

Carrier Grade Adaptation for an IP-based

Multimodal Application Server:

Moving the SoftBridge into SLEE

by

Tao Sun

A thesis submitted in fulfillment of the requirements

for the degree of Magister Scientiae

in the Department of Computer Science,

University of the Western Cape

Supervisor: Mr. William D. Tucker

November 2004

 ii

KEYWORDS

Application Programming Interface

Application Server

Carrier Grade

JAIN

Internet Telephony

Multi-Modal Communication

Next Generation Network

Service Logic Execution Environment

Service Life-Cycle Management

SoftBridge

 iii

ABSTRACT

Providing carrier grade characteristics for Internet Protocol (IP) communication

applications is a significant problem for IP application providers in order to offer

integrated services that span IP and telecommunication networks. This thesis addresses

the provision of life-cycle management, which is only one carrier grade characteristic,

for a SoftBridge application, which is an example of IP communication applications. A

SoftBridge provides semi-synchronous multi-modal IP-based communication.

The work related to IP-Telecommunication integrated services and the SoftBridge is

analyzed with respect to life-cycle management in a literature review. It is suggested to

use an Application Server in a Next Generation Network (NGN) to provide life-cycle

management functionality for IP-Telecommunication applications. In this thesis, the

Application Server is represented by a JAIN Service Logic Execution Environment

(JSLEE), in which a SoftBridge application can be deployed, activated, deactivated,

uninstalled and upgraded online.

Two methodologies are applied in this research: exploratory prototyping, which evolves

the development of a SoftBridge application, and empirical comparison, which is

concerned with the empirical evaluation of a SoftBridge application in terms of carrier

grade capabilities.

A SoftBridge application called SIMBA provides a Deaf Telephony service similar to a

previous Deaf Telephony SoftBridge, However, SIMBA’s SoftBridge design and

implementation are unique to this thesis. In order to test the life-cycle management

ability of SIMBA, an empirical evaluation is carried out including the experiments of

life-cycle management and call-processing performance. The final experimental results

of the evaluation show that a JSLEE is able to provide life-cycle management for

SIMBA without causing a significant decrease in performance.

In conclusion, the life-cycle management can be provided for a SoftBridge application

by using an Application Server such as a JSLEE. Futhermore, the results indicate that

approach of using Application Server (JSLEE) integration should be sufficiently general

to provide life cycle management, and indeed other carrier grade capabilities, for other

IP communication applications. This allows IP communication applications to be

integrated into an NGN.

 iv

DECLARATION

I declare that Carrier-Grade Adaptation for an IP-based Multimodal Application

Server: Moving the SoftBridge into SLEE is my own work, that it has not been

submitted before any degree or examination in any other university, and that all the

sources I have used or quoted have been indicated and acknowledged as complete

reference.

Full name Tao Sun Date November 2004

Signed

 v

ACKNOWLEDGEMENT

I wish to convey my greatest gratitude to my supervisor William D. Tucker. It is he

who has guided me all the way in my Masters’ study and has cared for me in South

Africa.

Elroy Julius, Phadlie Nordien and Redwaan Vermaak deserve my gratitude for their

effort in viewing and rectifying the grammar of my thesis.

Special thanks to Open Cloud specialists, David Ferry, David Long and Ben Evans

for their technical assistance as to JAIN SLEE.

I also would like to thank the Telkom/Cisco/THRIP Center of Excellence (CoE) that

provides me a prominent working environment and sponsors my study.

Finally, I would like to thank my parents, QingPing and LanPing, my brother, Bo,

and my girlfriend, Yang Li, for providing me with moral and emotional support

during the lows, when I had no more to give. Without them, I would never have

completed this dissertation.

 vi

CONTENTS

KEYWORDS ..ii
ABSTRACT...iii
DECLARATION ... iv
ACKNOWLEDGEMENT .. v
CONTENTS...vi
LIST OF FIGURES ...viii
LIST OF TABLES ... ix
GLOSSARY..x
Chapter 1 Introduction ... 1

1.1 SoftBridge ... 2
1.2 Motivation... 3
1.3 Research question.. 3
1.4 Research aim and significance .. 4
1.5 Thesis Outline ... 5
1.6 Summary ... 6

Chapter 2 Literature Review.. 7
2.1 Carrier grade characteristics.. 7
2.2 NGN and Application Server .. 9

2.2.1 NGN architecture ... 9
2.2.2 Service life-cycle management in an Application Server 10

2.3 Open service architecture and API technology for an NGN....................... 11
2.3.1 Service life-cycle management with JAIN ... 11
2.3.2 Service life-cycle management with Parlay.. 13
2.3.3 Comparison between JAIN and Parlay ... 15

2.4 Work related to semi-synchronous multi-modal communication............... 16
2.4.1 Seamless Messaging ... 16
2.4.2 Unified Messaging .. 18
2.4.3 I-Centric .. 19

2.5 IP-Telecommunication integrated services ... 21
2.5.1 A service platform for Internet-Telecommunication services 21
2.5.2 An architecture for the integration of IP-Telecom services 22

2.6 Summary ... 23
Chapter 3 Approach and Research Methodology.. 25

3.1 Approach to research question .. 25
3.1.1 Research question statement ... 25
3.1.2 Proposed approach .. 25

3.2 Research Methodology.. 26
3.2.1 Exploratory prototyping .. 26
3.2.2 Comparison in empirical evaluation ... 28

3.3 Summary ... 31
Chapter 4 System Design... 32

 vii

4.1 Service definition .. 32
4.2 System requirements ... 33
4.3 System functionality ... 34

4.3.1 Proxy ... 35
4.3.2 Registrar .. 35
4.3.3 Presence server.. 35
4.3.4 Bridging .. 36
4.3.5 Communicator... 36
4.3.6 Media Adapter Server ... 36

4.4 Life-cycle Management of SIMBA in a JSLEE ... 38
4.4.1 Design strategy for SIMBA deployment and uninstallation 38
4.4.2 Design strategy for SIMBA activation and deactivation 40
4.4.3 Design strategy for online upgrade of SIMBA 42

4.5 System implementation... 46
4.6 Summary ... 48

Chapter 5 Experimental Design... 49
5.1 Software and hardware environments in the experiment............................ 49

5.1.1 Software environment ... 49
5.1.2 Hardware environment.. 51

5.2 Experiment design... 52
5.2.1 SIMBA life-cycle management experiment.. 52
5.2.2 SIMBA performance experiment.. 54

5.3 Summary ... 57
Chapter 6 Data Collection and Results .. 58

6.1 SIMBA life-cycle management experimental data 58
6.1.1 Deployment and uninstallation in Rhino... 58
6.1.2 Activation and deactivation in Rhino.. 59
6.1.3 Online upgrade in Rhino ... 60
6.1.4 Life-cycle management of SIMBA without Rhino............................. 60
6.1.5 The experimental results of SIMBA life-cycle management............. 61

6.2 SIMBA performance experimental data ... 62
6.2.1 RPS experimental results .. 62
6.2.2 CPS experimental results .. 63
6.2.3 T-test calculation... 64
6.2.4 Performance experimental results analysis ... 65

6.3 Summary ... 66
Chapter 7 Conclusion and Future Work ... 67

7.1 Conclusion .. 67
7.2 Future work ... 69

7.2.1 Services by SIMBA .. 69
7.2.2 The issue of carrier grade characteristics for SIMBA......................... 70

7.3 Summary ... 71
BIBLIOGRAPHY... 72
Appendix I Sample data of RPS and CPS.. 77
Appendix II Technical Specification... 78

 viii

LIST OF FIGURES

Figure 1 General NGN Architecture ... 9
Figure 2 General Application Server architecture .. 10
Figure 3 JAIN API Architecture ... 12
Figure 4 Rhino architecture... 13
Figure 5 Parlay API Architecture.. 14
Figure 6 architecture of a SCE&SLEE for Parlay based application.......................... 15
Figure 7 SM system architecture .. 17
Figure 8 Call model of the 4th UM system.. 19
Figure 9 SDO hosted by service execution environment.. 20
Figure 10 Service platform using Parlay API over SIP .. 22
Figure 11 Service architecture based on a SCE and a SI .. 23
Figure 12 SoftBridge applications in JSLEE .. 26
Figure 13 Exploratory prototyping process... 27
Figure 14 Evaluation process .. 28
Figure 15 Software/hardware environment in the evaluation 29
Figure 16 Comparison strategy ... 30
Figure 17 SIMBA service flow... 33
Figure 18 Functional modules architecture... 34
Figure 19 Operational states of SIMBA.. 41
Figure 20 Call interruption during the online upgrade ... 43
Figure 21 Solution to avoid call interruption during the online upgrade.................... 45
Figure 22 Rhino deployment interface to install and uninstall SIMBA...................... 47
Figure 23 Rhino service management interface to activate and inactivate SIMBA ...47
Figure 24 Rhino service management interface to upgrade SIMBA online 48
Figure 25 Experimental network topology ... 52
Figure 26 RPS experiment .. 55
Figure 27 CPS experiment .. 56
Figure 28 Sipp UI.. 56
Figure 29 Deploy SIMBA into Rhino... 58
Figure 30 Uninstall SIMBA from Rhino .. 59
Figure 31 Activate SIMBA in Rhino .. 59
Figure 32 Deactivate SIMBA in Rhino... 59
Figure 33 Online upgrade SIMBA in Rhino ... 60
Figure 34 Start SIMBA without a JSLEE... 60
Figure 35 Stop SIMBA without a JSLEE ... 60
Figure 36 Successful RPS comparison between with and without Rhino 63
Figure 37 Successful CPS comparison between with and without Rhino 64
Figure 38 Class diagram of the Proxy class package... 78
Figure 39 Class diagram of the Registrar class package... 78
Figure 40 Class diagram of the Presence server class package 79
Figure 41 Class diagram of the Bridging class package ... 79
Figure 42 Class diagram of the Communicator class package 79
Figure 43 Class diagram in Media Adapter Server class package 80

 ix

LIST OF TABLES

Table 1 Deployable unit in SIMBA .. 39
Table 2 Software environment .. 50
Table 3 Hardware environment... 51
Table 4 Comparison between SIMBA with a JSLEE and without a JSLEE 61
Table 5 RPS experimental data ... 62
Table 6 CPS experimental data ... 64
Table 7 t-test results of RPS and CPS... 65
Table 8 Sample data of RPS.. 77
Table 9 Sample data of CPS.. 77

 x

GLOSSARY

AAA Server Authentication, Authorization and Accounting Server

API Application Programming Interface

AS Application Server

ASR Automatic Speech Recognition

CDMA Code Division Multiple Access

CAPS Call Attempts per Second

CORBA Common Object Request Broker

CPS Call per Second

HTTP Hyper Text Transfer Protocol

GSM Global System for Mobile communication

IEEE Institute of Electrical and Electronic Engineers

IP Internet Protocol

IM Instant Messaging

IN Intelligent Network

ISP Internet Service Provider

JAIN Java APIs for Integrated Networks

JCC JAIN Call Control

JCAT JAIN Coordination and Transaction

JMF Java Media Framework

JSLEE JAIN Service Logic Execution Environment

MAS Media Adapter Server

NGN Next Generation Network

NIST National Institute of Standards and Technology

NMS Network Management Server

OS Operation System

PA Presence Agent

PBX Private Branch eXchange

PC Personal Computer

PLMN Public Land Mobile Network

 xi

RAPS Registration Attempts per Second

RPS Registration per Second

PSTN Public Switch Telephone Network

RTP Real-Time Transport Protocol

RTCP Real-Time Transport Control Protocol

SBB Service Building Block

SCE Service Creation Environment

SCS Service Capability Server

SDP Session Description Protocol

SDO Super Distributed Object

SEE Service Execution Environment

SEME Service Execution and Management Environment

SI Service Infrastructure

SIMBA SoftBridge for Instant Messaging Bridging Application

SIP Session Initiation Protocol

SIPRG SIP Residential Gateway

SLEE Service Logic Execution Environment

SM Seamless Messaging

SMS Service Management Server

TCP Transmission Control Protocol

TTS Text to Speech

UAC User Agent Client

UAS User Agent Server

UM Unified Messaging

 1

Chapter 1 INTRODUCTION

In today’s communication world, there exists the Internet Protocol (IP) network and

the telecommunication network. In the IP network, text, voice and video

communication over IP enable people to use various IP-based communication

services, such as Instant Messaging (IM), e-mail, Voice over IP (VoIP) and

multimedia conferencing. Moreover, the telecommunication networks, which include

the Public Switched Telephone Network (PSTN), wireless networks especially

Global System for Mobile communication (GSM) and Code Division Multiple

Access (CDMA), provide traditional voice and data services such as telephone,

cellular phone, pager and fax.

With the convergence of the IP network and the telecommunication networks, IP

communications become integrated with traditional telecommunication services. IP

communication applications, however, are Internet-oriented and therefore not

necessarily concerned with the carrier grade characteristics such as service life-cycle

management, fault tolerance, overload balance and control. The lack of carrier grade

capabilities makes it difficult for IP communication applications to be adopted by the

telecommunication networks and to be integrated with the services of telephones or

cellular phones. Therefore, providing carrier grade characteristics for IP

communication applications is a significant issue for IP application providers that

offer integrated services that span both the IP network and the telecommunication

networks.

The SoftBridge is a research project on providing IP-based communication

applications. This thesis addresses carrier grade characteristics for IP communication

applications in terms of service life-cycle management. This is done using a

SoftBridge application as an example of IP communication applications.

 2

1.1 SoftBridge

The SoftBridge is the concept of providing semi-synchronous multi-modal IP-based

communication [9] [26]. It aims to bridge various end user devices, e.g. telephones,

cellular phones, handheld MobileIP devices, laptops, Personal Computers (PC) and

fax, to seamlessly communicate using various communication modalities (voice,

video, text, graphics, etc). Semi-synchronous communication allows for the

transparent handling of both synchronous and asynchronous communication. A

typical asynchronous communication service is e-mail and a typical synchronous

communication service is telephony. The SoftBridge can involve multiple types of

users: e.g. hearing people and Deaf people, multimedia, multiple languages: e.g.

English, Chinese, and multiple forms of end user equipment. The SoftBridge

applications/services are able to resolve possible changes between end users in five

layers defined in the Open User Interconnect (OUI) stack [54]. The five layers are as

follows:

a) User capabilities (e.g. user A speaks English and user B speaks Chinese)

b) Communication modalities (e.g. text and voice)

c) Human-computer interface (e.g. graphical and audio)

d) End user device capabilities (e.g. telephone and PC)

e) Network capabilities (e.g. IP network and PSTN)

So far, two SoftBridge applications have been built. One is a Deaf Telephony

SoftBridge. The SoftBridge system enables a Deaf user with a PC to communicate

with a hearing user with a telephone or cellular phone [16] [17] [26]. It is built on an

open IM platform called Jabber [23]. The Deaf Telephony SoftBridge provides an

open and extensible application framework for multimodal bridging, which allows

multi-user, multi-modal conversation sessions (text and speech), as well as the

addition of new media conversion services. It incorporates a caching mechanism, as

well as a load balancing capability to enable a high degree of scalability.

The other is a SoftBridge for rural telemedicine, called MuTI - Multimodal

Telemedicine Intercommunicator [12]. MuTI combines synchronous VoIP with

asynchronous store and forward of messages. Telemedicine consultations can be

 3

conducted synchronously if both parties are available and if the power and network

are up. If the power or network is down, or if both parties are unavailable to take part

in a synchronous conversation, MuTI allows a store and forward approach for the

data. Text, voice and images can be captured at any time and they are forwarded

when a connection is available.

1.2 Motivation

Most IP communication applications are Internet-oriented, and therefore, do not

necessarily address carrier grade characteristics. Carrier grade requirements, however,

are mandatory for the applications/services in the telecommunication domain. This

problem could exist with a SoftBridge application, for example, if it were to be

deployed by a South African telecommunication provider such as Telkom and

Vodacom. Telkom could reject the Deaf Telephony SoftBridge as a new

telecommunication service because of its poor carrier grade capabilities. Therefore

Deaf people in South Africa cannot really make use of the SoftBridge services to

communicate with hearing people who use telephones or cellular phones. The

example of the Deaf Telephony SoftBridge shows that providing carrier grade

characteristics for IP communication applications could be a critical issue for the

application providers to offer the services that span IP and telecommunication

networks. Therefore, this thesis is concerned with how to provide carrier grade

characteristics for IP communication applications. This is done using a SoftBridge

application as an example of IP communication applications.

1.3 Research question

The main question of this thesis is, “How to provide carrier grade characteristics

for IP communication applications in terms of service life-cycle management?”

Using a SoftBridge application as an example of IP communication applications, this

thesis focuses on life-cycle management for IP communication applications.

Generally the life-cycle of a service involves eight phases, including design,

implementation, testing, deployment, activation, deactivation, removal and upgrade.

 4

[5]. The phases of design, implementation and testing differ for each application

being developed. The last five phases are concerned with the management and

maintenance of applications and they are common to all applications. Therefore,

carrier grade characteristics involve the last five phases of service life-cycle

management. In this thesis, service life-cycle management thus covers the last five

phases.

This thesis chooses to focus on service life-cycle management in providing carrier

grade characteristics for IP communication applications. Service life-cycle

management is a basic carrier grade characteristic and it requires a fundamental

services creation, execution and management environment. The basic activities in the

service life-cycle mentioned above are able to be performed in the environment.

Based on the service support environment, other advanced carrier grade

characteristics, such as fault tolerance, load control and balance, can be put into the IP

communication applications.

1.4 Research aim and significance

This thesis aims to provide carrier grade characteristics for IP communication

applications in terms of service life-cycle management. Using a SoftBridge

application as an example of IP communication applications, life-cycle management

is provided for the SoftBridge application. It will bring IP-based SoftBridge

applications into the telecommunication environment. For instance, the Deaf

Telephony SoftBridge with carrier grade capabilities could be deployed by Telkom.

Deaf people in South Africa could then communicate with hearing people by using

the SoftBridge service. The SoftBridge service brings Deaf people into the hearing

world and hearing people could easily talk with Deaf people using telephones/cellular

phones. Using a SoftBridge application, this thesis shows a way to provide life-cycle

management for IP communication applications that offer the IP-Telecommunication

integrated services. Furthermore, this thesis will lead to the wider issue of IP

communication applications with carrier grade characteristics. Thus

telecommunication providers could accept them as value-added services.

 5

1.5 Thesis Outline

Chapter 2–Literature review: In chapter 2, general carrier grade characteristics for

a software system are first described. The concepts of a Next Generation Network

(NGN) and an Application Server are then presented with regards to service life-cycle

management. Meanwhile, two open service APIs (Application Programming

Interface) for an NGN, Java APIs for Integrated Networks (JAIN) and Parlay, are

described. Then the work related to the SoftBridge is reviewed. Finally, the work

related to IP-Telecommunication integrated service is analyzed.

Chapter 3–Approach and methodology: In chapter 3, the research question is

elaborated. A JAIN Service Logic Execution Environment (JSLEE) is proposed to

provide a service support environment for a SoftBridge application. Thereafter two

methodologies applied in this research are described: exploratory prototyping in the

development of a SoftBridge application and comparison in an empirical evaluation

of a SoftBridge application.

Chapter 4–System design: Chapter 4 discusses how a SoftBridge application is

designed and developed according to the service development mode of the JSLEE

specification. The SoftBridge application called SIMBA (SoftBridge for Instant

Messaging Bridging Application) is built upon an open JAIN-SIP Proxy that acts as a

Proxy, registrar and presence server [37]. SIMBA provides a Deaf Telephony service

similar to a previous Deaf Telephony SoftBridge [26], However, SIMBA’s

SoftBridge design and implementation are unique to this thesis. Rhino is used as a

JSLEE to provide life-cycle management of SIMBA [39]. SIMBA life-cycle

management in Rhino includes deployment, activation, deactivation, uninstallation

and online upgrade.

Chapter 5–Experimental design: In chapter 5, an empirical evaluation of SIMBA is

carried out. The evaluation involves experiments with both SIMBA life-cycle

management and performance. SIMBA with and without Rhino are evaluated in the

same experiments. By comparing the experimental results between SIMBA with and

without Rhino, it is expected that a JSLEE can provide SIMBA life-cycle

management without causing a significant decrease in performance.

 6

Chapter 6–Data collection and analysis: In chapter 6, the experimental data is

collected, including SIMBA life-cycle management experiment and the performance

experiment. The experimental data is displayed in tabular form. Using these tables

and figures, the experimental results are analyzed, which show a JSLEE can provide

SIMBA life-cycle management and does not have a significant negative influence on

performance.

Chapter 7–Conclusion and future work: In chapter 7, this thesis draws the

conclusion that a JSLEE, one representation of an Application Server, is able to

provide life-cycle management for an IP-based SoftBridge application in term of

service life-cycle management. Futhermore, the results indicate that approach of

using Application Server (JSLEE) integration should be sufficiently general to

provide life cycle management, and indeed other carrier grade capabilities, for other

IP communication applications. Future work of this research should consider other

carrier grade characteristics, such as fault tolerance and overload balance.

1.6 Summary

IP communication applications are Internet-oriented and therefore not concerned with

carrier grade capabilities. This makes it difficult for IP communication applications to

be adopted by the telecommunication networks and to be integrated with the

traditional voice and data services by telephone or cellular phone. Therefore this

thesis is concerned with providing carrier grade characteristics for IP communication

applications. Using a SoftBridge application as an example, this thesis focuses on

life-cycle management for IP communication applications. It is hoped that results will

lead to the wider issue of IP communication applications with carrier grade

characteristics.

 7

Chapter 2 LITERATURE REVIEW

Carrier grade characteristics cover server life-cycle management, performance,

reliability and other features. To the issue of service life-cycle management, an

Application Server in an NGN provides service creation, execution and management

environments for IP-Telecommunication integrated applications. As open service

APIs for the NGN, Parlay and JAIN provide solutions for an NGN. Following on

these technologies, this chapter presents the work related to the SoftBridge and IP-

Telecommunication integrated services/applications with regard to the issue of

service life-cycle management.

2.1 Carrier grade characteristics

Carrier grade characteristics are required for both hardware and software systems that

are deployed in telecommunication networks. Generally, carrier grade characteristics

for a software system involve the requirements in service life-cycle management,

performance, reliability, administration and maintenance, which are detailed as

follows [33]:

a) Service life-cycle management: the life-cycle of a service generally involves

design, implementation, testing, deployment, activation, deactivation, removal

and upgrade [5]. Because the phases of design, implementation and testing differ

for each application being developed, they are not required as carrier grade

characteristics. Carrier grade characteristics require a service execution and

management environment (SEME) to support the last five features: 1)

Deployment: the service is packaged as deployable units, including service class,

event configuration file and profile file. 2) Activation: after the service is

deployed into SEME successfully, a service profile can be configured through a

profile interface. The service must be activated to be ready to process the requests.

3) Deactivation: the service goes into an “inactive” state after deactivating. 4)

 8

Uninstallation: the “inactive” service can be removed from a SEME. 5) Online

upgrade: the upgrade should be carried out during execution. The call in

“connected” state could continue during the upgrade and terminate as normal.

b) Performance: 1) For a call processing system, it should process more than 250

CAPS (Call Attempts per Second) and more than 250 bills per second. The

probability of call failure should be less than 5%. 2) In the case of a busy hour, it

should process more than 1 million BHCA (Busy Hour Call Attempts). 3)

Message response time (from receiving a message to send a response) should be

no more than 250ms.

c) Reliability: 1) a software system should run in a primary-standby replication

mode. When the primary host is down, the alternation time between primary host

and standby host should be less than 10 seconds. The in-process requests cannot

be lost during the alternation. Primary-standby replication mode requires

99.999% availability, namely, system downtime should be less than 5.256

minutes per year (planned and unplanned). 2) Overload control and balance

requires the system to reject incoming requests in the case of an overload and

process in-progress requests within acceptable operating parameters to avoid a

potential failure due to an overload. 3) Fault tolerance requires the system to

detect and notify fault, and then replicate and recover the system without the

influence on in-progress requests.

d) Administration and maintenance: 1) Statistics: a software system should support

statistics for service and user data. A system administrator can monitor and print

statistical results. 2) Trace: the messages can be traced by the system, including

incoming messages and outgoing messages. The system can show, save and print

the record of traced message. 3) Alarm: the alarm level can be set to urgency and

non-urgency alarm. An alarm message can be recorded in a log file and shown to

the system administrator through a management terminal. The alarm record

should include alarm code, level, date, equipment and suggested solution.

 9

2.2 NGN and Application Server

In an NGN, an Application Server provides a service life-cycle management

environment.

2.2.1 NGN architecture

An NGN can be considered an open tiered architecture (as shown in Figure 1) [25].

The NGN architecture includes four layers: service layer, control layer, transport

layer and access layer. The SoftSwitch equipment in the control layer, acts as the

NGN core, which provides the capabilities of call control, resource management,

protocol handling, authentication and charging [30]. The SoftSwitch equipment

provides an open interface for an Application Server in the service layer to have

access to underlying network resources. Thus the services are separated from the

underlying heterogeneous networks, which allows for the rapid and flexible service

provision in an NGN.

Figure 1 General NGN Architecture

A general NGN architecture is shown in Figure 1. The Application Server is the main

functional entity in the service layer. The SoftSwitch equipment in the control layer is

the NGN core. The transport layer provides the channels for various signals and

media transmission. The core transport network of the NGN is the IP network. The

access layer provides a way by which various networks and equipment can gain

access to the core backbone network. [30]

 10

2.2.2 Service life-cycle management in an Application Server

An Application Server is the core entity in the service layer of an NGN architecture,

which provides a service creation, execution and management environment (as shown

in Figure 2) [57]. Most service life-cycle management capabilities are covered by an

Application Server. A Service can be designed and implemented in the Service

Creation Environment (SCE). The instance of a service runs in the Service Logic

Execution Environment (SLEE). The Service Management Server (SMS) is used to

deploy, configure, activate, deactivate, uninstall and online upgrade a service.

Figure 2 General Application Server architecture

 A general Application Server provides SCE, SLEE and SMS for service life-cycle

management. It integrates a web server to support web-based applications. Service

characteristics interaction management is used to detect and avoid service collision.

The Application Server also supports overload control/ balance, fault management,

database access and service order management. [57]

There are two main kinds of Application Servers: Private and Open. The

telecommunication equipment providers, such as Siemens, Nortel, Alcatel, Cisco,

provide different private Application Servers in their total NGN solutions. An Open

Application Server allows the developers to develop IP-Telecom integrated

services/applications on an open service platform. The typical examples are Sun’s

JSLEE [28] and IBM’s WebSphere [21].

 11

2.3 Open service architecture and API technology for an NGN

JAIN and Parlay are open service APIs for an NGN. This section introduces the

basics of both JAIN and Parlay with regard to service life-cycle management.

2.3.1 Service life-cycle management with JAIN

The JAIN technology is a set of Java technology based APIs that enable the rapid

development of Next Generation telecom products and services on the Java platform

[24] [46]. JAIN’s architecture is shown in Figure 3. The JAIN Service Creation

Environment (JSCE) and the JSLEE support the service life-cycle management

capabilities.

A JSCE includes a set of predefined Java components and an Integrated Development

Environment (IDE), which are used for service logic design and generation. The

JSCE also includes network element simulators such as switch simulators, allowing

functional testing, load testing and benchmarking of a service without access to

network resources.

A JSLEE is an application server, which provides a service execution and

management environment. The JSLEE specification defines deployment interfaces to

install and uninstall a service, and service management interfaces to activate,

deactivate and upgrade the service [28]. A JSLEE also defines profile interfaces, trace

interfaces and alarm interfaces to support service management.

 12

Figure 3 JAIN API Architecture

JAIN architecture includes three layers: service, signaling and network. JAIN

Protocol APIs specify interfaces to the PSTN, wireless and IP signaling protocols [8].

The JCC and JCAT APIs provide applications with a consistent mechanism for

interfacing with underlying various networks [47]. JSLEE allows service

provisioning and life-cycle management [28]. The service provider access provides a

secure access mechanism to network capabilities [6]. JSCE API is the specification

for the Java API to support and simplify the creation of portable telecommunication

services delivered primarily to the JSLEE. [47]

Rhino is a JSLEE standard compliant service logic execution environment [39]. The

main functions of Rhino include service management, deployment management,

resource management, alarm management, trace management and alarm management.

The Rhino’s architecture is shown in Figure 4.

Service life-cycle management capabilities in Rhino are described by using a call

forwarding service as an example. Call forwarding allows the user to configure a

profile. For instance, when a call gets to the user’s office telephone and the call is not

answered, the call is then forwarded to a cell phone which has been set as an

alternative for the office telephone by the user in advance. The call forwarding

service is implemented according to the JSLEE specification [27]. The deployment

management capability of Rhino enables the service to be installed in and uninstalled

from Rhino through a web management interface. The service management capability

 13

of Rhino enables the service to be activated and deactivated through the web

management interface. Online upgrading of the service is carried out by seamlessly

activating a new version and deactivating an old version.

Figure 4 Rhino architecture

The Rhino architecture provides a clustered SLEE, which enables more than one

instances of SLEE to run in multiple modes. Resource adaptor architecture enables

the service to use a resource external to Rhino, such as a database. Service Execution

function enables the instance of a deployed service to run in Rhino. Management

function covers service life-cycle management and the management of Rhino. [39]

2.3.2 Service life-cycle management with Parlay

Parlay integrates telecommunication network capabilities with IP applications via a

secure, measured, and billable interface [10]. The Parlay API consists of three

categories of interfaces: service interfaces, framework interfaces and resource

interfaces, as shown in Figure 5. The Parlay API is implemented in a client-server

mode [34]. A Service Capability Server (SCS) implements the server side and an

application implements the client side of the API. An SCS is a logical entity that

implements the Parlay API and interacts with the core network and the main

functions of the SCS include call control, charging, and user interaction. An SCS thus

serves as a proxy or gateway to the core network. An application communicates with

the SCS using a standard middleware infrastructure, e.g. Common Object Request

Broker (CORBA) [44]. Therefore Parlay does not explicitly address service life-cycle

management. A Parlay application can be deployed by a third-party server, which is

 14

independent of Parlay. Thus the life-cycle management of the application should be

considered by the third-party server, not by Parlay.

Figure 5 Parlay API Architecture

The Parlay architecture includes service interfaces, framework interfaces and

resource interfaces. The service interfaces offer applications access to a range of

network capabilities and information. The framework interfaces provide the

supporting capabilities necessary for the service interfaces to be secure, resilient,

located and managed. The resource interfaces provide a structured means to

integrate network resources into the API implementation. [10]

Consider an example of a Parlay application that was designed and implemented in a

Session Initiation Protocol (SIP) environment [18]. The system architecture is shown

in Figure 6. An SCE is used for Parlay based application creation and an SLEE is

used for the application execution and management. The current implementation

contains two SLEE elements: a timer service and an event dispatcher. The former of

the two is basically a timer that allows for setting and firing of a timer event. The

latter is an important service that loads the service logic and guides the execution of

the services through the dispatching of events originating from SLEE components

and services or from the networks through the Parlay/SIP glue.

The SLEE provides life-cycle management for a Parlay based service that includes

the following: a) the service can be loaded into the SLEE and can be removed from

the SLEE, b) subscribers can subscribe to the service through service and subscriber

management interfaces of the SLEE, c) the service can be activated through the same

 15

interface, d) the SLEE can be upgraded at run time with new services, and e) tracing

and log services are also provided by the SLEE.

Figure 6 architecture of a SCE&SLEE for Parlay based application

The system architecture consists of an SCE, an SLEE, the Parlay/SIP glue, and the

SIP proxy server. The implementation of Parlay API relies on CORBA. The SLEE

and the Parlay/SIP glue communicate with each other using the Internet-Inter-ORB

Protocol (IIOP). The Parlay/SIP glue acts as a user agent. [18]

2.3.3 Comparison between JAIN and Parlay

For the issue of service life-cycle management, a JSLEE in the JAIN architecture is

used to provide a service execution and management environment. A JSLEE acts as

an Application Server, in which a service can be deployed, activated, deactivated

uninstalled and upgraded online. It also provides profile, trace and alarm facilities to

support service management. Parlay does not explicitly address service life-cycle

management. An SCS is a logical entity that implements the Parlay API. A Parlay

application deployed by a third-party server, which is independent of Parlay,

communicates with the SCS using CORBA. Thus the life-cycle management of the

application should be considered by the third-party server, not by Parlay. In

conclusion, a JSLEE is a convenient solution to provide service life-cycle

management.

 16

2.4 Work related to semi-synchronous multi-modal communication

The work related to the SoftBridge is described with regard to two issues: service

life-cycle management and semi-synchronous multi-modal communication.

2.4.1 Seamless Messaging

2.4.1.1 The concept of Seamless Messaging

Seamless Messaging (SM) provides a means of delivering messages in a way that is

personal to the recipient, making separate networks involved in the delivery of the

message transparent to the recipient [1]. SM allows for the creation, encoding,

filtering and delivery of messages across heterogeneous networks. Thus, users can

seamlessly deliver voice or electronic messages to wireless or wired communication

environments. SM requires that the recipient of the message be located through an

electronic secretary and the message be tailored according to the recipient’s active

device user interface.

SM manages both asynchronous and synchronous messaging, and requires that it is

easily customized by the end user. It is modular enough to allow features to be easily

added or removed. A Universal Message Box (UMB) is used to maintain

asynchronous messaging. Synchronous messaging requires immediate delivery of the

message to a roaming user and the possibility of establishing a connection in the case

of voice calls. Email messaging is a typical example of asynchronous communication,

and e-mails are therefore immediately stored into the UMB and processed. If the

message is categorized to be immediately delivered to the end user, the SM system

takes action to immediately deliver the message through a pager, telephone (using

text to speech), fax, or by forwarding it to another e-mail address.

2.4.1.2 A SM system for the management of personal messages

The aim of the SM system is to intercept, filter, interpret, and deliver multi-modal

messages (voice, fax, and/or e-mail messages) [29]. Messages are delivered to the

recipient regardless of their target messaging device. What makes the system unique

 17

is its approach to treating a message in a universal manner, its ability to mediate

between different messaging devices, and its ability to try to determine the

availability of the user. The system has been implemented on a Lotus Notes (LN)

platform [22]. The system architecture is shown in Figure 7.

Figure 7 SM system architecture

The system includes a set of personal agents that classify and act on incoming

messages based on their content. The user specifies the classes and actions to the

agent as a set of high-level rules. This allows the user to specify rules that are

independent of the messaging system and target devices. A personal agent,

“secretary”, is responsible for mediating between the different messaging

environments, the target devices, and other interacting applications (e.g. calendars,

email programs, etc). [29]

2.4.1.3 The summary of the SM system

The SM system supports semi-synchronous multi-modal messaging by using a set of

personal agents. The user can specify rules for these personal agents and receive

incoming messages in his preferred end equipment with preferred modality (text or

voice). The issue of service life-cycle management is not specifically addressed in [1]

or [29].

 18

2.4.2 Unified Messaging

2.4.2.1 The concept of Unified Messaging

Unified messaging (UM) is the concept of bringing all messaging media such as

voice messaging (telephone), SMS and other mobile text messaging, e-mail, Instant

Messaging (IM) and facsimile into a combined communication experience [3]. At a

minimum, the communication experience will take the form of a unified mailbox

and/or alert service, allowing the end-user to have a single source of message delivery,

repository, access, and notification.

UM has the ability to retrieve and send voice, fax, and email messages from a single

interface, including a cellular phone, telephone, or PC. It addresses the task of

overcoming the multiple-mailbox approach of today’s messaging systems, with

separate facilities for e-mail, voice storage, fax reception, etc. This coincides with the

vision of future communication, to deliver information at any time, anywhere and in

any form.

2.4.2.2 The 4
th

 generation UM system

The 4th generation UM supports mobile users as well as domestic users with the

universal availability of their communication services [31]. This addresses service

access and service delivery on both, fixed and mobile terminals. A special capability

of the UM system is the selection of the most appropriate terminal or application for

an incoming message. The most appropriate terminal is determined by means of its

availability, status, and capability to handle a certain communication service. The

system is capable of adapting terminals to different kinds of services by conversion

processes. For example, a fax may be delivered to a mobile phone via Optical

Character Recognition and followed by a Text-to-Speech (TTS) conversion.

The Call model of the 4th UM system is shown in Figure 8. A service request is

always processed in the same way. If a service request is detected by the system, it

will be analyzed to gain its characteristics. On the base of these characteristics the

preferences of the called user is evaluated. The result of this evaluation determines

 19

the way the service has to be delivered to the called user. An analysis of the actual

communication environment of the called user selects the terminals the called party is

able to use at the time the service should be delivered. If the message has to be

adapted by conversion, the service will be decomposed and converted prior to

delivery to the called user’s terminal.

Figure 8 Call model of the 4
th

 UM system

This diagram describes the process of dealing with a service request in the 4
th

 UM

system. An incoming service request is analyzed and the preferences of the called

user are evaluated. The service is decomposed and converted according to the called

user‘s terminal, and then delivered. [31]

2.4.2.3 The summary of the 4
th

 generation UM system

The main functions of the 4th generation UM system include customer service

management, conversion of services, automated terminal adaptation, multimedia

message storage, synchronous and asynchronous service delivery and user

registration at terminals and/or Locations (automated, manually, or scheduled). These

functions enable the 4th generation UM system to provide semi-synchronous multi-

modal communication services. The issue of service life-cycle management is not

specially addressed in [3] or [31].

2.4.3 I-Centric

2.4.3.1 The concept of I-Centric

I-Centric research provides an open architecture following a new communication

paradigm demand for systems that adapt to humans instead of forcing them to submit

to the given technical solutions [32] [45]. I-centric proposes a ubiquitous, personal

 20

User Interface (UI) to the user communication space. I-centric UI regards the user

individual requirements and preferences.

2.4.3.2 An execution environment for I-centric Services

Super Distributed Object (SDO) is used to represent the objects of the I-centric

communication space. Each individual continually interacts with diverse and

interconnected objects while the technology is transparent to users [4]. Examples of

SDOs include abstractions of devices such as mobile phones, PDAs, and home

appliances, but are not limited to device abstractions. A SDO-based service platform

facilitates I-centric SDOs communication and collaboration, as shown in Figure 9.

Figure 9 SDO hosted by service execution environment

This diagram shows that the service platform supports the operation and

management of objects and services by means of a Service Execution Environment

(SEE) for I-centric SDOs. The SEE supports deployment (hot-plugging) of I-Centric

SDOs, re-binding (configuration) of I-Centric SDOs, interworking of I-Centric

applications/services and SDOs, and resolving inter and intra SDO dependencies. [4]

2.4.3.3 The issue of service life-cycle management in the I-centric system

The service platform provides a service execution environment (SEE) for I-centric

SDOs. It supports the following life-cycle management capabilities: a) the

deployment and uninstallation of SDOs. The SEE provides well-defined APIs to find,

analyse, and plug new SDOs into it. SDOs can also be removed from the SEE; and b)

the discovery, monitoring, configuration and reservation of SDOs. The discovery

function allows an SDO to gather information about the resources and capabilities of

all SDOs currently present in the network. The monitoring function provides a

 21

mechanism to monitor the various properties or parameters of an SDO. Each SDO’s

properties can be read and modified through the Configuration Interface. The

reservation of an SDO service ensures that the reserving object can invoke the service

operations at any time without any hindrances from other SDOs.

2.5 IP-Telecommunication integrated services

This section introduces the work related to IP-Telecommunication integrated services

with regard to service life-cycle management.

2.5.1 A service platform for Internet-Telecommunication services

In [7], a service platform (as shown in Figure 10) is used for the creation, execution

and management of multimedia services in heterogeneous networks. The Service

Platform is middleware that provides a distributed framework for services. The

managed services are accessible from different types of terminals and carried over

different types of networks using different protocols.

The service provider runs and maintains the service platform. A new service is

created by the service provider, deployed in the service platform and offered to the

subscribers. A subscriber is a user or a company that pays for a service offered by the

service provider. An instance of the service is created and activated by the service

platform when a subscriber uses the service. The instance is deactivated and deleted

after the subscriber finishes. The service can also be removed from the service

platform.

 22

Figure 10 Service platform using Parlay API over SIP

This diagram shows that this service platform resides on a SIP Server separated by

the Parlay interface. The SIP Server is usable not only for communication with the

service Platform via Parlay, but also for the development of a SIP user agent. The

platform has an additional CORBA interface towards a web server used by web

Servlets to interact with the Platform. This enables a third party call set-up in the SIP

Server triggered by a web interface e.g. Click to Dial. This interface is also used for

management purposes and service modifications by the end user. [7]

2.5.2 An architecture for the integration of IP-Telecom services

[15] proposes an architecture for hybrid services that spans many network

technologies, such as IP, PSTN and wireless networks. The service architecture (as

shown in Figure 11) is composed of two elements: A SCE and a Service

Infrastructure (SI). SCE and SI provide service life-cycle management capabilities,

including service creation, deployment, activation, deactivation and removal. In the

SCE, service logic is put together by the service creator using a set of service

components as building blocks. The service logic is then sent to a service factory,

which creates a new instance of the service. The service instance is organized and

 23

uploaded into the SI. SI can activate and deactivate the service instance. The service

instance can also be removed from SI. The Service Infrastructure is composed of a

collection of controllers and the underlying system elements of the Intelligent

Network, such as terminals, gateways, network nodes, etc. An event interface enables

the data flow between the system elements and the service logic.

The service architecture currently supports two services: hybrid calendar and hybrid

call forwarding. Hybrid calendar allow users to access their calendars from any

terminal connected to an IP network, as well as expose and share portions of their

calendars with other users. Hybrid call forwarding allows a customer to forward his

incoming calls (addressed to his telephone set from any other telephone set) to a

computer connected to an IP network.

Figure 11 Service architecture based on a SCE and a SI

S
i
T = subsystem of service i running on terminals; S

i
N = subsystem of service i

running on network nodes; S
i
C = subsystem of service i running on control servers;

S
i
G = subsystem of service i running on gateways. [15]

2.6 Summary

It is important to provide IP communication applications with carrier grade

characteristics to make them applicable in telecommunication networks. This thesis

focuses on the provision of service life-cycle management, which is a basic carrier

grade characteristic. The life-cycle management characteristic includes the

deployment, activation, deactivation, uninstallation and online upgrade of IP

communication applications.

 24

For the issue of providing life-cycle management for IP communication applications,

a service platform is built in [7] and service architecture is constructed in [15] to

provide the life-cycle management for their IP-Telecommunication applications.

However, these designs can only offer the characteristic to their own services, and

therefore can not be applied to general IP communication applications. An NGN can

also provide a solution for the issue. In an NGN, an Application Server provides the

creation, execution and management environments for service life-cycle management.

Generally, two open service APIs, JAIN and Parlay, provide their solutions to support

an NGN. In JAIN, a JSLEE acts as an open Application Server, where the life-cycle

management of IP-Telecommunication applications can be carried out [28] [39]. In

Parlay, a logical entity named SCS, works as the server to implement the Parlay API.

However, a Parlay application is deployed by a third-party server and only

communicates with the SCS using CORBA, it is therefore independent from the

Parlay itself. Thus, the life-cycle management of the application will not be

considered by Parlay [18] [34].

For the issue of life-cycle management, a SoftBridge application is used as an

example of an IP communication application to examine service life-cycle

management. However, most work related to the SoftBridge does not explicitly

address service life-cycle management, such as [29] [31]. They just focus on

providing semi-synchronous multi-modal communication services.

Based on the above, an Application Server, in particular a JSLEE, should be strongly

considered for putting carrier grade characteristics into a SoftBridge Application with

respect to service life-cycle management.

 25

Chapter 3 APPROACH AND RESEARCH METHODOLOGY

First, the research question is stated in this chapter. A research approach follows to

suggest a solution to the question. Finally, research methodologies are listed out to

introduce the way in which the research approach is performed.

3.1 Approach to research question

3.1.1 Research question statement

 The main question of this research is: “How to provide carrier grade

characteristics to IP communication applications in terms of service life-cycle

management?” Using an IP-based SoftBridge application as an example of IP

communication applications, the issue of providing life-cycle management for a

SoftBridge application is broken down into two aspects:

� A SoftBridge application deployment, activation, deactivation and uninstallation.

As a carrier grade service/application, a service execution and management

environment should be used to deploy, activate, deactivate and uninstall a

SoftBridge application.

� Online upgrade of a SoftBridge application. As a carrier grade service/application,

a SoftBridge application in the running state cannot be interrupted when it is

upgrading or version updating, e.g. the call, in a connected state, should be kept

going during the process of a system upgrade.

3.1.2 Proposed approach

As the main functional entity in the service layer, an Application Server acts as a

service creation, execution and management environment in an NGN [57]. An

Application Server is therefore proposed to provide a service support environment for

a SoftBridge application. Using a JSLEE as a representation of the Application

 26

Server, a SoftBridge application is deployed, activated, deactivated and uninstalled in

it, as shown in Figure 12. A JSLEE also enables a SoftBridge application to online

upgrade.

In the JAIN API architecture, the JSLEE acts as an Application Server that provides

the execution and management environment for the next generation Internet–

Telecommunication services [28]. The JSLEE defines interfaces and requirements

which are mandatory for telecom/Internet operations within carrier grade and Internet

networks.

Figure 12 SoftBridge applications in JSLEE

Figure 12 shows that a SoftBridge application is deployed into a JSLEE that provides

various management facilities. One or more instances of the SoftBridge application

run in a Service Component Container of JSLEE.

3.2 Research Methodology

Two methodologies are applied in this research: exploratory prototyping in the

development of a SoftBridge application and comparison in the empirical evaluation

of a SoftBridge application with regard to carrier grade capabilities.

3.2.1 Exploratory prototyping

Exploratory prototyping is the rapid development of a system, where an initial

prototype is produced and refined through a number of stages towards the final

system [20]. Exploratory prototyping applies to the development of those systems

 27

with the best understood requirements. It is considered as a risk reduction activity. An

exploratory prototyping model is illustrated in Figure 13.

Figure 13 Exploratory prototyping process

Figure 13 shows main steps in an exploratory prototyping. After requirements

analysis is finished, the first prototype system is quickly designed and implemented.

The first prototype is evaluated and refined if it is not adequate. The final system is

delivered until it is evaluated to be adequate.

The exploratory prototyping can be divided into the following phases:

1. Requirements analysis: Define the service provided by the SoftBridge application;

analyze and clarify system requirements. Service definition and system

requirements analysis document is also developed in this phase.

2. Quick design and build SoftBridge prototype system: According to the results

obtained during the requirements analysis and service definition, the rapid design

and implementation of the SoftBridge prototype are carried out. General design

specification and user manual should be finished in this phase.

 28

3. Using and verifying the prototype system: After the first prototype system is

finished, it is used and evaluated by experimental users with the help of the user

manual. Service definition and general design specification are used as standards

to validate the adequacy of the system.

4. Refine the prototype system if the prototype system is not adequate. Refining is

iterated until it is adequate enough to deliver the final system.

5. Finally, deliver of the final system and the related technical documents.

3.2.2 Comparison in empirical evaluation

An empirical evaluation of a SoftBridge application is used to prove the proposed

approach [56]. The process of evaluation is illustrated in Figure 14.

Figure 14 Evaluation process

Figure 14 shows main steps of an empirical evaluation. With software and hardware

environments, the experiments are designed and carried out according to evaluation

strategy, and then experimental data is collected, visualized and analyzed.

 29

3.2.2.1 The software and hardware environment for the evaluation

The evaluation is carried out in an experimental environment. The hardware

environment includes PCs, telephones, a PBX (Private Branch eXchange), LAN

(local area network). The software environment involves operating systems (OS)

including both Windows and Linux, a SoftBridge application – SIMBA (see Chapter

4.5), a JSLEE implementation – Rhino (see Chapter 4.5), client application and a

simulator (as shown in Figure 15).

Figure 15 Software/hardware environment in the evaluation

Figure 15 shows some of the software and hardware involved in the evaluation. An

IM client on a PC sends the message to a telephone on a PBX through the SoftBridge

application (SIMBA) with a JSLEE (Rhino) and a SIP gateway.

3.2.2.2 Evaluation strategy

SIMBA with and without Rhino is evaluated in the same experiment. The test data

with and without Rhino in the same case is recorded and analyzed in the form of

tables. Through the comparison of these two systems, it is expected to show that a

JSLEE can provide life-cycle management for a SoftBridge application. The

evaluation strategy is illustrated in Figure 16.

 30

Figure 16 Comparison strategy

Figure 16 shows that service life-cycle experiment and performance experiments are

carried out between a SoftBridge application (SIMBA) with and without a JSLEE

(Rhino). The experimental data is compared and the experimental result is expected

to show a SoftBridge application can be managed in a JSLEE.

3.2.2.3 Experiment involved in evaluation

Experiments in the evaluation address service life-cycle management and

performance. The service life-cycle management experiment involves SIMBA

deployment, activation, deactivation, uninstallation and online upgrade. The

Performance experiment includes Registration per Second (RPS) and Call per Second

(CPS) [43].

3.2.2.4 Evaluation steps:

The exploratory prototyping can be divided into the following phases:

1. Generate data: test the process of service life-cycle management of SIMBA using

the HTTP (Hyper Text Transfer Protocol) management interface provided by

Rhino. To determine the RPS and CPS values, the request rate from a simulator to

SIMBA is increased until the failure probability increases to 5%. The highest

sustained throughput is reported as the RPS and CPS values.

 31

2. Visualize data: visualize the result data of life-cycle management of SIMBA in

tabular form. The table lists the life-cycle management capabilities supported by

SIMBA. Visualize the performance data with tables.

3. Analyze data: compare and analyze the visualized results of SIMBA with and

without Rhino using tables and find out the advantage of the SoftBridge

application in a JSLEE with regard to carrier grade capabilities.

3.3 Summary

In this chapter, the proposed approach to the research question is presented. Two

methodologies used in this research are described, including exploratory prototyping

in the development of a SoftBridge application – SIMBA (see Chapter 4.5), and

comparison in an empirical evaluation to SIMBA with regard to service life-cycle

management capabilities. Using exploratory prototyping methodology, SIMBA can

be designed and implemented. An empirical evaluation of SIMBA includes the

experiments with service life-cycle management and performance. By comparing the

experimental results of between the SoftBridge application with and without a JSLEE

– Rhino (see Chapter 4.5), it is expected that a JSLEE can provide life-cycle

management for SoftBridge applications.

 32

Chapter 4 SYSTEM DESIGN

For this thesis, a SoftBridge application is built according to the service development

mode of the JSLEE specification. Here the SoftBridge application is called SIMBA

(SoftBridge for Instant Messaging Bridging Application). Although the Deaf

Telephony service is similar to a previous Deaf Telephony SoftBridge [26], SIMBA’s

SoftBridge design and implementation are unique to this thesis. SIMBA is used as an

experimental representation of a SoftBridge application in the evaluation to show that

a JSLEE is able to provide service life-cycle management for SoftBridge applications.

4.1 Service definition

SIMBA enables a text-based IM client to communicate with an IP phone, a telephone

or a cellular phone. Similar to the Deaf Telephony SoftBridge, SIMBA provides a

bridging service, which enables a Deaf user with a text-based IM client to

communicate with a hearing user with a telephone or a cellular phone [26]. Using an

IM client, a Deaf user sends a text message to a telephone user through SIMBA.

SIMBA establishes a call to the telephone user and converts text messages to speech

via a Media Adapter Server (MAS). When the called user picks up the phone, he/she

hears the synthetic voice and speaks to the Deaf user. After receiving audio from the

hearing user, SIMBA then controls the MAS to convert the incoming audio stream to

text and sends the text message to the Deaf user. The conversion between text and

speech is transparent to both hearing and Deaf users. The whole process is shown in

Figure 17.

 33

Figure 17 SIMBA service flow

Figure 17 shows how SIMBA bridges a Deaf user with an IM client to communicate

with a hearing user using a telephone. SIMBA receives a text message from an IM

client and then establishes a call to the telephone on a PBX. After the call is

established successfully, SIMBA notifies Media Adapter Server (MAS) to open an

audio stream to the telephone. MAS gets the text message from SIMBA, converts to

voice and transmits the voice to the telephone. After receiving the voice from the

telephone, MAS converts it to text and sends a text message to the IM client through

SIMBA.

4.2 System requirements

The system requirements are as follows:

� Support SIP and SIP Extension for Instant Messaging and Presence (SIMPLE)

[11] [35] [40] [41]. This system should function as a SIP Proxy, registrar and

presence server. As a presence server, it is able to process NOTIFY and

SUBSCRIBE requests. As a proxy, it is able to add and process the RECORD-

ROUTE and ROUTE headers specified in the request besides basic proxy

capability. The proxy can authenticate all requests that it receives and fork the

INVITE requests it receives.

� Convert between two media types: text and voice. Two modalities of media

bridging are required: text to speech bridging and speech to text bridging.

� Support IM clients based on SIP/SIMPLE. There are two messaging modes: page

mode and session mode, but the system only supports page mode so far.

 34

� Support multiple users. This system should support multi-user, parallel call

requests and set up multi-call to telephones or SIP clients.

� Service execution and management environment: the system can be deployed

activated, deactivated and uninstalled in a JSLEE.

� Support online upgrade. An upgrade can be carried out during execution. The

“connected” call can continue during the upgrade and terminate as normal.

� Support profiles configure and log/trace.

4.3 System functionality

This system includes two independent parts: SIMBA and MAS, as shown in Figure

18. SIMBA includes five main functional modules: Proxy, Registrar, Presence,

Bridging and Communicator. MAS includes three functional modules: Media adapter

Servlet, TTS/ Automatic Speech Recognition (ASR) and Media Send/Recv. SIMBA

communicates with MAS through the HTTP interface. [13].

Figure 18 Functional modules architecture

Figure 18 shows the main functional modules in SIMBA and MAS and their

relationships. SIP messages are processed by Proxy, Registrar and Presence modules.

Bridging module invokes Communicator module to establish and terminate a SIP call.

Bridging module controls MediaAdapterServlet module to open, update and close a

media stream by invoking Media Send/Recv module. TTS/ASR module performs the

conversion between text and voice.

 35

4.3.1 Proxy

The proxy function acts as a SIP proxy, which routes SIP requests to user agent

servers (UAS) and routes SIP responses to user agent clients (UAC). A request may

traverse several proxies on its way to a UAS. Each proxy will make routing decisions,

modifying the request before forwarding it to the next element. Responses are routed

through the same set of proxies traversed by the request in the reverse order.

According to [41], Proxy behavior of processing a request includes the following

steps:

1. Validate the request;

2. Preprocess routing information;

3. Determine target(s) for the request;

4. Forward the request to each target;

5. Process all responses.

4.3.2 Registrar

The registrar function acts as a SIP registrar, which accepts REGISTER requests and

places the information it receives from those requests into the location service for the

domain it handles. According to [41], Registrar behavior of processing a request

includes:

� Authenticate the UAC;

� Add, remove, update the bindings for the domain it handles;

� Manage the expiration time.

4.3.3 Presence server

The presence server function acts as a SIP presence server, also known as a presence

agent (PA) [35]. A PA is a SIP user agent, which is capable of receiving

SUBSCRIBE requests, responding to them, and generating notifications of changes in

presence state (e.g. online, offline, busy and away). A PA must have knowledge of

the presence state of a presence entity. The way to access presence data of a presence

entity is by co-locating the PA with the proxy/registrar.

 36

4.3.4 Bridging

The bridging function controls the bridging between a Text message session and a

Voice media session. Bridging behavior when processing a request includes the

following steps:

1. Process a MESSAGE request whose destination is a telephone user (e.g.

9110@sipgateway.com).

2. Setup a call with the telephone user by invoking call methods of the

Communicator module and indicate the IP address and port number of the media

adaptor server in the Session Description Protocol (SDP) data with an INVITE

request [19].

3. Notify MAS to start a RTP transmission session and send the text body of the

MESSAGE request to it.

4. Receive the recognized text message from the IM agent of MAS and forward it to

the client, who sends the MESSAGE request.

4.3.5 Communicator

The Communicator function acts as a SIP user agent (UA). It performs the function

of establishing, modifying and terminating a SIP call to the callee (telephone or SIP

UA). It is invoked by the bridging module when a MESSAGE request is sent, whose

destination is a telephone user. It includes two parts: a user agent client (UAC) and

user agent server (UAS).

� The UAC creates an SIP request, e.g. INVITE, and then uses the client transaction

state machinery to send it.

� The UAS generates a response to a SIP request. The response accepts, rejects, or

redirects the request.

4.3.6 Media Adapter Server

MAS is built in conjunction with a Web Server [53], whose functions include: media

transmissions and media adaptation between text and speech, including TTS and ASR.

MAS is independent of SIMBA and receives HTTP request from SIMBA to start a

 37

RTP media session, send synthesized voice to the telephone and send the recognized

text message to the IM client through SIMBA. The media adaptor server includes

three parts: Media Adaptor Servlet, media transmitter/receiver and TTS/ASR Engine.

4.3.6.1 Media adapter Servlet

After receiving the HTTP request from a SoftBridge or other clients, the Media

Adapter Servlet opens, updates or closes a media Real-Time Transport Protocol (RTP)

session between the MAS and the SIP GW or the SIP client [42]. The Media Adapter

Servlet extracts the content of the text parameter received from a HTTP request and

invokes a TTS/ASR engine to perform the conversion between text and speech.

4.3.6.2 Media transmitter/receiver

The media transmitter/receiver performs the following functions:

� Start, update or close a media RTP session,

� Send the synthesized voice,

� Receive audio data and play it through a speaker.

Based on RTP and Real-Time Transport Control Protocol (RTCP), the media

transmission is built using the JMF API [48].

4.3.6.3 TTS and ASR

The TTS engine performs the function of converting text to speech [55]. It provides

the interface for the Media Adapter Servlet and saves the synthetic speech into an

audio file.

The ASR engine: a Wizard of Oz (WoOz) is used to replace the poor performance of

ASR engine [16]. A person called the “ASR agent” is used to perform the function of

speech recognition. When the ASR agent receives audio from a speaker, he/she

converts the audio into a text message and sends it to the IM client. An ASR agent is

responsible for five bridging sessions.

 38

4.4 Life-cycle Management of SIMBA in a JSLEE

4.4.1 Design strategy for SIMBA deployment and uninstallation

4.4.1.1 Event driven SBB

The JSLEE specification defines that an application is composed of one or more

components, which are known as Service Building Block (SBB) components [27].

SBB components are event driven components that receive requests in the form of

events. Each SBB component identifies the event types accepted by the component. It

has event handler methods that contain application code that processes events of these

event types. In addition, an SBB component may have an interface for synchronous

method invocations. SIMBA is built with SBB components receiving SIP events,

including SIP request events, response events and transaction management events.

4.4.1.2 Deployable unit

The JSLEE specification defines a deployable unit as a Jar file that can be installed in

the SLEE and uninstalled from the SLEE [27]. A deployable unit may contain SBB

jar files, event jar files, profile specification jar files and resource adaptor jar files.

Each of these jar files contain the Java class files and the deployment descriptors of

one or more of these components.

4.4.1.3 SIMBA packaging for deployment and uninstall

To a deployable unit of SIMBA, the Jar packages involved are shown at Table 1.

Jar Package Name Items included in Jar

JAIN-SIP resource

adaptor (RA) Jar

1. JAIN-SIP RA Jar deployment descriptor

2. Class files of JAIN-SIP RA.

3. JAIN-SIP RA event Jar deployment descriptor

4. Class files of JAIN-SIP RA event

5. JAIN-SIP RA type Jar deployment descriptor

6. Class files of JAIN-SIP RA type

 39

SIMBA SBB Jar 1. SIMBA SBB Jar deployment descriptor

2. Class files of SIMBA SBB specified by the sbb

elements of the sbb-jar element in 1.

SIMBA SIP event Jar 1. SIMBA SIP event Jar deployment descriptor

2. Class files of SIMBA SIP event specified by the sbb

elements of the sbb-jar element in 1.

SIMBA custom event

Jar

1. SIMBA custom event Jar deployment descriptor

2. Class files of SIMBA custom event specified by the sbb

elements of the sbb-jar element in 1.

SIMBA profile Jar 1. SIMBA profile Jar deployment descriptor

2. Class files of SIMBA profile specified by the sbb

elements of the sbb-jar element in 1.

Table 1 Deployable unit in SIMBA

Table 1 lists the Jar packages in a SIMBA deployment unit. Each Jar package

includes a deployment descriptor and the class files in the Jar package.

4.4.1.4 SIMBA deployment and uninstallation in a JSLEE

In the JSLEE specification, the DeploymentMBean interface defines the management

API for installing and removing components [27] :

� The Install method. This method installs the deployable unit jar file identified by

the URL argument. Each component jar file contained in the deployable unit is

installed by the SLEE. If all of these components are installed successfully, the

JSLEE then installs any services contained in the deployable unit jar file. The

deployable unit is only successfully installed if all of its included component jars

and services install successfully. Thus the deployable unit for SIMBA can be

deployed into JSLEE through the install method in the DeploymentMBean

interface.

� The Uninstall method. This method uninstalls the deployable unit specified by the

ID argument. Uninstalling a deployable unit causes all the components in the

deployable unit to be uninstalled. A deployable unit cannot be uninstalled if any

 40

component contained in any other deployable unit depends on a component

contained in the deployable unit being uninstalled. Thus the deployable unit for

SIMBA can be removed from JSLEE through the uninstall method in the

DeploymentMBean interface.

4.4.2 Design strategy for SIMBA activation and deactivation

4.4.2.1 States in the life-cycle of SIMBA in JSLEE

After deployment into the JSLEE, SIMBA can be in one of the following three

operational states (as shown in Figure 19) in the life cycle.

� Inactive. SIMBA has been installed successfully and is ready to be activated.

SIMBA is not running, i.e. root SBB entities of the SIMBA’s root SBB will not

be created to process events.

� Active. SIMBA has been activated, i.e. it is running. The JSLEE will create root

SBB entities of SIMBA’s root SBB to receive initial events and invoke SBB

entities in the SBB entity trees of the Service.

� Stopping. SIMBA is being deactivated. However, some SBB entity trees of

SIMBA still exist in the JSLEE and have not completed their processing. The

JSLEE waits for the SBB entities in these SBB entity trees to complete processing

so that they can be reclaimed. A SBB entity has completed processing and can be

reclaimed when it and all of its child SBB entities are no longer attached to any

Activity Context.

 41

Figure 19 Operational states of SIMBA

Figure 19 shows three states of SIMBA in a JSLEE and the actions causing the state

conversion [27]. SIMBA is in “inactive” state after it is installed in the JSLEE. The

state of SIMBA changes to “active” after SIMBA is activated. The “stopping” state

means that SIMBA is being deactivated.

4.4.2.2 SIMBA activation and deactivation in a JSLEE

In the JSLEE specification, the ServiceManagementMBean interface defines the

management API for Services installed in the SLEE [27]. It can be used to change the

operational state of SIMBA.

� The Activate method. This method activates the service specified by the ID

argument. It can only be invoked when the service is in the inactive state. If it

returns successfully, the service has transitioned to the Active state. Thus, SIMBA

can be activated by the Activate method in the ServiceManagementMBean

interface.

� The Deactivate method. This method deactivates the service specified by the id

argument. It can only be invoked when the service is in the Active state. If it

returns successfully, the service has transitioned to the stopping state. Eventually

the service transitions to the inactive state when all SBB entities executing for the

service have completed processing. Thus, SIMBA can be deactivated by the

Deactivate method in the ServiceManagementMBean interface.

 42

4.4.3 Design strategy for online upgrade of SIMBA

4.4.3.1 The process of SIMBA online upgrade in JSLEE

In the JSLEE specification, the ServiceManagementMBean interface defines the

DeactivateandActivate API [27]. It can be used for online upgrade of SIMBA. The

DeactivateandActivate method takes on two arguments - the service to deactivate,

and the service to activate in its place. This operation is performed in a single

transaction. To make use of this, a new version of SIMBA needs to be installed. The

new one should have a different name or version number in the service deployment

descriptor. The deactivateAndActivate method is used to pass the old SIMBA to the

new version. The old version will go into the "deactivating" state, and any activities

that it is processing are allowed to "drain". It will be deactivated when all its activities

and SBB entities are finished. Meanwhile the new version of SIMBA is activated and

any new initial events will go to the new one. Therefore no events will be lost. They

will either go to the old or new version of SIMBA.

4.4.3.2 The issue of call interruption during the online upgrade

A complete call session starts when an IM client sends the first MESSAGE request to

a telephone user and SIMBA sets up a call to the telephone; it ends when the IM

client send a MESSAGE request with the text body of "bye" and SIMBA terminates

the call.

An online upgrade requires that a call session existing in old SIMBA cannot be

interrupted when the new SIMBA replaces the old SIMBA. The main problem is that

the MESSAGE event from the IM client is the initial event; therefore any new

MESSAGE events will be dispatched to the SBB entity of a new SIMBA. It will

cause the new SIMBA to set up a new call to the same telephone user, but actually

the telephone is already in the “working” status. The existing call session is

interrupted due to the operation of an upgrade. The process of call interruption is

shown in Figure 20.

 43

IM Client Old SIMBA New SIMBA Telephone User

Message 1

set up a call successfully

Upgrade happens. Old one is being to

"deactive" state and New one is in "active"

state state

Message 2 new message is

dispatched to New one set up a call but failed

the call fails because the

telephone is already in "on"

state. Therefore, the call

session between IM and

Telephone is interrupted.

Figure 20 Call interruption during the online upgrade

Figure 20 describes the process of call interruption during the online upgrade. When

online upgrading, old SIMBA is deactivated and new SIMBA is active. New SIMBA

cannot keep the state of existing call session and cause the existing call session

interruption.

4.4.3.3 The solution to avoid call interruption during the online upgrade

A custom event is used to sort out the issue of call interruption in the online upgrade.

The custom event is a low level event in the JSLEE. A SBB entity can receive custom

events even if it is in the “stopping” state.

Assume that a SBB entity of the old SIMBA (call it SBB1) has received the initial

MESSAGE from the IM client. To make sure it stays alive for the whole session,

SBB1 must be attached to an activity the whole time. There is no single activity at the

protocol level that it will stay attached to (ie. all the SIP transactions are separate,

short-lived activities). Thus SBB1 creates a null activity and attaches to it. The

activity is assigned a unique name–the SIP URL of the IM client (call it Session-

SBB1).

SBB1 does the INVITE transaction with the telephone through the gateway.

Upgrades occurring at this stage have no influence here because SBB1 is attached to

 44

the ClientTransaction activity, so SBB1 will automatically get the response. The

response is not an initial event so no other SBBs are created yet.

The operation of upgrade is implemented at the moment. Old SIMBA transfers to the

“stopping” state, which is leading to the inactive state. A new MESSAGE arrives

from the IM client. SBB1 does not see it because it is an initial event, and SBB1 is

not attached to the new SIP ServerTransaction activity. The SLEE creates a new SBB

entity of new SIMBA (call it SBB2) to handle the MESSAGE event.

SBB2 can look up the activity named "Session-SBB1" in the AC naming facility. If it

finds that it exists, SBB2 can fire a custom event on it. SBB1 will receive the custom

event on its activity. The custom event object could take the details of the message

from the IM client, such as text body of the message and SIP URL of the IM client.

SBB1 handles the message with normal processing. If the text body of the message is

“bye”, SBB1 would terminate the telephone call. SBB1 can then detach from the null

activity and clean it up. Further MESSAGE requests from the IM client or other IM

clients will cause new SBB entities of the new SIMBA, to be created. The process of

avoiding call interruption in the online upgrade is described in Figure 21.

 45

IM Client Old SIMBA New SIMBA Telephone User

Upgrade happens. Old one is being to

"deactive" state and New one is in "active"

state state

Message 1

set up a call successfully

attach an activity with

unique name(the SIP

URL s of the IM client)

Message 2
new message is

dispatched to New one

look up the activity with

unique name of theSIP

URL of the IM client

Fire a custom evnt to old one

the event the details of

message 2

process Message 2

normally

terminate the call

If the Message with

text body of "bye"

the call session end

the call

session start

Figure 21 Solution to avoid call interruption during the online upgrade

Figure 21 shows that new SIMBA forwards the message of the existing call session to

old SIMBA via custom event. Old SIMBA processes the message of existing call

session until the existing call session is ended normally. New SIMBA is responsible

for processing the new message. It enables SIMBA to avoid call interruption during

the online upgrade.

 46

4.5 System implementation

SIMBA provides similar services to the Deaf Telephony SoftBridge that was built on

an open Jabber IM platform [26]. The bridging services were redesigned for SIMBA.

In addition, the implementation of SIMBA is based on a JAIN-SIP Proxy, which is an

open source Java project distributed by National Institute of Standards and

Technology (NIST) [37]. The JAIN-SIP Proxy system acts as a SIP proxy, registrar

and presence server. SIMBA implements bridging between text and voice on the

JAIN-SIP Proxy system. Current SIMBA only supports the call established by an IM

client to a telephone and does not handle the call initiation from a telephone.

MAS is built as a Java Servlet and communicates with SIMBA using an HTTP

interface. The FreeTTS engine is embeded into MAS to perform the conversion from

text to speech [55]. The ASR agent is responsible for converting voice into text and

then SIMBA forwards the text message to the IM client.

Two versions of SIMBA have been developed for the evaluation: SIMBA with and

without a JSLEE. These two versions of SIMBA provide the same service, but one is

executed and managed within a JSLEE, the other is executed in a stand alone mode.

Rhino is used as an implementation of JSLEE standards to provide life-cycle

management for SIMBA [39]. SIMBA with and without Rhino implement the same

source code for core functions, such as SIP proxy, registrar, presence server and

bridging. Comparing with SIMBA without Rhino, SIMBA with Rhino implements

the interfaces to be deployed into Rhino so that Rhino can provide life-cycle

management of SIMBA.

Rhino provides a management web interface to manage the life-cycle of SIMBA,

including deployment, uninstallation, activation, inactivation and online upgrade. To

integrate SIMBA with Rhino, SIMBA is packaged into four deployable Jars: SIMBA

SBB Jar, profile Jar, SIP event Jar, custom event Jar. These Jars consist of class files

and corresponding deployment descriptor files. Through the Rhino deployment web

interface, these four Jars can be deployed into Rhino and also be uninstalled from

Rhino (as shown in Figure 22). After SIMBA Jars are installed into Rhino

successfully, SIMBA can be activated through the Rhino service management web

 47

interface (as shown in Figure 23). “Active” SIMBA can process the call request from

an IM client to a telephone. SIMBA can also be deactivated and “inactive” SIMBA

still resides in Rhino, but cannot process the call request.

Figure 22 Rhino deployment interface to install and uninstall SIMBA

Figure 22 is a capture of the Rhino web UI. It shows the Rhino deployment web

interface. The “install” button with a circle is used to deploy SIMBA into Rhino and

the “un install” button with a circle is used to unintall SIMBA from Rhino.

Figure 23 Rhino service management interface to activate and inactivate SIMBA

Figure 23 is a capture of the Rhino web UI. It shows the Rhino management web

interface. The “activate” button with a circle is used to activate SIMBA and the

“deactivate” button with a circle is used to deactivate SIMBA.

An Online upgrade requires that a call in-process does not get interrupted during the

upgrade operation. That means a call is already established when the upgrade

operation occurs. The call can continue and terminate as normal. It is assumed that

 48

SIMBA 1.0 is activated by Rhino and processes the request from the IM client. After

the call is already established, SIMBA 1.1 is deployed into Rhino. Through the

service management web interface (as shown in Figure 23), SIMBA 1.0 is

deactivated and version 1.1 is activated. SIMBA 1.1 begins to process the new

request and version 1.0 continues to process the call until it terminates as it normally

does.

Figure 24 Rhino service management interface to upgrade SIMBA online

Figure 23 is a capture of the Rhino web UI. It shows the Rhino management web

interface. The “deactivateAndActivate” button with a circle is used to activate

SIMBA 1.1 and deactivate SIMBA 1.0.

4.6 Summary

This chapter describes the design and implementation of a SoftBridge application

called SIMBA. SIMBA enables a Deaf user with a text-based IM client to

communicate with a hearing user with a telephone or a cellular phone. The system

functional architecture includes two independent parts: SIMBA and MAS. SIMBA is

built upon an open JAIN-SIP Proxy that acts as a SIP proxy, registrar and presence

server. SIMBA implements bridging between text and voice on the JAIN-SIP Proxy

system. SIMBA communicates with MAS through the HTTP protocol. SIMBA life-

cycle management in a JSLEE includes deployment, activation, deactivation,

uninsatllation and online upgrade. SIMBA is packaged in a deployable unit, and then

installed or uninstalled in Rhino, a JSLEE. Through the Rhino service management

interface, SIMBA can be activated and deactivated in Rhino. An Online upgrade

requires the “connected” call to continue during an upgrade and terminate as normal.

SIMBA adopts the solution of a custom event to avoid call interruption during an

online upgrade in Rhino.

 49

Chapter 5 EXPERIMENTAL DESIGN

An empirical evaluation of SIMBA is carried out. The evaluation involves

experiments with both SIMBA life-cycle management and performance. SIMBA with

a JSLEE and SIMBA without a JSLEE are evaluated in the same experiments.

Through comparing the experimental results between SIMBA with and without a

JSLEE, it is expected that a JSLEE can provide SIMBA life-cycle management

without causing a significant decrease in performance.

5.1 Software and hardware environments in the experiment

5.1.1 Software environment

The software environment in the experiment includes operating system (OS) software

and applications software, all of which are detailed in Table 2.

Name Description

Microsoft Windows 2000, Service Pack 3. OS

Linux RedHat 7.3 Kernel 2.4.18.

J2SE1.4.2 [49] Java(TM) 2 SDK, Standard Edition version 1.4.2. A development
environment for building applications, applets, and components
that can be deployed on the Java platform.

Rhino 1.3.0-
beta5 [39]

Open Cloud Rhino is a JSLEE standards compliant service logic
execution environment (SLEE) for carrier grade implementations.
It includes everything in the SLEE category, SIP and JCC
Resource Adaptors, Enterprise Integration features and example
SIP and JCC applications for service development.

SIMBA with Rhino, which runs in Rhino 1.3. SIMBA

SIMBA without Rhino, which runs in J2SE 1.4.2.

MAS A Web Server, whose functions include two parts: media
transmission and media adaptation (between text and speech).

NIST-SIP IM
client [36]

A JAVA based SIP IM client (open source) built on top of the
JAIN-SIP-1.1 API. It supports:

 50

� IM capability: process MESSAGE requests

� Presence information capability: process PUBLISH, NOTIFY
and SUBSCRIBE requests

� Registration capability: Register and unregister itself to a
proxy

SIPRG [50] The SIP Residential Gateway (SIPRG) is an open source
application based on SIP. The SIPRG is an IP Telephony Gateway
that allows a SIP User Agent to make and receive calls between
PSTN/PBX and a SIP-based network.

The SIPRG is developed with the VOVIDA SIP stack version
1.3.0, and uses a QuickNet LineJACK card for connecting a
telephone line in a PBX. Currently, it supports only a single
LineJACK card and is therefore a single-line gateway.

Sipp [14] Sipp (open source) is a performance testing tool for the SIP
protocol. Its main features are basic SIPStone scenarios, TCP/UDP
transport, customizable (xml based) scenarios, dynamic
adjustement of call-rate and a comprehensive set of real-time
statistics.

Sipp can be used to test many real SIP equipment like SIP proxies,
B2BUAs, SIP media servers, SIP/x gateways, SIP PBX. It is also
very useful to emulate thousands of user agents calling the SIP
system or receive thousands of SIP calls from a SIP system.

IM Simulator IM simulator is a performance testing tool for SIP/SIMPLE based
IM system. It can emulate thousands of MESSAGE and
REGISTER requests to the SIP system like proxy.

Apache Ant

 1.6.1 [2]

Apache Ant is a Java-based build tool, which is used to build SIP
Resource Adaptor.

PostgreSQL
7.4.2 [51]

PostgreSQL is an enhancement of the POSTGRES database
management system, which is used as a background database
server for the Rhino system.

Table 2 Software environment

 51

5.1.2 Hardware environment

The hardware equipment being used in the experiment includes PC, speaker,

microphone, voice card, PBX, telephone and LAN, all of which are detailed in Table

3. The experimental network topology is shown in Figure 25.

Name Description

Intel Pentium 4 CPU 1.8Ghz, 416M RAM, 40G Hard driver.

PCa: Microsoft Windows 2000 , j2SE 1.4.2.

PCb: Linux RedHat 7.3 , j2SE 1.4.2.

PC

(as shown in
Figure 25)

Intel Pentium 2 CPU 400Mhz, 416M RAM, 10G Hard driver

PCc: Linux RedHat 7.3.

QuickNet
LineJACK

QuickNet LineJACK is a single line, VoIP (Voice over IP)
gateway card, whose PSTN port can connect a telephone line
of a PBX. It runs with a VoIP gateway, such as SIPRG.

Siemens Hicom
150H (PBX)

Hicom 150 H is a PBX for small and medium-sized
enterprises, complete with in-built support for all the
requirements associated with an IP-based corporate network.

Siemens euroset
805 S (telephone)

Telephone, used to set up or receive a PSTN call.

Ethernet 100M bps, support TCP(Transmission Control Protocol) /IP

100M network adapter.

Speaker/Micro
phone

Speaker/Micro phone are used as input and output voice.

Table 3 Hardware environment

 52

Figure 25 Experimental network topology

Figure 25 shows SIMBA with Rhino on PCb, MAS on PCa, NIST-SIP IM client on

PCa and SIPRG on PCc, connected through an Ethernet. A Siemens Hicom 150H

PBX connects with a SIPRG gateway through a QuickNet LanJACK card.

5.2 Experiment design

5.2.1 SIMBA life-cycle management experiment

5.2.1.1 Experiment strategy

The aim of this experiment is to show that a JSLEE (Rhino) can provide life-cycle

management for a SoftBridge application (SIMBA). For the sake of comparison,

SIMBA with Rhino and SIMBA without Rhino are involved in this experiment. The

life-cycle management experiment includes deployment, activation, deactivation,

uninstallation and online upgrade. The experimental results of SIMBA with and

without Rhino are compared and analyzed. It is expected to show that advanced

SIMBA with Rhino supports all life-cycle management capabilities.

5.2.1.2 SIMBA deployment and uninstallation in Rhino

This experiment includes SIMBA with Rhino on PCb. Rhino provides a management

web interface to manage the services. SIMBA can be deployed into Rhino through

the deployment web interface, including service jar package, event jar package and

 53

profile jar package. Using the profile provisioning web interface, the profile of

SIMBA can be created, modified and removed. When SIMBA is in the inactive state,

it can be uninstalled from Rhino through the deployment web interface.

5.2.1.3 SIMBA activation and deactivation in Rhino

After SIMBA is deployed into Rhino successfully, it can be activated through the

service management web interface. An IM client can communicate with a telephone

client through an “active” SIMBA and MAS. SIMBA can also be deactivated through

the service management web interface.

5.2.1.4 SIMBA online upgrade in Rhino

An online upgrade requires that a call in-process does not interrupt during the

upgrade operation. That means a call is already established when the upgrade

operation occurs. The call can continue and terminate as normal. In this experiment,

an old version of SIMBA (called version 1.0) is activated by Rhino and processes the

request from the IM client. After the call is already established, a new version of

SIMBA (called version 1.1) is deployed into Rhino. Through a service management

web interface, version 1.0 is deactivated and version 1.1 is activated. Version 1.1

begins to process the new request and version 1.0 continues to process the call until it

terminates as it normally does. The online upgrade capability can be verified if the

process is successful.

5.2.1.5 Life-cycle management of SIMBA without Rhino

SIMBA without Rhino performs life-cycle management by itself. Through a SIMBA

UI, it can be started and stopped. For the upgrade operation, the operator must stop

the old version and then start the new version. Therefore it cannot keep the

established call going during the upgrade operation.

 54

5.2.2 SIMBA performance experiment

The aim of the performance experiment is to show that service life-cycle management

with a JSLEE does not cause significant decrease in performance. The performance

experiment includes two test cases: RPS and CPS.

Registrations per second (RPS): Registrations per second is defined as the average

number of successful registrations per second during the measurement interval.

Calls per second (CPS): Calls per second is defined as the average number of calls

per second completed with a 2xx or 4xx response during a measurement interval. For

a SIMBA test case, a single call includes both the INVITE and corresponding BYE

transaction.

5.2.2.1 Performance experiment strategy

Both SIMBA with Rhino and SIMBA without Rhino are involved in this experiment.

By comparing the performance results of implementing an experiment under each

system, no significant performance difference is expected to exist between SIMBA

with Rhino and SIMBA without Rhino even though SIMBA with Rhino performs a

bit worse than SIMBA without Rhino.

To determine the RPS and CPS values, the request rate is increased by 10 (10, 20, 30,

40…) until the successful registration or call probability decreases to 95% that is

generally accepted as the benchmark of evaluating RPS and CPS for carrier grade

requirements [43]. To each request rate, the test is carried out five times and the value

is determined by the average of five time test result.

A statistical approach, t-test, is used to compute the significance of the performance

variance between these two systems. Even though the t-test does not offer a definitive

measure, it does provide a good idea of the significance of relationships. The t-test is

typically used to compare the means of two populations [52]. Therefore, to compare

the variance of the CPS and RPS of two systems, SIMBA with Rhino and SIMBA

without Rhino, t-test takes the responsibility.

 55

5.2.2.2 RPS experiment

This experiment includes an IM Simulator on PCa and SIMBA with Rhino on PCb or

SIMBA without Rhino on PCa. The register request rate (per second) from the IM

simulator to SIMBA is increased by 10 (10, 20, 30, 40…). The numbers of successful

or failed registrations are recorded. When the successful registrations probability

decreases to 95%, the value of RPS is determined. The experiment is shown in Figure

26.

Figure 26 RPS experiment

Figure 26 shows that an IM simulator sends an increasing number of REGISTER

requests (per second) to SIMBA and gets successful responses from SIMBA.

5.2.2.3 CPS experiment

This experiment (as shown in Figure 27) includes an IM simulator on PCa, a SIP

UAS simulator (Sipp) on PCc, SIMBA with Rhino on PCb or SIMBA without Rhino

on PCa. The call request rate (per second) from the IM simulator to SIMBA is

increased by 10 (10, 20, 30, 40…). SIMBA then sets up the call to the SIP UAS

simulator at the same increasing rate. A completed call includes both the INVITE and

corresponding BYE transaction. The call holding time, after successful INVITE

transaction is set to zero and the BYE transaction follows successful INVITE

transaction immediately. The media transmissions are discarded. The number of

successful or failed calls is displayed through the UI of Sipp (as shown in Figure 28).

When the successful call probability decreases to 95%, the value of RPS is

determined.

 56

Figure 27 CPS experiment

Figure 27 shows that an IM simulator sends an increasing number of MESSAGE

requests (per second) to SIMBA, which cause the same number of SIP calls to Sipp

UAS simulator.

Figure 28 Sipp UI

Figure 28 shows that Sipp UI displays the number of successful INVITE transactions

and BYE transactions, therefore, the successful and failed call numbers can be easily

viewed. The interval between INVITE transaction and BYE transaction is set to zero.

5.2.2.4 T-test procedure

In order to compare the performance tests with and without the JSLEE, a standard t-

test is performed. Assume that the null hypothesis is H0: µ1=µ2, whereby µ1 is the

mean performance of CPS or RPS of SIMBA with Rhino and µ2 is the mean

performance of CPS or RPS of SIMBA without Rhino. This equation means that

there is no significant variation between the performance of CPS or RPS of SIMBA

with Rhino and without Rhino. Meanwhile, a one-sided alternative hypothesis H1:

µ1<µ2 is assumed because SIMBA with Rhino will have little negative influence on

the performance. Thus the significance level t of the performance variance of the two

systems can be expressed as [52]:

 57

21

21

11 nns
t

+⋅

−
=

µµ

where s is obtained from s2, the pooled estimate of the variance and calculated as:

() ()
2

21

1

2
1

1

2
1

2

)1()1(

21

ssand
nn

yx

s

n

i

n

i

=
−+−

−+−

=
∑∑ µµ

where the samples in group x and group y individually represent the values as to the

performance of SIMBA with Rhino and SIMBA without Rhino. For example, the

CPS values of five tests in SIMBA with Rhino are set as the samples of group x,

while the samples in group y are the CPS values of five tests in SIMBA without

Rhino. n1, n2 is the number of samples in group x and group y, and µ1, µ2 refers to the

respective mean performance of group x and group y. Moreover, it is customary to

carry out this one-way experiment at the 5% level of significance (05.0=α) and the

degree of freedom is calculated as () () 811 21 =−+−= nndf . Thus we can get

306.2025.02 == ttα for df8 from table in [52].

According to the t-test principle, when the resultant t value is within (-2.306, 2.306),

H0 is accepted and the performances of SIMBA with Rhino and SIMBA without

Rhino do not have significant variance. Vice versa, if the calculated t is out of the

range, the two systems have significant variance in terms of performance.

5.3 Summary

In this chapter, the experimental design of SIMBA evaluation is described in detail,

including software and hardware environments, the service life-cycle experiment

design and the performance experiment design. For the sake of comparison, SIMBA

with Rhino (a JSLEE representation) and SIMBA without Rhino are involved in the

experiments. The life-cycle management experiment is used to show that Rhino is

able to provide life-cycle management to SIMBA, including deployment, activation,

deactivation, uninstallaton and online upgrade. The performance experiment is used

to show that service life-cycle management capabilities provided by Rhino do not

cause a significant decrease in performance.

 58

Chapter 6 DATA COLLECTION AND RESULTS

This chapter details how the experimental data is collected, including SIMBA life-

cycle management and performance experiments. The experimental data is displayed

in tabular form. Using these tables and figures, the experimental results are analyzed.

6.1 SIMBA life-cycle management experimental data

6.1.1 Deployment and uninstallation in Rhino

Through the Rhino deployment web interface, SIMBA service jar package, event jar

package and profile jar package are installed into Rhino (as shown in Figure 29).

After successful deployment, the jar files of SIMBA are removed from Rhino (as

shown in Figure 30). The figures show that Rhino is able to deploy and uninstall

SIMBA.

Figure 29 Deploy SIMBA into Rhino

Figure 29 is a capture of the Rhino web UI. It shows the deployed units in Rhino.

These units with a circle are the jar packages of SIMBA, including event, profile and

service jar packages.

 59

Figure 30 Uninstall SIMBA from Rhino

Figure 30 is a capture of the Rhino web UI. Comparing with figure 28, the number of

deployed units decreases from 5 to 2. It shows those deployed units of SIMBA have

been removed from Rhino after the uninstallation operation.

6.1.2 Activation and deactivation in Rhino

Through the Rhino service management web interface, SIMBA is activated and is

ready to process the request from the IM client (as shown in Figure 31). After the

successful activation, SIMBA is deactivated through the Rhino service management

web interface (as shown in Figure 32). The figures show that Rhino is able to activate

and deactivate SIMBA.

Figure 31 Activate SIMBA in Rhino

Figure 31 is a capture of the Rhino web UI. It shows that the state of SIMBA is

“active” after the activation operation. “Active” SIMBA is ready to perform the

bridging service between IM client users and telephone users.

Figure 32 Deactivate SIMBA in Rhino

Figure 32 is a capture of the Rhino web UI. It shows that the state of SIMBA is

“inactive” after the deactivation operation.

 60

6.1.3 Online upgrade in Rhino

Through the Rhino service management web interface, SIMBA 1.0 is activated. It

received the request from the IM user “tao” and set up a call to the telephone user

“Bill”. When the user “tao” and “Bill” are in “talking” state, SIMBA 1.1 is activated

and SIMBA 1.0 is deactivated through the Rhino service management web interface

(as shown in Figure 33). The call between user “tao” and “Bill” is not interrupted and

ended as normal. When a new request from user “tao” is sent, SIMBA 1.1 began to

process it. The experimental result shows that SIMBA is able to be upgraded during

runtime without call interruption.

Figure 33 Online upgrade SIMBA in Rhino

Figure 33 is a capture of the Rhino web UI. It shows the online upgrade operation.

Through the Rhino service management web interface, the state of SIMBA 1.0 and 1.1

can be checked (refer to Figure 31 and Figure 32) after the online upgrade operation.

6.1.4 Life-cycle management of SIMBA without Rhino

SIMBA without Rhino is started and stopped through its UI (as shown in Figure 34

and Figure 35). For the upgrade operation, the old SIMBA must be stopped and then

the new one started. The call in the old version cannot be kept going during the

upgrade operation.

Figure 34 Start SIMBA without a JSLEE

Figure 35 Stop SIMBA without a JSLEE

Figure 34 and 35 are captures of SIMBA without Rhino. They show that SIMBA

without Rhino starts and stops through its user interface.

 61

6.1.5 The experimental results of SIMBA life-cycle management

In the life-cycle management experiment, a comparison between SIMBA with a

JSLEE (Rhino) and SIMBA without a JSLEE (Rhino) is shown in Table 4.

Life-cycle management

capabilities

SIMBA with a JSLEE

(Rhino)

SIMBA without JSLEE

(Rhino)

Deployment Yes No

Uninstallation Yes No

Activation Yes Yes

Deactivation Yes Yes

Online upgrade Yes No

Table 4 Comparison between SIMBA with a JSLEE and without a JSLEE

SIMBA with a JSLEE supports all five features of life-cycle management capability.

However, SIMBA without a JSLEE only supports two features. A JSLEE provides a

SIMBA execution and management environment. Therefore, SIMBA can be

deployed, uninstalled, activated and deactivated in the JSLEE. Compared with

SIMBA with a JSLEE, SIMBA without a JSLEE is not supported by a service

execution and management environment, therefore it only supports activation and

deactivation features.

During an online upgrade, a JSLEE enables SIMBA to be upgraded during execution

and the call in “connected” state keeps going without corruption during the upgrade.

However SIMBA without a JSLEE must stop the old version and then start the new

version. The call in “connected” state is corrupted because of stopping the old version.

Therefore SIMBA without a JSLEE does not support online upgrade.

 62

6.2 SIMBA performance experimental data

6.2.1 RPS experimental results

The RPS experimental data of SIMBA both with and without Rhino is shown in

Table 5. For SIMBA with Rhino, when the number of Registration Attempts per

Second (RAPS) increases to 120, the probability of successful registrations decreases

to 93.5%. This is the first instance where the value is less than 95%, the benchmark

for acceptable RPS in carrier grade requirements [43]. The RPS value of SIMBA with

Rhino is therefore determined to be 110 where the probability of successful

registration is 96.5%. For SIMBA without Rhino, the RPS value is 120 where the

probability of successful registration is 95.5%. The RPS experimental data from 10 to

90 is not shown in Table 5 because all the probability values of successful registration

are 100%. The change of successful RPS with the increasing RAPS is shown in

Figure 36, including both SIMBA with and without Rhino.

Registration Attempts
per Second (RAPS)

100

110

120

130

140

150

SIMBA with
Rhino 98.6 106.2 112.2 118.2 125.2 128.4

the mean value
of five tests
(successful

registrations)
SIMBA

without Rhino 99 107 114.6 120.8 127.6 132.8
SIMBA with

Rhino 98.6% 96.5% 93.5% 90.9% 89.4% 85.6%
the probability
of successful
registrations SIMBA

without Rhino 99% 97.3% 95.5% 92.9% 91.1% 88.5%

Table 5 RPS experimental data

 63

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

RAPS

successful RPS(with Rhino)

successful RPS(without Rhino)

Figure 36 Successful RPS comparison between with and without Rhino

The square mark shows the change of successful RPS with the increasing of RAPS in

SIMBA with Rhino. The triangle mark shows the change of successful RPS with the

increasing of RAPS in SIMBA without Rhino. The RPS change of SIMBA with Rhino

is close to that of SIMBA without Rhino.

6.2.2 CPS experimental results

The CPS experimental data of SIMBA both with and without Rhino is shown in

Table 6. For SIMBA with Rhino, when the number of Call Attempts per Second

(CAPS) increases to 120, the probability of successful calls decreases below 95% to

93%. 95% that is the benchmark for acceptable CPS in carrier grade requirements

[43]. The CPS value of SIMBA with Rhino is therefore determined to be 110 where

the probability of successful calls is 98.9%. For SIMBA without Rhino, the CPS

value is 120 where the probability of successful calls is 96.2%. The change of

successful CPS with the increasing of CAPS is shown in Figure 37, including SIMBA

both with and without Rhino.

 64

Call attempts per second
(CAPS) 80 90 100 110 120 130 140

SIMBA with
Rhino 79.2 88.6 97.2 108.8 111.6 113 115.6

the mean
value of five
tests(success
ful calls)

SIMBA
without Rhino 79.6 89.2 98.8 109 115.4 116.4 117
SIMBA with
Rhino 99% 98.4% 97.2% 98.9% 93% 86.9% 82.5%

the
probability
of successful
calls

SIMBA
without Rhino 99.5% 99% 98.8% 99.1% 96.2% 89.5% 84%

Table 6 CPS experimental data

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100 110 120 130 140

CAPS

successful CPS(with Rhino)

successful CPS(without Rhino)

Figure 37 Successful CPS comparison between with and without Rhino

The square mark shows the change of successful CPS with the increasing of CAPS in

SIMBA with Rhino. The triangle mark shows the change of successful CPS with the

increasing of CAPS in SIMBA without Rhino. The CPS change of SIMBA with Rhino

is close to that of SIMBA without Rhino.

6.2.3 T-test calculation

Based on the data samples of RPS and CPS in Appendix I and the t-value-calculation

formulas in section 5.2.2.4, the significance level t of the variation of the two systems

(SIMBA with and without Rhino) for RPS and CPS can be computed. To calculate

the significance level for RPS, RAPS is selected from 100 to 150 because all the RPS

 65

values of the two systems are the same as the RAPS value, when RAPS ranges from

10 to 90. Moreover, since the RPS value is determined when RAPS reaches 120,

three more increases of RAPS are tested to ensure the RPS value was properly

identified. As can be seen, it is no use to continue the experiment after RAPS is 150.

The same explanation holds can be explained for the calculation of CPS by confining

CAPS between 80 and 140.

Registration Attempts
per Second (RAPS)

80 90 100 110 120 130 140 150

RPS 0.2857 0.2676 0.5926 0.4371 0.3935 0.451 Significance level
“t” of SIMBA with
and without Rhino CPS 0.8944 0.7746 0.8835 0.343 0.9435 0.8675 0.2406

Table 7 t-test results of RPS and CPS

Table 7 shows that all the effective values of significance level t are in the range of -

2.306 and 2.306. According to the t-test statistical theory in section 5.2.2.4 and the

analysis in the proceeding paragraph, this means that there is no significant variance

between SIMBA with Rhino and SIMBA without Rhino in terms of RPS and CPS

when RAPS is selected discretely from 10 to 150 and CAPS from 10 to 140.

6.2.4 Performance experimental results analysis

RPS and CPS experimental results show that SIMBA without a JSLEE performs a bit

better than SIMBA with a JSLEE because SIMBA with JSLEE has to do extra

operations on calls. For instance, the CPS of SIMBA with a JSLEE is 110 and CPS of

SIMBA without a JSLEE is 120. However, as shown in t-test experimental results,

even if the SIMBA with JSLEE has some negative effect on performance, the

performance variation of the two systems is low and acceptable. That is, the SIMBA

life-cycle management capability, which is provided by a JSLEE (Rhino), does not

have a significant negative influence on the performance of call processing.

 66

6.3 Summary

In this chapter, SIMBA life-cycle management experiment date is collected. It shows

that a JSLEE (Rhino) can provide life-cycle management for SIMBA, including

deploying, uninstalling, activating, deactivating and online upgrading SIMBA. The

performance experimental results, which include RPS and CPS, show that SIMBA

life-cycle management will not cause a significant decrease on the performance of

call processing when it is provided by a JSLEE. In the same way, the applications of

life-cycle management to other IP communication applications can be carried out in a

JSLEE as well.

 67

Chapter 7 CONCLUSION AND FUTURE WORK

The evaluation suggests that a JSLEE is able to provide life-cycle management for

SIMBA. Then the results indicate that approach of using Application Server (JSLEE)

integration should be sufficiently general to provide life cycle management, and

indeed other carrier grade capabilities, for other IP communication applications..

Finally, the future work of this research considers other carrier grade characteristics,

such as fault tolerance and overload balance.

7.1 Conclusion

The main aim of this thesis is to provide carrier grade characteristics for IP

communication applications with regard to service life-cycle management. This thesis

focuses on five features of the life-cycle management: deployment, activation,

deactivation, uninstallation and online upgrade of IP communication applications.

This is done by using a SoftBridge application as an example of IP communication

applications.

Then the work related to providing life-cycle management for IP communication

applications was reviewed. We studied several projects, in which the life-cycle

management was considered for IP-Telecommunication applications but only limited

to their own services. Thus, it cannot be applied to general IP communication

applications. Moreover, an Application Server in an NGN is able to provide the

creation, execution and management environments for service life-cycle management.

As an open service API for an NGN, JAIN provides a JSLEE that implements the

function of an Application Server, for carrying out the life-cycle management of IP-

Telecommunication applications. Parlay, on the other hand, does not explicitly

address services life-cycle management. The work related to the SoftBridge was also

reviewed. However, most of the related work was not explicitly concerned with

service life-cycle management.

 68

Therefore an Application Server is proposed to provide life-cycle management for IP

communication applications in this thesis. Using a JSLEE as a representation of an

Application Server and a SoftBridge application as an example of IP communication

applications, this thesis shows how an IP communication application can be deployed,

activated, deactivated, uninstalled and upgraded online in a JSLEE.

Two methodologies are applied in this thesis: exploratory prototyping in the

development of a SoftBridge application and comparison in an empirical evaluation

of the SoftBridge application with regard to life-cycle management.

A SoftBridge application, called SIMBA, has been built upon an open JAIN-SIP

Proxy according to the service development mode of the JSLEE specification.

Although the Deaf Telephony service is similar to a previous Deaf Telephony

SoftBridge [26], SIMBA’s SoftBridge design and implementation are unique to this

thesis. The JAIN-SIP Proxy system acts as a SIP proxy, registrar and presence server

and SIMBA implements bridging between text and voice on the JAIN-SIP Proxy.

SIMBA enables a text-based IM client to communicate seamlessly with an IP phone,

a telephone or a cellular phone. SIMBA can be packaged into deployable Jars and

deployed into Rhino, which acts as a JSLEE and provides life-cycle management for

SIMBA.

An empirical evaluation of SIMBA is carried out. SIMBA is used as an example of a

SoftBridge application and Rhino is used as the implementation of a JSLEE in the

experiment. In comparison, SIMBA with and without Rhino are evaluated in a

service life-cycle management experiment and a performance experiment. The

service life-cycle management experimental results show that SIMBA can be

deployed, uninstalled, activated, deactivated and upgraded online in Rhino through

the Rhino web management interface. The performance results show that SIMBA

life-cycle management capability, which is provided by Rhino, does not have a

significant negative influence on the performance of call processing.

In conclusion, a JSLEE, one representation of an Application Server, is able to

provide life-cycle management for an IP-based SoftBridge application, including the

 69

deployment, activation, deactivation, uninstallation and online upgrading of the

SoftBridge application.

It can be implied as well that if one of carrier grade characteristics, such as life-cycle

management, can be applied to a SoftBridge application through a JSLEE, so could

the other characteristics. This is reasonable because a JSLEE acts as an Application

Server that supports most carrier grade characteristics, such as service life-cycle

management, fault tolerance, overload balance and control, trace, alarm and so on.

Furthermore, since the carrier grade characteristics can be successfully applied to one

IP communication application, such as an IP-based SoftBridge application-SIMBA,

they can be applied to general IP communication applications. This is because a

JSLEE is a representation of open Application Server, and it is applicable to all IP

communication applications rather than some specified applications. Thus, what can

be implied is that carrier grade characteristics can be provided for all IP

communication applications via an Application Server.

Notably, as described above, an Application Server in an NGN is used as the key

approach to implement the introduction of carrier grade characteristics to IP

communication applications.

7.2 Future work

The current SIMBA only supports a basic bridging service between a Deaf user with

an IM client and a hearing user with a telephone. Future work should address more

service features. This thesis focuses on service life-cycle management capabilities,

therefore, other carrier grade characteristics, such as fault tolerance, overload balance

and call process capability, should be addressed in future work.

7.2.1 Services by SIMBA

SIMBA should cooperate with more SIP/SIMPLE products and provide more

bridging service features, such as call forwarding and multi-modal conferencing.

 70

Cooperation test with more SIP/SIMPLE products

SIMBA was successfully tested with the NIST-SIP IM client and the JAIN-SIP proxy.

It should support more SIP/SIMPLE products, such as Microsoft Windows

Messenger, Siemens UA, and Cisco UA. However some SIMPLE-based IM clients

support session-mode messaging, therefore SIMBA should add the feature of session-

mode messaging and support more IM clients.

Call forwarding feature

SIMBA can bridge between a telephone and an IM client, allowing seamless

communication. If the telephone is busy, SIMBA sends a “busy” prompt message to

the IM client. The feature of call forwarding allows SIMBA to forward the call to

other terminals of the called user, such as cellular phone or SIP phone. If all of them

are not available, the system can send an e-mail or SMS to the called user.

 Conferencing feature

The conference feature allows more than two users to join in a conference using

various end user equipments, such as an IM client, SIP client, PDA, telephone and

cellular phone. SIMBA does not currently support this advanced feature.

7.2.2 The issue of carrier grade characteristics for SIMBA

Besides service life-cycle management, more carrier grade characteristics, such as

fault tolerance, overload balance and control, should be put into SIMBA.

Fault tolerance

The current system runs as a single node. If it is down abnormally, the call in-process

will be lost. Fault tolerance allows the system to run with multiple nodes in the

cluster. It can detect node failures and automatically forward the request to other

nodes. Therefore a call in-process can be kept although some nodes fail. Future work

should consider enabling SIMBA to support fault tolerance in a JSLEE.

Overload balance and control

An overload balance feature would enable SIMBA to allocate incoming calls to

different nodes according to its allocation strategies. New nodes can be dynamically

 71

added to a running cluster. An overload control feature would allow SIMBA to reject

incoming calls in the case of an overload, to process in-progress calls within

acceptable operating parameters and avoid a potential failure due to an overload.

Future work should consider enabling SIMBA to support overload balance and

control in a JSLEE.

7.3 Summary

In this chapter, the entire thesis is first reviewed to reach a conclusion that the carrier

grade characteristics can be provided for IP communication applications by using a

JSLEE as an Application Server. Then the future work is described with regard to

two main aspects: more services provided by SIMBA, such as call forwarding and

multi-modal conferencing, and more carrier grade characteristics, such as fault

tolerance, overload control and balance.

 72

BIBLIOGRAPHY

[1]. S. Abu-Hakima, R. Liscano and R. Impey. “A common multi-agent tested for
diverse seamless personal information networking applications”, IEEE

Communication Magazine, Vol. 36, No. 7, 1998, pp: 68–74.

[2]. Apache Software Foundation. “Apache Ant 1.6.2 Manual”, available at
http://ant.apache.org/manual/index.html, 2004.

[3]. S. Arbanowski and S. V. D. Meer. “Service personalization for unified
messaging systems”, IEEE International Symposium on Computers and

Communication, 1999, pp. 156–163.

[4]. S. Arbanowski, S. Steglich, I. Radusch and R. Popescu-Zeletin. “Super
distributed objects: an execution environment for I-centric services”, Ninth

IEEE International Workshop on Object-Oriented Real-Time Dependable

Systems, 2003, pp. 201–208.

[5]. M. A. Bauer, N. Coburn, D. L. Erickson, J. P. Finnigan, J. W. Hong, P-Å.
Larson and J. Slonim. “An integrated architecture for distributed applications”,
Proceedings of the Conference of the Centre for Advanced Studies on

Collaborative Research: Software Engineering. Vol. 1, 1993, pp.8-26.

[6]. S. Beddus, C. Bruce and S. Davis. “Opening up networks with JAIN Parlay”,
IEEE Communication Magazine, Vol. 38, No. 4, 2000, pp: 136–143.

[7]. S. Bessler, A-V. Nisanyan, K. Peterbauer, R. Pailer, J. Stadler. “A Service
Platform for Internet-Telecom Services using SIP”, Proceedings of the IFIP

TC6 WG6.7 Sixth International Conference on Intelligence in Networks:

Telecommunication Network Intelligence, 2000, pp. 59–72.

[8]. R. R. Bhat and R. Gupta. “JAIN protocol APIs”, IEEE Communication

Magazine, Vol. 38, Issue. 1, 2000, pp. 100–107.

[9]. E. H. Blake and W. D. Tucker. “Bridging Communication across the Digital
Divide”, CTIT Proceedings of the 3rd Workshop on Social Intelligence Design,

SID 2004, Enschede, Netherlands, pp. 29–38.

[10]. I. Boyd and M. Carr. “Parlay API: Business Benefits and Technical Overview”,
available at http://more.btexact.com/projects/
prognet/parlaydocs/TCS0.1a4colour.pdf, 2001.

 73

[11]. B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema and D. Gurle. “Session
Initiation Protocol (SIP) Extension for Instant Messaging”, Internet Engineering

Task Force (IETF), Request for Comments (RFC) 3428, December 2002.

[12]. M. Chetty, W. D. Tucker and E. Blake. “Developing Locally Relevant
Applications for Rural Areas: A South African Example”, Proceedings of

SAICSIT 2004, Cape Town, South Africa, pp. 239–234.

[13]. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T.
Berners-Lee. “Hypertext Transfer Protocol”, Internet Engineering Task Force

(IETF), Request for Comments (RFC) 2616, June 1999.

[14]. R. Gayraud and O. Jacques. “SIPp Reference Document v1.0”, available at
http://sipp.sourceforge.net/doc/reference.html, 2004.

[15]. C. Gbaguidi, J-P Hubaux, G. Pacifici and A. N. Tantawi. “Integration of
Internet and telecommunication: An Architecture for Hybrid Services”, IEEE

JSAC, Vol. 17, No. 9, 1999.

[16]. M. Glaser, W. D. Tucker and D. Mashao. “Preparation of Deaf end-users and
the SoftBridge for semi-automated relay trials”, Proceedings of the 7th South

African Telecommunication Networks & Applications Conference, SATNAC
2004, Stellenbosch, South Africa.

[17]. M. Glaser and W. D. Tucker. “Telecommunication bridging between Deaf and
hearing users in South Africa”, Conference and Workshop on Assistive

Technologies for Vision and Hearing Impairment, CVHI 2004, Granada, Spain.

[18]. R. H. Glitho and A. Poulin. “A High Level Service Creation Environment for
Parlay in a SIP Environment”, IEEE International Conference on

Communication, ICC 2002, Vol. 4, pp. 2008–2013.

[19]. M. Handley and V. Jacobson. “SDP: Session Description Protocol”. Internet

Engineering Task Force (IETF), Request for Comments (RFC) 2327, April
1998.

[20]. S, Ian. Software engineering, 6th edition, Addison Wesley Professional, 2000.

[21]. IBM Inc. “IBM WebSphere Application Server Overview”, available at
ftp://ftp.software.ibm.com/software/webserver/appserv/v5/g325-2047-003.pdf,
2004.

[22]. IBM Inc. “The History of Notes and Domino”, available at http://www-
10.lotus.com//ldd/today.nsf/0db661345413ad1d852567ba006bb090/bc684f3a96
b4efd185256b9c0064ae9c/$FILE/ND-history.pdf, 2003.

 74

[23]. Jabber Software Foundation. “Jabber User Guide", available at
http://www.jabber.org/user/userguide/index.html, 2003.

[24]. J. Keijzer, D. Tait and R. Goedman. “JAIN: a new approach to services in
communication networks”, IEEE Communication Magazine, Vol. 38, No. 1,
2000, pp. 94–99.

[25]. K-H Lee; K-O Lee; K-C Park; J-O Lee; Y-H Bang. “Architecture to be
deployed on strategies of next-generation networks”, IEEE International

Conference on Communication, Vol. 2, 2003, Anchorage, USA, pp. 819–822.

[26]. J. Lewis, W. Tucker, E. Blake. “SoftBridge: A Multimodal Instant Messaging
Bridging System”, Proceedings of the 6th South African Telecommunication

Networks & Applications Conference, SATNAC 2003, George, South Africa.

[27]. S. B. Lim and D Ferry. “JAIN SLEE 1.0 Specification, final release“, available
http://compose.labri.fr/documentation/sip/Documentation/Papers/Programming
_SIP/Paper_Publication_and_Draft/Java_SIP/jain_slee-1_0-fr-spec.pdf, 2004.

[28]. S. B. Lim, D. Ferry, P. O’Doherty and D. Page. “JAIN SLEE tutorial”, available
at http://java.sun.com/products/jain/JAIN-SLEE-Tutorial.pdf, 2002.

[29]. R. Liscano, R. Impey, P. Gordon and S. Abu-Hakima. “A system for the
seamless integration of personal messages using agents developed on a lotus
notes platform”, Proceedings of the 1996 conference of the Centre for Advanced

Studies on Collaborative research, Toronto, Canada, pp. 24–32.

[30]. M. Lu and S. Cheng. “SoftSwitch Technology”, ZhongXing Telecom

Technology, Vol. 41, 2002, pp. 29–31.

[31]. S. V. D. Meer, S. Arbanowski and T. Magedanz. “An approach for a 4th
generation messaging system”, The Fourth International Symposium on

Autonomous Decentralized Systems Integration of Heterogeneous Systems,
1999, pp. 158–167.

[32]. S. V. D. Meer and S. Arbanowski. “From unified messaging towards I-centric
services for the virtual home environment”, IEEE Intelligent Network Workshop,
2001, pp. 152–160.

[33]. Ministry of Information Industry P.R China, ZHONGXING Inc, BISC Inc,
HUAWEI Inc. “Technical Requirements for Application Server Based on
Softswitch”, Communication Industry Standard of P.R.China, 2003.

[34]. A-J Moerdijk and L. Klostermann. “Opening the networks with Parlay/OSA:
standards and aspects behind the APIs”, IEEE Network, Vol. 17, No. 3, 2003,
pp. 58–64.

 75

[35]. A. Niemi, Ed. “Session Initiation Protocol (SIP) Extension for Presence
Publication”, Internet Engineering Task Force (IETF), draft 01, June 2003.

[36]. NIST (National Institute of standards And Technology). “A JAIN-SIP Instant
Messaging Client for the People!”, available at
http://snad.ncsl.nist.gov/proj/iptel/src/nist-sip/jain-sip-presence
proxy/docs/gov/nist/sip/instantmessaging/readme.html, 2003.

[37]. NIST (National Institute of standards And Technology). “A JAIN-SIP Proxy for
the People!”, available at http://snad.ncsl.nist.gov/proj/iptel/src/nist-sip/jain-sip-
presence proxy/docs/gov/nist/sip/proxy/readme.html, 2003.

[38]. Open Cloud Inc. “A SLEE for all Seasons”, available at
http://www.opencloud.com/slee/downloads/asfas.pdf, 2003.

[39]. Open Cloud Inc. “Rhino Software Development Kit User Guide”, available at
http://www.opencloud.com/scripts/download.py?file=RhinoSDK-1.3.0-beta5-
userguide.pdf.gz, 2004.

[40]. J. Rosenberg. “A Presence Event Package for the Session Initiation Protocol
(SIP)”, Internet Engineering Task Force (IETF), draft 10, July 2003.

[41]. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston , J. Peterson, R. Sparks,
M. Handley and E. Schooler. “SIP: Session Initiation Protocol”, Internet

Engineering Task Force (IETF), Request for Comments (RFC) 3261, June 2002.

[42]. H. Schulzrinne, GMD Fokus, S. Casner, R. Frederick and V. Jacobson. “RTP:
A Transport Protocol for Real-Time Applications”, Internet Engineering Task

Force (IETF), Request for Comments (RFC) 3550, July 2003.

[43]. H. Schulzrinne, N. Narayanan, J. Lennox and M. Doyle. “SIPstone -
Benchmarking SIP Server Performance”, available at
http://www.sipstone.org/files/sipstone_0402.pdf, 2002.

[44]. J. Siegel. “OMG overview: CORBA and the OMA in enterprise computing”,
ACM Communication, Vol. 41, Issue. 10, 1998, pp: 37–43.

[45]. S. Steglich and R. Popescu-Zeletin. “Towards I-centric user interaction”,
IEEE International Conference on Multimedia and Expo, 2001, pp. 22–25.

[46]. Sun Microsystems. “JAIN Overview”, available at
http://developers.sun.com/dev/evangcentral/presentations/JAIN_overview.pdf,
2003.

 76

[47]. Sun Microsystems. “The JAIN APIs: Integrated Network APIs for the Java
Platform”, available at http:// www.sipcenter.com/sip.nsf/
html/WEBB5YN5GE/$FILE/WP2002.pdf, 2002.

[48]. Sun Microsystems. “Java Media Framework API (JMF) 1.0 Programmers
Guide”, available at http://java.sun.com/products/java-
media/jmf/1.0/guide/index.html, 2004.

[49]. Sun Microsystems. “Java 2 Platform, Standard Edition (J2SE) Version 1.4.2
API Specification”, available at
http://java.sun.com/j2se/1.4.2/docs/api/index.html, 2003.

[50]. Tata Infotech Ltd. “Usage Manual: SIP Residential Gateway”, available at
http://www.vovida.org/applicaions/downloads/siprg/usage_manual.html, 2002.

[51]. The PostgreSQL Global Development Group. “PostgreSQL 7.3.4 Reference
Manual”, available at http://www.sql.org/sql-
database/postgresql/manual/reference.html, 2003.

[52]. M. F. Triola. Elementary Statistics, 6th Edition, Addison-Wesley, 1994.

[53]. A. H. Thomas, S. Dalton, S. Brown, B. Holm, T. Loton, M. Kunnumpurath, S.
Allamaraju, J. Bell and S. Li. Professional Java Servlets 2.3, Wrox Press, 2002.

[54]. W. D. Tucker, E. H. Blake and G. Marsden. “Open User Interconnect and
Quality of Communication”, Proceedings of the 7th South African

Telecommunication Networks & Applications Conference, SATNAC 2004,
Stellenbosch, South Africa.

[55]. W. Walker, P. Lamere and P. Kwok. “FreeTTS 1.2beta2 API Documentation”,
available at http://freetts.sourceforge.net/javadoc/index.html, 2004.

[56]. N. H. Weiderman, A. N. Habermann, M. W. Borger and M. H. Klein. “A
methodology for evaluating environments ”, Proceedings of the second ACM

SIGSOFT/SIGPLAN software engineering symposium on Practical software

development environments, Vol. 22, 1987, pp: 199–207.

[57]. W. Wu and F. C. Yang. “Service Support Environment in NGN”,
Telecommunication Technology, Vol. 1, 2002, pp. 18–21.

 77

Appendix I Sample data of RPS and CPS

RAPS
(Registration
attempts per

second)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

1 10 20 30 40 50 60 70 80 90 98 110 111 106 135 130

2 10 20 30 40 50 60 70 80 90 100 103 120 130 127 120

3 10 20 30 40 50 60 70 80 90 100 109 110 120 126 138

4 10 20 30 40 50 60 70 80 90 95 99 108 110 120 110

SIMBA with
Rhino

(successful
registrations)

5 10 20 30 40 50 60 70 80 90 100 110 112 125 118 144

1 10 20 30 40 50 60 70 80 90 100 110 120 120 140 140

2 10 20 30 40 50 60 70 80 90 100 100 120 130 140 150

3 10 20 30 40 50 60 70 80 90 95 105 110 129 125 120

4 10 20 30 40 50 60 70 80 90 100 110 103 115 115 110

SIMBA
without
Rhino

(successful
registrations)

5 10 20 30 40 50 60 70 80 90 100 110 120 110 118 144

Table 8 Sample data of RPS

CAPS
(call attempts
per second)

10 20 30 40 50 60 70 80 90 100 110 120 130 140

1 10 20 30 40 50 60 70 80 88 100 109 117 115 118

2 10 20 30 40 50 60 70 78 87 99 109 117 112 105

3 10 20 30 40 50 60 70 79 90 94 108 115 116 117

4 10 20 30 40 50 60 70 79 88 93 108 105 113 114

SIMBA
with

Rhino
(successful

calls)
5 10 20 30 40 50 60 70 80 90 100 110 104 109 124

1 10 20 30 40 50 60 70 80 90 100 109 117 130 118

2 10 20 30 40 50 60 70 80 88 99 110 120 112 133

3 10 20 30 40 50 60 70 79 90 95 108 115 117 110

4 10 20 30 40 50 60 70 79 88 100 108 105 108 104

SIMBA
without
Rhino

(successful
calls)

5 10 20 30 40 50 60 70 80 90 100 110 120 115 120

Table 9 Sample data of CPS

 78

Appendix II Technical Specification

RequestValidation

ResponseForwarding

ProxyHop

RequestForwarding

SipProxy

Figure 38 Class diagram of the Proxy class package

SipRegistrar

ExpiresTask

Registration
RegistrationsTable

Proxy

Figure 39 Class diagram of the Registrar class package

 79

SipPresence

PresentityManager

SubscriberRegistration

Proxy

Figure 40 Class diagram of the Presence server class package

BridgeManager

PhoneCallTableProxy

PhoneCallTableSipCommunictor

Figure 41 Class diagram of the Bridging class package

SipCommunicator

BridgeManager SipManager

Call CallStateEvent

Figure 42 Class diagram of the Communicator class package

 80

MediaManager

MediaAdapterServlet

AudioTransmitter AudioReceiver

TTSEngine

Figure 43 Class diagram in Media Adapter Server class package

	Title
	Keywords
	Abstract
	Contents
	Chapter 1: Introduction
	Chapter 2: Literature review
	Chapter 3: Approach and research methodology
	Chapter 4: System design
	Chapter 5: Experimental design
	Chapter 6: Data collection and results
	Chapter 7: Conclusion and future work
	Bibliography
	Appendix I: Sample data of RPS and CPS
	Appendix II: Technical Specification

