel compounds and long-term effect during
663	storage of wheat bread. Applied and Environmental Microbiology, 77, 3484–3492.
664	https://doi.org/10.1128/AEM.02669-10
665	13. Coda, R., Rizzello, C. G., Di Cagno, R., Trani, A., Cardinali, G., & Gobbetti, M. (2013).
666	Antifungal activity of Meyerozyma guilliermondii: Identification of active compounds
667	synthesized during dough fermentation and their effect on long-term storage of wheat
668	bread. Food Microbiology, 33, 243–251. https://doi.org/10.1016/j.fm.2012.09.023
669	14. Coda, R., Rizzello, C. G., & Gobbetti, M. (2010). Use of sourdough fermentation and
670	pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ -
671	aminobutyric acid (GABA). International Journal of Food Microbiology, 137, 236–245.
672	https://doi.org/10.1016/j.ijfoodmicro.2009.12.010
673	15. Coda, R., Rizzello, C. G., Pinto, D., & Gobbetti, M. (2011). Selected lactic acid bacteria
674	synthesize antioxidant peptides during sourdough fermentation of cereal flours. Applied

675	and Environmental Microbiology, 78, 1087–1096. https://doi.org/10.1128/AEM.06837-
676	11
677	16. Coda, R., Xu, Y., Moreno, D. S., Mojzita, D., Nionelli, L., Rizzello, C. G., & Katina, K.
678	(2018). Performance of Leuconostoc citreum FDR241 during wheat flour sourdough type
679	I propagation and transcriptional analysis of exopolysaccharides biosynthesis genes.
680	Food Microbiology, 76, 164-172. https://doi.org/10.1016/j.fm.2018.05.003
681	17. Corsetti, A., Gobbetti, M., Balestrieri, F., Paoletti, F., Russi, L., & Rossi, J. (1998).
682	Sourdough lactic acid bacteria effects on bread firmness and staling. Journal of Food
683	Science, 63, 347-351. https://doi.org/10.1111/j.1365-2621.1998.tb15739.x
684	18. Corsetti, A., Gobbetti, M., De Marco, B., Balestrieri, F., Paoletti, F., Russi, L., & Rossi,
685	J. (2000). Combined effect of sourdough lactic acid bacteria and additives bread firmness
686	and staling. Journal of Agricultural and Food Chemistry, 48, 3044–3051.
687	https://doi.org/10.1021/jf990853e
688	19. Corsetti, A., Gobbetti, M., Rossi, J., & Damiani, P. (1998). Antimould activity of
689	sourdough lactic acid bacteria: Identification of a mixture of organic acids produced by
690	Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology, 50, 253–256.
691	https://doi.org/10.1007/s002530051285
692	20. Corsetti, A., Settanni, L., Chaves López, C., Felis, G. E., Mastrangelo, M., & Suzzi, G.
693	(2007). A taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum)
694	kernels and non-conventional flours. Systematic and Applied Microbiology, 30, 561-571.
695	https://doi.org/10.1016/j.syapm.2007.07.001
696	21. Corsetti, A., & Settanni, L. (2007). Lactobacilli in sourdough fermentation. Food
697	Research International, 40, 539-558. https://doi.org/10.1016/j.foodres.2006.11.001

698	22. Crowley, P., Schober, T. J., Clarke, C. I., & Arendt, E. K. (2002). The effect of storage
699	time on textural and crumb grain characteristics of sourdough wheat bread. European
700	Food Research and Technology, 214, 489–496. https://doi.org/10.1007/s00217-002-
701	0500-7
702	23. Curiel, J. A., Coda, R., Centomani, I., Summo, C., Gobbetti, M., & Rizzello, C. G.
703	(2015). Exploitation of the nutritional and functional characteristics of traditional Italian
704	legumes: The potential of sourdough fermentation. International Journal of Food
705	Microbiology, 196, 51-61. https://doi.org/10.1016/j.ijfoodmicro.2014.11.032
706	24. Debonne, E., Van Bockstaele, F., De Leyn, I., Devlieghere, F., & Eeckhout, M. (2018).
707	Validation of in-vitro antifungal activity of thyme essential oil on Aspergillus niger and
708	Penicillium paneum through application in par-baked wheat and sourdough bread. LWT -
709	Food Science and Technology, 87, 368–378. https://doi.org/10.1016/j.lwt.2017.09.007
710	25. Dal Bello, F., Clarke, C. I., Ryan, L. A. M., Ulmer, H., Schober, T. J., Ström, K., Sjögren,
711	J., Van Sinderen, D., Schnürer, J., & Arendt, E. K. (2007). Improvement of the quality
712	and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus
713	plantarum FST 1.7. Journal of Cereal Science, 45, 309–318.
714	https://doi.org/10.1016/j.jcs.2006.09.004
715	26. De Pasquale, I., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2020). Nutritional and
716	functional effects of the lactic acid bacteria fermentation on gelatinized legume flours.
717	International Journal of Food Microbiology, 316, 108426.
718	https://doi.org/10.1016/j.ijfoodmicro.2019.108426
719	27. De Vuyst, L., & Neysens, P. (2005). The sourdough microflora: Biodiversity and
720	metabolic interactions. Trends in Food Science and Technology, 16, 43-56.

721	https://doi.org/10.1016/j.tifs.2004.02.012
722	28. De Vuyst, L., Schrijvers, V., Paramithiotis, S., Hoste, B., Vancanneyt, M., Swings, J.,
723	Kalantzopoulos, G., Tsakalidou, E., & Messens, W. (2002). The biodiversity of lactic
724	acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and
725	metabolite formation. Applied and Environmental Microbiology, 68, 6059–6069.
726	https://doi.org/10.1128/AEM.68.12.6059-6069.2002
727	29. De Vuyst, L., Van Kerrebroeck, S., & Leroy, F. (2017). Microbial ecology and process
728	technology of sourdough fermentation. Advances in Applied Microbiology, 100, 49–160.
729	https://doi.org/10.1016/bs.aambs.2017.02.003
730	30. Di Cagno, R., Barbato, M., Di Camillo, C., Rizzello, C. G., De Angelis, M., Giuliani, G.,
731	De Vincenzi, M., Gobbetti, M., & Cucchiara, S. (2010). Gluten-free sourdough wheat
732	baked goods appear safe for young celiac patients: A pilot study. Journal of Pediatric
733	Gastroenterology and Nutrition, 51, 777–783.
734	https://doi.org/10.1097/MPG.0b013e3181f22ba4
735	31. Di Cagno, R., Rizzello, C. G., De Angelis, M., Cassone, A., Giuliani, G., Benedusi, A.,
736	Limitone, A., Surico, R. F., & Gobbetti, M. (2008). Use of selected sourdough strains of
737	Lactobacillus for removing gluten and enhancing the nutritional properties of gluten-free
738	bread. Journal of Food Protection, 71, 1491–1495. https://doi.org/10.4315/0362-028X-
739	71.7.1491
740	32. Ehrmann, M., Ludwig, W., & Schleifer, K. H. (1994). Reverse dot blot hybridization: A
741	useful method for the direct identification of lactic acid bacteria in fermented food. FEMS
742	Microbiology Letters, 117, 143-149. https://doi.org/10.1111/j.1574-6968.1994.tb06756.x
743	33. Eleazu, C. O. (2016). The concept of low glycemic index and glycemic load foods as

744	panacea for type 2 diabetes mellitus; prospects, challenges and solutions. African Health
745	Sciences, 16, 468-479. https://doi.org/10.4314/ahs.v16i2.15
746	34. Ferchichi, M., Valcheva, R., Prévost, H., Onno, B., & Dousset, X. (2007). Molecular
747	identification of the microbiota of French sourdough using temporal temperature gradient
748	gel electrophoresis. Food Microbiology, 24, 678-686.
749	https://doi.org/10.1016/j.fm.2007.04.001
750	35. Gabriele, M., Sparvoli, F., Bollini, R., Lubrano, V., Longo, V., & Pucci, L. (2019). The
751	impact of sourdough fermentation on non-nutritive compounds and antioxidant activities
752	of flours from different Phaseolus vulgaris L. genotypes. Journal of Food Science, 84,
753	1929–1936. https://doi.org/10.1111/1750-3841.14672
754	36. Gaglio, R., Alfonzo, A., Barbera, M., Franciosi, E., Francesca, N., Moschetti, G., &
755	Settanni, L. (2020). Persistence of a mixed lactic acid bacterial starter culture during
756	lysine fortification of sourdough breads by addition of pistachio powder. Food
757	Microbiology, 86, 103349. https://doi.org/10.1016/j.fm.2019.103349
758	37. Gaglio, R., Cirlincione, F., Di Miceli, G., Franciosi, E., Di Gerlando, R., Francesca, N.,
759	Settanni, L., & Moschetti, G. (2020). Microbial dynamics in durum wheat kernels during
760	aging. International Journal of Food Microbiology.
761	https://doi.org/10.1016/j.ijfoodmicro.2020.108631
762	38. Gänzle, M. G., Loponen, J., & Gobbetti, M. (2008). Proteolysis in sourdough
763	fermentations: Mechanisms and potential for improved bread quality. Trends in Food
764	Science and Technology, 19, 513-521. https://doi.org/10.1016/j.tifs.2008.04.002
765	39. Gatto, V., & Torriani, S. (2004). Microbial population changes during sourdough
766	fermentation monitored by DGGE analysis of 16S and 26S rRNA gene fragments. Annals

767	of Microbiology,	54, 31–42.

- 40. Gobbetti, M. (1998). The sourdough microflora: Interactions of lactic acid bacteria and
 yeasts. *Trends in Food Science & Technology*, *9*, 267–274.
- 770 https://doi.org/10.1016/S0924-2244(98)00053-3
- 41. Gobbetti, M., Lavermicocca, P., Minervini, F., De Angelis, M., & Corsetti, A. (2000).
- Arabinose fermentation by *Lactobacillus plantarum* in sourdough with added pentosans
 and α-L-arabinofuranosidase: A tool to increase the production of acetic acid. *Journal of*
- 774 *Applied Microbiology*, 88, 317–324. https://doi.org/10.1046/j.1365-2672.2000.00962.x
- 42. Greco, L., Gobbetti, M., Auricchio, R., Di Mase, R., Landolfo, F., Paparo, F., Di Cagno,
- 776 R., De Angelis, M., Rizzello, C.G., Cassone, A., Terrone G., Timpone, L., D'Aniello, M.,
- 777 Maglio, M., Troncone, R., & Auricchio, S. (2011). Safety for patients with celiac disease
- of baked goods made of wheat flour hydrolyzed during food processing. *Clinical*
- *Gastroenterology and Hepatology*, 9, 24–29. https://doi.org/10.1016/j.cgh.2010.09.025
- 43. Guidotti, M. C. (2005). L'alimentazione nell'antico Egitto. *Cibi e Sapèori Nel Mondo Antico*, 18–24.
- 44. Kaditzky, S., & Vogel, R. F. (2008). Optimization of exopolysaccharide yields in
 sourdoughs fermented by lactobacilli. *European Food Research and Technology*, 228,
 291–299. https://doi.org/10.1007/s00217-008-0934-7
- 45. Katina, K., Maina, N. H., Juvonen, R., Flander, L., Johansson, L., Virkki, L., Tenkanen,
- M., & Laitila, A. (2009). In situ production and analysis of *Weissella confusa* dextran in
 wheat sourdough. *Food Microbiology*, *26*, 734–743.
- 788 https://doi.org/10.1016/j.fm.2009.07.008
- 46. Katina, K., Salmenkallio-Marttila, M., Partanen, R., Forssell, P., & Autio, K. (2006).

790	Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT - Food
791	Science and Technology, 39, 479-491. https://doi.org/10.1016/j.lwt.2005.03.013
792	47. Katina, K. (2005). Sourdough: A tool for the improved flavour, texture and shelf-life of
793	wheat bread. VTT Publications.
794	48. Katina, K., Heiniö, RL., Autio, K., & Poutanen, K. (2006). Optimization of sourdough
795	process for improved sensory profile and texture of wheat bread. LWT - Food Science
796	and Technology, 39, 1189–1202. https://doi.org/10.1016/j.lwt.2005.08.001
797	49. Korakli, M., Rossmann, A., Gänzle, M. G., & Vogel, R. F. (2001). Sucrose metabolism
798	and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus
799	sanfranciscensis. Journal of Agricultural and Food Chemistry, 49, 5194–5200.
800	https://doi.org/10.1021/jf0102517
801	50. Korcari, D., Ricci, G., Quattrini, M., & Fortina, M. G. (2020). Microbial consortia
802	involved in fermented spelt sourdoughs: dynamics and characterization of yeasts and
803	lactic acid bacteria. Letters in Applied Microbiology, 70, 48-54.
804	https://doi.org/10.1111/lam.13241
805	51. Korem, T., Zeevi, D., Zmora, N., Weissbrod, O., Bar, N., Lotan-Pompan, M., Avnit-Sagi,
806	T., Kosower, N., Malka, G., Rein, M., Suez, J., Z Goldberg, B., Weinberger, A., A Levy,
807	A., Elinav, E., & Segal, E. (2017). Bread affects clinical parameters and induces gut
808	microbiome-associated personal glycemic responses. Cell Metabolism, 25, 1243-1253.
809	https://doi.org/10.1016/j.cmet.2017.05.002
810	52. Larsson, M., & Sandberg, A. S. (1991). Phytate reduction in bread containing oat flour,
811	oat bran or rye bran. Journal of Cereal Science, 14, 141-149.
812	https://doi.org/10.1016/S0733-5210(09)80135-5

813	53. Lattanzi, A., Minervini, F., Di Cagno, R., Diviccaro, A., Antonielli, L., Cardinali, G.,
814	Cappelle, S., De Angelis, M., & Gobbetti, M. (2013). The lactic acid bacteria and yeast
815	microbiota of eighteen sourdoughs used for the manufacture of traditional Italian sweet
816	leavened baked goods. International Journal of Food Microbiology, 163, 71-79.
817	https://doi.org/10.1016/j.ijfoodmicro.2013.02.010
818	54. Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., & Gobbetti, M.
819	(2000). Purification and characterization of novel antifungal compounds from the
820	sourdough Lactobacillus plantarum strain 21B. Applied and Environmental
821	Microbiology, 66, 4084-4090. https://doi.org/10.1128/AEM.66.9.4084-4090.2000
822	55. Lhomme, E., Lattanzi, A., Dousset, X., Minervini, F., De Angelis, M., Lacaze, G., Onno,
823	B., & Gobbetti, M. (2015). Lactic acid bacterium and yeast microbiotas of sixteen French
824	traditional sourdoughs. International Journal of Food Microbiology, 215, 161–170.
825	https://doi.org/10.1016/j.ijfoodmicro.2015.09.015
826	56. Liljeberg, H., & Björck, I. (1998). Delayed gastric emptying rate may explain improved
827	glycaemia in healthy subjects to a starchy meal with added vinegar. European Journal of
828	Clinical Nutrition, 52, 368-371. https://doi.org/10.1038/sj.ejcn.1600572
829	57. Liljeberg, H. G. M., Åkerberg, A., & Björck, I. M. E. (1996). Resistant starch formation
830	in bread as influenced by choice of ingredients or baking conditions. Food Chemistry, 56,
831	389-394. https://doi.org/10.1016/0308-8146(95)00199-9
832	58. Liljeberg, H. G. M., Lönner, C. H., & Björck, I. M. E. (1995). Sourdough fermentation or
833	addition of organic acids or corresponding salts to bread improves nutritional properties
834	of starch in healthy humans. The Journal of Nutrition, 125, 1503–1511.
835	https://doi.org/10.1093/jn/125.6.1503

836	59.	Lingström, P., Liljeberg, H. G. M., Björck, I. M. E., & Birkhed, D. (2000). The
837		relationship between plaque pH and glycemic index of various breads. Caries Research,
838		34, 75-81. https://doi.org/10.1159/000016573
839	60.	Lopez, H. W., Ouvry, A., Bervas, E., Guy, C., Messager, A., Demigne, C., & Remesy, C.
840		(2000). Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and
841		improve calcium and magnesium solubility from whole wheat flour. Journal of
842		Agricultural and Food Chemistry, 48, 2281-2285. https://doi.org/10.1021/jf000061g
843	61.	Mamhoud, A., Nionelli, L., Bouzaine, T., Hamdi, M., Gobbetti, M., & Rizzello, C. G.
844		(2016). Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of
845		the use as starters for sourdough fermentation. International Journal of Food
846		Microbiology, 225, 9-19. https://doi.org/10.1016/j.ijfoodmicro.2016.03.004
847	62.	Mandile, R., Picascia, S., Parrella, C., Camarca, A., Gobbetti, M., Greco, L., Troncone,
848		R., Gianfrani, C., & Auricchio, R. (2017). Lack of immunogenicity of hydrolysed wheat
849		flour in patients with coeliac disease after a short-term oral challenge. Alimentary
850		Pharmacology and Therapeutics, 46, 440-446. https://doi.org/10.1111/apt.14175
851	63.	Mantzourani, I., Plessas, S., Odatzidou, M., Alexopoulos, A., Galanis, A., Bezirtzoglou,
852		E., & Bekatorou, A. (2019). Effect of a novel Lactobacillus paracasei starter on
853		sourdough bread quality. Food Chemistry, 271, 259–265.
854	64.	Martínez, C., Ros, G., Periago, M. J., López, G., Ortuño, J., & Rincón, F. (1996). Phytic
855		acid in human nutrition. Food Science and Technology International, 2, 201–209.
856		https://doi.org/10.1177/108201329600200402
857	65.	Meroth, C. B., Walter, J., Hertel, C., Brandt, M. J., & Hammes, W. P. (2003). Monitoring
858		the bacterial population dynamics in sourdough fermentation processes by PCR-

859	denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 69,
860	7453-7461. https://doi.org/10.1128/AEM.69.12.7453-7461.2003
861	66. Minervini, F., De Angelis, M., Di Cagno, R., & Gobbetti, M. (2014). Ecological
862	parameters influencing microbial diversity and stability of traditional sourdough.
863	International Journal of Food Microbiology, 171, 136–146.
864	https://doi.org/10.1016/j.ijfoodmicro.2013.11.021
865	67. Minervini, F., Di Cagno, R., Lattanzi, A., De Angelis, M., Antonielli, L., Cardinali, G.,
866	Cappelle, S., & Gobbetti, M. (2012). Lactic acid bacterium and yeast microbiotas of 19
867	sourdoughs used for traditional/typical Italian breads: Interactions between ingredients
868	and microbial species diversity. Applied and Environmental Microbiology, 78, 1251-
869	1264. https://doi.org/10.1128/AEM.07721-11
870	68. Montemurro, M., Celano, G., De Angelis, M., Gobbetti, M., Rizzello, C. G., & Pontonio,
871	E. (2020). Selection of non-Lactobacillus strains to be used as starters for sourdough
872	fermentation. Food Microbiology, 90, 103491. https://doi.org/10.1016/j.fm.2020.103491
873	69. Montemurro, M., Pontonio, E., Gobbetti, M., & Rizzello, C. G. (2019). Investigation of
874	the nutritional, functional and technological effects of the sourdough fermentation of
875	sprouted flours. International Journal of Food Microbiology, 302, 47-58.
876	https://doi.org/10.1016/j.ijfoodmicro.2018.08.005
877	70. Moore, M., Dal Bello, F., & Arendt, E. K. (2008). Sourdough fermented by Lactobacillus
878	plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. European
879	Food Research and Technology, 226, 1309–1316. https://doi.org/10.1007/s00217-007-
880	0659-z
881	71. Moroni, A. V., Zannini, E., Sensidoni, G., & Arendt, E. K. (2012). Exploitation of

882	buckwheat sourdough for the production of wheat bread. European Food Research and
883	Technology, 235, 659-668. https://doi.org/10.1007/s00217-012-1790-z
884	72. Nami, Y., Gharekhani, M., Aalami, M., & Hejazi, M. A. (2019). Lactobacillus-fermented
885	sourdoughs improve the quality of gluten-free bread made from pearl millet flour.
886	Journal of Food Science and Technology, 56, 4057–4067.
887	https://doi.org/10.1007/s13197-019-03874-8
888	73. Nilsson, A., Östman, E., Preston, T., & Björck, I. (2008). Effects of GI vs. content of
889	cereal fibre of the evening meal on glucose tolerance at a subsequent standardized
890	breakfast. European Journal of Clinical Nutrition, 62, 712–720.
891	https://doi.org/10.1038/sj.ejcn.1602784
892	74. Nionelli, L., Montemurro, M., Pontonio, E., Verni, M., Gobbetti, M., & Rizzello, C. G.
893	(2018). Pro-technological and functional characterization of lactic acid bacteria to be
894	used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread
895	fortification. International Journal of Food Microbiology, 279, 14–25.
896	https://doi.org/10.1016/j.ijfoodmicro.2018.04.036
897	75. Noshirvani, N., Ghanbarzadeh, B., Rezaei Mokarram, R., & Hashemi, M. (2017). Novel
898	active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite
899	for increasing the shelf life of bread. Food Packaging and Shelf Life, 11, 106-114.
900	https://doi.org/10.1016/j.fpsl.2017.01.010
901	76. Pontonio, E., Dingeo, C., Di Cagno, R., Blandino, M., Gobbetti, M., & Rizzello, C. G.
902	(2020). Brans from hull-less barley, emmer and pigmented wheat varieties: From by-
903	products to bread nutritional improvers using selected lactic acid bacteria and xylanase.
904	International Journal of Food Microbiology, 313, 108384.

905	https://doi.org/10.1016/j.ijfoodmicro.2019.108384
906	77. Pontonio, E., Nionelli, L., Curiel, J. A., Sadeghi, A., Di Cagno, R., Gobbetti, M., &
907	Rizzello, C. G. (2015). Iranian wheat flours from rural and industrial mills: Exploitation
908	of the chemical and technology features, and selection of autochthonous sourdough
909	starters for making breads. Food Microbiology, 47, 99–110.
910	https://doi.org/10.1016/j.fm.2014.10.011
911	78. Principato, L., Garrido, G. D., Massari, M., Dordoni, R., & Spigno, G. (2019). Effect of
912	commercial dried sourdoughs on structural characteristics of wheat bread. Chemical
913	Engineering Transactions, 75, 349-354. https://doi.org/10.3303/CET1975059
914	79. Quattrini, M., Liang, N., Fortina, M. G., Xiang, S., Curtis, J. M., & Gänzle, M. G. (2019).
915	Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage
916	of bread. International Journal of Food Microbiology, 302, 8-14.
917	https://doi.org/10.1016/j.ijfoodmicro.2018.09.007
918	80. Ricci, A., Bernini, V., Maoloni, A., Cirlini, M., Galaverna, G., Neviani, E., & Lazzi, C.
919	(2019). Vegetable by-product lacto-fermentation as a new source of antimicrobial
920	compounds. Microorganisms, 7, 607. https://doi.org/10.3390/microorganisms7120607
921	81. Rinaldi, M., Paciulli, M., Caligiani, A., Scazzina, F., & Chiavaro, E. (2017). Sourdough
922	fermentation and chestnut flour in gluten-free bread: A shelf-life evaluation. Food
923	Chemistry, 224, 144–152. https://doi.org/10.1016/j.foodchem.2016.12.055
924	82. Rizzello, C. G., Calasso, M., Campanella, D., De Angelis, M., & Gobbetti, M. (2014).
925	Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for
926	enhancing the nutritional, texture and sensory characteristics of white bread.
927	International Journal of Food Microbiology, 180, 78–87.

928	https://doi.org/10.1016/j.ijfoodmicro.2014.04.005
929	83. Rizzello, C. G., Cassone, A., Coda, R., & Gobbetti, M. (2011). Antifungal activity of
930	sourdough fermented wheat germ used as an ingredient for bread making. Food
931	Chemistry, 127, 952–959. https://doi.org/10.1016/j.foodchem.2011.01.063
932	84. Rizzello, C. G., Cassone, A., Di Cagno, R., & Gobbetti, M. (2008). Synthesis of
933	angiotensin I-converting enzyme (ACE)-inhibitory peptides and γ -aminobutyric acid
934	(GABA) during sourdough fermentation by selected lactic acid bacteria. Journal of
935	Agricultural and Food Chemistry, 56, 6936–6943. https://doi.org/10.1021/jf800512u
936	85. Rizzello, C. G., Curiel, J. A., Nionelli, L., Vincentini, O., Di Cagno, R., Silano, M.,
937	Gobbetti, M., & Coda, R. (2014). Use of fungal proteases and selected sourdough lactic
938	acid bacteria for making wheat bread with an intermediate content of gluten. Food
939	Microbiology, 37, 59-68. https://doi.org/10.1016/j.fm.2013.06.017
940	86. Rizzello, C. G., De Angelis, M., Di Cagno, R., Camarca, A., Silano, M., Losito, I., De
941	Vincenzi, De Bari, M. D., Palmisano, F., Maurano, F., Gianfrani, C., & Gobbetti, M.
942	(2007). Highly efficient gluten degradation by lactobacilli and fungal proteases during
943	food processing: New perspectives for celiac disease. Applied and Environmental
944	Microbiology, 73, 4499-4507. https://doi.org/10.1128/AEM.00260-07
945	87. Rizzello, C. G., Hernández-Ledesma, B., Fernández-Tomé, S., Curiel, J. A., Pinto, D.,
946	Marzani, B., Coda, R., & Gobbetti, M. (2015). Italian legumes: Effect of sourdough
947	fermentation on lunasin-like polypeptides. Microbial Cell Factories, 14, 168.
948	https://doi.org/10.1186/s12934-015-0358-6
949	88. Rizzello, C. G., Lavecchia, A., Gramaglia, V., & Gobbetti, M. (2015). Long-term fungal
950	inhibition by Pisum sativum flour hydrolysate during storage of wheat flour bread.

 https://doi.org/10.1128/AEM.04088-14 89. Rizzello, C. G., Losito, I., Facchini, L., Katina, K., Palmisano, F., Gobbetti, M., & Cool R. (2016). Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. <i>Scientific Reports</i>, <i>6</i>, 32452. https://doi.org/10.1038/srep32452 90. Rizzello, C. G., Nionelli, L., Coda, R., De Angelis, M., & Gobbetti, M. (2010). Effect sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. <i>Food Chemistry</i>, <i>119</i>, 1079–1089. https://doi.org/10.1016/j.foodchem.2009.08.016 	
 R. (2016). Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. <i>Scientific Reports</i>, <i>6</i>, 32452. https://doi.org/10.1038/srep32452 90. Rizzello, C. G., Nionelli, L., Coda, R., De Angelis, M., & Gobbetti, M. (2010). Effect sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. <i>Food Chemistry</i>, <i>119</i>, 1079–1089. 	
 faba bean flour. <i>Scientific Reports</i>, <i>6</i>, 32452. https://doi.org/10.1038/srep32452 90. Rizzello, C. G., Nionelli, L., Coda, R., De Angelis, M., & Gobbetti, M. (2010). Effect sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. <i>Food Chemistry</i>, <i>119</i>, 1079–1089. 	da,
 956 90. Rizzello, C. G., Nionelli, L., Coda, R., De Angelis, M., & Gobbetti, M. (2010). Effect 957 sourdough fermentation on stabilisation, and chemical and nutritional characteristics of 958 wheat germ. <i>Food Chemistry</i>, <i>119</i>, 1079–1089. 	f
 957 sourdough fermentation on stabilisation, and chemical and nutritional characteristics of 958 wheat germ. <i>Food Chemistry</i>, <i>119</i>, 1079–1089. 	
958 wheat germ. <i>Food Chemistry</i> , <i>119</i> , 1079–1089.	of
	of
959 https://doi.org/10.1016/j.foodchem.2009.08.016	
960 91. Rizzello, C. G., Portincasa, P., Montemurro, M., Di Palo, D. M., Lorusso, M. P., De	
961 Angelis, M., Bonfrate, L., Genot, B., & Gobbetti, M. (2019). Sourdough fermented	
breads are more digestible than those started with baker's yeast alone: An <i>in vivo</i>	
963 challenge dissecting distinct gastrointestinal responses. <i>Nutrients</i> , <i>11</i> , 2954.	
964 https://doi.org/10.3390/nu11122954	
965 92. Rodriguez-Rodriguez-Ramiro, I., Brearley, C. A., Bruggraber, S. F. A., Perfecto, A.,	
966 Shewry, P., & Fairweather-Tait, S. (2017). Assessment of iron bioavailability from	
967 different bread making processes using an <i>in vitro</i> intestinal cell model. <i>Food Chemist</i>	try,
968 228, 91–98. https://doi.org/10.1016/j.foodchem.2017.01.130	
969 93. Ryan, L. A. M., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P., & Arendt, E. I	K.
970 (2011). <i>Lactobacillus amylovorus</i> DSM 19280 as a novel food-grade antifungal agent	for
bakery products. <i>International Journal of Food Microbiology</i> , <i>146</i> , 276–283.	
972 https://doi.org/10.1016/j.ijfoodmicro.2011.02.036	
973 94. Sahin, A. W., Rice, T., Zannini, E., Lynch, K. M., Coffey, A., & Arendt, E. K. (2019).	•

974		Sourdough technology as a novel approach to overcome quality losses in sugar-reduced
975		cakes. Food and Function, 10, 4985-4997. https://doi.org/10.1039/c8fo02340a
976	95.	Salmenkallio-Marttila, M., Katina, K., & Autio, K. (2001). Effects of bran fermentation
977		on quality and microstructure of high-fiber wheat bread. Cereal Chemistry, 78, 429-435.
978		https://doi.org/10.1094/CCHEM.2001.78.4.429
979	96.	Scarnato, L., Montanari, C., Serrazanetti, D. I., Aloisi, I., Balestra, F., Del Duca, S., &
980		Lanciotti, R. (2017). New bread formulation with improved rheological properties and
981		longer shelf-life by the combined use of transglutaminase and sourdough. LWT - Food
982		Science and Technology, 81, 101-110. https://doi.org/10.1016/j.lwt.2017.03.042
983	97.	Settanni, L., Massitti, O., Van Sinderen, D., & Corsetti, A. (2005). In situ activity of a
984		bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between
985		lactic acid bacteria during sourdough fermentation. Journal of Applied Microbiology, 99,
986		670–681. https://doi.org/10.1111/j.1365-2672.2005.02647.x
987	98.	Skrede, A., Sahlstrm, S., Ahlstrøm, Ø., Connor, K. H., & Skrede, G. (2007). Effects of
988		lactic acid fermentation and gamma irradiation of barley on antinutrient contents and
989		nutrient digestibility in mink (Mustela vison) with and without dietary enzyme
990		supplement. Archives of Animal Nutrition, 61, 211-221.
991		https://doi.org/10.1080/17450390701297727
992	99.	Spicher, G. (1987). Die Mikroflora des Sauerteiges - XXII. Mitteilung: Die in
993		Weizensauerteigen vorkommenden Lactobacillen. Zeitschrift Für Lebensmittel-
994		Untersuchung Und -Forschung, 184, 300-303. https://doi.org/10.1007/BF01027667
995	100). Stanzer, D., Kazazić, S., Ivanuša, I., Mrvčić, J., & Hanousek Čiča, K. (2017).

996 Diversity of lactic acid bacteria on organic flours and application of isolates in sourdough

997	fermentation. Hrvatski Časopis Za Prehrambenu Tehnologiju, Biotehnologiju i		
998	Nutr	<i>icionizam</i> , <i>12</i> , 44–51.	
999	101.	Sugihara, T. F., Kline, L., & Miller, M. W. (1971). Microorganisms of the San	
1000	Fran	cisco sour dough bread process. I. Yeasts responsible for the leavening action.	
1001	Appl	ied Microbiology, 21, 456-458. https://doi.org/10.1128/AEM.21.3.456-458.1971	
1002	102.	Thiele, C., Gänzle, M. G., & Vogel, R. F. (2002). Contribution of sourdough	
1003	lacto	bacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant	
1004	for b	read flavor. Cereal Chemistry, 79, 45–51.	
1005	https	:://doi.org/10.1094/CCHEM.2002.79.1.45	
1006	103.	Ua-Arak, T., Jakob, F., & Vogel, R. F. (2017). Influence of levan-producing	
1007	aceti	c acid bacteria on buckwheat-sourdough breads. Food Microbiology, 65, 95–104.	
1008	https	:://doi.org/10.1016/j.fm.2017.02.002	
1009	104.	Ventimiglia, G., Alfonzo, A., Galluzzo, P., Corona, O., Francesca, N., Caracappa,	
1010	S., N	Ioschetti, G., & Settanni, L. (2015). Codominance of Lactobacillus plantarum and	
1011	oblig	gate heterofermentative lactic acid bacteria during sourdough fermentation. Food	
1012	Micr	robiology, 51, 57-68. https://doi.org/10.1016/j.fm.2015.04.011	
1013	105.	Vermeulen, N., Gänzle, M. G., & Vogel, R. F. (2007). Glutamine deamidation by	
1014	cerea	al-associated lactic acid bacteria. Journal of Applied Microbiology, 103, 1197–1205.	
1015	https	://doi.org/10.1111/j.1365-2672.2007.03333.x	
1016	106.	Vrancken, G., Rimaux, T., Weckx, S., Leroy, F., & De Vuyst, L. (2011).	
1017	Influ	ence of temperature and backslopping time on the microbiota of a type I propagated	
1018	labor	ratory wheat sourdough fermentation. Applied and Environmental Microbiology, 77,	
1019	2716	5–2726. https://doi.org/10.1128/AEM.02470-10	

1020	107.	Wang, Y., Compaoré-Sérémé, D., Sawadogo-Lingani, H., Coda, R., Katina, K., &
1021	Main	na, N. H. (2019). Influence of dextran synthesized in situ on the rheological,
1022	tech	nological and nutritional properties of whole grain pearl millet bread. Food
1023	Cher	nistry, 285, 221-230. https://doi.org/10.1016/j.foodchem.2019.01.126
1024	108.	Wang, Y., Sorvali, P., Laitila, A., Maina, N. H., Coda, R., & Katina, K. (2018).
1025	Dex	tran produced in situ as a tool to improve the quality of wheat-faba bean composite
1026	brea	d. Food Hydrocolloids, 84, 396–405. https://doi.org/10.1016/j.foodhyd.2018.05.042
1027	109.	Waters, D. M., Jacob, F., Titze, J., Arendt, E. K., & Zannini, E. (2012). Fibre,
1028	prote	ein and mineral fortification of wheat bread through milled and fermented brewer's
1029	spen	t grain enrichment. European Food Research and Technology, 235, 767–778.
1030	https	s://doi.org/10.1007/s00217-012-1805-9
1031	110.	Williams, B. A., Mikkelsen, D., Flanagan, B. M., & Gidley, M. J. (2019).
1032	"Die	tary fibre": Moving beyond the "soluble/insoluble" classification for monogastric
1033	nutri	tion, with an emphasis on humans and pigs. Journal of Animal Science and
1034	Biot	echnology, 10, 1-12. https://doi.org/10.1186/s40104-019-0350-9
1035	111.	Wolter, A., Hager, A. S., Zannini, E., & Arendt, E. K. (2014). Influence of
1036	sour	dough on in vitro starch digestibility and predicted glycemic indices of gluten-free
1037	brea	ds. Food and Function, 5, 564-572. https://doi.org/10.1039/c3fo60505a
1038	112.	Yu, Y., Wang, L., Qian, H., Zhang, H., & Qi, X. (2018). Contribution of
1039	spon	taneously-fermented sourdoughs with pear and navel orange for the bread-making.
1040	LWT	- Food Science and Technology, 89, 336–343.
1041	https	s://doi.org/10.1016/j.lwt.2017.11.001
1042	113.	Zhang, G., Zhang, W., Sadiq, F. A., Arbab, S. H., & He, G. (2019). Microbiota

1043	succession and metabolite changes during the traditional sourdough fermentation of
1044	Chinese steamed bread. CYTA - Journal of Food, 17, 172–179.
1045	https://doi.org/10.1080/19476337.2019.1569166
1046	114. Zhao, C. J., & Gänzle, M. G. (2016). Synthesis of taste-active γ-glutamyl
1047	dipeptides during sourdough fermentation by Lactobacillus reuteri. Journal of
1048	Agricultural and Food Chemistry, 64, 7561–7568.
1049	https://doi.org/10.1021/acs.jafc.6b02298
1050	115. Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B.,
1051	Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts,
1052	S., Felis, G., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus
1053	Lactobacillus: Description of 23 novel genera, emended description of the genus
1054	Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae.
1055	International Journal of Systematic and Evolutionary Microbiology, 70, 2782–2858.
1056	https://doi.org/10.1099/ijsem.0.004107

1057 **Figure captions**

Figure 1. Worldwide map of sourdough products (salty and sweet). Countries with sourdough
products subjected to characterization are in dark gray, and the total number of research articles
in each country is within brackets.

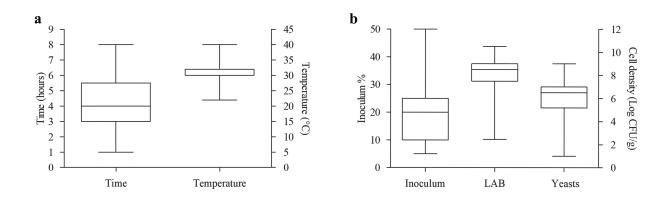
Figure 2. Box plots showing the time and temperature (A), and percentage of inoculum and final
cell densities of lactic acid bacteria (LAB) and yeasts (B), which characterize the sourdough
fermentation.

Figure 3. Pie chart showing the identified (A) *Lactobacillus* and (B) yeast species, isolated from
sourdoughs in the last 30 years. The number of research articles reporting their identification are

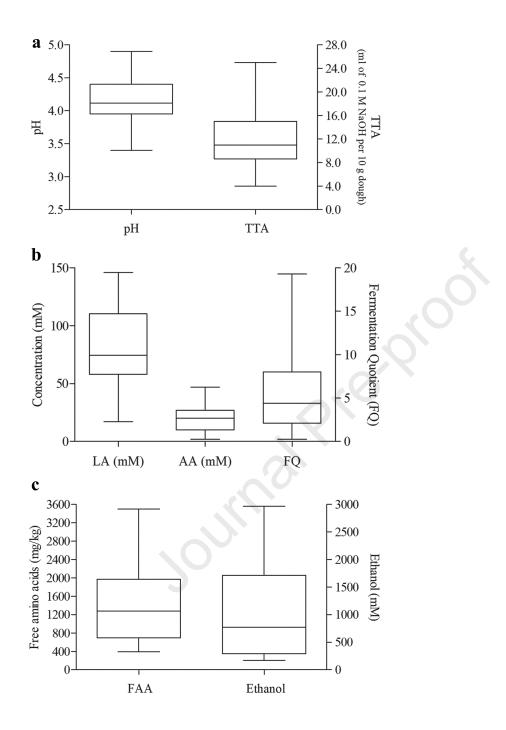
1066 within brackets. Word cloud represents the corresponding species with font size depicting the

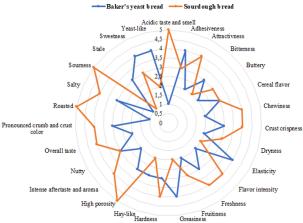
1067 number of research articles. Stars (red color) indicates species identified in \leq 6 research articles

1068 (*Lactobacillus* species) and 1 research article (yeast species).

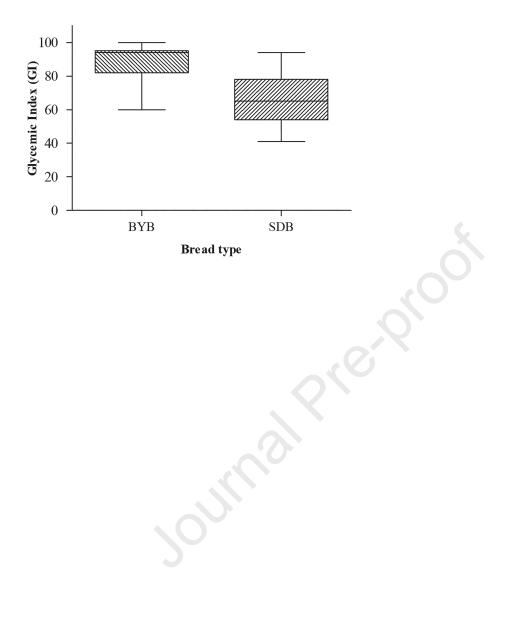

- 1069 Figure 4. Box plots showing the range of some biochemical parameters used to characterize the
- sourdough fermentation. (A) pH and total titratable acidity (TTA; ml 0.1 M NaOH/10 g of
- 1071 dough); (B) concentration (mM) of lactic (LA) and acetic (AA) acids, and fermentation quotient

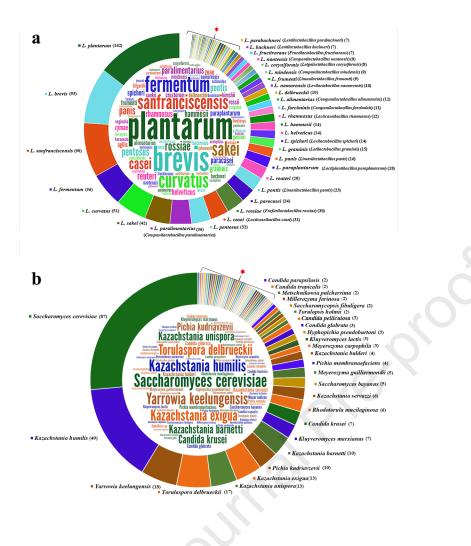
1072 (FQ); (C) concentration of total free amino acids (FAA) (mg/kg) and ethanol (mM). Median


1073 values are represented (-) in the plots. The top and the bottom of the box represent the 75th and


- 1074 25^{th} percentile of the data, respectively. The top and the bottom of the bars represent the 5^{th} and
- 1075 the 95th percentile of the data, respectively.
- Figure 5. Summarized characteristics and respective average scores based on descriptive sensory
 analyses (48 research articles) of sourdough *vs.* baker's yeast breads as assessed by trained
 panelists.
- **Figure 6.** List of volatile components (VOC) (left) identified in sourdough breads by mass
- 1080 spectrometry techniques and VOC profiles (right) as determined using single strains to start the
- 1081 sourdough fermentation. The comparison is with respect to baker's yeast bread (control).
- 1082 Figure 7. Word cloud representing the nutritional attributes focused in the last 30 years as
- 1083 influenced by sourdough fermentation.
- **Figure 8.** Box plot showing the values of glycemic index (GI) of sourdough breads (SDB) vs.
- 1085 baker's yeast breads (BYB). Median values are 65.1 and 94.2, respectively. The scale for GI is
- 1086 from 0-100. The calculation was from 22 research articles dealing with in vivo challenges.

ournal Prevenoo





Alcohols	Carbonyls	Esters	Others	Microo
1,6- Dihydrocarveol	2,4-Decadienal	2-Phenyl-ethyl acetate	2,5-Diketopiperazines	L. acid
1-Butanol	2-Methyl butanal	3-Hydroxy butyl acetate	Arginine	L. alim L. amv
1-Heptanol	2-Methyl propanal	3-Methylbutyl acetate	Cysteine	L. brey
1-Hexanol	2-Nonanal	Butyl acetate	D-Alanine	L. case
1-Octanol	2-Pentenal	Ethyl acetate	D-Glutamic acid	L. celle
1-Octen-3-ol	2-Pentylfuran	Ethyl heptanoate	Glutamate	L. crus
1-Pentanol	3-Methyl butanal	Ethyl hexanoate	Leucine	L. delb
1-Propanol	3-Methyl-hexanal	Ethyl lactate	Methionine	L. farc
2- Phenyl ethanol	Acetaldehyde	Ethyl n-octanoate	Ornithine	L. fern
2-Methyl-1-butanol	Benzaldehyde	Ethyl pentadecanoate	Phenylalanine	L. hel
2-Methyl-1-pentanol	Furfural	Ethyl pyruvate	Proline	L. pan
2-Methyl-1-propanol	Heptanal	Hexyl acetate	y-Glutamyl dipeptides	L. plar
2-Nonen-1-ol	Hexadecanal	Isobutyl acetate	Dimetoxymethyl-benzene	L. sak L. san
3-Hexen-l-ol	Hexanal	Isopentyl acetate	D-Limonene	L. vag
3-Methyl-1-butanol	Nonanal		Dodecane	Ln. cit P. acid
3-Nonen-1-ol	Octanal	Acids	Heptane	P. pen
4-methyl-4-Nonenol	Propanal	2-Ethylhexanoic acid	Hexane	C. nor C. kru
cetyl methyl carbinol	Trans-2-heptanal	2-Methylpropanoic acid	Octane	K. hun
Benzyl alcohol	1-Octen-3-one	Acetic acid	Tridecane	H. and
Ethanol	2,3-Butanedione	Hexanoic acid	α-Hydroxytoluene	S. cen S. exic
Isoamyl alcohol	2-Butanone	Lactic acid	a-Terpinene	Contre
Isobutyl alcohol	3-Hydroxy-2-butanone	Octanoic acid	β-Elemene	
	Butyrolactone	Propionic acid	y-Terpinene	
	Heptanone			

	volacile compounds							
ganism	Acids	Alcohols	Carbonyls	Esters	Others			
ohilus ntarius vorus								
iosus vrum tus								
ieckii ninis								
ntum vorans vicus								
rum								
nciscensis alis um								
actici saceus								
gensis I Is								
ala Islae Is								
				Nor	nber of VOC			
					22			

Vitamins Antioxidant activity DigestibilityLipids Phytase activity Dietary fiberSSterols Essential amino acids index Mineral bioavailability FODMAPs Phenolic content ProteinsGlycemic index Starch hydrolysis Anti-nutritional factors Gluten degradation Flavonoids

Highlights

- State-of-the-art for sourdough fermentation •
- Microbiological, biochemical, technological and nutritional potential of sourdough •
- Sourdough as an alternate to baker's yeast in baked goods •
- Industrial relevance and consumer acceptance of sourdough •