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ABSTRACT 

 

Bioactivity-guided fractionation was used to identify the most potent antioxidant 

and antimutagenic fractions contained in the methanol extract of unfermented 

rooibos (Aspalathus linearis), as well as the bioactive principles for the most potent 

antioxidant fractions. The different extracts and fractions were screened using 

Salmonella typhimurium tester strain TA98 and metabolically activated 2-

acetoaminofluorene (2-AAF) to evaluate antimutagenic potential, while the 

antioxidant potency was assessed by two different in vitro assays, i.e. the inhibition 

of Fe(II) induced microsomal lipid peroxidation and the scavenging of the 2,2'-

azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation. The most 

polar XAD fraction displayed the most protection against 2-AAF induced 

mutagenesis in TA98. Successive fractionation of the two XAD fractions most 

active in the ABTS•+ assay led to both aspalathin and nothofagin being isolated for 

the first time to a purity of >95%.  

 

Thirteen flavonoids of rooibos were also compared in the two antioxidant assays in 

addition to a metal chelating assay in order to derive a possible comparative 

structure-activity profile between the dihydrochalcones aspalathin and nothofagin, 

their flavone analogues orientin and isoorientin (from the precursor aspalathin) and 

vitexin and isovitexin from nothofagin, the flavone aglycones luteolin and 

chrysoeriol as well as four flavonols from rooibos, i.e. quercetin, isoquercitrin 

(quercetin-3-O-glucoside), hyperoside (quercetin-3-O-galactoside) and rutin 

(quercetin-3-O-rutinoside). The flavanol (+)-catechin was also included while 
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epigallocatechin gallate (EGCG), the major active principle from Camellia sinensis 

was used as benchmark. Aspalathin, the dihydrochalcone unique to rooibos, was a 

very efficient inhibitor of lipid peroxidation and scavenger of ABTS•+, while 

nothofagin was equipotent to aspalathin in the ABTS•+ assay, but had the lowest 

inhibitory effect of all the flavonoids tested in the lipid peroxidation assay. 

Aspalathin was shown to be the major contributor to the antioxidant activity of 

unfermented rooibos in quantity and potency.  

 

The same thirteen flavonoids of rooibos were also investigated in the Salmonella 

typhimurium mutagenicity assay, again using EGCG as benchmark. Strains TA98 

and TA100 utilizing 2-AAF and aflatoxin B1 (AFB1) respectively, were used. Neither 

aspalathin nor nothofagin displayed potent antimutagenic properties against both 

the mutagens evaluated while luteolin was the most effective antimutagen. The 

antimutagenic behaviour of rooibos could not be solely attributed to any of these 

monomeric flavonoid constituents. No clear and direct link between the antioxidant 

and antimutagenic properties of the major rooibos flavonoids could be conclusively 

be established in the present studies. 
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AIMS AND OBJECTIVES 

 

1. To investigate whether the same flavonoids are responsible for both the 

potent antioxidant and antimutagenic properties of unfermented rooibos.  

2. To compare the activity of thirteen of the major flavonoids of unfermented 

rooibos in two antioxidant assays. 

3. To compare the antimutagenic activity of the same thirteen flavonoids of 

unfermented rooibos in two different Salmonella typhimurium strains using 

two different metabolically activated mutagens. 
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CHAPTER 1 

INTRODUCTION 

Rooibos tea is a traditional beverage of the Khoi-descended people of the 

Cedarberg region in the Cape. The plant is endemic to South Africa and its natural 

distribution area is the Cedarberg area (Figure 1.1) that includes Clanwilliam, 

Nieuwoudtville and Piketberg, all of which have the deep, acidic, sandy soils in 

which rooibos grows. The herbal drink prepared from Aspalathus linearis has 

already been reported as early as 1772 by Carl Thurnberg, but trading in rooibos 

started in 1904 when the Khoi started selling rooibos to Benjamin Ginsberg. The 

tea was harvested from wild rooibos until the 1930’s after which rooibos was 

developed into a crop plant. One of the key players in the commercialisation of 

rooibos was the well known and South African poet, cook, doctor and botanist 

Louis Leipoldt.  He and another doctor from Clanwilliam, P le Fras Nortier, 

recognised the medicinal as well as commercial potential of rooibos and started 

cultivating the shrubs on Nortier’s farm. Since that time rooibos plantations are a 

common sight in that region (Figure 1.2). The Rooibos Tea Control Board was 

established in 1954 to stabilise producer prices through structured marketing and 

quality control. This Board was later transformed into a private company in 1997 

(Van Wyk and Gericke, 2003; Dugmore, 2004; Joubert and Schulz, 2006).  

 

Today rooibos is very popular as a health beverage, prepared and used much in 

the same way as black tea. It has in latter years gained popularity as an excellent 

iced tea beverage. Rooibos’s antispasmodic property makes it a calming drink for  
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      Figure 1.2.  A typical rooibos (Aspalathus linearis) plantation  
       Photograph courtesy of Dr E Joubert 
 

Figure 1.1. Rooibos is endemic to the Cedarberg   
region, indicated in yellow, of South 
Africa. 

                Map from Medicinal Plants of South Africa, 2002 
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babies. It is also used as an ingredient in cosmetics, in slimming products, as a 

flavouring agent in cakes, cooking and cocktails (Van Wyk et al., 2002; Van Wyk 

and Gericke, 2003). 

 

Rooibos contains a unique dihydrochalcone, aspalathin, as well as its 3-dehydroxy 

analogue, nothofagin, that until now have only been found in Nothofagus fusca 

(Hillis and Inoue, 1987; Joubert, 1996). These compounds, together with 

isoorientin, orientin and rutin, are the most commonly found in fermented rooibos 

while aspalathin and nothofagin are present in higher concentrations in the 

unfermented rooibos than the fermented version (Joubert, 1996; Bramati et al., 

2002; Bramati et al., 2003; Joubert and Schulz, 2006). In addition unfermented 

rooibos has a higher antioxidant capacity than fermented rooibos (Von Gadow et 

al., 1997; Standley et al., 2001). Standley et al. (2001) also found that the process 

of fermentation reduced the antioxidant and antimutagenic activity of a rooibos 

extract. It has already been shown that aspalathin exerts a strong scavenging 

ability against DPPH• and O2
•- (Joubert et al., 2004). Unfermented rooibos extracts 

with high levels of aspalathin are increasingly in demand by international cosmetic 

and functional food markets (Joubert and Schulz, 2006).  

 

Yen and Chen (1995) investigated the antioxidant activity and antimutagenicity of 

Japanese tea extracts at various stages of fermentation and found the degree of 

correlation depended on the antioxidant assay used, mutagen utilized and the state 

of fermentation of the extract. 
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This lead to the following questions regarding the antioxidant and antimutagenic 

properties of rooibos being posed: 

1. Could these two properties in some way be linked?  

2.  Would aspalathin, known as a potent antioxidant and a major contributor to 

the antioxidant properties of rooibos, also be a major contributor to the 

antimutagenic properties of rooibos? 

3.  Is nothofagin biologically as important as aspalathin? 

 

If these two dihydrochalcones were found to be the more important bioactive 

compounds of rooibos, then clearly the fermentation process would impair the 

biological activity of rooibos and thus the necessary adjustments in the processing 

would have to be made to minimize the loss in activity and thus provide for a better 

product. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Background of industry 

Rooibos (Aspalathus linearis Fabaceae) is a traditional South African beverage 

and is one of only a few indigenous plants that have become an important 

commercial crop (Van Wyk and Gericke, 2003). The stems of this fynbos 

legume are mostly cut with a sickle and tied into bundles. The traditional 

processing involves comminution and bruising after which the ‘fermenting’ takes 

place. During ‘fermentation’ the fine segments of rooibos are left in heaps in the 

sun to ‘sweat’ or ‘ferment’ during which time the characteristic red-brown colour 

and sweetish flavour develops (Joubert, 1996; Joubert and Schulz, 2006). This 

‘fermentation’ process is actually a process of chemical oxidation during which 

the flavonoids of the plant are enzymatically oxidized. The tea is then spread 

out to dry in the sun (Joubert, 1996; Van Wyk and Gericke, 2003). Rooibos is 

popular as a health beverage, contains no harmful stimulants like caffeine and 

is low in tannins (Blommaert and Steenkamp, 1978; Ferreira et al., 1995). 

Domestic consumption of rooibos has increased fairly steadily over the years, 

3600 tons being the long-term average local supply, accounting for 70% to 75% 

of annual production (Arendse, 2001). Major importers include Germany, Japan, 

the Netherlands, England, Malaysia, South Korea, Poland, China and the 

United States. In 1999, about 29 percent of South Africa’s total rooibos sales 

were exported to 31 countries (Erickson, 2003). In 2001, a total of 3889 tons of 

rooibos was exported which increased to 6312 tons in 2003. The most 
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important importer of that year was Germany who imported 4661 tons (figures 

supplied by Perishable Products Export Control Board).  

 

The international market for unfermented or ‘green’ rooibos has also developed 

over the last few years. The nutraceutical and cosmetic industries prefer 

extracts from unfermented rooibos since this provides the active principle, 

aspalathin, in much higher concentrations (Joubert and Schulz, 2006). 

Aspalathin occurs in fairly large quantities in both fermented and unfermented 

rooibos and is a powerful antioxidant (Joubert, 1996; Bramati et al., 2002; 2003; 

Joubert et al., 2004).  

 

Biosynthesis of Flavonoids 

Flavonoids are one of the largest groups of naturally occurring phenols. Smith 

(1972, as quoted by Markham, 1982) estimated that about 2% of all carbon 

synthesized by plants, equalling about 1 x 109 tons per annum is converted into 

flavonoids of closely related compounds. In plants, flavonoid aglycones contain 

fifteen carbon atoms that are arranged in a C6-C3-C6 configuration, comprising 

two aromatic rings A and B linked by a three-carbon unit which may or may not 

form part of a third ring described as ring C. For convenience the rings are 

labelled A, B and C and numbered with ordinary numerals on the A-and C-rings 

and primed numerals for the B-ring. This numbering system differs for the 

chalcones (Figure 2.1) (Harborne and Baxter, 1999). 
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Figure 2.1. The general structure of flavonoids (left) and chalcones (right), after Harborne and Baxter (1999) 
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Besides their contribution to plant colour, flavonoids have a variety of other 

roles in plants such as protection against UV-B radiation and being eaten by 

animals, signalling for nitrogen fixation and pollen reception as well as being 

responsible for attractive colours, odours and flavours that will develop during 

ripening to advertise the readiness of the fruit to be eaten and subsequent seed 

dispersal. Many flavonoids are pharmacologically active and exhibit a wide 

range of biological properties, including antimicrobial, insecticidal, fungicidal, 

antiinflammatory, vasodilatory, anticancer and oestrogenic. Flavonoids occur 

widely in fruits and vegetables and it has been estimated that at least one gram 

of mixed flavonoids expressed as glycosides is taken in as part of a well 

balanced daily diet. However, in a Dutch national survey that came to be known 

as the Zutphen Elderly Study, it was found that the average intake of mixed 

flavonoids was only 26 mg/day (Kühnau, 1976; Mabry and Ulubelen, 1980; 

Hertog et al., 1993; Middleton et al., 1993; Harborne and Baxter, 1999; 

Harborne, 2001). 

 

Flavonoids fall into two major categories depending on whether the central 

heterocyclic pyran ring is saturated or not. When unsaturation is present in the 

pyran ring C as in anthocyanins, flavones and flavonols, the molecule adopts a 

planar conformation. On the other hand when ring C is saturated the resulting 

flavonoids viz., flavanones and flavans may have one or more chiral centres 

and generally adopt a conformation in which the two benzene rings at right 

angles. Optical activity may also be present in flavonoids due to the presence of 

glycosidic substituents and chiral centres on ring C (Harborne and Baxter, 

1999).  
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Flavonoids are generally classified according to their biosynthetic origin, with 

some classes being intermediates in the biosynthetic process, like the 

chalcones and flavanones, while other classes like flavones and flavonols, are 

end-products (Figure 2.2). Additional enzymic catalyzed protocols leading to 

many of the end products include O-methylation, O-acylation and O-

glycosylation; the latter referring to sugar moieties naturally associated with 

flavonoids in conjugated form (Harborne and Baxter, 1999). 

 

Rooibos flavonoids 

Rooibos contains a distinctive selection of structurally related flavonoids that 

render themselves ideally suited for comparative structure-activity studies 

(Figure 2.3). Two of the major flavonoids, i.e. aspalathin and nothofagin, belong 

to the dihydrochalcones, a relatively small group of flavonoids with a random 

distribution in about 28 families, notably Ericaceae (Harborne and Baxter, 

1999). The best known dihydrochalcone is phloridzin from the skin of apples. 

Since described for the first time in 1965 by Koeppen and Roux (1965) after its 

isolation from Aspalathus linearis, aspalathin has not yet been reported as 

being isolated from any other source. The only other known source of 

nothofagin, the 3-dehydroxy analogue of aspalathin, is the Nothofagus fusca 

tree (Hillis and Inoue, 1967; Joubert, 1996). Koeppen (1962) was also the first 

person to isolate the flavone-C-glycoside, orientin, from Aspalathus acuminatus 

and described the interconvertible relationship of orientin with homo-orientin 

(isoorientin), and later the flavonols rutin and isoquercitrin (Koeppen et al. 1962) 

(See Figure 2.3 for the structures). Snykers and Salemi (1974) contributed to  
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Figure 2.2.  Biosynthetic pathways of some flavonoids (after Harborne and Baxter, 1999). 
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Figure 2.3.  Structures of the major flavonoids of rooibos (Aspalathus linearis) 
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this field of study with the isolation of the flavone luteolin and flavonol quercetin 

from commercially available rooibos in their search for the compound 

responsible for the antiallergic effect of rooibos. Rabe et al. (1994) were the first 

to identify the presence of isovitexin and vitexin, the 3′-dehydroxy analogues if 

isoorientin and orientin, respectively in rooibos. They also prepared an ether 

extract from an aqueous extract of commercial rooibos and found the following 

phenolic carboxylic acids present in this ether extract viz., 4-hydroxybenzoic 

acid, 3,4-dihydroxybenzoic acid (protocatechuic acid), 4-hydroxy-3-methoxy-

benzoic acid (vanillic acid) as well as the hydroxycinnamic acids 4-coumaric 

acid, caffeic acid and ferulic acid. In addition chrysoeriol was identified for the 

first time as a constituent of the ether extract. The aqueous extract of rooibos 

was then extracted with ethyl acetate and this extract yielded 3,4,5-

trihydroxycinnamic acid, a series of C-C linked β-D-glucopyranosides based on 

flavones, a dihydrochalcone and trihydroxycinnamic acid. The contribution of 

Ferreira et al. (1995) towards the phenolic profile of rooibos includes 4-hydroxy-

3,5-dimethoxybenzoic acid (syringic acid), 4-hydroxy-3,5-dimethoxy cinnamic 

acid, luteolin-7-O-β-D-glucopyranoside, dihydro-orientin and dihydro-iso-orien-

tin, 5,6-dihydroxy-6-C-β-D-glucopyranosylchromone, (+)-catechin, procyanidin 

B3, (+)-pinitol and a naturally occurring glycoside of phenylpyruvic acid. The 

flavonol quercetin-3-O-galactoside (hyperoside) as well as traces of the 

flavanones dihydroorientin and dihydro-isoorientin was identified by Bramati et 

al. (2002) in fermented rooibos. Kazuno et al. (2005) confirmed the presence of 

luteolin-7-O-glucopyranoside. In their search for phytoestrogens from rooibos, 

Shimamura et al. (2006) identified aspalalinin, a dihydrochalcone in which the A 

and B ring were linked via an ether bond. This suggests that there are currently 
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about 25 non-volatile known compounds contained in rooibos. Habu et al. 

(1985) identified 99 components in the steam distillate volatile oil fraction from 

fermented rooibos, which included an amazing 26 ketones, 19 aldehydes, 16 

alcohols, 7 phenols, 4 acids and 3 ethers. A major component identified was 

guaiacol that is not present in Camellia sinensis teas. For the purpose of this 

study, however, the volatile components of rooibos were not considered. This 

study focussed specifically on the major water soluble flavonoids of rooibos, i.e. 

the two dihydrochalcones, aspalathin and nothofagin, the flavones luteolin, 

chrysoeriol, orientin, isoorientin, vitexin and isovitexin, the flavonols quercetin, 

hyperoside, isoquercitrin and rutin as well as the flavanol (+)-catechin (Figure 

2.3). 

 

Phenolic changes during fermentation 

The exact extent to which the chemical profile of harvested rooibos is altered 

during fermentation is to the best of my knowledge not known as no study that 

involves the phenolic analysis of a single batch of rooibos, pre- and 

postfermentation, has appeared in the literature. It is however known that 

fermentation of rooibos alters the antioxidant activity and could either decrease 

or increase the mutagenic activity depending on the batch or mutagen (Joubert, 

1996; Standley et al., 2001; Bramati et al., 2003; Van der Merwe et al., 2006). 

Bramati et al. (2003) did not analyse for nothofagin, but it was found in their 

HPLC-UV analysis that the major compounds (>1 mg/g dried mass), aspalathin, 

isoorientin, orientin and rutin, were more abundant in unfermented rooibos than 

in fermented rooibos. The phenolic profile of rooibos is most certainly altered by 

‘fermentation’. This has been quantified by an HPLC comparative analysis of 
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unfermented and fermented rooibos, as well as total phenols (41.0% vs 35.0%, 

respectively (Joubert, 1996; Standley et al., 2001). In the abstract of a 

publication that could not be obtained through the interlibrary services of the 

University of Stellenbosch, Schmandke (2005) stated the one gram of 

unfermented rooibos (soluble dry matter) contained 50 mg of aspalathin, 0.1 mg 

aglycone, 2 mg C-O-linked flavonoid glycosides and 7 mg C-C-linked flavonoid 

glycosides compared to the reduced values 1.2, 0.2, 1.7 and 2.4 mg/g 

respectively in fermented rooibos. It was further clamed that aspalathin is 

almost completely oxidised to dihydroorientin, that rutin is partly converted to 

quercetin and that orientin, isoorientin, vitexin and isovitexin are partially 

degraded as well (Schmandke, 2005). According to Bramati et al. (2003), the 

aspalathin content can drop from as much as 49.9 to 1.2 mg aspalathin/g dried 

leaf mass, though the average of Joubert and Schulz (2006) of 6.6 g 

aspalathin/100 g dry unfermented rooibos to 0.26 g/100 g dry fermented rooibos 

seems more realistic. The average drop in nothofagin content is from 0.67 to 

0.12 g/100 g during fermentation. Koeppen and Roux (1966) showed that 

aspalathin is converted to 2,3-dihydro-iso-orientin and 2,3-dihydro-orientin in an 

ethanolic solution. However, when Marais et al. (2000) mimicked the 

‘fermentation’ of rooibos, exposing aspalathin as substrate to heat and light, two 

diastereomeric flavanones, i.e. (S)- and (R)-eriodictyol-6-C-β-D-glucopyrano-

side were formed that may be further rearranged or oxidised to the 

corresponding flavones. The hypothesis that aspalathin could enzymatically be 

oxidised to the flavanones dihydro-orientin and dihydro-iso-orientin was 

strengthened by the presence of the glucopyranosyl chromone, a possible 

residue of the oxidative conversion of dihydro-iso-orientin (Ferreira et al., 1995). 
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Biosynthetically it still has not been shown that the dihydrochalcones are 

directly part of the flavone pathway. It is however chemically plausible that the 

dihydrochalcones oxidise to their corresponding flavones during the ‘fermenting’ 

conditions.  

 

Bramati et al. (2002) identified two peaks in the mass spectra of fermented 

rooibos that could possibly be ascribed to dihydro-isoorientin and dihydro-

orientin. 

 

Health properties of rooibos 

Many health properties have been linked to rooibos. These include antioxidant 

and antimutagenic properties (Von Gadow et al., 1997; Hitomi et al., 1999; 

Marnewick et al., 2000; Standley et al., 2001; Edenharder et al., 2002; Van der 

Merwe et al., 2006), estrogenic (Shimamura et al., 2006), antispasmodic 

(Snyckers and Galemi, 1974; Gilani et al., 2006), bronchidilatory (Khan and 

Gilani, 2006) and chemopreventive properties (Sasaki et al., 1993; Komatsu et 

al., 1994).  

 

It is accepted that to a large extent it is the constituent flavonoids contained in 

those plants with a relatively high flavonoid content that give that plant its 

biological and pharmacological properties (Middleton et al., 1993). Since the 

focus of this study was centred on the antioxidant and antimutagenic properties 

of the flavonoids of rooibos this review will now focus on these two aspects.  
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Antioxidant activity of rooibos and its flavonoids 

Unprocessed, semi-processed and processed rooibos was shown to have 

stronger 2,2’-diphenyl-1-picrylhydrazyl radical (DPPH•) scavengers than black 

and oolong teas, but weaker than green tea when compared on a mass 

equivalent basis (Von Gadow et al., 1997). Processing of rooibos decreases the 

antioxidant activity with regards to the superoxide and DPPH radical scavenging 

ability as well as the antimutagenic properties (Standley et al. 2001). The 

activity of several of the composite flavonoids of rooibos has been reported in 

various antioxidant assays. The radical scavenging activities of EGCG, 

catechin, quercetin, isoquercitrin, rutin and luteolin were compared using the 

2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) 

assay (Re et al., 1999; Lien et al., 1999, Plumb et al., 1999) whereas Okawa et 

al. (2001) evaluated the activities of isovitexin, quercetin and rutin. Joubert et al. 

(2004) included the rooibos flavonoids aspalathin, orientin, isoorientin, luteolin, 

isoquercitrin, (+)-catechin, rutin, vitexin and chrysoeriol in their assessment of 

the DPPH radical scavenging activities. Inhibition of lipid peroxidation in rat liver 

microsomes by epigallocatechin gallate (EGCG), catechin, luteolin, orientin, 

isoorientin, vitexin, rutin, hyperoside and quercetin has also been reported 

(Robak et al., 1988; Mora et al., 1990; Cos et al., 2001; Yang et al., 2001; 

Heijnen et al., 2002). Quercetin and EGCG are known to be potent antioxidants 

as measured in the ABTS radical cation scavenging assay and inhibitors of lipid 

peroxidation. Joubert et al. (2004) also concluded that the DPPH and 

superoxide anion radicals were most effectively scavenged by quercetin. 
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Antioxidant assays 

General 

Antioxidants perform many functions ranging from phytoprotectants in plants, to 

protecting lipids in food products, to in vivo antioxidant activity in animals and 

humans, including scavenging reactive oxygen species, acting as antagonists 

toward oxidative enzymes such as cyclooxygenases and influencing the 

expression of multiple genes (Finley, 2005). Huang et al. (2005) concluded that 

a dietary antioxidant can (sacrificially) scavenge reactive oxygen/nitrogen 

species to stop radical chain reactions, or it can inhibit the reactive oxidants 

from being formed in the first place (preventive). Non-enzymatic or dietary 

antioxidants can generally include radical chain inhibitors, metal chelators, 

oxidative enzyme inhibitors and antioxidant enzyme cofactors (Figure 2.4). 

Whereas autoxidation of a lifeless matter occurs by radical chain reactions, 

oxidation in a biological system is primarily mediated by a host of redox 

enzymes. Nonetheless may nonenzymatic lipid autoxidation by radical chain 

reaction still occur and lead to oxidative stress. Consequently biological 

antioxidants include enzymatic antioxidants (e.g. superoxide dismutase and 

catalase) and nonenzymatic antioxidants such as oxidative enzyme inhibitors 

like cyclooxygenase, antioxidant enzyme cofactors, reactive oxygen/nitrogen 

species scavengers and transition metal chelators (Figure 2.4). 
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Figure 2.4. Scope of biological antioxidants (after Huang et al., 2005). 
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Halliwell (1990) defined biological antioxidants as ‘molecules which, when 

present in small concentrations compared to the biomolecules they are 

supposed to protect, can prevent or reduce the extent of oxidative destruction of 

biomolecules’. A broader definition of an antioxidant for the context of this study, 

would be ‘any substance that, when present at low concentrations compared to 

those of an oxidizable substrate, significantly delays or prevents oxidation of 

that substrate’ (Halliwell, 1990). 

 

The antioxidant activity of flavonoids can be related to: i) the scavenging of free 

radicals since, due to their lower redox potential, they are able to reduce highly 

oxidising free radicals such as superoxide, peroxyl and hydroxyl (Torel et al., 

1986; Husain, 1987; Robak, 1988; Bors et al., 1990); ii) chelating transition 

metals involved in free radical production (Morel et al., 1993; Pietta, 2000); and 

iii)  inhibiting the enzymes from participating in free radical generation such as 

xanthine oxidase (Cotelle et al., 1996). This activity involves a chemical process 

which depends on the redox, partitioning, chelating, hydrogen-donating and 

radical scavenging properties of a compound (Bravo, 1998; Williamson et al., 

1999; Re et al., 1999; Sugihara et al., 1999). Frankel and Meyer (2000) 

distinguished the following possible roles of phenolic compounds as 

antioxidants viz., preventors of oxidant formation, scavengers of activated 

oxidants in order to reduce active intermediates as well as to induce repair 

mechanisms. They recommended that specific products of oxidation be 

measured in relevant in vitro and in vivo biological systems. Cos et al. (2001) 

emphasized the importance of working with test solutions of potential plasma 

levels, i.e. a promising antioxidant compound should show a lipid peroxidation 
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inhibiting effect at micromolar level and further demonstrate a low cytotoxicity 

on growing cells.  

 

An antioxidant can exert its effect by different mechanisms and/or functions and 

it is essential that when evaluating the antioxidant activity of a molecule the 

function that is being measured by the method employed must be clearly 

identified. The capacity of the antioxidants in vivo is determined not only by their 

reactivity towards the radical, but also by factors such as concentration, 

distribution, localisation, fate of the antioxidant-derived radical, interaction with 

other antioxidants and metabolism. Quite often it is not the antioxidant activity 

that is measured, but the actually the reactivity towards the radical (Niki and 

Noguchi, 2000). Their description of antioxidant activity involved the attenuation 

of oxidative damage not only by scavenging radicals but also by sequestering 

metal ions, decomposing hydrogen peroxide and/or hydroperoxides, quenching 

active prooxidants and repairing damage (Niki and Noguchi, 2000). Gutteridge 

(1999) defined antioxidants to control the prevailing relationship between redox 

conditions in biological systems and recognized three levels of classification 

viz., i) a ‘primary’ defence that would prevent radical formation; ii) a ‘secondary’ 

defence would remove or inactivate the formed reactive oxygen species and iii) 

a ‘tertiary’ defence which would operate to remove and repair oxidatively 

damaged molecules (Gutteridge, 1999). 

 

Halliwell (1995) used a screening approach to rule out direct antioxidant activity 

in vivo in which the actions of compounds should be operational over a 

physiologically relevant concentration range and that a compound that is poorly 
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effective in vitro will not be any better in vivo. Eisenbrand et al. (2002) found in 

vitro systems useful to, amongst others, provide; i) rapid and effective means of 

screening and ranking chemicals in and from food for a number of toxicological 

endpoints; ii) important tools to enhance our understanding of the hazardous 

effects of chemicals at both the cellular and molecular level; and iii) well defined 

systems for studying structure-activity relationships. 

 

Frankel and Meyer (2000) warned that the results obtained from using any 

methodology to evaluate natural antioxidants must be carefully interpreted 

according to the system and to the analytical method used in order to determine 

the extent and end-point of the evaluation. Each antioxidant evaluation should 

be carried out under various conditions of oxidation by using different methods. 

They listed parameters that should be considered for protocols, including; i) the 

use of substrates relevant to the biological system; ii) measuring relatively low 

levels (below 1%) of oxidation and to include both initial products and 

secondary decomposition products; iii) comparing antioxidants at the same 

molar concentration of active components using structurally related reference 

compounds; iv) to use total phenol content and compositional data to compare 

samples of crude plant extracts; and v) to quantify the performance of the 

antioxidant on the basis of induction period, % inhibition or rates of 

hydroperoxide formation or decomposition, or IC50 (antioxidant concentration to 

achieve 50% inhibition).  

 

Antioxidants may respond in different ways to different radical or oxidant 

sources since multiple reaction characteristics and mechanisms as well as 
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different phase locations are usually involved, emphasizing the need to use 

more than one assay in antioxidant evaluations (Frankel and Meyer, 2000; Prior 

et al., 2005). An antioxidant in one system may not necessarily be an 

antioxidant in all systems (Halliwell, 1990). Antioxidants may also act 

synergistically viz., the combination of quercetin and catechin demonstrated a 

synergistic effect in reducing platelet formation of H2O2 and inhibiting platelet 

function by interfering with the activation of phospholipase C pathway (Pignatelli 

et al., 2000). Freedman et al. (2001) showed that the antioxidant and platelet 

inhibitory effects cannot be attributed to a particular flavonoid isolated from 

purple grape juice. 

 

The First International Congress on Antioxidant Methods held in June 2004 

recognized the need for a standardized antioxidant capacity method and 

included the following recommendations for an ‘ideal’ method: (i) measuring the 

chemistry actually occurring in potential application(s); (ii) utilizing a biologically 

relevant radical source; (iii) simple; (iv) using a method with a defined endpoint 

and chemical mechanism; (v) instrumentation should be readily available; (vi) 

good within-run and between-day reproducibility; (vii) adaptability of assay of 

both hydrophilic and lipophilic antioxidants and use of different radical sources; 

(viii) adaptable to “high-throughput” analysis for routine quality control analyses 

(Prior et al., 2005). Performance characteristics that should be considered in the 

standardization of an assay include (i) analytical range, (ii) recovery, (iii) 

repeatability, (iv) reproducibility, and (v) recognition of interfering substances 

(Prior et al., 2005). 
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On the basis of the chemical reactions involved, major antioxidant capacity 

assays can be roughly divided into two categories, i.e. hydrogen atom transfer 

(HAT) reaction based assays and single electron transfer (ET) reaction based 

assays. The ET-based assays involve one redox reaction with the oxidant (also 

as the probe for monitoring the reaction) as an indicator of the reaction 

endpoint. Most HAT-based assays monitor competitive reaction kinetics, and 

the quantitation is derived from the kinetic curves. HAT-based methods 

generally are composed of a free radical generator, an oxidizable molecular 

probe and an antioxidant. HAT reactions are solvent and pH dependent and are 

usually completed in minutes (Prior et al., 2005) HAT-and ET-based assays are 

intended to measure the radical or oxidant scavenging ability instead of the 

preventive capacity of a sample (Huang et al., 2005) and almost always occur 

together in all samples, with the balance determined by antioxidant structure 

and pH (Van Acker et al. 1996a; Prior et al., 2005). The pH values have an 

important effect on the reducing capacity of antioxidants. Under acidic 

conditions, the reducing capacity may be suppressed due to protonation of the 

antioxidant compounds, whereas under basic conditions, proton dissociation of 

phenolic compounds would enhance a sample’s reducing capacity (Huang et 

al., 2005). 

 

The inhibition of lipid peroxidation by radical chain breaking and the oxygen 

radical absorbance capacity (ORAC) is a typical example of a HAT-based assay 

whereas ET-based assays include the Trolox equivalent antioxidant capacity 

(TEAC) assay, the ferric ion reducing antioxidant power (FRAP), the total 

phenols assay by Folin-Ciocalteu reagent and the 2,2-diphenyl-1-picrylhydrazyl 
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(DPPH) radical scavenging capacity assay (Huang et al., 2005; Prior et al., 

2005). 

 

Conditions for assays 

Webb and Ebeler (2004) noted the effect of solution conditions on the solubility 

of flavonoid interactions with proteins and DNA. Flavonoids in dilute aqueous 

solutions could be affected by pH, salinity and solvent strength that affected 

cell-free experiments significantly and left structure-activity studies prone to 

misinterpretation.  

 

Phosphate and bicarbonate buffers are commonly used in biochemistry 

because they are significant physiological buffers. An important fact that 

influenced the results of in vitro assays was shown by Welch et al (2002), i.e. 

that, in general, the rate of Fe(II) autoxidation was increased as the pH of the 

solution increased and that phosphate buffers promoted the oxidation of Fe(II). 

Ethanol, the medium of the ABTS•+ assay, and DMSO, a common solvent of 

flavonoids, rapidly reacted with hydroxyl radicals (Reinke et al., 2005).  

 

Lipid peroxidation 

Lipid peroxidation is a natural biological process in which highly reactive 

hydroxyl radicals (•OH) are generated which initiate a free radical chain reaction 

(Halliwell, 1990; Kandaswami and Middleton, 1994; Moridani et al., 2003). 

Attack of •OH on biological molecules can proceed by addition, hydrogen 

abstraction or an electron transfer reaction to form carbon-centred radicals that  
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can subsequently react with O2 to give peroxyl radicals, RO2
• (Halliwell, 1990):  

HO• + R-H → H2O + R• → RO2
• 

(RH: lipid molecule) 

 

The formation of peroxyl radicals is the major chain-propagating step in lipid 

peroxidation (Halliwell, 1990). It has been suggested that the scavenging of •OH 

and peroxyl radicals by flavonoids can impair lipid peroxidation (Kandaswami 

and Middleton, 1994). Radical scavengers may be active in either the aqueous 

or in the hydrophobic (membrane interior) phase, but Halliwell (1990) 

considered those scavengers that can operate in the hydrophobic interior of 

biological membranes the actual chain breaking antioxidant inhibitor of lipid 

peroxidation. Many lipid-soluble chain-breaking antioxidants could, however, 

also have pro-oxidant properties that accelerate the oxidative damage to non-

lipid biomolecules (Halliwell, 1990). 

 

Transition metals that play a crucial role in the initiation of lipid peroxidation are 

first activated by reducing agents, i.e. ascorbate or superoxide anion (Girotti, 

1985). He distinguished two broad categories of peroxidation mediated by metal 

ions, i.e. lipid hydroperoxide (LOOH)-independent initiation and LOOH-

dependent initiation. In the former case, hydroperoxides are either absent at the 

outset or present in amounts that are poorly competitive with H2O2. In the latter 

case, significant amounts of LOOHs are present form the outset.  

Steps in LOOH-independent initiation: 

 O2⎯• + Fe(III) → O2 + Fe(II) 

  H2O2 +  Fe(II) → OH⎯ + •OH +  Fe(III) 
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Whereas possible steps in LOOH-dependent initiation entail 

LOOH +  Fe(II)  →  LO•  +  OH⎯  +  Fe(III) 

LO•  +  LH  →  LOH  +  L•  

(LO• lipid alkoxyl radical; •OH hydroxyl radical; LH polyunsaturated fatty acid; L• 

alkyl radical; LOOH lipid hydroperoxide; LOO• lipid peroxyl radical) 

 

Halliwell (1990) suggested in metal-ion dependant systems, an added 

antioxidant might act not only by scavenging peroxyl radicals but also by 

binding iron ions and stopping them from accelerating peroxidation. These two 

possibilities are illustrated in Figure 2.5 and can be easily distinguished since, if 

the antioxidant is acting by metal binding, it will not be consumed during the 

reaction whereas a chain-breaking antioxidant is consumed by reaction with 

peroxyl radicals in the membrane. Chain-breaking antioxidants at low 

concentrations often introduce a lag period into the peroxidation process, 

corresponding to the time taken for the antioxidant to be consumed, whereas 

metal-binding antioxidants will give a constant inhibition throughout the reaction. 

 

There are problems that can be encountered in the lipid peroxidation of 

biological membranes assay, i.e. thiobarbituric acid can also react with tissue 

aldehydes and sugars, but it is still a useful tool to monitor lipid peroxidation in 

vitro due to its sensitivity and simplicity (Buege and Aust, 1978).  
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Figure 2.5.  Schematic representation of the process of Fe(II)-induced lipid 

peroxidation and possible mechanisms of inhibition by antioxidant. 
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ABTS•+ assay 

In the improved version of the ABTS•+ assay that was first reported by Miller et 

al. (1993), Re et al. (1999) involved the generation of the ABTS cation (Figure 

2.6) by persulfate oxidation 12-16 hours prior to use. The solution is diluted with 

ethanol or buffer (pH 7.4) until the absorbance reaches 0.7 ± 0.02 at 734 nm. 

Ten µl of sample is mixed with 1 ml of the solution and kept at 30°C. The 

absorbance is read after a defined period, usually after 1 to 4 minutes has 

elapsed after mixing, at 734 nm,  

as illustrated in Figure 2.6.  

 

The difference of the absorbance reading is plotted against the antioxidant 

concentrations. The concentration of antioxidant giving the same percentage 

change of absorbance of the ABTS•+ as that of 1 mM Trolox was regarded as 

TEAC (Trolox Equivalent Antioxidant Capacity). One of the advantages of the 

ABTS•+ assay is that can be applied to aqueous and lipophilic systems (Re et 

al., 1999). It is not compounded by other factors that could contribute to the 

antioxidant activity in other model systems such as metal chelating and solvent 

partitioning (Rice-Evans and Miller, 1997). The ABTS•+ assay is a rapid assay 

that can be used over a wide pH range, in aqueous and organic solvents to 

evaluate hydrophilic and lipophilic antioxidant capacities (Prior et al., 2005). 

However, TEAC values for pure antioxidant compounds do not show a clear 

correlation with the number of electrons it can donate. Also reaction rate 

differences between antioxidants and oxidants are not reflected in the TEAC 

values because the TEAC assay is an end point assay (Huang et al., 2005).  
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Figure 2.6.  Diagrammatic representation of radical cation scavenging by a 

flavonoid (Fl-OH) using the ABTS•+ assay. 

 
 

 

 

Figure 2.7. Schematic representation of the 2,2-diphenyl-1-picrylhydrazyl 

(DPPH•) radical. 
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The ABTS•+ assay is, however, useful to provide a ranking order of antioxidants 

(Van den Berg et al., 1999). 

 

DPPH• 

The 2,2-diphenyl-1-picylhydrazyl (DPPH) radical (Figure 2.7) is a stable organic 

radical with a deep purple colour that was first used by Brand-Williams et al. 

(1995). The radical is reduced by test compounds and its consequent decrease 

in absorbance is monitored at 515 nm. The authors warned that any interaction 

of a potential antioxidant with DPPH• is dependent on the structure of the test 

compound. The percentage remaining DPPH• is calculated as an index of the 

antioxidant concentration and the concentration that caused a 50% decrease of 

the initial DPPH• concentration is reported as an IC50 value. Sanchéz-Moreno et 

al. (1998) proposed the term antiradical efficiency (AE), that involves the 

product of potency (
50

1

EC
) and the reaction time (

50

1

ECT
). The lower the EC50, the 

lower the TEC50 and the higher the AE. A complication of the DPPH• assay as 

screening method is the relative low reading wavelength. The spectra of the test 

compounds can easily overlap with that of the radical. The DPPH solution can 

discolour either via radical reaction (HAT) or reduction (SET) as well as 

unrelated reactions (Prior et al., 2005). 

 

FRAP 

In the FRAP assay a ferric salt, Fe(III)(2,4,6-tripyridyl-s-triazine)2Cl3, is used as 

oxidant under acidic conditions (pH 3.6) (Benzie and Strain, 1999). In effect it is 

an assay similar to the ABTS•+ assay, but with the absorbance now being 

monitored at 593 nm 0.5 s after the onset of the reduction and then every 15 s 
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thereafter until 4 min. The change in absorbance is related to the change in 

absorbance of a Fe(II) standard solution and is directly proportional to the 

concentration of the antioxidant. One FRAP unit is defined as the reduction of 1 

mole of Fe(III) to Fe(II). Pulido et al. (2000) however established that the 

reduction caused by some polyphenols like quercetin, ascorbic acid and ferulic 

acid continued for several hours after the 4 min reaction time, implying that the 

FRAP values taken at 4 min for these compound were inaccurate. The assay 

does not work at physiological conditions and does not measure the 

contribution of liposoluble antioxidants and thiol groups (Serafini and Del Rio, 

2004). 

 

ORAC 

The ORAC assay as it is used today was developed by Cao et al. (1993) and 

involves the reaction of the peroxyl radical with a fluorescent probe to form a 

fluorescent product that is quantified by fluorescence. Antioxidant capacity is 

measured as the area under the curve of fluorescence over time (Serafini and 

Del Rio, 2004), reflecting the typical radical chain breaking activity that is 

achieved by H atom transfer (Ou et al., 2001). It is advised that the reaction is 

followed for an extended period (≥ 30 min) to avoid an underestimation of 

antioxidant activity (Prior et al., 2005). The calculation of the protective effects 

of an antioxidant is from the net integrated areas under the fluorescence decay 

curves and accounts for lag time, initial rate and total extent of inhibition in a 

single value. ORAC values are usually reported as Trolox equivalents (Prior et 

al., 2005). However, proteins can contribute up to 86% of the total plasma TAC 
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value (Serafini et al., 1995) and the TAC of liposoluble antioxidants cannot be 

directly measured (Serafini and Del Rio, 2004). 

 

Total phenolics/Folin Ciocalteu assay 

Singleton and Rossi (1965) oxidised phenols against a gallic acid standard with 

a molybdotungstophosphoric heteropolyanion reagent to yield a coloured 

product with a λmax of 765 nm. This method suffers, however, from interfering 

substances like sugar, aromatic amines, ascorbic acid, organic acids and Fe(II) 

(Prior et al., 2005). Incorrect results are also obtained due to the presence of 

nonphenolic organic substances such as glycine, histamine, proteins, uric acid, 

bensaldehyde, etc. (Peterson, 1979; Box, 1983). 

 

Mechanisms of flavonoids for antioxidant activity 

Radical Scavenging 

Flavonoids are able to reduce highly oxidising free radicals such as superoxide, 

peroxyl and hydroxyl radicals by hydrogen atom donation as illustrated in Figure 

2.8 (Husain et al., 1987; Torel et al., 1986; Robak and Gryglewski, 1988). Bors 

et al. (1990) described three structural determinants for effective radical 

scavenging by flavonoids, illustrated in Figure 2.9: (i) ortho-dihydroxy or 

catechol group in the B-ring which confers a high stability to the radical formed 

and participates in electron delocalisation; (ii) the conjugation of the B-ring to 

the 4-oxo group via the 2,3-double bond, which ensures the electron 

delocalisation from the B-ring (phenoxyl radicals produced are stabilized by the 

resonance effect of the aromatic nucleus) and (3) the 3- and 5-OH groups with 

the 4-oxo group, which allows electron delocalisation from both substituent 
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Figure 2.8.  Scavenging of reactive oxygen species (R•) by flavonoids 
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Figure 2.9.  Structural requirements for effective radical scavenging by 

flavonoids (after Bors et al., 1990) 
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hydroxyl groups into the 4-keto group. The 3-hydroxyl group interacts with the B 

ring through a hydrogen bond between the 3-OH and the 2′ or 6′ proton which 

conformationally maintains the B ring in the same plane as the A and C rings 

thereby favouring the conjugation between the B and C ring. In flavones the B 

ring is slightly twisted in relation to the A and C rings.The combination of all of 

these structural features enables a higher degree of electron delocalisation 

which in turn confers a higher stability to the aroxyl radicals (Bors et al., 1990; 

Pietta, 2000). 

 

The presence of a hydroxyl group at the C2´-position of a dihydrochalcone has 

been suggested to contribute to the radical scavenging potential of the 

dihydrochalcone (Nakamura et al., 2003).  

 

Metal Chelation 

Yuting et al. (1990) and Cholbi et al. (1991) identified the same three structural 

elements viz., 1, 2, and 3 in Fig 2.9 above which determine the effective radical 

scavenging properties by flavonoids as sites for metal chelation, i.e. C3-OH and 

C4-oxo or C5-OH and C4-oxo (sites 2 and 3 of Figure 2.9 respectively) as well 

as the ortho-dihydroxyl arrangement known as the catechol moiety in the B-ring 

(site 1) and is illustrated in Fig 2.10. 

 

Usually, when lipid peroxidation is initiated by iron- or copper-containing 

systems, the radical scavenging activity of the flavonoids will prevail and the 

flavonoid is likely to operate by a combination of scavenging and metal 

complexation processes (Laughton et al., 1989; Hanasaki et al., 1994; 
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Figure 2.10.  Binding sites for trace metals (after Pietta, 2000) 
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Afanas’ev et al., 1998). Moridani et al. (2003) actually found the flavonoid 

chelates to be more potent superoxide radical scavengers than their 

corresponding uncomplexed flavonoids in a xanthine oxidase/hypoxanthine 

superoxide-generating system.  

 

The effects of Cu(II), Fe(II) and Fe(III) ion metals on the spectral characteristics 

are described in terms of band shifts in band I (320-420 nm) and band II (250-

320 nm), which relate to B and A ring absorption, respectively (Moridani et al., 

2003). These shifts are illustrated in Figure 2.11: A shows the absorption 

spectra recorded for orientin in buffer between 200-700 nm. B shows the band I 

shift after complexation between orientin and Fe(II) while C shows the recovery 

of orientin after ethylenediaminetetraacetic acid (EDTA), a complexing agent, 

has been added to abstract the chelated Fe(II) from the [orientin:Fe(II)] complex 

and to restore orientin. 

 

Kaempferol with a C4′-hydroxyl on the B ring has two potential binding sites, i.e. 

between C4-keto and C3-OH or C5-OH, but only the one or the other will be 

used for chelation. Quercetin with a catechol moiety on the B ring, has three 

potential metal-binding sites, the same two as kaempferol as well as the 

catechol moiety. Hider et al. (2001) has shown that the affinity for metal 

chelation by the catechol moiety is greater than for two sites adjacent to the 4-

keto group at pH 7. When a phenol group is conjugated with a carbohydrate 

moiety, it can no longer bind metals, as the dissociatable proton is lost. Rutin 

therefore only possesses the catechol moiety and C4-keto/C5-OH as possible 

metal binding sites (Hider et al., 2001). 
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Figure 2.11. Bathochromic shifts of orientin during chelation of Fe(II)

0

0.2

0.4

0.6

0.8

200 300 400 500 600

Orientin in buffer + Fe(II)

366 nm; 0.4094
393 nm; 0.5050

Bathochromic peak shift is 27 nm

AU

in nm
0

0.2

0.4

0.6

0.8

200 300 400 500 600

Orientin in buffer + Fe(II)

366 nm; 0.4094
393 nm; 0.5050

Bathochromic peak shift is 27 nm

AU

in nm

0

0.2

0.4

0.6

0.8

200 300 400 500 600

Orientin in buffer + Fe(II) +EDTA

0

0.2

0.4

0.6

0.8

200 300 400 500 600

Series2

AU

in nm

366 nm; 0.4094

Orientin in buffer

0

0.2

0.4

0.6

0.8

200 300 400 500 600

Series2

AU

in nm

366 nm; 0.4094

Orientin in bufferOrientin in buffer

393 nm; 0.5050

366 nm; 0.4094

371 nm; 0.3921

96%100
0.4094
0.3921

=×Recovery

AU

in nm

393 nm; 0.5050

366 nm; 0.4094

371 nm; 0.3921

96%100
0.4094
0.3921

=×Recovery

AU

in nm

A

B

C 

 

 

 

 



 39

Catechin was also able to chelate Cu(II) (Mira et al., 2002). For catechin that 

lacks 4-oxo, complexation must have involved the ortho-catechol group in the B 

ring. Morel et al. (1993) also contributed the cytoprotective effect of catechin on 

iron-loaded rat hepatocyte cultures to, amongst others, its iron-chelating ability. 

 

In physiological liquids, the Fe(II) cation should be present as an aquacomplex 

with a variable number of coordinating water molecules (Leopoldini et al., 2006). 

 

Binding of the transition metal ions to the biological target is a prerequisite for 

the OH• radical mediated cell damage. The bound metal ion is reduced either by 

O2, ascorbate or other reductants and is subsequently reoxidised by H2O2 

yielding OH• radicals. This cyclic redox reaction of the metal generates OH• 

radicals which react with vital macromolecules with a high probability of causing 

‘multi-hit’ damage. This ‘site-specific’ formation of OH• radicals, which takes 

place near the target molecules, accounts both for the high damaging efficiency 

and for the failure of OH• scavengers to protect against it (Samuni et al., 1983). 

 

Vile and Winterbourn (1987) investigated iron binding to microsomes and 

liposomes in relation to lipid peroxidation and showed that when lipid 

peroxidation occurred in the absence of a chelator, a substantial proportion of 

the iron present was bound either to liposomes or microsomes. The way in 

which chelators influenced the reaction was not fully understood, but one 

possibility was that they altered the site where the oxidant is generated. This 

would occur where iron is associated with the membrane and involved a short-

lived species reacting at this site before diffusing into the bulk phase. Such a 
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site may not be accessible to scavengers that would otherwise inhibit the 

reaction. Negatively charged phospholipids groups are such possible binding 

sites (Vile and Winterbourn, 1987). 

 

Fe(II) was found to be present in the inner water phase and the outer bulk water 

phase, but not at the positively charges surface of positively charged 

tetradecyltrimethylammonium bromide (TTAB) micelles (Fukuzawa and Fujii, 

1992). Therefore, some of the OH• formed in the inner hydrophobic region may 

react with the unsaturated moiety of linoleic acid in the micelles resulting in the 

initiation of lipid peroxidation. However, since a radical trapping site of N-t-butyl-

α-phenylnitrone (PBN) was present at the surface, this superficial PBN could 

not interact with OH•. At the surface, on the other hand, no OH• was not formed 

because there was no Fe(II) present. When using negatively charged sodium 

dodecylsulfate (SDS) micelles resulting from ionic interaction with the sulphate 

group of SDS, positively charged Fe(II) was present at the surface and OH• 

radicals were also formed on the surface. However, more radicals are present 

in the deeper regions of the micelles (Fukuzawa and Fujii, 1992). 

 

Van Acker et al. (1996b) found the C3-hydroxyl group to apparently be more 

important for iron chelations than the C5-OH when comparing superior iron 

chelating ability of trihydroxyethylquercetin (C3-OH and C5-OH free) to 

trihydroxyethylrutin (C5-OH free). A catechol moiety seems to be more 

important than the C5-OH as better chelation was found by 

monohydroxyethylrutin (C5, C3′ and C4′ has free hydroxyl groups) than 

dihydroxyethylrutin where the hydroxyl on C4′ is blocked. 
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Partitioning 

The hydrophobicity of polyphenols is intermediate between that of vitamin C 

(highly hydrophilic) and that of vitamin E (highly hydrophobic). Polyphenols are 

therefore expected to act at water-lipid interfaces (Manach et al., 2004). 

Glucuronidation and sulfation, metabolic processes of the liver, render 

polyphenols more hydrophilic and can affect their site of action and their 

interactions with other antioxidants (Manach et al., 2004). 

 

Figure 2.12 shows a simplified cell membrane comprising of phospholipids that 

are arranged in two layers with the polar part of the molecule facing outside and 

the long hydrocarbon side-chains of the fatty acids on the inside to form a 

hydrophobic compartment.  

 

Two possible interactions between flavonoids and lipid bilayers have been 

suggested by Erlejman et al. (2004), i.e. adsorption onto the membrane surface 

due to the interaction between the hydrophilic flavonoids with the polar head 

groups of lipids at the water-lipid interface and the partitioning (association) of 

the flavonoid according to its hydrophobic nature in the non-polar core of the 

membrane. A higher antioxidant capacity could be caused by the ability of 

flavonoids to interact with the membrane polar head groups, increasing their 

local concentration at the water-lipid interface of membranes (Erlejman et al., 

2004). 

 

At physiological pH, most polyphenols and their metabolites are associated with 

the polar heads of phospholipids at the membrane surface via the formation of  
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Figure 2.12.  Schematic representation of a simplified cell membrane 
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hydrogen bonds that involve the hydroxyl groups of the flavonoids (van Acker et 

al., 1996b; Verstraeten et al., 2003; Manach et al., 2004) while in some 

lipophilic models, the membrane could be penetrated to varying degrees 

(Nakayama et al., 2000). A high number of hydroxyl groups on the polyphenol 

structure and an increase in pH can lead to deprotonation of the hydroxyl 

groups that would enhance interactions between the polyphenols and the 

membrane surface. This adsorption of polyphenols through hydrogen bonding 

caused an accumulation at the membrane’s surface, both outside and inside the 

cells and probably limited the access of aqueous oxidants to the membrane 

surface and their initial attack on that surface. This reduced the access of 

deleterious molecules (i.e. oxidants) into the membranes, thus protecting the 

structure and function of membranes (Liao and Yin, 2000; Manach et al., 2004; 

Oteiza et al., 2005).  

 

The penetration of flavonoids into the membrane is also the result of their 

polarity and contributes to their ability to scavenge initiating radicals: the most 

apolar flavone is located deeper in the membrane towards the hydrophobic core 

of the bilayer while increasing polarity due to an increasing number of hydroxyl 

groups provides the flavonoids with a higher propensity towards the aqueous 

phase (Silva et al., 2002; Scheidt et al., 2004). Quercetin, for instance, is known 

to have a deep interaction due to its planar structure (Movileanu et al., 2000). 

Pawlikowska-Pawlêga et al. (2003), however, showed that quercetin only 

influenced the polar region of the bilayer, leaving the hydrophobic core of the 

membrane unchanged. Its localisation close to the membrane surface protected 

the surface against peroxidation and because of the changes induced in the 
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structure, might have caused alterations in its permeability. These conclucions 

were confirmed by Tsuchiya et al. (2003) and Oteiza et al. (2005) who 

demonstrated that quercetin was the most effective antioxidant at the liposomal 

membrane surface, whereas EGCG was recorded to have the strongest effects 

in hydrophobic membrane regions because of the more favourable partition of 

the more non-polar compounds into the hydrophobic interior of the membrane 

where they exert their chain breaking antioxidant activity.  

 

Liao and Yin (2000) also related the interaction of an agent with biomembranes, 

or the uptake of an agent into the membranes, strongly to its lipophilicity and 

expressed the relationship as a partition coefficient. They calculated partition 

coefficients (1 mM compound in n-octanol-water) for quercetin and rutin. The 

higher partition coefficient of quercetin to that of rutin proved that quercetin was 

able to interact deeper with biomembranes while having less interaction with 

free radicals present in the aqueous phase. These results support the 

suggestion that the partition coefficient of a phenolic antioxidant affects both its 

interaction with biomembranes and its antioxidant activity performance, 

particularly when water-soluble oxidants are involved (Liao and Yin, 2000). The 

glucoside group present in rutin made it unavailable to penetrate the model 

membrane, lowered its liposolubility and hampered its incorporation between 

the acyl chains of lipids (Liao and Yin, 2000; Saija et al., 1995). The group of 

Saija (1995) concluded that flavonoids anchored themselves through chemical 

bonds to the polar head of main phospholipids, forming reversible physico-

chemical complexes depending on their liposolubility.  
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Flavonoids can also exert their antioxidant activity by stabilising membranes by 

decreasing membrane fluidity (Arora et al., 2000). The results of their study 

with, amongst others rutin, suggested that the flavonoids and isoflavonoids, 

similar to cholesterol and alpha-tocopherol, partition into the hydrophobic core 

of the membrane and cause a dramatic decrease in lipid fluidity in this region of 

the membrane. Localization of flavonoids and isoflavonoids into the membrane 

interiors and their resulting restrictions on fluidity of membrane components 

could sterically hinder diffusion of free radicals and thereby decrease the 

kinetics of free radical reactions. Despite the presence of polar substituents, 

flavonoids preferred to partition in the hydrophobic core of the membrane where 

they exert a membrane stabilizing effect by modifying the lipid packing order 

(Arora et al., 2000).  

 

Ollila et al. (2002) opposed this above argument, i.e. that the binding of the 

flavonoids to or partitioning of the flavonoids into the membranes destabilises 

the membrane structure causing a disorientation of the membrane lipids. Their 

suggestion was that hydrophobic moieties of the flavonoids cause a reduction of 

the intermolecular hydrogen bonding capacity of water, forcing the flavonoid 

molecules to the more hydrophobic environment in the membranes (Ollila et al., 

2002). Selected flavonoids can help maintain the integrity of the membrane by 

preventing the access of deleterious molecules into the hydrophobic region of 

the bilayer (Verstraeten et al., 2003; Manach et al., 2004).  

 

Flavonoids can interact with both lipid and protein components of biological 

membranes and alter their properties. Though interactions with lipids are in 
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most cases limited to the polar region of the lipid bilayer; the depth of the 

membrane penetration by flavonoids depends on their structure. Flavonoids 

interact also with membrane transporter systems (Manach et al., 2004; 

Hendrich, 2006). 

 

Structural activities 

B ring catechol moiety 

The catechol moiety in the B ring can trap free radicals, chelate redox-active 

metals and regenerate α-tocopherol and other antioxidants by hydrogen 

donation (Verstraeten et al., 2003) very efficiently as the activity of one of the 

hydroxyl groups is enhanced by the electron donating effect of the other one 

(Rezk et al., 2002).  

 

Deng et al. (1997) studied lipid peroxidation with three alternative ways of 

generating the initiating radicals, i.e. γ-irradiation, Fe(II)-H2O2 and Fe(III)-LOOH. 

Their results indicated that flavonoids function as antioxidants mainly by 

chelating Fe(II) and scavenging peroxyl radicals rather than scavenging 

hydroxyl radicals. The ability of a flavonoid to complex Fe2+ ions by monitoring 

bathochromic shifts related to either A or B ring absorption was compared for 

rutin, quercetin, luteolin, catechin by Moridani et al. (2003). 

 

Degree and pattern of hydroxylation 

Flavonoids are antioxidants by virtue of the number and location of their 

phenolic hydroxyl groups attached to the ring structures and it has been 

determined that an increase in the number improves the reduction potential of 
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the flavonoids and subsequently the scavenging action is increased (Cook and 

Samman, 1996; Deng et al., 1997; Rice-Evans, 2001; Zhou et al., 2005). The 

hydroxyl group at position 3 of the AC-ring is the most reactive one and its 

activity is enhanced by the electron donating effect of the hydroxyl groups at 

positions 5 and 7 as well as the 4-keto group (Rezk et al., 2002).  

 

The flavonols bearing ortho-dihydroxy groups possess significantly higher 

antioxidative activity than those without such adjacent functionalities and the 

glycosides are less active than their parent aglycones (Zhou et al., 2005). 

Flavonoids of different classes but with the same number of hydroxyl groups 

have IC50 values of the same magnitude in a liposome assay (Silva et al., 

2002). However, the basic structure of flavonoids becomes important when the 

antioxidant activity of the B-ring is small (Silva et al., 2002). Chen et al. (2002) 

studied the relationship between the structure and hydroxyl radical scavenging 

activity of flavonoids in a hydroxyl radical generating chemiluminescence 

system with ascorbate-CuSO4-H2O2. He concluded that (1) phenolic hydroxyls 

in flavonoids were the main active groups capable of scavenging •OH; (2) 

hydroxyl groups in rings B and A were important •OH scavenging active groups; 

(3) the ortho-dihydroxyl groups in ring A and/or B could greatly enhance the •OH 

scavenging activity of the rings; and (4) scavenging activity of hydroxyl groups 

in ring B was higher than that of hydroxyl groups in ring A (Chen et al., 2002). 

 

Van Acker et al. (1996a) used quantum-mechanical studies to elucidate a 

crucial role of the C3-hydroxy group of flavonols. Their studies demonstrated 

that the C3-OH is capable of forming hydrogen bonds with the C2′/C6′ -
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positions of the B ring facilitating the radical formation of the C4′-hydroxy group, 

resulting in the superior antioxidant of quercetin. The increase in radical 

scavenging activity due to the presence of a C3-hydroxyl group in the 

heterocyclic ring was also noted by Pietta et al., (2000), though additional 

hydroxyl or methoxyl groups at positions 3, 5, and 7 of rings A and C seem to 

be less important. These structural features contribute to increasing the stability 

of the aryloxy radical, i.e. the antioxidant capacity of the parent flavonoid (Pietta, 

2000). Flavonols and flavones containing the B ring catechol moiety are highly 

reactive, with these flavonols being more potent than their corresponding 

flavones because of the presence of this C3-OH. Glycosylation of this C3-OH 

group viz., rutin greatly reduces the radical scavenging capacity. The presence 

of only one hydroxyl group would decrease the activity whereas a third group in 

ring B (a pyrogallol group like in epigallocatechin) would enhance the activity 

(Pietta, 2000).   

 

The lone hydroxyl group in the B ring of kaempferol (C4’-OH) drastically 

reduced the antioxidant activity three and a half times in the ABTS•+ assay 

compared to quercetin which has a catechol moiety as the B ring (Rice-Evans 

and Miller, 1998), implying that the antioxidant activity is derived from 

contributions of the A and possibly the C rings. 

 

The gross contribution to the antioxidant activity is facilitated by the 

delocalisation of electrons across the aromatic structure of quercetin thereby 

stabilizing the aryloxyl radical formed. This was shown by calculating the 

contribution of each group independently and adding the values for the meta-
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hydroxy arrangements of the A ring in the 5,7-positions and the ortho-dihydroxy 

regioisomeric structural feature of the B ring as in catechin (Rice-Evans and 

Miller, 1998), as shown in Figure 2.13. Joubert et al. (2004) attributed the 

presence of only one hydroxyl group on the B ring to the poor performance of 

vitexin and chrysoeriol as superoxide scavenger.  

 

Agrawal and Schneider (1983) ranked the dissociation of hydroxyl functions 

from 7-OH>4’-OH>5-OH while Rice-Evans and Miller (1998) found that the two 

controlling structural features for radical scavenging are the catechol moiety in 

the B ring and the 2,3 double bond in the C ring. The meta-hydroxy 

arrangements of the A ring in the 5,7-positions also contribute to radical 

scavenging. 

 

In a study using vesicles, the relative hydrophobicity and interaction of 

flavonoids with artificial membranes depended on the number of hydroxyl 

groups. When flavones and flavanones possessing the same number of 

hydroxyl groups were compared it appeared that flavones were slightly more 

hydrophobic than flavanones. In addition the flavonols were also more 

hydrophobic than flavanones, but the membrane affinity of flavonols was 

greater due to their planar structures, making it easier for the flavonol molecule 

to intercalate between the phospholipids of the membrane (Van Dijk et al., 

2000). 
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Figure 2.13.  Sites for electron donation by flavonoids (after Rezk et al., 2002). 
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The inhibition of lipid peroxidation, as is the case with radical scavenging 

activity, does not dependent on the number of free hydroxyl groups present in 

the flavone or flavane skeleton either, but on the substitution pattern of 

hydroxylation (Cholbi et al., 1991). Free hydroxyl groups in the rings A (C5 or 

C7) and/or C (C3) participate in the inhibition of peroxidation, while the 

presence of hydroxyls in the B ring is not necessary, though they can increase 

the activity with some differences being ascribed to their positional arrangement 

in the molecule (Cholbi et al., 1991). However, quercetin was more active than 

catechin in a micellar system even though they both have the same 

hydroxylation pattern, but the difference in activity was attributed to increased 

stability of the aryloxyl radical due to the presence of the carbonyl group 

conjugated with ring B in quercetin (Foti et al., 1996). 

 

Pekkarinen et al. (1999) monitored the antioxidant effect of quercetin, 

kaemferol, myricetin, (+)-catechin and rutin on methyl linoleate oxidation by 

measuring the conjugated dienes formed as well as hydroperoxide isomers. 

They found that the antioxidant activity of flavonoids increased with the number 

of phenolic hydroxyl groups. Rutin was a weak inhibitor of hydroperoxides in 

methyl linoleate, but quercetin was more effective than catechin because of the 

C ring structures (the 2,3-double bond and C4-keto group). Quercetin was 

better than rutin in inhibiting ketodiene formation. 

 

Heijnen et al. (2002) observed that electron-donation weakened the O-H bond, 

making it easier to transfer an H• to a lipidperoxyl radical, thus breaking the 

chain process of lipid peroxidation. 
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The structural features necessary for the inhibition of lipid peroxidation would be 

the presence of a C3-OH (Ratty and Das, 1988; Cholbi et al., 1991); a double 

bond between carbons 2 and 3 of the C ring (Mora et al., 1990); a carbonyl 

group on C4 (Ratty and Das, 1988); the number of hydroxyl groups (Ratty and 

Das, 1988; Cholbi et al., 1991) and the substitution pattern of hydroxylation 

(Cholbi et al., 1991) including hydroxyl groups on positions C5 and C7 of the A 

ring (De Whalley et al., 1990) and the catechol moiety on the B ring (Ratty and 

Das, 1988; Yuting et al., 1990). 

 

Flavonols require a C2′-OH and the pyrogallol group (C-3′, C-4′, C-5′) for 

antiperoxidative action (Cholbi et al., 1991) while the presence of a sugar 

moiety reduced the antiperoxidative activity of adjacent hydroxyl groups due to 

steric hindrance (Ratty and Das, 1988; Cholbi et al., 1991; Mora et al., 1990). 

Hydrogenation of the double bond between C2 and C3 decreases antiper-

oxidative effects (Mora et al., 1990). The presence of methoxyl groups reduces 

antiperoxidative efficiency due to steric hindrance (Cholbi et al., 1991).  

 

Flavonoids that sequester metal ions may contribute to their antiperoxidative 

function as well by preventing the formation of free radicals (Afanas’ev et al., 

1998; Morel et al., 1993).  

 

Methylation 

Generally catechol O-methylation leads to a reduction in antioxidant efficacy, 

but the opposite has also been reported (Lemańska et al., 2004). The C4′-OH 

group is generally suggested to be the hydroxyl moiety primarily involved in 
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both deprotonation and in hydrogen donation associated with the radical 

scavenging action of quercetin and luteolin (Cao et al., 1997). O-Methylation of 

the C4′-OH moiety may therefore affect deprotonation as well as radical 

scavenging activities of the flavonoids. The results of Lemańska et al. (2004), 

however, showed that methylation of the C3′-OH affects both the antioxidant 

characteristics to almost the same extent as C4′-OH methylation. O-Methylation 

of the C4′-OH and C3′-OH position in quercetin and luteolin resulted in a 

decrease of their TEAC values compared to the demethylated analogues as 

well as compared to their aglycone form over the whole pH range tested. This 

effect was more pronounced for quercetin than for luteolin (Lemanska et al., 

2004). Their study also showed that O-methylation (OH elimination) increased 

the pKa of the flavonoid, resulting in lower levels of deprotonation of the 

flavonoids at physiological pH and therefore reduced radical scavenging 

properties. O-Methylation (OH elimination) may also affect the electronic 

characteristics of especially the deprotonated form of the flavonoid, reducing its 

capacity for electron and hydrogen atom donation. 

 

The nature and extent of methylation of the hydroxyl substitutions also affected 

the anti-lipoperoxidant activity of flavonoids on the mitochondrial membrane as 

activity was either sustained or even increased (Santos et al., 1998). Quercetin 

and C3′-O-methyl-quercetin, as well as 3,7,3’,4’-tetra-O-methyl-quercetin and 

3,5,7,3’,4’-penta-O-methyl-quercetin were compared. Although quercetin 

satisfied all the structural requirements for a high antioxidant activity, 3’-O-

methyl-quercetin, which carried a methyl group in the catechol moiety, was a 

more potent anti-lipoperoxidant. One hypothesis is that solubilization in the 
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mitochondrial membrane due to an increase in the lipophilic nature of molecules 

is implicated. In this regard, the effectiveness of protection of flavonoids against 

lipid peroxidation has been proposed to depend on their orientation in 

biomembranes, and consequently on the partition coefficients in the lipid phase 

(Saija et al., 1995; Rice-Evans et al., 1996; Cos et al., 2001; Heim et al., 2002). 

However, 3’-O-methyl catechin and 4’-O-methyl catechin, lacking metal 

chelating structural features were, however, less effective than catechin in 

protecting against low-density lipoprotein oxidation (Cren-Olivé et al., 2003). 

 

A phenoxyl radical can also be stabilized by the electron donating ability of a 

methoxy group (Danilewicz, 2003), enabling the flavonoid to act as radical 

scavenger for a longer time, resulting in a more efficient performance as an 

antioxidant.  

 

Glycosylation 

In general, dietary flavonoids are attached to sugar residues which affect the 

mechanism of absorption by altering their physico-chemical properties and thus 

their ability to enter cells, rendering them consequently less biologically active, 

but more soluble and thus better to transport within the plant (Williamson et al., 

2000; Day et al., 2003). 

 

The antioxidant efficiency of flavonoids has been directly correlated with their 

degree of hydroxylation and it was found to decrease with the presence of a 

sugar moiety (Ratty and Das, 1988). Plumb et al. (1999), however, found that 3-

O-glycosylation had only a small effect on inhibiting lipid peroxidation in 
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phosphatidylcholine vesicles. Zhou et al. (2005) also found that the glycosides 

are less active than their parent aglycones while Cholbi et al. (1991) concluded 

that in polyhydroxylated flavonoids, the blocking of active hydroxyl functions by 

glycosylation or methylation causes a decrease in their inhibitory behaviour due 

to steric effects (Cholbi et al., 1991). Glycosylation of the hydroxyl groups had a 

negative influence on the antiperoxidative activity of the flavonols since 

quercetin showed a lower IC50 value than isoquercitrin and rutin (Cos et al., 

2001). 

 

The physicochemical structural parameters that govern antioxidant activity are 

alkyl chain length, hydrophobic properties, affinity of the molecule for the lipid 

substrate, and structural and functionality requirements for anchoring to the 

phospholipid bilayer (Anselmi et al., 2004). Many phenolic aglycones are 

hydrophobic and can passively diffuse through biological membranes. Linkage 

of a phenolic OH group to a sugar moiety increases water solubility and limits 

passive diffusion. Quercetin glucosides are too hydrophilic to diffuse through 

biological membranes and thus a transport mechanism has been suggested 

(Williamson et al. 2000). The ability of hyperoside to protect PC12 cells against 

H2O2 and t-BuOOH induced toxicity was investigated by Liu et al. (2005). They 

found that hyperoside was able to permeate the cell membrane to inhibit free 

radical formation and the propagation of free-radical reactions by chelating 

transition metal ions in the cell. Yang et al. (2001) established that luteolin, rutin 

and hyperoside all had the same half-wave potential, but the additional sugar 

moiety in the case of rutin and hyperoside greatly decreased the lipophilicity 

resulting in a corresponding large increase in the IC50 value. 
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Glycosylation of the A ring hydroxyl groups decreased antioxidant activity (Rice-

Evans and Miller, 1998). Phloridzin is the C6′-glucoside of phloretin, a 

dihydrochalcone with a C4-hydroxy group on the B ring. The performances of 

phloretin as well as phloridzin were compared in peroxynitrite scavenging and 

the inhibition of rat microsomal lipid peroxidation by Rezk et al. (2002). Phloretin 

displayed potent antioxidant properties in both the peroxynitrite scavenging and 

the inhibition of lipid peroxidation with IC50 values of 3.1 µM and 24 µM 

respectively. The presence of the glucose moiety increased the values to 55 

and 435 µM, respectively. Orientin and isoorientin displayed strong activities 

towards DPPH• and linoleic acid peroxidation, but vitexin on the other hand had 

a very low response (Mun’im et al., 2003). In the DPPH radical system, 

antioxidative substances react directly with the DPPH radical by hydrogen atom 

donation, similar to the mechanism of the ABTS radical scaveninging assay 

(Miliauskas et al., 2004). On the other hand, in the lipid peroxidation system, 

breaking of the chain reaction by the antioxidative compounds may have 

occurred.  

Keto group/ C2=C3 bond 

Cholbi et al. (1991) suggested that hydrogenation of the C2-C3 double bond in 

the C ring decreases the antiperoxidative effects of flavonoids and that the keto 

group at position 4 is not essential for the inhibitory activity. Bors and Saran 

(1987) also found that substances with the C2-C3 double bond and both 3- and 

5-OH groups showed extensive resonance, which does not necessarily 

translate into higher radical stability.  
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Planarity/extended conjugation 

Planarity refers to the dimensionality of the compound. Glusker and Rossi 

(1986) described quercetin as planar with all its hydroxyl groups in the same 

molecular plane. This in turn favours conjugation and delocalisation of the 

electrons of the whole molecule. The OH groups are arranged in such a way as 

to maximize the number of hydrogen bonds. Planarity is retained in going from 

free to complexed quercetin (Glusker and Rossi, 1986). 

 

Cotelle (2001) as well as Silva et al. (2002) also attributed the excellent 

antioxidant activity of the flavonols to the conformationally planar structure that 

enabled the C3-hydroxyl group to interact with the B-ring through a hydrogen 

bond between the C3-OH and the C2ۥ or C6ۥ OH proton. This hydrogen bond 

conformationally maintained the B-ring in the same plane as the A- and C-rings 

favouring the conjugation between the B- and C-ring. In flavones the B-ring is 

twisted by circa 20 degrees in relation to the plane of the A-and C-rings. Rutin 

with the same hydroxyl groups as luteolin had a slight decrease in activity due 

to loss of coplanarity of ring B with rest of molecule (Silva et al. 2002).  

 

Anselmi et al. (2004) studied the antioxidant activity of some esters of ferulic 

acid with the linear fatty alcohols C7, C8 (branched and linear), C9, C11, C12, 

C13, C15, 16 and C18 in homogenous and heterogenous phases and found 

that modifications to the ester side chain (lengthening/ramification) did not 

influence the antioxidant potency of the molecules in a homogeneous solution 

(Anselmi et al., 2004). However, in the heterogeneous phase involving 

microsomal phospholipid bilayers, the findings were difficult to reconcile with the 
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differences in antioxidant potency observed. The group became aware of the 

possibility that the latter may be dictated by a different anchorage of the side 

chain with membrane phospholipids. Very likely different anchorages would 

affect the orientation/positioning of the radical scavenging nucleus (the phenoxy 

moiety) in different ways, which must be constrained outside the bilayer surface 

to quench the flux of free oxy radicals generated by the physiological couple 

Fe3+/ascorbic acid. 

 

Dihydrochalcones 

Two closely related dihydrochalcones, myrigalone B (2′,6′-dihydroxy-4′-

methoxy-3′,5′-dimethyl-dihydrochalcone) and angoletin (2′,4′-dihydroxy-6′-

methoxy-3′,5′-dimethyl-dihydrochalcone) were evaluated as radical scavengers 

in the DPPH• assay by Mathiesen et al. (1997). Myrigalone B was an effective 

antioxidant while angoletin was inactive. From NMR spectra it appeared that 

myrigalone B showed signals consistent with a time-average conformation in 

which the symmetrically substituted A ring is orthogonal to the carbonyl group in 

the side chain. In contrast, the A ring and carbonyl group of angoletin appeared 

to be coplanar. By donating a phenolic hydrogen in radical scavenging, 

myrigalone B will lose its symmetrical structure and may change to a coplanar 

conformation forming a strong intramolecular hydrogen bond between the 

remaining phenolic hydrogen and the carbonyl group. Mathiesen et al. (1997) 

concluded that all the substances they investigated that had an orthogonal 

conformation and were able to form intramolecular hydrogen bonds by loss of a 

phenolic hydrogen were DPPH• scavengers, while compounds lacking these 

properties were inactive. 
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As mentioned earlier in this chapter, the performances of phloretin as well as 

phloridzin were compared peroxynitrite scavenging protocols and the inhibition 

of rat microsomal lipid peroxidation by Rezk et al. (2002). They proposed that 

the stabilization of the radical that is formed after hydrogen abstraction may 

involve a keto-enol tautomeric transformation between the carbonyl group and 

the R-methylene. This explanation is confirmed by the strong activity of 2,6-

hydroxyacetophenone: the free electron that is generated due to hydrogen 

abstraction of one of the hydroxyl groups of the AC ring can be delocalised over 

the three oxygen atoms present, involving a keto-enol transformation of the 

carbonyl group and the transfer of an α-hydrogen atom of the carbonyl group to 

the oxygen radical. In this way the unpaired electron is transferred to the 

carbonyl group. The unpaired electron can then be transferred to the other 

aromatic hydroxyl group by a hydrogen transfer, stabilising the radical that was 

formed after hydrogen abstraction The 2,4,6-hydroxyacetophenone moiety is a 

unique pharmacophore that could be responsible for the antioxidant activity of 

dihydrochalcones (Rezk et al., 2002). 

 

The antioxidant activities of selected flavanones and their corresponding 

dihydrochalcones against the DPPH• and lipid peroxidation in the erythrocyte 

membrane were investigated by Nakamura et al. (2003). All dihydrochalcones 

exhibited higher antioxidant activities than the corresponding flavanones. Their 

1H-NMR analysis, like that of Mathiesen et al. (1997), indicated that the active 

dihydrochalcone had a time-averaged conformation in which the aromatic A ring 

is orthogonal to the carbonyl group, while the inactive dihydrochalcone such as 
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2′-O-methyl-phloretin has a strongly hydrogen-bonded phenolic hydroxyl group, 

suggestive of a coplanar conformation.  

 

A hydroxyl group at the 2′-position of the dihydrochalcone A ring, newly formed 

by reduction of the flavanone C ring, is an essential pharmacophore for its 

radical scavenging potential (Nakamura et al., 2003). 

 

Reporting of results of in vitro assays 

Many terms are used by different researchers to describe antioxidant capacity. 

Terms one can find include total antioxidant “capacity” (or efficiency, power, 

parameter, potential, potency, and activity). The “activity” of a chemical would 

be meaningless without the context of specific reaction conditions such as 

pressure, temperature, reaction media, co-reactants and reference points. 

Because the “antioxidant activity” measured by an individual assay reflects only 

the chemical reactivity under the specific conditions applied in that assay, it is 

inappropriate and misleading to generalize the data as indicators of “total 

antioxidant activity”. The other terms listed above are more independent of 

specific reactions and have similar chemical meanings. Oxidant-specific terms 

such as “peroxyl radical scavenging capacity”, “superoxide scavenging 

capacity”, “ferric ion reducing capacity” and the like would be more appropriate 

to describe the results from specific assays than the loosely defined terms “total 

antioxidant capacity” and the like (Huang et al., 2005).  

 

Total Antioxidant Capacity (TAC) considers the cumulative action of all the 

antioxidants present in plasma and body fluids, thus providing an integrated 
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parameter rather than the simple sum of measurable antioxidants. It is the 

measure of the moles of a given free radical scavenged by a test solution. TAC 

is the result of many variables such as redox potentials of the compounds 

present in the matrix, cumulative and synergistic action, kind of stress, nature of 

oxidizing substrate and location of antioxidant; a concept rather than a 

technique (Serafini and Del Rio, 2004). 

 

Total Antioxidant Activity (TAA) is calculated as the concentration of the sample 

being studied against the ABTS•+, expressed as ascorbic acid equivalents 

(mol/ℓ) (Arnao et al., 1999). Already mentioned in this chapter is Trolox 

Equivalent Antioxidant Capacity (TEAC: the concentration of antioxidant giving 

the same percentage change of absorbance of the ABTS•+ as that of 1 mM 

Trolox) (Re et al., 1999) and antiradical efficiency (AE: that involves the product 

of potency (
50

1

EC
) and the reaction time (

50

1

ECT
) in the DPPH•) (Sanchéz-Moreno 

et al.,1998). 

 

A useful way to report the values of inhibition dose-reponse curves, is the IC50 

value. The IC50 is defined as the concentration of inhibitor (antioxidant) that 

provokes a response halfway between the baseline (bottom) and maximum 

response (top) (Addendum 3A). The IC50 values are often calculated from linear 

regression analyses (regression coefficient ≥ 0.9) using a minimum of three 

consecutive concentrations within the range of the dose-response curve. This 

method, however, accepts that the dose-response curve is linear, which is not 

the case. A typical dose-response curve is hyperbolic, becoming sigmoidal 

when the response is plotted against the logarithm of the dose as shown in  
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Figure 2.14.  Graph illustrating the calculation of an EC50 value 
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Figure 2.14 for an EC50 value. EC50 values refer effective concentration 

whereas IC50 refer to inhibitory concentration. The same mathematical model is 

used to calculate both; the difference being that the slopes are in opposite 

directions. 

 

Van Acker et al. (1996a) used half-peak oxidation potential to describe 

antioxidant activity. A low half-peak oxidation potential is defined as ready 

oxidizability and good scavenging.  

 

Salmonella typhimurium mutagenicity assay 

Background 

The Ames Salmonella microsome/mutagenicity assay (Salmonella test; Ames 

test) is a short-term bacterial reverse mutation assay specifically designed to 

detect a wide range of chemical substances that can produce genetic damage 

that leads to gene mutations. The test employs several histidine dependent 

Salmonella strains each carrying different mutations in various genes in the 

histidine operon. These mutations act as hot spots for mutagens that cause 

DNA damage via different mechanisms. When the Salmonella tester strains are 

grown on a minimal media agar plate containing a trace of histidine, only those 

bacteria that revert to histidine independence (his+) are able to form colonies. 

The number of spontaneously induced revertant colonies per plate is relatively 

constant. However, when a mutagen is added to the plate, the number of 

revertant colonies per plate is increased, usually in a dose-related manner. The 

Ames test is used world-wide as an initial screen to determine the mutagenic 

potential of new chemicals and drugs (Rosen and Stich, 1979; Mortelmans and 
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Zeiger, 2000). The Committee on Chemical Environmental Mutagens (1983) 

concluded that short-term mutagenicity tests such as the Ames 

Salmonella/microsome test has been successful in identifying carcinogens in 

that a substance that is found to be mutagenic in such a test a clearly a possible 

human carcinogen. However, cognisance should be taken of the fact that there 

are fundamental differences between bacterial and mammalian cells and that 

some reducing agents like ascorbate and selenite could induce DNA damage in 

mammalian cells without affecting the spontaneous mutation rate of Salmonella 

tester strains (Stich et al., 1978). 

 

The two major kinds of point mutations are base-pair substitutions and 

frameshift mutations. In the former, one base pair in DNA, e.g. G:C, is replaced 

by another, e.g. A:T, but the number of base pairs is not altered. Unlike base-

pair substitutions, frameshift mutations have gained or lost base pairs relative to 

the original sequence. Most commonly, frameshifts involve the gain or loss of 

one of two base pairs, thereby altering the reading frame of the genetic code. 

Frameshift mutations lead to non-functional gene products as the mutagens 

may stimulate the induction of mutations by reacting with DNA covalently or by 

non-covalent interactions. Some mutagens are electrophiles that form covalent 

adducts in DNA directly, others must be converted to electrophiles by 

mammalian metabolism (Hoffmann and Fuchs, 1997). The activation pathway 

of 2-acetylaminofluorene (2-AAF) and aflatoxin B1 (AFB1), the diagnostic 

mutagens for TA98 and TA100 used in this study, are shown in Figures 2.15 

and 2.16 respectively. 
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Figure 2.15.   Metabolic activation of 2-acetylaminofluorene (after Heflich and Neft, 1994; Hoffmann and Fuchs, 1997). 
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Figure 2.16.   Metabolic activation of aflatoxin B1. 
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Microbial methods such as the Salmonella test are rapid, cheap and apparently 

simple to carry out (Anderson and Longstaff, 1981). Another factor that favours 

this screening test is its reproducibility. In a study by Dunkel et al. (1985) it was 

concluded that the intra- and inter-laboratory reproducibility of the Salmonella 

assay with regard to the overall judgment of mutagenic or non-mutagenic was 

good. The solvent used for the solution of the test solvent also plays an 

important role as varying mutagenic responses may be obtained by using 

different solvents for the test compound and the responses to some compounds 

may be more affected than others (Anderson and McGregor, 1980). 

 

When this assay is utilized to evaluate the antimutagenic properties of an 

extract or fraction, a diagnostic mutagen is utilized as positive control. Ideally, 

the number of reversions of the positive control should exceed that of the 

spontaneous reversion by 10 times (Dr WCA Gelderblom, personal 

communication). Some of the more popular strains of Salmonella typhimurium 

with their reversion event, targets, number of spontaneous revertants and a 

possible diagnostic mutagen for antimutagenicity purposes are shown in Table 

2.1. Figure 2.17 shows two Petri dishes that were used in the evaluation of 

antimutagenicity in this study: the right hand side shows the spontaneous 

revertants for tester strain TA98 while the left hand side shows the positive 

control using TA98 with metabolically activated 2-AAF. 

 

An artefact emanating from using the Salmonella typhimurium assay to evaluate 

antimutagenicity is that whenever the agent modulates the bacterial fission (or 

DNA replication), the mutation rate would appear superficially different from the  
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Table 2.1  Some of the most popular Salmonella typhimurium strains with their reversion event, targets, number of 

spontaneous revertants and a possible diagnostic mutagen for antimutagenicity purposes. 
 
 

 
Strain 

 
Reversion event 

 
Target 

Spontaneous 
revertants 

 
Diagnostic mutagen 

TA 97a 

 

frameshift 

 

–C-C-C-C-C-C- (+1 cytosine at 
run of C’s) 90-180 2-acetamido-fluorene 

(2-AAF) 

TA 98 frameshift -C-G-C-G-C-G-C-G 30-50 
2-acetamido-fluorene 

(2-AAF) 
 

TA 100 base-pair substitution GT ➔ AT 120-200 
Aflatoxin B1 

(AFB1) 
 

TA102 transversion between A and T 240-320 
Cumol Hydroperoxide 

(CHP) 
 

C :cytosine ; G : guanine ; T : thiamine ; A : adenosine. (after Levin et al., 1982a; Levin et al., 1982b ; Maron and Ames, 

1983; Mortelmans and Zeiger, 2000) 
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Figure 2.17.    Photograph of Petri dishes with tester strain Salmonella typhimurium TA98.  
To the left is the positive control with metabolically activated 2-AAF;  

to the right the spontaneous revertants. 
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control. This means that measurements required to establish antimutagenesis 

must be carried out under rigorous experimental conditions because the effects 

induced by antimutagens are far less in the negative directions than the effects 

of the mutagens are in the positive direction (Liviero and von Borstel, 1996). 

Waters et al. (1990) added that in vitro antimutagenicity tests will detect only 

those compounds that either inhibits the metabolism of the mutagenic species 

directly or demonstrating an in vitro antimutagenic effect as in vitro 

carcinogenicity tests involve changes to the activity of one or more of the 

enzyme systems that are not present in vitro.  

 

Rosin and Stich (1979) warned that the proximate (N-hydroxy-AAF) and the 

ultimate (N-acetoxy-AAF) forms of the carcinogen 2-acetylaminofluorene react 

differently to the antioxidants investigated and that the efficiency of the trapping 

agent must include testing at different stages of metabolic activation of the 

precarcinogen into the ultimate reactive species. There are also some 

limitations to the testing system, viz., antioxidants with either low water solubility 

like alpha-tocopherol or high toxicity like butylated hydroxyanisole are difficult to 

examine. They also warned against the use of DMSO as DMSO can affect the 

antioxidant or the carcinogen activity.  

 

Kada and Shimoi (1987) classified antimutagens into categories of 

desmutagens (inactivate mutagens before they can attack DNA, thus preventing 

mutations as it occurs in vitro) and bioantimutagens (interfere with the 

expression of the mutation). Wattenberg (1983) distinguished between 

anticarcinogenic substances according to their mechanisms: 1. substances that 
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inhibit the formation of mutagens and carcinogens from their precursors; 2. 

substances which inhibit the arrival of carcinogens to specific cells (‘blocking 

agents’); and 3. substances that inhibit the expression of the malignant 

characteristics (‘suppressive agents’). The mechanisms of chemopreventive 

action as defined by Steele et al. (1985) were included in this list while Ramel et 

al. (1986) added agents that act on DNA repair and suppressing agents. 

 

The Salmonella assay has been used extensively to screen plant extracts for 

antimutagenicity: Edenharder et al. (2001) used it in spinach (Spinacia 

oleracea), Gąsiorowski et al. (1997) on Aronia melanocarpa fruit, Ikken et al. 

(1999) on various fruit and vegetable ethanolic extracts and Nakasugi et al 

(2000) on Gaiyou (Artemisoa argyi) to name a few. Since the health properties 

of black and green tea (Camellia sinensis) have become known, extracts have 

also been subjected to the Salmonella test as shown by the work of, amongst 

others, Mukhtar et al. (1992), Yen and Chen (1995), Gupta et al. (2002), 

Santana-Rios et al. (2001) and Geetha et al. (2004). 

 

Antimutagenicity of rooibos 

Aqueous extracts of fermented and unfermented rooibos has been subjected to 

the Salmonella mutagenicity assay and showed potent antimutagenic activity 

against 2-AAF and AFB1 in tester strains TA98 and TA100, respectively, with 

the unfermented rooibos showing more protection than fermented rooibos. Less 

potent inhibition was observed against peroxide-induced mutagenesis in TA102 

(Marnewick et al., 2000). Standley et al. (2001) found that the antimutagenicity 

of rooibos was reduced during processing and fermentation. Van der Merwe et 
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al. (2006) showed that the antimutagenic activity of rooibos was mutagen 

specific and affected by fermentation and plant material, presumably due to 

changes and variation in phenolic composition. This group also showed that 

aspalathin was a moderate antimutagen in 2-AAF and aflatoxin B1 induced 

mutagenesis. 

 

Mutagenic activity of flavonoids 

MacGregor and Wilson (1987) distinguished two classes of mutagenic flavones 

based on different structural and metabolic activation requirements. Examples 

of the first class are quercetin and structurally related flavonols (3-

hydroxyflavones) which are active in both TA98 and TA100 strains, the activity 

being higher in the former. They appear to be metabolically activated to DNA-

reactive intermediates, probably invoking initial oxidation of ortho- or para-

hydroxyl groups in ring B to quinonoid intermediates. A free hydroxyl group at 

C3 seems essential. The second class consists of substituted flavones without 

the 3-OH group. Flavones with hydroxyl/methoxy substitutions at position 5, 7 

and 8 of the A ring were most active in strain TA100 and showed only a minor 

or weak activity in strain TA98. 

 

Das et al. (1994) listed molecular planarity as a requirement for mutagenicity 

since non-planar flavonoids exhibit weak or no mutagenicity. A C2′-OH group 

could distort this planarity and retard mutagenicity. They also identified two 

structural features determining the mutagenic activity of flavonoids, i.e. a C3-

hydroxyl group or a C8-hydroxyl/methyl group. Amongst the 3-OH flavonols, the 

position and number of the B ring hydroxyl groups appears to be a determinant 
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for mutagenicity as the catechol moiety is necessary for exhibiting mutagenicity 

in the absence of metabolic activation. An increase in the degree of 

hydroxylation on the B ring reduced mutagenicity, probably due to an altered 

redox potential or unfavourable lipophilicity. 

 

MacGregor and Jurd (1978) evaluated 40 structurally related compounds in 

TA98 and TA100 and found that the structural requirements for mutagenicity 

were the same for both strains, i.e a free hydroxyl on C3, a double bond at 

C2,C3, a C4-keto group and a structure that permits the proton of the C3-OH to 

tautomerise to the C3-keto. They found that the C7-OH may be responsible for 

metabolic action whereas the C5-OH is more important for mutagenicity. Free 

hydroxyl groups in the B ring were not necessary if metabolic activation was 

used and methylation of the C5-OH of quercetin rendered an inactive 

compound. 

 

These structural requirements were confirmed in the L-arabinose forward 

mutation assay of Salmonella typhimurium of Jurado et al. (1991) who studied 

the mutagenicity of 13 flavonoids including quercetin, kaempferol, morin, rutin 

and catechin. Their data supported those previously reported for His+ reverse 

mutation assays. 

 

Duarte Silva et al. (2000) used TA98 and benzo-[a]-pyrene and considered the 

C2,3 double and C4-keto group to be necessary for genotoxicty of flavonoids. 

They also found that the presence of a free hydroxyl at C3 and the presence of 

a free hydroxyl on C5 of the A ring with the C7-OH were important for direct 
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mutagenicity. Flavonols lacking hydroxyl groups or having one group require 

metabolic activation to be mutagenic. Quercetin with two hydroxyl groups in the 

ortho position in the B ring does not require activation, but activation is required 

when the two groups are in the meta position.  

 

Czeczot et al. (2000) isolated quercetin, rhamnetin, isorhamnetin, apigenin and 

luteolin from three medicinal herbs. The compounds were tested for 

mutagenicity with Salmonella typhimurium TA1535, TA1538, TA97, TA98, 

TA100 and TA102 in the presence and absence of metabolic activation. Only 

quercetin and rhamnetin revealed mutagenic activity with quercetin inducing 

point mutations in strains TA97, TA98, TA100 and TA102. Metabolic activation 

markedly enhanced mutagenic activity of quercetin in these strains. The group 

associated the following structural requirements for mutagenicity: a catechol 

moiety in the B ring and the presence of a free hydroxyl or methoxy group at C7 

on the A ring. The presence of methoxy groups in the B ring decreased 

mutagenic activity of the compound. 

 

Antimutagenic activity of flavonoids 

In an experiment where 64 flavonoids were tested with respect to IQ in TA98 

and towards methylated versions of IQ in TA100, there were no fundamental 

differences in flavonoid response between the two tester strains and no clear 

influence of mutagen structure on antimutagenic potency (Edenharder et al., 

1993). They included that a C4-keto group of the flavane nucleus is a 

prerequisite for antimutagenic activity. Rings A and C of the nucleus were not 

essential for antimutagenicity as chalcone and three derivatives were nearly as 
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active as their comparable flavones. Flavanones were less potent than the 

corresponding flavones while dihydrochalcones and 14 structurally related 

saturated aromatic carbonyl compounds were inactive. Large polar substituents 

like sugar moieties reduced antimutagenic activity. They also considered a 

planar structure to be important for antimutagenicity. Another Edenharder et al. 

(1997) study added hydroxyl groups at C7, C3′, C4′ and C5′ to the list and 

considered the 3-hydroxyl group to be an interfering structural feature in the 

antimutagenic activity of flavonoids  

 

The inhibitory effect of flavonoids on AFB1 was increased by the presence of 

the free C5-OH and C7-OH groups, but was not affected by the saturation of the 

C2,C3 double bond or elimination of the C4-keto group (Choi et al., 1994) 

 

The hydrophilic nature of flavonoids is known to be an important determinant of 

their antimutagenic function (Edenharder and Tang, 1997; Francis et al., 1989). 

The two major determinants of the hydrophilic nature of flavonoids are the 

hydroxylation status and the presence and position of a sugar moiety. Huang et 

al. (1983) has linked an increase in the number of phenolic hydroxyl groups of a 

flavonoid to an increased antimutagenic activity against benzo[a]-pyrene and 

TA100, while Edenharder et al. (1993) postulated that the increase in the 

number of hydroxyl groups and the subsequent increased polarity reduced the 

antimutagenic potential in the case of TA98 and IQ induced mutagenesis. The 

response was increased by the methyl etherification of hydroxyl groups. The 

number of hydroxyl groups could therefore either enhance or decrease the 

protective effect depending on the flavonoid subgroup and the type of mutagen 
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used. Increased hydrophilicity due to the presence of a sugar moiety could be 

the reason why rutin exhibited better protection against AFB1 than quercetin 

(Francis et al., 1989).  

 

Edenharder and Grünhage (2003) compared fisetin, rutin, luteolin, quercetin, 

isoquercitrin, hyperoxidemyricetin, myricitrin, morin, kaempferol against tert–

butyl hydroperoxide (BHP) or cumene hydroperoxide (CHP) in TA102 and found 

that the number of revertants was reduced by compounds with C3′,4′-hydroxyl 

groups. Hydrogenation of the C2-C3 double bond with elimination of the C4-

keto group caused a loss of antimutagenic activity. The same compounds were 

assayed with DPPH• and the group concluded that in the Salmonella assay with 

strain TA102, the antimutagenic activities of flavonoids against the peroxide 

mutagens CHP and BHP are mainly caused by radical scavenging (Edenharder 

and Grünhage, 2003). Hatch et al. (2000), however, using the data from a 

quantitative structure-activity relationship data base and statistical analyses 

utilizing 39 diverse flavonoids, were convinced that the antioxidant or radical 

scavenging properties of the flavonoids are probably not involved in the 

inhibition of mutagenesis. 

 

The effect of flavonoids on the metabolic pathways of mutagens and/or their 

reactive intermediates or the effect that flavonoids have on the Phase I (P450) 

activation system or Phase II detoxifying enzymes are of a biochemical nature 

and considered outside the field of this study. Literature on these topics were 

not included in this review. 
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Structural requirements for in vitro biological activities  

Table 2.2 summarises the in vitro structural requirements of flavonoids for 

radical scavenging, inhibition of lipid peroxidation, mutagenic as well as 

antimutagenic activity. It appears that the same structures/functional groups are 

responsible for most of the biological activities of flavonoids, i.e. the B ring 

catechol moiety, C2, C3 double bond, C4 keto group, free hydroxyl groups on 

C3, C5 and C7 as well as a planar molecular structure. It seems therefore quite 

plausible that the flavonoid uses its antioxidant function, in particular the radical 

scavenging functions, to act as an antimutagen as Edenharder and Grünhage 

(2003) have suggested. It has also been shown that the mutagenic character of 

a flavonoid like quercetin comes into play at high dose concentrations. It 

appears that the trigger for a particular biological response from a flavonoid 

would depend on the environment of the reaction, the agonist involved as well 

as the concentrations of the flavonoid or agonist. 
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Table 2.2.    Summary of general structural requirements for in vitro biological activity of flavonoids 
 

 
Activity 

B ring 
catechol 

 
C2=C3 

 
C4=O 

 
C3-OH

C5-OH
C7-OH

A ring 
glycosylation 

C3-
glycosylation 

 
Planarity 

Radical 
Scavenging ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ 

Antiperoxidative* ↑ ↑ ~ ↑ ↑ ↓ ↓ ↑ 

Mutagenic** ↑ ↑ ↑ ↑ ↑  ↓ ↑ 

Antimutagenic** 
TA98/TA100 ↑ ↑ ↑  ↑  ↓ ↑ 

* against Fe(II) induced lipid peroxidation in rat liver microsomes 
** as noted from responses in Salmonella typhimurium mutagenicity assays.  
↑ denotes increased activity; ↓ denotes decreased activity; ~ no change 
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CHAPTER 3 

BIOGUIDED FRACTIONATION AND ISOLATION OF THE 

TWO MAJOR DIHYDROCHALCONES FROM 

UNFERMENTED ROOIBOS (Aspalathus linearis) 

 

ABSTRACT 

Bioactivity-guided fractionation was used to identify the most potent antioxidant 

and antimutagenic fractions from unfermented rooibos (Aspalathus linearis), as 

well as the bioactive principles for the most potent antioxidant fractions. The 

contribution of the major antioxidant, aspalathin, and its dehydroxy analogue, 

nothofagin, towards these biological properties of rooibos, was also 

investigated. Isolation procedures for aspalathin and nothofagin were also 

developed. The Salmonella mutagenicity test using tester strain TA98 and 

metabolically activated 2-acetoaminofluorene was used to assess the 

antimutagenic potential of the different extracts and fractions, while the 

antioxidant potency was assessed by two different in vitro assays, i.e. the 

inhibition of Fe(II) induced microsomal lipid peroxidation and the scavenging of 

the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation. 

 

Unfermented plant material was extracted with chloroform followed by 

methanol. The methanol extract was fractionated on an Amberlite XAD-2 

column using an eluant comprising of methanol and water, mixed to form a 

stepwise gradient of decreasing polarity. Fractions were screened for the major 

flavonoids utilizing thin layer chromatography and pooled to yield crude phenolic 

fractions of different polarities. 
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The methanol extract exhibited higher antimutagenic and antioxidant activity 

than the chloroform extract. A decrease in protection against mutagenesis was 

observed with the less polar XAD fractions. The two XAD fractions with the 

lowest IC50 values in the antioxidant assays were further fractionated on 

Sephadex LH-20 and reverse phase C18 columns. This is the first description of 

the isolation of both aspalathin and nothofagin to a purity of >95%. 

 

INTRODUCTION  

The role of free radicals in the onset of cardiovascular or inflammatory 

diseases, cancer, aging and other disorders has become more emphasized as 

more information regarding the effect of these radicals on biological molecules 

becomes known (Clemens, 1991; Halliwell et al., 1992; Kontogiorgis et al., 

2005). Free radicals are, amongst others, produced in the human body as a 

byproduct of oxidation (Cerutti, 1985; Halliwell et al., 1995). An antioxidant is a 

substance that, when present in low concentrations compared with those of an 

oxidizable substrate, significantly delays or prevents oxidation of that substrate 

(Halliwell et al., 1995), thereby limiting the amount of free radicals released and 

allegedly delaying or preventing the onset of degenerative diseases. Recently 

research has increasingly focussed on natural antioxidant sources (Weisburger, 

1999; Dimitrios, 2006).  

 

Rooibos, a traditional and indigenous South African herbal drink, prepared from 

Aspalathus linearis, has been shown to be biologically active in many ways 

(Snyckers and Salemi, 1974; Joubert and Ferreira, 1996; Marnewick et al., 

2000; Standley et al., 2001; Van der Merwe et al., 2006). This fynbos legume is 
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rich in aspalathin, which is unique to rooibos, and nothofagin, whose only other 

known source is the Nothofagus fusca tree (Hillis and Inoue, 1967; Joubert, 

1996). Rooibos was found to be able to, amongst others, scavenge DPPH and 

superoxide radicals as well as inhibit lipid peroxidation (Inanami et al., 1995; 

Joubert et al., 2004), protect against 2-AAF) induced genotoxicity in Chinese 

hamster lung fibroblasts (Edenharder et al., 2002) and against 2-AAF induced 

mutagenesis in Salmonella typhimurium tester strain TA98 and TA100 

(Marnewick et al., 2000; Standley et al., 2001). Aspalathin showed a strong 

scavenging ability against DPPH and superoxide radicals, but was a moderate 

antimutagen in 2-AAF and aflatoxin B1 induced mutagenesis (Joubert et al., 

2004; Van der Merwe et al., 2006). 

 

Yen and Chen (1995) investigated the antioxidant activity and antimutagenicity 

of Japanese tea extracts at various stages of fermentation and found the 

degree of correlation depended on the antioxidant assay used, mutagen utilized 

and the state of fermentation of the extract. Standley et al. (2001) found that 

fermentation reduced not only the antioxidant activity of a rooibos extract, but 

also its antimutagenicity. It was hypothesized that the antioxidant and 

antimutagenic properties of rooibos could also be linked. Moreover, 

fermentation of rooibos is accompanied by a substantial decrease in the content 

of the two major monomeric flavonoids, aspalathin and nothofagin (Joubert, 

1996). If these two dihydrochalcones were found to be important bioactive 

compounds of rooibos, fermentation could impair the biological activity of 

rooibos. It is necessary to isolate these compounds in order to assess their 

bioactivity in the present and future studies.  
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Screening tests such as the Salmonella typhimurium mutagenicity assay and 

the inhibition of lipid peroxidation in rat liver microsomes are efficient tools for 

identifying antimutagenic and antioxidant components. Miller and Rice-Evans 

(1997) described the Trolox Equivalent Antioxidant Capacity (TEAC) of a 

compound as a useful tool for tracking down unknown antioxidants in complex 

mixtures but that it should be used with care, however (Arts et al., 2004). This 

factor is an indicator of the ability of a compound to scavenge the 2,2΄-azinobis-

(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) (Re et al., 1999). 

 

A systematic approach in identifying bioactive principles was thus followed. An 

extract was selected and fractionated by column chromatography. Fractions 

were evaluated by thin layer chromatography against rooibos flavonoid 

standards and fractions with a similar profile based on Rf were grouped. The 

ability of each fraction to scavenge ABTS+•, and to inhibit Fe(II) induced lipid 

peroxidation and mutagenicity of the frameshift tester strain Salmonella 

typhimurium TA98 with the metabolically activated mutagen 2-AAF, was 

investigated. The phenolic acid and flavonoid content of each fraction was 

characterized by HPLC and its total polyphenol content determined. 

 

MATERIALS AND METHODS  

Chemicals 

Chrysoeriol, orientin, isoorientin (as homoorientin), vitexin, isovitexin, 

hyperoside (quercetin-3-O-galactoside) and isoquercitrin (as quercetin-3-O-

glucoside), were obtained from Extrasynthese (Genay, France) as HPLC grade 

flavonoids. Luteolin, quercetin (as quercetin dihydrate), rutin (>95%), (+)-
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catechin (>98%) and epigallocatechin gallate (EGCG; >95%) were purchased 

from Sigma-Aldrich S.A. The mutagen in the Salmonella typhimurium assay, 2-

AAF, was also acquired from Sigma-Aldrich S.A. Bacto agar was obtained from 

Difco Laboratories (Detroit, USA) and nutrient broth from Oxoid (Hampshire, 

UK). D-Biotin and L(-)-histidin were purchased from ICN Biomedicals Inc, (Ohio, 

USA) and Merck Chemicals Pty. Ltd. (Darmstadt, Germany) respectively. 

Solvents and chemicals such as nicotine adenine dinucleotide phosphate 

(NADP), glucose-6-phosphate, 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic 

acid) (ABTS), 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (Trolox), 

Folin & Ciocalteu’s phenol reagent, 4-methoxybenzalde-hyde and thiobarbituric 

acid (TBA) were obtained from Sigma-Aldrich S.A. Chromatographic material 

such as BDH Amberlite XAD-2, silica gel 60 (particle size 0.063-0.200 mm/70-

230 mesh) and Kieselgel TLC plates (glass plates 20 cm x 20 cm; F254) were 

procured from Merck SA, while Bondesil reverse phase C18 (particle size 40 

µm) and Fluka Sephadex LH-20 was obtained from Analytichem International, 

Harbour City, CA, USA and Sigma-Aldrich SA respectively. Closed end glass 

columns used for Sephadex LH-20 and C18 as stationary phases were from 

Omnifit (Separations Chromtechniques, Johannesburg, South Africa). All 

solvents and reagents were analytical grade, except for those used in HPLC 

analyses which were HPLC grade. Salmonella typhimurium TA98 was obtained 

from Prof BN Ames, Berkeley University, CA, USA. Methanol and chloroform 

used as column chromatographic solvents were glass-distilled prior to use 

unless stated otherwise. All other chemicals were used as purchased. 
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Preparation of Extracts 

Aqueous Extract  

Ground, unfermented (‘green’) rooibos was supplied by Dr E Joubert of the 

Post-Harvest & Wine Technology Division, ARC Infruitec-Nietvoorbij, 

Stellenbosch, South Africa. A 2% (m/v) solution was prepared in boiling water 

and steeped for half an hour. The solution was filtered using Whatman No. 4 

filter, the extracts frozen in a methanol bath and lyophilized. The freeze-dried 

extract was stored in a dessicator in the dark at 4°C. 

Chloroform Extract 

500 g unfermented rooibos was mechanically stirred overnight in a 5 ℓ 

Erlenmeyer flask with 2 ℓ distilled chloroform and filtered to dryness using a 

double layer of Whatman No 4 filter paper. The residue was put back into the 

Erlenmeyer flask with 2 ℓ of fresh chloroform and stirred for 6 hours. The 

solution was filtered as before and the residue once again extracted with 2 ℓ 

chloroform overnight. After filtration, the process was repeated for another 6 

hours and the suspension filtered. The dry residue was kept at 4°C. The filtrates 

were pooled and evaporated et vacuo. The filtrate residue was screened by 

TLC for the presence of aspalathin.  

Methanol Extract 

The dry residues of two chloroform extractions were combined and added to 4 ℓ 

methanol in a 5 ℓ Erlenmeyer flask. The solution was stirred mechanically for 20 

hours and filtered, whereafter the residue was re-extracted with methanol for 6 

hours. This procedure was repeated twice (four extractions in total). Each filtrate 

was evaporated to foamy dryness on a rotary evaporator and evaluated on 

TLC. If the phenolic profile of the four extracts corresponded, they were pooled 
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as the methanol extract. Care was taken that the temperature of the water bath 

never exceeded 40°C as aspalathin and other rooibos flavonoids are known to 

be sensitive to heat (Rabe et al., 1994). 

 

Thin Layer Chromatography 

Extracts and fractions of columns were analyzed by thin layer chromatography 

(TLC) on glass plates coated with silica gel 60 (254F) for the presence of the 

various flavonoids. The developing solvent was CHCl3:CH3OH:H2O:CH3COOH: 

55:36:8:1. After development, the plate was dried and viewed under ultraviolet 

light. Typical Rf values obtained by the rooibos flavonoids were: aspalathin 

0.33; catechin 0.53; chrysoeriol 0.76; hyperoside 0.42; isoorientin 0.35; isoquer-

citrin 0.44; isovitexin 0.46; luteolin 0.72; nothofagin 0.41; orientin 0.39; quercetin 

0.72; rutin 0.37; vitexin 0.45 (Figure 3.1). The plate was then sprayed with a 

0.5% (m/v) 4-methoxybenzaldehyde solution (0.5 g 4-methoxybenzaldehyde in 

CH3OH:CH3COOH:H2SO4:85:10:5) (Cawood et al., 1991) and heated at 100°C 

for 15 minutes (Addendum 3B for copy of developed TLC plate). Column 

fractions were combined based on the flavonoids profile detected by TLC 

plates. In order to compare polarities of the flavonoids, the biologically most 

active flavonoid (Hu and Kitts, 2001) from Camellia sinensis, epigallocatechin 

gallate (EGCG) was evaluated under the same conditions. EGCG had an Rf 

value of 0.31. 
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Figure 3.1. Rf values of major rooibos flavonoids, compared to that of epigallocatechin gallate (EGCG). 
The values were obtained on silica 60 glass TLC plate developed in mobile phase comprising of 
CHCl3:MeOH:H2O:HAc: 1100:720:160:20 and sprayed with a 0.5% (m/v) 4-ethoxybenzaldehyde 
solution 
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Column Chromatography 

XAD-2 

A crude fractionation of the methanolic extract was attained on the polymeric, 

non-polar adsorbant, Amberlite XAD-2. XAD-2 beads were rinsed with distilled 

water to remove excess chloride ions. The beads were filtered to dryness, 

resuspended in a 15% methanol/water solution and packed in an open glass 

column (65 x 770 mm). Twenty grams of the combined methanolic extracts was 

dissolved in 50 ml 15% methanol/water solution and applied to the column. The 

beaker was rinsed with 40 ml of 15% methanol/water solution which was also 

applied to the column. The column was run at room temperature at a flow rate 

of 20 ml/min and 100 ml fractions were collected. The column was eluted 

stepwise with a solvent gradient of decreasing polarity as shown in Table 3.1. 

 

Table 3.1.  Composition of mobile phase for XAD column 

Composition Volume (ml) 

15% methanol/water 1700 

25% methanol/water 2100 

50% methanol/water 4000 

75% methanol/water 3500 

!00% methanol 1700 

Rinsed with 50% methanol/chloroform 1500 

 

Fractions were compared by TLC and fractions with corresponding bands were 

pooled and evaporated to dryness. Five major fractions, X1- X5, with X1 being 
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most polar and X5 the least polar, were collected. The percentage yield is 

indicated in brackets: 

X1 : 0.7g (3.5%) 

X2 : 8.17g (40.85%) 

X3: 1.47g (7.35%) 

X4: 0.79g (3.95%) 

X5: 0.39g (1.95%) 

The total yield amounted to 57.6%. The XAD-2 material was regenerated in a 

Soxhlet system by successively refluxing the beads in methanol, acetonitrile, 

stabilized diethyl ether and finally methanol once more. The regenerated 

material was stored in methanol for future use. 

 

Isolation of aspalathin 

Separation on Sephadex LH-20 

Fraction X2 (Figure 3.2) was used to isolate aspalathin. A closed end column, 

30 x 500 mm, was packed with Sephadex LH-20 in 50% ethanol/water. The X2 

fraction (520 mg) was dissolved in 3 ml 50% ethanol/water and applied to the 

column. The beaker was rinsed with 1.5 ml 50% ethanol/water and the rinse 

was added to the stationary phase. The column was covered with a dark cloth 

to prevent light oxidation. A Gilson peristaltic pump was used to maintain a flow 

rate of 0.48 ml/min and after a pre-fraction volume of 150 ml was collected, 

fraction volumes of 7 ml each were collected with a Gilson fraction collector. 

Aliquots from the collected fractions in solution were spotted on TLC and 

developed as described. Fractions of which the profiles visually corresponded 

were pooled into four fractions: 
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Figure 3.2.  Isolation scheme for the dihydrochalcones aspalathin and nothofagin from unfermented rooibos. Numbers in red 
indicate total phenolics in dried extract or fraction expressed as mg Gallic Acid Equivalents/100 mg. 
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Pre-fractions + f1- f20 : A1 (190 mg; 36.5% yield) 

f21- f36 : A2 (pre-aspalathin; 40 mg; 7.7% yield) 

f37- f46 : A3 (aspalathin; 250 mg; 48.1% yield) 

f47- f60 : A4 (post-aspalathin; 40 mg; 7.7% yield) 

The total yield for the column was 92.3%. Sephadex was regenerated for future 

use by treating the packing material in a Büchner funnel successively with 300 

ml each of water, methanol, iso-propanol, hexane and reversing this sequence 

to methanol. The stationary phase was dried in an oven at 30°C and stored in a 

closed container. 

Separation on Reverse Phase C18 

Fraction A3 was used to purify aspalathin. A column, 18 x 380 mm, was packed 

with Reverse Phase C18 in 100% methanol. After the column was rinsed with 

200 ml 50% methanol/acetonitrile, the column was equilibrated in 20% 

acetonitrile/water (200ml). A sample of fraction A3 (110 mg) was dissolved in 1 

ml 20% acetonitrile/water and loaded onto the column. The beaker was rinsed 

with 0.5 ml 20% acetonitrile/water, which was added to the column. A flow rate 

of 0.8 ml/min was maintained by a Gilson peristaltic pump, running 20 ml 20% 

acetonitrile/water isocratically, followed by a 250 ml 20% acetonitrile/water to 

250 ml 30% acetonitrile/water gradient. A pre-fraction volume of 70 ml, followed 

by fraction volumes of 5 ml each were collected. These were spotted and 

developed on TLC as described. Fractions of which the profiles visually 

corresponded were pooled into three fractions: 

Pre-fractions + f1- f10 : B1 (2 mg; 1.8% yield) 

f11- f22 : B2 (aspalathin with yellow spot; 32 mg; 29.0% yield) 

f23- f28 : B3 (pure aspalathin; 30 mg; 27.3% yield) 
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The total yield for the column was 58.2%. C18 was regenerated for future use by 

rinsing and filtering the packing material with 300 ml each of methanol, iso-

propanol and hexane and reversing the solvent order. The stationary phase was 

dried in an oven at 30°C and stored in a closed container. 

 

Isolation of nothofagin 

Separation on Sephadex LH-20 

An aliquot of 285 mg of fraction X3 was dissolved in 3 ml of 90 % ethanol/water 

and applied to a 30 x 510 mm column packed with Sephadex LH-20 in the 

same solvent solution. The rinse of 1.5 ml was added. A flow rate of 0.44 ml/min 

was maintained by a Gilson peristaltic pump. After 190 ml has eluted, 8 ml 

fractions were collected with the aid of a Gilson fraction collector, spotted and 

developed. Fractions were pooled and dried as follows: 

Pre-fractions + f1- f14 : C1 (83 mg; 29.1% yield) 

f15- f22 : C2 (nothofagin; 55 mg; 19.3% yield) 

f23- f30 : C3 (aspalathin; 78 mg; 27.4% yield) 

f31- f50 : C4 (40 mg; 14.0 % yield) 

The total yield for the column was 90%. 

Precipitation 

C2, in a small flask, was re-dissolved in a small volume of 20% 

acetonitrile/water and cooled on ice to allow precipitation. The contents were 

filtered with a 0.45 µm filter and washed with a small amount of cold 20% 

acetonitrile/water. The supernatant/filtrate was pooled and kept for future 

precipitation as it still contained nothofagin.  
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Separation on Reverse Phase C18 

The residue on the filter from the above procedure was dissolved in a small 

amount of 50% acetonitrile/water. This solvent volume was decreased on a 

rotary evaporator and the mixture applied to a reverse phase C18 column, 20 x 

400 mm, equilibrated in 50% acetonitrile/water. The column was run 

isocratically with the same mobile phase by a Gilson peristaltic pump at a flow 

rate of 0.38 ml/min. Fractions of 5 ml volumes were collected and compared on 

TLC. Fractions were pooled according to the presence or absence of 

nothofagin: 

f15- f22 : D1 (pre-nothofagin) 

f23- f30 : D2 (nothofagin) (10 mg; 18% yield) 

f31- f50 : D3 (post-nothofagin) 

Fractions D1 and D3 yielded typically less than 2 mg each, while that of D2 

depended on the mass of the residue (which was never dried prior to be loaded 

onto the column). The fractions containing the bulk of nothofagin were pooled 

as D2 and most of the solvent was removed by evaporation. The contents were 

freeze-dried to yield a snow white, fluffy, amorphous solid.  

 

Evaluation of extracts and fractions 

Fractions obtained from all columns were tested for antimutagenicity in the 

Salmonella typhimurium mutagenicity assay and antioxidant activity (inhibition 

of Fe(II) induced lipid peroxidation of rat liver microsomes and scavenging 

ABTS+•). The total polyphenol content of the fractions was determined as well 

as HPLC analysis performed for a quantitative and qualitative evaluation of the 

phenolic profile. Active fractions were purified further. 
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Stock solutions 

Stock solutions of extracts and fractions for use in assays were prepared in 

DMSO as a dilution series from 20, 10, 5 and 1 mg/ml. In the case of the 

antioxidant assays, a solution was diluted until the inhibition or scavenging 

ability of the solution was below 10%. Solutions were kept at 4°C and the same 

solution was used in all the assays within 5 days after preparation. Spot checks 

to compare the responses of fresh and week-old solutions showed no obvious 

differences in all the assays (data not shown). All the concentrations indicated 

in the results for assays as well as HPLC results are those of the original 

concentrations utilised. 

 

Microsomal lipid peroxidation 

Rat liver microsomes were prepared from male Fisher (F344) rats (200-300 g) 

as described by Shen et al. (1994). Lipid peroxidation was performed according 

to the method of Yen and Hsieh (1998) with slight modifications. The 

microsomes were diluted with a 0.2 M potassium phosphate buffer (pH 7.4) to a 

concentration of 1 mg protein/ml. Lipid peroxidation was induced by 5 µM 

ferrous sulphate (200µl) in a total volume of 1 ml, containing the different 

extracts/fractions dissolved in 100 µl DMSO, by incubation at 37°C for 1 hour. 

For each sample a sample blank was included as the compounds themselves 

could possibly absorb at 532 nm; any reading was subtracted from the actual 

sample readings. A positive control using 100 µl pure DMSO as well as reaction 

blank with buffer without microsomes was included. The reaction was 

terminated by adding 2 ml of a cold 10% trichloroacetic acid (TCA) solution 
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containing butylated hydroxytoluene (BHT, 0.01%) and ethylenediamine-

tetraacetic acid (EDTA, 0.1%). Samples were centrifuged, 2 ml of  the 

supernatant  mixed with 0.67% thiobarbituric acid (TBA, 2 ml), heated for 20 

min at 90°C and the thiobarbituric acid reactive substances (TBARS) measured 

at 532 nm. The percentage inhibition of TBARS formation relative to the control 

was calculated. The assay was conducted in threefold. IC50 values were 

calculated using GraphPad Software (Prism 5 for Windows). The fraction 

showing the lowest IC50 value was subjected to further fractionation. 

 

ABTS Radical Cation Decolourisation Assay (ABTS+• assay) 

The 2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation 

(ABTS+•) assay was performed as described by Re et al. (1999) with minor 

modifications. The bluegreen radical cation was prepared 16 h prior to the 

assay as the product of the reaction of ABTS (7 mM) and potassium 

persulphate (2.45 mM) in water and stored in the dark. The ABTS•+ solution was 

diluted with ethanol to an absorbance of 0.70 (±0.02) at 734 nm (30°C). 1.0 ml 

ABTS•+ solution was added to 50 µl of the solution of the extract or fraction in 

DMSO, heated at 30°C for 4 minutes and the absorbance measured at 734 nm. 

Determinations for each concentration were done in triplicate. The percentage 

inhibition of absorbance displayed by the uninhibited radical cation (blank) was 

calculated and plotted as a function of the extract/fraction concentration. The 

percentage inhibition was expressed as an IC50 value calculated using 

GraphPad Software (Prism 5 for Windows). 
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Mutagenicity assay 

The plate incorporation mutagenicity test was conducted as described by Maron 

and Ames (1983) and Mortelmans and Zeiger (2000) using tester strain 

Salmonella typhimurium TA 98 with 2-AAF (5 µg/plate) as mutagen. Metabolic 

activation was achieved by an Aroclor 1254 induced S9 homogenate (0.7 nmole 

cytochrome P450/mg protein), prepared from male Fischer rats (Maron and 

Ames, 1983), and incorporated in the S9 mixture at a level of 2 mg protein/ml. 

Stock solutions of the flavonoids and the mutagens were prepared, as 

described, in DMSO prior to conducting the mutagenic assay. The Ames assay 

consisted of the addition of overnight bacterial culture (100 µl) to the diagnostic 

mutagen (100 µl), the extract/fraction (100 µl, with a range varying from 0.001-

1.2 mM per plate) and 500 µl of S9 mixture to 2 ml of top agar at 45°C. The 

mixture was vortexed, poured onto a minimal glucose plate and incubated at 

37°C for 48 h in the dark. Positive and negative (spontaneous) controls in the 

presence and absence of the diagnostic mutagens respectively, as well as the 

presence of DMSO and S9 mixture, were included. The percentage 

inhibition/stimulation of the mutagen-induced response by the flavonoid was 

calculated using the formula }100
)(
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− , where sR  = the average 

number of His+ revertants induced in the presence of the flavonoid, 0R  = the 

average number of His+ revertants in the absence of the mutagen (spontaneous 

revertants) and pR  = the average number of His+ revertants induced by the 

mutagen. Five repetitions for each concentration were included.  
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Total Phenolic Determination 

The total polyphenol content of each extract/fraction except D1, D2 and D3 was 

determined according to the Folin-Ciocalteau method of Singleton and Rossi 

(1965). Fractions from column D had too low yields. A dilution series of the 

extracts/fractions was prepared in DMSO as described. The Folin-Ciocalteau 

reagent was diluted with distilled water in the ratio 1:9.  To a 1 ml Eppendorf 

tube, 0.5 ml of Folin-Ciocalteau solution and 0.4 ml of 7.5% Na2CO3 solution 

was added to 0.1 ml of sample solution and incubated for 2 hours at 30°C. The 

absorbance of the samples was read at 765 nm and absorbance readings of 

between 0.3 and 0.7 were used for calculations. A standard curve of gallic acid 

was used to determine a gallic acid equivalents value for each extract/fraction, 

expressed as percentage. 

 

HPLC 

The flavonoid composition of the extracts and fractions were determined by 

HPLC analyses according to the method by Joubert (1996), with slight 

modifications. A Waters LC Module1 Plus system having a quaternary pump, an 

autoinjector/ autosampler and a Waters 2996 photodiode array detector (Waters 

Corporation, Milford, MA 01757, USA), coupled with a Merck LiCrospher 100 

RP-18 (5µm) column (250 x 4 mm ID) with a guard column (Merck LichroCart) 

was used. The column temperature was set to 30°C and the flow rate 

maintained at 0.4 ml/min. Column reconditioning was attained at 1 ml/min. 

Optimal peak separation was obtained by solvent gradient elution between 

mobile phases A and B, mixed in the ratio as shown in the Table 3.2.  
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Table 3.2. HPLC gradient elution programme to detect rooibos flavonoids 

(according to Joubert (1996), with minor modifications). 

Time (min) % Solvent A 
(Methanol) 

% Solvent B 
(2% (v/v) formic acid in water)

0 20 80 

5 20 80 

25 30 70 

30 31 69 

40 35 65 

50 40 60 

60 50 50 

70 60 40 

80 80 20 

90 60 40 

110 20 80 

125 20 80 

 

Mobile phase A was pure HPLC-grade methanol (BDH HiPerSolv) while mobile 

phase B consisting of 2% (v/v) formic acid in deionised water (conductivity level 

~ 0.1 µs/cm; filtered though activated carbon and treated by reverse osmosis) 

was obtained from a Modulab water purification system (Separations, Cape 

Town, South Africa). The solvents were additionally purified by being filtered 

through a 0.45 µm Millipore membrane filter (Microsep, South Africa) and 
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degassed in a sonicator. Aspalathin and nothofagin, as well as catechin and 

syringic acid peaks were quantified at 288 nm while most of the flavones under 

investigation and the major flavonols, as well as protocatechuic acid, p-hydroxy 

benzoic acid and vanillic acid were quantified at 255 nm. Finally while caffeic, p-

coumaric and ferulic acids as well as vitexin and isovitexin were quantified at 

320 nm. Ferulic acid co-eluted with vitexin and rutin with iso-quercitrin. 

Detection wavelengths were selected to closely correspond to the wavelength 

of maximum absorption. Peaks were integrated using the Millenium 32 software 

package (version 4.00) for data acquisition and system control. Stock solutions 

of samples of extracts and fractions were dissolved in DMSO and diluted with 

methanol. Sample solutions were diluted to fall within the range of the 

calibration curve of 5-100 µg/ml that was prepared for each standard. Samples 

were filtered prior to injection through a 13 mm 0.45 µm Nylon filter (Microsep). 

Injected volumes were adjusted from 5 to 10 µl according to sample 

concentration. Samples were automatically injected. 

  

Statistical analyses 

Statistical analysis was done using one-way ANOVA (Prism Version 5.00 for 

Windows; GraphPad Software) followed by Bonferroni’s Multiple Comparison 

test as post test on all pairs. Data presented in columns having the same letter 

notation are not significantly (P > 0.05) different from each other.  
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RESULTS 

Interpreting the statistical significance of IC50 values 

In the ABTS•+ scavenging assay, at least 18 data points per extract/fraction 

were collected. The software was able to determine IC50 values with well 

defined lower and upper 95% confidence intervals. If the model fitted the data 

points, the software calculates the log IC50 value as well as the log standard 

error for the log value given. Statistical comparisons are performed on the log 

IC50 values. Significant differences shown for log IC50 values may be applied to 

the IC50 values (Dr Martin Kidd, Statistical Consultant, University of 

Stellenbosch; personal communication). The software presents this IC50 value 

with an upper and lower 95% confidence level to show the interval within which 

the IC50 can be found with 95% certainty. When computing IC50 values for a 

range of points, the customary mean value ± standard deviation cannot be 

used. The correct and most reader-friendly way to present these values would 

be to report the computed IC50 value showing the upper and lower levels of the 

95% confidence interval with the R2 value to show the degree of fit of the points 

to the model. The significance of the changes in hill slope, indicating the kinetics 

of an inhibition reaction, was not considered in this study. 

 

In the case of the inhibition of lipid peroxidation, some problems regarding the 

data were encountered, for two reasons. The first one is that the three 

replicates per concentration are intra-experimental, i.e. the same solution was 

used to do the three repeats; three different solutions should have been used. 

Secondly there are for some of the samples not sufficient data points to properly 

define the bottom and upper plateaus, or the hill slope, of the sigmoidal dose 
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response curves to yield a proper fit for the model. The following were some of 

the identified problems: 

• All X fractions gave a % inhibition higher than 100, typically 102-106% for 

X1 to X4, at the highest concentration (20 mg/ml) tested (data not 

shown). This can be attributed to absorption from the sample itself, even 

though readings were corrected for sample blanks. In the case of X5, 

however, a ‘% inhibition’ of 133-134 was achieved at a concentration of 

20 mg/ml, and 110% at 10 and 5 mg/ml, i.e. the absorbance reading read 

indicated a TBARS content of respectively 35% and 10% higher than the 

positive control. This clearly indicates a stimulation of lipid peroxidation 

rather than an inhibition. Although the response of X5 has not reached its 

top plateau, all the points with values exceeding 100 were excluded from 

calculations as it is % inhibition that is under investigation and that 

cannot exceed 100%. These omissions limited the number of data points 

to fit the model and the IC50 value for X5 was labelled as ambiguous with 

wide lower and upper confidence levels. 

• The hill slope for A1 and C2 was very steep between two consecutive 

concentrations as a result of a drop in percentage inhibition from about 

90 to 17 for 5 mg/ml to 1 mg/ml respectively. This resulted in the IC50 

values for A1 and C2 also being labelled as ambiguous with wide lower 

and upper confidence levels. 

• The IC50 value for the chloroform extract also had a wide interval for the 

lower and upper confidence levels. 
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These wide confidence intervals decrease the level of significant difference 

between extracts and fractions, and in order to show significant differences, the 

IC50 values for the inhibition of lipid peroxidation of the extracts and fractions 

were manually compared.  

 

Preparation of Extracts 

The chloroform [polarity index (PI) 4.1] extraction removed a major amount of 

lipophilic and non-polar components, extracting only a small amount of 

polyphenols (4%) from the unfermented rooibos (Figure 3.2). The filtrate residue 

was screened for the presence of aspalathin, but none was detected.  After this 

cleanup step, extraction of polyphenols (49%) with the more polar methanol (PI 

5.1) was possible. An aqueous extract (PI of water is 9), though prepared 

differently, yielded a polyphenolic content of only 37%. The nature of the 

aqueous and methanol extracts corresponded for almost all the constituents, 

except that methanol was able to extract the non-polar quercetin (Table 3.3). 

Though alike in qualitative composition, the methanol extract yielded higher 

concentration of the flavonoids, for example 15.26% and 2.75% (m/m) for 

aspalathin and nothofagin respectively in the methanol extract vs. 12.73 and 

1.85% in the aqueous extracts. The aqueous and methanol extracts were 

equipotent (P>0.05) in their ability to inhibit lipid peroxidation with IC50 values of 

0.9967 and 0.8999 mg/ml respectively. The lipophilic chloroform extract had a 

significantly higher IC50 value of 2.824 mg/ml (P<0.05). The methanol extract 

was, however, a significantly better scavenger (P<0.05) of the ABTS+• than the 

aqueous or chloroform extracts (IC50 values of 0.076, 0.195 and 1.269 mg/ml  

 

 

 

 



117 

Table 3.3.  Flavonoid composition of extracts/fractions of unfermented rooibos, expressed as average of at least two sample repeats ± SD*,  
in % (m/m). 
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5)

 

Aqueous - - - - - - 12.73±0.06 - 0.95±0.02 0.87±0.01 0.15±0.00 1.85±0.27 0.40±0.24 0.45±0.24 0.73±0.02 - 0.06±0.00 - 
Methanol - - - - - - 15.26±0.49 - 1.11±0.07 1.12±0.06 0.17±0.01 2.75±0.11 0.36±0.02 0.67±0.24 0.75±0.06 0.09±0.00 0.10±0.00 - 

X1 - - - - - - 6.18±0.73 - 4.07±0.46 1.17±0.13 0.08±0.01 0.21±0.02 0.15±0.00 1.20±0.14 0.60±0.07 - - - 
X2 - - - - - - 38.12±0.05 - 2.57±0.00 2.65±0.00 0.36±0.00 3.15±0.34 0.50±0.01 1.39±0.00 1.06±0.00 - - - 
X3 - - - - - - 4.11±0.02 - 0.41±0.01 0.33±0.02 0.53±0.01 17.65±0.23 2.63±0.14 2.74±0.01 4.39±0.01 - - - 
X4 - - - - - - 0.36±0.00 - - - - 0.53±0.00 0.39±0.00 0.21±0.00 0.29±0.00 - - - 
X5 - - - - - - - - - - - - - - - - 1.32±0.00 - 
A1 - - - - - - 0.83±0.01 - 1.54±0.00 0.09±0.00 - 0.37±0.00 - - - - - - 
A2 - - - - - - 10.26±0.00 - 1.18±0.00 15.05±0.01 0.92±0.04 1.90±0.00 1.67±0.00 8.55±0.01 5.09±0.01 - - - 
A3 - - - - - - 81.63±0.09 - 4.55±0.05 3.73±0.05 0.28±0.02 1.91±0.06 0.33±0.00 - - - - - 
A4 - - - - - - 4.46±0.00 - 1.07±0.00 0.16±0.00 - - - 0.73±0.04 0.82±0.01 - - - 
B1 - - - - - - 15.77±0.41 - 27.37±0.70 23.42±0.57 - 0.00±0.00 - - - - - - 
B2 - - - - - - 95.67±2.01 - 2.99±0.05 0.10±0.00 - - - - - - - - 
B3 - - - - - - 100.03±2.30 - 0.29±0.00 - - - - - - - - - 
C1 - - - - - - 0.15±0.11 - 0.22±0.02 0.44±0.03 0.24±0.17 3.46±2.25 1.06±0.00 1.44±0.00 0.68±0.00 - - - 
C2 - - - - - - 0.09±0.00 - 0.11±0.00 - 4.42±0.00 54.43±0.39 13.85±2.81 5.32±0.00 7.56±0.04 - - - 
C3 - - - - - - 63.16±0.04 - 4.84±0.04 6.18±0.01 - 0.63±0.10 1.68±0.00 4.21±0.04 5.48±0.04 - - - 
C4 - - - - - - 7.13±2.27 - 0.36±0.17 0.02±0.03 0.00±0.00 0.00±0.00 - 0.32±0.00 0.09±0.00 - - - 
D2 - - - - - - 0.97 - - - - 99.03 - - - - - - 

Noto_lye - - - - - - 4.75 - 0.26 0.62 1.37 71.69 0.01 0.26 0.00 - - - 
Flavonoids arranged in order of elution from HPLC column. Concentrations indicated are those of original solutions. Numbers in brackets indicate wavelength of 
detection. Coloured cell shows highest concentration of flavonoid for that extract/fraction. Cells with - : flavonoid not detected. * single injection. 
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respectively). The methanol extract was therefore selected for further 

fractionation (Figure 3.2). 

 

XAD-2 

Fractions were pooled according to similar Rf values on TLC to yield 5 fractions, 

X1-X5 with X1 being the most polar and X5 the least polar. X1 had a lower 

polyphenolic content (24%) compared to X2 (53%), X3 (47%), X4 (34%) and 

higher than X5 (17%) (Figure 3.2). HPLC analysis of X1 confirmed TLC results 

that the most abundant flavonoids were aspalathin (6.18%) and orientin 

(4.07%). The aspalathin content of X2 was substantially more (38.12%) while 

that of orientin was less (2.57%), but more isoorientin (2.65%) was present. The 

aspalathin, orientin and isoorientin content decreased to 4.11, 0.41 and 0.33% 

respectively in X3, while the lower polarity of this fraction benefited nothofagin 

(17.65%), isovitexin (2.63%), hyperoside (2.74%) and the isoquercitrin/rutin 

combination (4.39%). The combined X4 fraction yielded only small quantities 

(<1%) of flavonoids while X5 was the only XAD fraction that contained luteolin 

(1.32%). X5 contained had no other known peak.  

 

All the XAD fractions displayed potent antimutagenic activity against 2-AAF 

induced mutagenesis in TA98 at a concentration of 20 mg/ml with no difference 

between fractions X1, X2, X3 and X4 (P>0.05) (Table 3.4). Fraction X1 

displayed the highest activity at the lower concentrations evaluated (P<0.05). 

Fraction X3 had the lowest IC50 value (0.1098 mg/ml) (Table 3.5; Figure 3.3) 

and fraction X1 the highest (0.5851 mg/ml) in the lipid peroxidation assay 

(P<0.05). The most efficient inhibitor (P<0.05) of ABTS•+ was fraction X2 (35  
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Table 3.4.  % Inhibition (-) or stimulation (+) of the mutagenic response of 2-AAF by various extracts and fractions 
against tester strain Salmonella typhimurium TA98 in the presence of metabolic activation.  

   Concentration of tester solution in mg/ml 
Extract/Fraction 20 10 5 1 

  Aqueous (-)98±1a1 (-)73±4a2 (-)32±6a3 (-)19±3a3 
 Methanol (-)99±1a1 (-)98±1b1 (-)86±6b2 (-)7±4b3 
 Chloroform (-)69±5b1 (-)27±5c2 (+)10±8c3 (+)61±6c4 

 
XA

D
 

X1 (-)101±0a1 NT (-)97±2b1 (-)27±6ad2 
X2 (-)99±2a1 NT (-)62±8f2 (-)16±2a3 
X3 (-)98±2a1 NT (-)60±4f2 (-)13±4ab3 
X4 (-)96±2a1 NT (-)2±12chjk2 (+)40±30cf2 
X5 (-)89±2c1 NT (-)12±10hijk2 (+)126±11e3 

A
sp

al
at

hi
n 

Se
ph

ad
ex

 A1 NT (-)49±5d1 (-)48±4d1 (-)24±3ad2 
A2 NT (-)54±3d1 (-)50±2d1 (-)28±3d2 
A3 NT (-)29±5ce1 (-)25±3ae1 (-)26±2d1 
A4 NT (-)80±2a1 (-)70±3f2 (-)23±2ad 3 

C
18

 B1 NT (-)47±3d1 (-)35±4a2 (-)17±2a 3 
B2 NT (-)22±3ef1 (-)23±3eg1 (-)18±3a 1 
B3 NT (-)16±4cf1 (-)15±4gh2 (-)7±2b2 

N
ot

ho
fa

gi
n 

Se
ph

ad
ex

 C1 NT (-)32±1c1 (-)18±2egi2 (-)3±1b3 
C2 NT (-)17±5cf1 (-)18±4egj1 (-)17±4a 1 
C3 NT (+)2±4g1 (-)16±3gk1 (-)16±2a 2 
C4 NT (-)99±1b1 (-)88±2b2 (-)19±2ad3 

  Noto_lye NT (+)89±2h1 (+)63±3l2 (+)15±5f3 
Values are the means±SD of 5 plates per treatment. Values in columns followed by the same letter do not differ significantly (P≥0.05); if letters 
differ, then P<0.05. Values in rows followed by the same superscript number do not differ significantly (P≥0.05); if numbers differ, then P<0.05. 
Average spontaneous revertants (n=40) are 35±6; 2-AAF positive control 397±33; spontaneous revertants subtracted from response to 
calculate % inhibition. Concentration of 2-AAF: 5µg/plate. Concentration of compound indicated as mg/ml of original solution tested. NT=not 
tested.  
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Table 3.5.  Results of the inhibitory performance of the various extracts and fractions of unfermented rooibos in the lipid 
peroxidation (TBARS) and ABTS radical cation scavenging antioxidant assays, expressed as IC50 values, in mg/ml. 

  
Extract/ 
Fraction 

Lipid peroxidation  ABTS+• 
 

IC50 value (mg/ml) 
 

R2 
Number of 

points analyzed
 

IC50 value (mg/ml) 
 

R2 
 Aqueous 0.9967 (0.8575; 1.159) a 0.9894 18 0.156 (0.123; 0.197) a 0.9944 

Methanol 0.8999 (0.7699; 1.052) a 0.9810 18 0.089 (0.074; 0.106) b 0.9900 
Chloroform 2.824 (1.992;4.005) b 0.9869 18 1.221 (0.951; 1.568) c 0.9950 

 

XA
D

 

X1 0.5851 (0.5684; 0.6024) c 0.9992 12 0.060 (0.048; 0.077) d 0.9971 
X2 0.1308 (0.1182; 0.1448) d 0.9980 15 0.051 (0.048; 0.055) d 0.9989 
X3 0.1098 (0.0542; 0.2226) d 0.9997 15 0.077 (0.074; 0.081) e 0.9996 
X4 0.4033 (0.3363; 0.4836) e 0.9984 12 0.103 (0.092; 0.118) f 0.9969 
X5 0.3198 (wide; wide) f 0.9966 9 0.171 (0.141; 0.207) g 0.9992 

A
sp

al
at

hi
n 

Se
ph

ad
ex

 A1 5.251 (wide; wide) g 0.9989 18 0.092 (0.086; 0.097) h 0.9926 
A2 0.7194 (0.6850; 0.7554) h 0.9985 15 0.055 (0.052; 0.058) i 0.9945 
A3 0.2457 (0.2089; 0.2891) i 0.9975 15 0.036 (0.033; 0.039) j 0.9783 
A4 0.3709 (0.3166; 0.4246) j 0.9955 15 0.044 (0.042; 0.047) k 0.9930 

C
18

 B1 0.1713(0.1268; 0.1536) k 0.9983 15 0.029 (0.027; 0.031) l 0.9873 
B2 0.1481 (0.1286; 0.1706) k 0.9969 15 0.032 (0.028; 0.036) l 0.9841 
B3 0.1137 (0.0823; 0.1572) k 0.9929 15 0.029 (0.025; 0.032) l 0.9846 

N
ot

ho
fa

gi
n 

Se
ph

ad
ex

 C1 0.6479 (0.6152; 0.6824) l 0.9963 18 0.102 (0.096; 0.109) m 0.9917 
C2 >10(wide; wide) m 0.9980 12 0.074 (0.070; 0.078) n 0.9926 
C3 0.2113 (0.1851; 0.2412) n 0.9980 15 0.041 (0.038; 0.037) p 0.9875 
C4 0.6451 (0.6054; 0.6874) l 0.9959 15 0.058 (0.056; 0.062) q 0.9902 

  Noto_lye 1.373 (1.131; 1.668) o 0.9939 18 0.104 (0.100; 0.109) r 0.9914 
Values are IC50 values with lower and upper 95% confidence limit of 3 replicates per treatment. Values in columns followed by the same 
letter do not differ significantly (P>0.05). Fraction X2 was used for Sephadex column in aspalathin isolation; fraction X3 for nothofagin.  
Concentration indicated that of original solution used in assays.  
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Figure 3.3.   Graph showing IC50 values in mg/ml of the different extracts and fractions for (A) inhibition of lipid peroxidation and 
(B) the ABTS•+ scavenging activity. Values are calculated from three determinations.  
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µg/ml) and the least efficient scavenger fraction X5 (IC50 of 0.171 mg/ml). 

Fractions X2 and X3 were selected for further fractionation. 

 

Isolation of aspalathin 

The Sephadex LH-20 column, used for the further separation of X2, was 

effective in separating a major contaminant, isoorientin, from aspalathin. The 

possible chemical transformation of aspalathin into orientin and isoorientin, 

induced by light and heat, hampered the isolation process of aspalathin as the 

Rf values of orientin and isoorientin, 0.39 and 0.35 respectively, are very close 

to that of aspalathin (0.33). Fraction A2 (59% total polyphenols) contained 

10.26, 1.18 and 15.05 % (m/m) of aspalathin, orientin and isoorientin, 

respectively, whereas these respective compounds constituted 81.63, 4.55 and 

3.73% of fraction A3 (75% total polyphenols). Fraction A3 also had the lowest 

IC50 values in both the lipid peroxidation and ABTS•+ scavenging assays 

(P<0.05) and was therefore applied to a reverse phase C18 column for 

purification. Three fractions were collected of which B2 (79% total polyphenols) 

contained 95.67% (m/m) aspalathin with 2.99% (m/m) orientin still visible on 

TLC. Fraction B3, however, yielded a cream-coloured amorphous dried powder 

that consisted of ~99% (m/m) aspalathin with only 0.29% orientin and no 

isoorientin detected. The total polyphenol content for B3 was calculated as 

78%. This fraction also displayed the lowest IC50 values for this column in the 

lipid peroxidation (P<0.05) and ABTS•+ scavenging (P>0.05) assays. Efforts to 

crystallise aspalathin were unsuccessful. The purity of the isolated aspalathin 

was established to be >95% based on TLC and HPLC (Addendum 3C), verified 
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by independent LC-MS (Addendum 3D) and NMR (Addendum 3E) analyses. 

The biological activity of aspalathin is reported in Chapters 4 and 5. 

 

Isolation of nothofagin 

Fraction X3 (47% total polyphenols) contained 17.65% (m/m) nothofagin and 

displayed the lowest IC50 value for lipid peroxidation, i.e. 0.1098 mg/ml, of all 

the extracts or fractions (P<0.05), while it was almost half as efficient an 

inhibitor of ABTS•+ than X2 (0.061 vs 0.035 mg/ml) (P<0.05). X3 was 

fractionated into four fractions that contained 34% (C1), 39% (C2), 76% (C3) 

and 54% (C4) total polyphenols, respectively (Fig. 3.2). The high polyphenolic 

content of C3 could be attributed, amongst others, to 63.16% aspalathin, 5.48% 

rutin/isoquercitrin and 6.48% isoorientin and resulted in C3 having the highest 

antioxidant potency of the column C fractions for both assays (P<0.05). Fraction 

C2 consisted of, amongst others, 54.43% nothofagin, 13.85% isovitexin, 7.56% 

isoquercitrin/rutin, 5.32% hyperoside and 4.42% vitexin/ferulic acid, 

representing only 39% total polyphenols. Rf values reflected their similar 

polarities and varied from 0.46 for isovitexin to 0.41 for nothofagin. Column C 

was effective in enriching a fraction with nothofagin (fraction C2). Fraction C2, 

contrary to C3, had the highest IC50 (>10 mg/ml) for the inhibition of lipid 

peroxidation (P<0.05) and a value of 0.066 mg/ml for the ABTS+• assay. 

Fraction C2 was subjected to the precipitation process as described earlier. The 

residue was applied to the reverse phase column D while the supernatant and 

filtrate were collected, pooled and evaporated to give ‘noto_lye’. The total 

polyphenol content of ‘noto_lye’ was 65%. Recognisable peaks of ‘noto_lye’ 

include 71.69% nothofagin, 4.76% aspalathin and 1.37% vitexin/ferulic acid. 
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This fraction was effective (P<0.05) as scavenger of ABTS•+ (IC50 value of 0.091 

mg/ml), but not as inhibitor of lipid peroxidation (IC50 value of 1.505 mg/ml). 

‘Noto_lye’ stimulated 2-AAF induced mutagenesis in TA98 at all the 

concentrations tested. Fraction D2 (Fig. 3.2) consisted of 99.03% nothofagin 

and 0.97% aspalathin (HPLC) (Addendum 3F). Purity was verified by LC-MS 

(Addendum 3G). Fraction D2 was evaluated as pure nothofagin and its 

biological activities reported in chapters 4 and 5. 

 

Due to the small volumes isolated and the relatively large amounts necessary 

for the biological assays, not enough nothofagin was available for NMR 

analyses. The isolation of pure nothofagin was laborious and time-consuming. 

In order to obtain enough pure nothofagin for the biological assays (90 mg was 

needed to perform all the assays without repeats), two separate X3 fractions 

had to be purified as firstly the unfermented rooibos extracted was not 

particularly high in nothofagin content and secondly the yields on the nothofagin 

columns were low. The nothofagin yield for the C18 column was about 18%. This 

may however not be a true reflection of the efficiency of this column as the 

precipitation step only partially precipitated nothofagin; the ‘noto_lye’ still 

contained 71% nothofagin. However, as is the case with aspalathin, a 

considerable amount of the material loaded on the column was adsorbed onto 

the C18 material. The adsorbed material was removed during the regeneration 

process. The rinse solvents were pooled and evaluated on TLC, but no 

compound could be identified. Fractions D1 and D3 had very low mass yield 

and were insufficient to be used in the biological assays or analyses. Even 

pooling similar D1 and D3 fractions from consecutive C18 columns did not yield 
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a mass of more than 2 mg of which enough could be removed from the sides of 

the vessel for HPLC analysis.  

 

Microsomal lipid peroxidation 

The correlation coefficient (R2) of the fit of the data points for the inhibition of 

lipid peroxidation to the model for a sigmoidal dose response curve with 

variable slope was higher than 0.99 for all the fractions (Table 3.3; Figure 3.3). 

R2 for the extracts were above 0.98. Though not significantly different, fraction 

X3 had the highest potency (0.1098 mg/ml) of the XAD fractions, but this 

potency decreased with further fractionation. X2 was equipotent with an IC50 

value (P>0.05) of 0.1308 mg/ml. The activity of fraction X2 was also displayed 

in fractions A3 and B3 with IC50 values of 0.2457 and 0.1137 mg/ml, in that 

order. Fraction C2 was the most ineffective (P<0.05) inhibitor of lipid 

peroxidation of all the extracts and fractions tested (>10 mg/ml).  

  

ABTS+• Assay 

The correlation coefficient (R2) of the fit of the data points for the scavenging of  

ABTS+• to the model for a sigmoidal dose response curve with variable slope 

was higher than 0.98 for all the extracts and fractions, except fraction A3 (R2= 

0.9783) (Table 3.3; Figure 3.3). Fraction X2 (0.35 mg/ml) exhibited the most 

effective (P<0.05) ability to quench the radical of all the XAD fractions and this 

ability was increased (P<0.05) by purification to 0.025 (fraction A3) and 0.024 

mg/ml (fraction B2). The potency of fraction B2 and B3 was not significantly 

different from that of fraction C3 (0.030 mg/ml) (P>0.05), which was to be 

expected as 63% of C3 consists of aspalathin.  
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Mutagenicity Assay 

The aqueous and methanol extracts of unfermented rooibos exhibited a similar 

(P>0.05) ability to inhibit 2-AAF induced mutagenesis in TA98 at the highest (20 

mg/ml) concentration tested (98 and 99%), at 10 and 5 mg/ml the methanol 

extract being the more efficient inhibitor (P<0.05) and at 1 mg/ml the aqueous 

extract showed a 19% inhibition versus the 7% of the methanol extract 

(P<0.05). The chloroform extract performed significantly weaker (P<0.05) than 

the other two extracts at the higher concentrations, changing from an inhibitory 

extract to one that stimulated 2-AAF induced mutagenesis at 5 and 1 mg/ml. 

Fractions X1 to X4 of the XAD-2 column were equally active (P<0.05) at the 20 

mg/ml level, but Fraction X1 displayed the highest antimutagenic potential (27% 

inhibition) at a concentration of 1 mg/ml tested against TA98. C4 (54% total 

polyphenols)(Fig. 3.2), the last fraction off the Sephadex column used for 

nothofagin isolation, showed the highest antimutagenic activity (P<0.05) against 

TA98 of all the fractions of the different isolation columns (columns A to C) at 

the two highest concentrations tested, i.e. 99% (10 mg/ml) and 88% (5 mg/ml). 

At a concentration of 1 mg/ml, however, the percentage inhibition obtained was 

not significantly higher than many of the other fractions. Comparing the 

responses of the isolation columns A, B and C, no potent antimutagenic 

response was noted by any fraction at 1 mg/ml. At this concentration (1 mg/ml), 

the highest inhibitory response obtained for the XAD fractions was 27% (X1) 

and an equipotent (P>0.05) 28% for A2 of columns A to C.  

 

The chloroform extract and fractions that stimulated the 2-AAF induced 

mutagenic response like X4 and X5 at 1 mg/ml, were not evaluated for direct, 
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co- or promutagenicity. The supernatant of the precipitation process of 

nothofagin, ‘noto_lye’ also caused a strong increase in the number of TA98 

colonies.  

 

The responses of most of the extracts and fractions were typically dose 

dependant inhibitions, i.e. a dilution in the concentration of the testing material 

also leads to a lower inhibitory response. As the fractionation of the X1 aliquot 

did not form part of this study, an enriched antimutagenic fraction has not yet 

been isolated.  

 

DISCUSSION 
 
Aspalathin and nothofagin, two of the major dihydrochalcones of rooibos, have 

been isolated to a purity of >95% following a process of antioxidant activity-

guided fractionation. As neither of these compounds have a crystalline 

structure, the basic amorphous isolates are used as standards for HPLC, 

making quantification not completely reliable. An HPLC chromatogram however, 

still is a most useful tool for quantification as impurities in the range of detection 

would show. To the same extent LCMS and NMR are analysis tools with which 

impurities can be assessed and on the basis of the detectable impurities 

present, the purity of both the isolated aspalathin and nothofagin is set at >95%.  

 

The polarity of the extraction solvent/eluant seems to determine the nature of 

the biological activity of the extract or fraction as the higher polyphenol content 

of the methanol extract indicated that the polarity index of solvents used for the 

purpose of isolation of the active compounds should be around 5. Fractions of a 
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high total polyphenol content and that yielded good antioxidant activity were 

eluted in 25 to 50% methanol/water solutions. Fractions extracted by solvents of 

higher polarity, generally had lower total polyphenol contents but were more 

potent inhibitors of 2-AAF induced mutagenesis.  

 

Lipophilic extracts like chloroform and fractions such as X5 contained a small 

amount of phenolics and even displayed a stimulation of the mutagenic 

response at lower concentrations. The stimulation of mutagenic response by the 

X5 fraction can also possibly be linked to the preparation of the extract, a final 

elution of the XAD-2 column by chloroform:methanol:1:1. It is not known if the 

non-polar beads of Amberlite XAD-2 could be treated with chloroform. It is 

possible that by using this non-polar mixture as eluant, surface material from 

the beads themselves could have been stripped, causing the stimulation of 

response in lipid peroxidation as well as 2-AAF induced mutagenesis in TA98.  

 

Flavonoids appear to have a synergistic effect on each other to enhance their 

activity in certain assays. Fraction B1 (15.77% aspalathin, 27.37% orientin and 

23.42% isoorientin) and B3 (~99% aspalathin and 0.29% orientin) are 

equipotent to B2 (95.67% aspalathin, 2.99% orientin and 0.10% isoorientin) in 

scavenging ABTS+• even though the contribution of each individual flavonoid 

varies. The IC50 values obtained by pure aspalathin, orientin and isoorientin in 

the ABTS+• assay are 0.027, 0.089 and 0.086 mg/ml respectively (see Chapter 

4). Despite the higher IC50 values for orientin and isoorientin, their combined 

effectiveness in scavenging the radical can be ascribed to a possible synergistic 

effect. Another possibility could be the presence of minor compounds with 
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potent activity. The high percentage inhibition of 2-AAF induced mutagenesis by 

fraction C4 could also be the result of the presence of yet unidentified 

flavonoids as none of the individual flavonoids detected in C4, i.e. 7.1% 

aspalathin, 0.36% orientin and 0.32 % hyperoside could be responsible for such 

antimutagenic activity. 

 

The decrease of the high potency of X3 in the lipid peroxidation assay with 

further fractionation was surprising, as one would have expected an increase in 

potency as the fractions are enriched with antioxidants. Looking at the raw data, 

the inhibition of lipid peroxidation by fraction X3 dropped very steeply from an 

average of 84% to 10% over two consecutive concentrations, i.e. 0.1 and 0.05 

mg/ml, respectively (data not shown). This could imply a high rate of reaction 

kinetics (steep hill slope), but more data points within this range are needed to 

substantiate this statement.  

 

Inhibitory data against 2-AAF induced mutagenesis obtained by B3 (aspalathin; 

16, 15 and 7% for solutions of 10, 5 and 1 mg/ml, respectively) compared well 

with that obtained for pure aspalathin in the mutagenicity assay against TA98: 

27, 17 and 16% (data not shown), respectively, for original solutions used in the 

assay at similar concentrations. The IC50 values obtained by aspalathin in the 

antioxidant assays also corresponded well with those of fraction B3: 0.190 vs 

0.1137 mg/ml for lipid peroxidation and 0.027 vs 0.023 mg/ml for ABTS•+, 

respectively. 
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The good correlation between the total polyphenol content of a fraction and its 

antioxidant potency, especially in the scavenging of ABTS+•, was to be 

expected. The Folin-Ciocalteu (F-C) (Total Phenolics) assay has for many years 

been used as a measure for the total phenolics in natural products, but since 

the basic mechanism is a redox reaction this method is considered to be 

another antioxidant method (Huang et al., 2005; Prior et al., 2005).  

 

It is noticeable that fraction B3, pure aspalathin, contained a mere 78% total 

phenols. In the case of the determination of the total phenol content of fraction 

B3, the percentage total phenols (as g gallic acid equivalents/100 g) was 

calculated from the dilution series of fraction B3 in DMSO with absorbance 

readings between 0.2 and 0.8 after reaction with the F-C reagent. The total 

phenol content of pure aspalathin was determined as 72% by using the ratio 

between the gradients of the standard curves for aspalathin and gallic acid 

(data not shown). It is known that the F-C method can suffer from interfering 

substances, for instance sugars (Prior et al., 2005) and it is not known what 

effect a high pH will have on aspalathin in particular. It is known that flavonoid 

compounds are unstable in alkaline solution and may undergo a direct chemical 

oxidation (Koeppen, 1970). These factors may thus contribute to a lower 

determined value for aspalathin, emphasizing the fact that this assay should 

only be used as an index of the total phenol content since different phenols 

might also react would react in varying ways in this assay. 

 

No evident relationship was found between the antimutagenic and antioxidant 

properties of various fractions from unfermented rooibos. Future research 
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should involve the fractionation of fraction X1 to identify the compound 

responsible for the potent antimutagenic properties displayed by this fraction.  
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CHAPTER 4 

ANTIOXIDANT ACTIVITY OF THE MAJOR FLAVONOIDS OF 

ROOIBOS (Aspalathus linearis) 

 

ABSTRACT 

The flavonoids of rooibos (Aspalathus linearis) are a unique combination that 

lends itself to comparative structure-activity studies. The most abundant 

flavonoids are the dihydrochalcones aspalathin and nothofagin. Their flavone 

analogues are orientin and isoorientin from the precursor aspalathin and vitexin 

and isovitexin from nothofagin. The flavone aglycones include luteolin and 

chrysoeriol. Four flavonols from rooibos, i.e. quercetin, isoquercitrin (quercetin-3-

O-glucoside), hyperoside (quercetin-3-O-galactoside) and rutin (quercetin-3-O-

rutinoside) as well as the flavanol (+)-catechin were additionally investigated. 

Their potential as flavonoid antioxidants was assessed in the Fe(II) induced lipid 

peroxidation assay, using rat liver microsomes as a model membrane system 

together with the ABTS•+ assay. The performance of epigallocatechin gallate 

(EGCG) in the same assays was used as the benchmark. Aspalathin, the 

dihydrochalcone unique to rooibos, was demonstrated to be a very efficient 

inhibitor of lipid peroxidation and scavenger of ABTS•+, while nothofagin was 

shown to be equipotent to aspalathin in the ABTS•+ assay, but had the lowest 

inhibitory effect (highest IC50 value) of all the flavonoids tested in the lipid 

peroxidation assay. These results confirmed the importance of the B ring 

catechol moiety as being the radical scavenging entity (chain breaking) and 

metal chelator (preventor) for dihydrochalcones as well. Orientin and isoorientin 

had lower IC50 values for both antioxidant assays used than either vitexin or 
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isovitexin, a further confirmation of the importance of the B ring catechol moiety. 

The two C8-glycosyl isomeric forms of the flavones, isovitexin and isoorientin, 

were both poor inhibitors in the lipid peroxidation assay, but in the ABTS•+ assay 

isoorientin was 13 times more effective than isovitexin, which could possibly be 

due to the more polar nature of isoorientin. Orientin and vitexin, both angular C8-

glycosyl isomeric forms of the flavones, could possibly have lower IC50 values in 

the lipid peroxidation assay because of the strong possibility that the 

carbohydrate moiety of the compound attaches itself to the polar head of the 

membrane thereby enhancing its scavenging activity in the non-polar 

environment of the membrane. Methylation of the C3´-OH group of luteolin to 

form chrysoeriol decreased the IC50 values in both the antioxidant assays. The 

introduction of sugar moieties on the flavonol C3-OH reduced the efficacy of 

quercetin in both assays, rendering isoquercitrin and hyperoside the weakest 

inhibitors of the flavonols in the ABTS•+ and lipid peroxidation assays 

respectively. The order of increasing IC50 values amongst the monomeric rooibos 

flavonoid aglycone for both the lipid peroxidation and ABTS•+ assays, would be 

quercetin>(+)-catechin>chrysoeriol> luteolin. This order emphasizes the fact that 

the C3-OH is a more important structural/functionality requirement for antioxidant 

activity than a C4-keto group.  

 

INTRODUCTION  

Rooibos is an indigenous South African shrub Aspalathus linearis that is used to 

prepare a traditional herbal drink. Lately it is being promoted as a health drink as 

it contains no caffeine (Blommaert & Steenkamp, 1978), has a low tannin content 

(Morton, 1983) and exhibits health properties (Snyckers and Salemi, 1974; 
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Joubert and Ferreira, 1996; Marnewick et al., 2000; Standley et al., 2001; Van 

der Merwe et al., 2006). The health properties of plants are generally attributed 

to their flavonoids and their antioxidative properties (Bors et al., 1997; Rietveld et 

al., 2003). Rooibos contains a selection of structurally related flavonoids that can 

be divided into four groups, i.e. dihydrochalcones, flavones, flavonol and 

flavanols (Koeppen et al., 1962; Koeppen, 1963; Rabe et al., 1994; Ferreira et 

al., 1995; Bramati et al., 2002). This unique combination of flavonoids lends itself 

to comparative structure-activity studies.  

 

The most abundant flavonoids are the aspalathin and nothofagin (Joubert, 1996), 

described as two C-C linked β-hydroxy-dihydrochalcone glycosides, and can 

constitute up to 12% and 1.3% of the dry unfermented (‘green’) rooibos 

respectively (Schulz et al., 2000). Aspalathin is unique to rooibos (Koeppen and 

Roux, 1965) whereas to date nothofagin is found only in rooibos and Nothofagus 

fusca (Ferreira et al., 1995). Aspalathin is a precursor to the (S)- and (R)- 

eriodictyol-6-C-β-D-glucopyranoside flavanones dihydro-isoorientin and dihydro-

orientin (Ferreira et al., 1995). It is possible, though it has not yet been shown, 

that a further conversion, presumably by oxidation, could lead to the formation of 

the flavones, orientin and isooorientin. Nothofagin, vitexin and isovitexin are the 

3’-dehydroxy analogues of aspalathin, orientin and isoorientin, respectively. 

Other rooibos flavonoids include rutin (quercetin-3-O-rutinoside) and isoquercitrin 

(3-O-ß-D-glucopyranoside) (Koeppen et al., 1962), luteolin and quercetin 

(Snyckers and Salemi, 1974), chrysoeriol, vitexin, isovitexin (Rabe et al., 1994), 

(+)-catechin, (+)-pinitol, procyanidin B3, 5,7-dihydroxy-6-C-β-D-glucopyranosyl-

chromone (Ferreira et al., 1995), hyperoside (quercetin-3-O-galactoside) and 
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traces of the flavanones dihydroorientin and dihydro-isoorientin (Bramati et al., 

2002), luteolin-7-glucoside (Kazuno et al., 2005) and aspalalinin (Shimamura et 

al., 2006). The structures of the major flavonoids of rooibos are shown in Table 

4.1. 

 

“Fermentation”, i.e. chemical oxidation, of rooibos affects its antioxidant and 

antimutagenic properties. It has been shown that the aqueous soluble solids of 

unfermented, semi-fermented and fermented rooibos have stronger 2,2’-

diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging activity than that of black 

and oolong teas, but weaker than green tea (Von Gadow et al., 1997). 

Processing of rooibos also decreases its antioxidant activity with regards to the 

superoxide and DPPH radical scavenging ability, while results regarding 

processing and its effect on antimutagenicity in the Salmonella typhimurium 

assay dependant on sample size and sampling (Van der Merwe et al., 2006). 

Standley et al. (2001) concluded that fermented rooibos offered less protection 

than unfermented rooibos against 2-AAF, while Van der Merwe et al. (2006) 

showed that fermented rooibos was a more effective inhibitor of 2-AAF as well as 

AFB1 induced mutagenesis. The activity of several of the rooibos flavonoids has 

been studied in various antioxidant assays. The radical scavenging activity of 

catechin, quercetin, isoquercitrin, rutin and luteolin were compared using the 

2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) 

assay (Re et al., 1999; Lien et al., 1999, Plumb et al., 1999), whereas Okawa et 

al. (2001) evaluated the activity of isovitexin, quercetin and rutin. Joubert et al. 

(2004) included the rooibos flavonoids aspalathin, orientin, isoorientin, luteolin, 

isoquercitrin, (+)-catechin, rutin, vitexin and chrysoeriol in their assessment of the  
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Table 4.1.  Table showing structural differences amongst flavonoids as well as their metal chelating ability 
 

 Flavonoid 
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C6 

 
 
 

C8 

 
 
 

B ring substitution 

Bathochromic shift in 
peak (320-420 nm) 

+Fe2+

(nm) 
+EDTA

(% recovery) 
Dihydrochalcone         
Aspalathin      3, 4-dihydroxy 0 0 
Nothofagin 4-hydroxy 0 0
Flavone         
Luteolin + - + - - 3´, 4´-dihydroxy 26 93 
Chrysoeriol + - + - - 4´-hydroxy-3´-methoxy 0 0 
Orientin + - + - CG 3´, 4´-dihydroxy 27 96 
Isoorientin + - + CG - 3´, 4´-dihydroxy 25 95 
Vitexin + - + - CG 4´-hydroxy 0 0 
Isovitexin + - + CG - 4´-hydroxy 0 0 
Flavanol         
(+)-Catechin - OH - - - 3´, 4´-dihydroxy 0 0 
Epigallocatechin gallate# - Gallate - - - 3´,4´,5´-trihydroxy 0 0 
Flavonol         
Quercetin + OH + - - 3´, 4´-dihydroxy 46 71 
Isoquercitrin + OG + - - 3´, 4´-dihydroxy 19 92 
Hyperoside + OGa + - - 3´, 4´-dihydroxy 5 89 
Rutin + ORu + - - 3´, 4´-dihydroxy 23 98 

   ORu : O-rutinosyl; OG : O-glucopyranosyl; OGa : O-galactosyl; CG or R : C-glucopyranosyl; 0 : no result obtained.  
#Green tea flavonoid used as reference. 
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DPPH and superoxide anion radical scavenging activities. Inhibition of lipid 

peroxidation in rat liver microsomes by (+)-catechin, luteolin, orientin, isoorientin, 

vitexin, rutin, hyperoside and quercetin has also been reported (Robak et al., 

1988; Mora et al., 1990; Cos et al., 2001; Yang et al., 2001; Heijnen et al., 2002).  

 

Two assays were selected for the present study to evaluate the antioxidant 

activity of the major rooibos flavonoids as antioxidants since each may respond 

in a different manner to different radical or oxidant sources (Frankel and Meyer, 

2000; Aruoma, 2003; Prior et al., 2005; Huang et al., 2005). The microsomal lipid 

peroxidation assay, mimicking a lipophilic in vivo system, was selected to 

evaluate the ability of the antioxidant to protect the membraneous environment 

with respect to the generation of reactive oxygen species (Terao and Piskula, 

1999; Webb and Ebeler, 2004). On the basis of the chemical reactions involved, 

this assay is regarded as a hydrogen atom transfer (HAT) reaction, since the 

hydrogen atom donating capacity and subsequent radical chain breaking ability 

is being evaluated in this method (Huang et al., 2005; Prior et al., 2005). An 

oxidative attack on the acyl chains of the membrane lipids would lead to the 

formation of radicals in the hydrophobic core of the bilayer. Their efficacy of the 

flavonoids in this assay would depend on their ability to access the hydrophobic 

core to neutralise the generated radicals. This in turn would depend on the 

structural conformation and hydrophobicity of the flavonoids (Cholbi et al., 1991; 

Williamson et al., 2000; Anselmi et al., 2004; Manach et al., 2004). On the other 

hand, the flavonoids could also act as preventative antioxidants by chelating the 

metal ions that initiate lipid peroxidation (Kandaswami and Middleton, 1994; 

Terao and Piskula, 1999; Pietta et al., 2000; Heim et al., 2002; Liu, 2005).  
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The second assay used was the ABTS+  assay since this method has been 

employed extensively to assess the antioxidant activity of flavonoids in a 

hydrophilic environment (Rice-Evans et al., 1996; Plumb et al., 1999). Huang et 

al. (2005) as well as Prior et al. (2005) consider this process as a typical electron 

transfer (ET) based reaction since the radical cation abstracts an electron from 

the antioxidant. However, it might be difficult to distinguish mechanistically 

between HAT and ET reactions (Prior et al., 2005). Although ABTS+ , as DPPH•, 

is not a physiologically relevant radical, assays using these radicals are useful in 

providing a ranking order of antioxidants (Van den Berg et al., 1999; Okawa et 

al., 2001; Miliauskas et al., 2004).  

 

Epigallocatechin gallate (EGCG), the most abundant and most active antioxidant 

of Japanese green tea (Camellia sinensis) (Hu and Kitts, 2001; Frei and Higdon, 

2003) was used as reference flavonoid. 

 

MATERIALS AND METHODS 

Reagents 

Aspalathin and nothofagin were isolated from unfermented rooibos to a purity of 

>95% at the PROMEC Unit. HPLC grade flavonoids, i.e. chrysoeriol, orientin, 

isoorientin (as homoorientin), vitexin, isovitexin and isoquercitrin (as quercetin-3-

O-glucopyranoside) were obtained from Extrasynthese (Genay, France). 

Luteolin, quercetin (as quercetin dihydrate), rutin (>95% pure), (+)-catechin 

(>98% pure) and epigallocatechin gallate (EGCG; >95%) were purchased from 

Sigma-Aldrich S.A. Solvents and chemicals such as 2,2´-azinobis-(3-ethylbenzo-
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thiazoline-6-sulfonic acid) (ABTS); 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-

carboxylic acid (Trolox) and thiobarbituric acid (TBA) were obtained from Sigma-

Aldrich S.A. All solvents and reagents were of analytical grade and all chemicals 

were used as purchased. The chemical structures of the various 

dihydrochalcones and flavonoids used in this study are shown in Table 4.1. 

 

Inhibition of microsomal lipid peroxidation (TBARS) 

Rat liver microsomes were prepared from male Fisher (F344) rats (200-300 g) as 

described by Shen et al. (1994). Lipid peroxidation was performed according to 

the method of Yen and Hsieh (1998) with slight modifications. The microsomes 

were diluted with a 0.2 M potassium phosphate buffer (pH 7.4) to a concentration 

of 1 mg protein/ml. Lipid peroxidation was induced by adding 5 µM ferrous 

sulphate (200 µl) into a total volume of 1 ml, containing the different flavonoids 

dissolved in 100 µl DMSO and 700 µl microsomal suspension in buffer. The 

reaction mixture was incubated for 1 hour at 37°C. For each sample a sample 

blank was included as the compounds themselves could possibly absorb at 532 

nm; any reading was subtracted from the actual sample readings. A positive 

control using 100 µl DMSO as well as reaction blank with buffer without 

microsomes to be subtracted from the positive control was included. The 

reaction was terminated by adding 2 ml of a cold 10% (m/v) trichloroacetic acid 

(TCA) solution containing butylated hydroxytoluene (BHT, 0.01% m/v) and 

ethylenediaminetetraacetic acid (EDTA, 0.1% m/v). Samples were centrifuged, 2 

ml of the supernatant mixed with 2 ml of a 0.67% (m/v) thiobarbituric acid (TBA) 

solution, heated for 20 min at 90°C and the thiobarbituric acid reactive 

substances (TBARS) measured at 532 nm. The percentage inhibition of TBARS 
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formation relative to the positive control was calculated by 100
)(
×

−

control

samplecontrol

A
AA

 , 

where controlA  and sampleA  refer to the corrected absorption readings for the positive 

control and sample, respectively. The assay was conducted in triplicate. The IC50 

values were calculated by using GraphPad Software (Prism Version 5.00 for 

Windows) as described in Addendum 3A. 

 

ABTS•+ Decolourization Assay (ABTS assay•+) 

The 2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) 

assay was performed as described by Re et al. (1999) with minor modifications. 

The radical cation was generated by mixing ABTS (7 mM) and potassium 

persulphate (2.45 mM) in water and left in the dark for 12-16 h prior to use. The 

ABTS•+ solution was diluted with ethanol to an absorbance of 0.70 (±0.02) at 734 

nm (30°C). The diluted ABTS•+ solution (1 ml) was added to 50 µl of the flavonoid 

solution in DMSO, heated at 30°C for 4 minutes and the absorbance measured 

at 734 nm. Sample as well as reaction blanks were included in each assay and 

determinations at each concentration were done in triplicate. The percentage 

inhibition of the radical cation was calculated as described above and expressed 

as an IC50 value, calculated by using GraphPad Software (Prism Version 5.00 for 

Windows). 

 

Uv-vis spectroscopy of flavonoid metal complexes 

Bands appearing after addition of iron and disappearing after addition of the 

chelators EDTA can be ascribed to the formation of a complex between the 

phenolic functional groups of the compounds and iron (Mira et al., 2002). The 
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iron chelating potential of flavonoids was compared according to the method 

described by Moridani et al. (2003). A 2.5 mM stock solution of each flavonoid 

was prepared in DMSO. The flavonoid (20 µl) was added to a cuvette containing 

10 mM potassium phosphate buffer (pH 7.4) (1.98 ml) to give a final 

concentration of 25 µM flavonoid in the reaction volume. The absorption 

spectrum was recorded between 200-700 nm. Ferrous sulphate was then added 

to the cuvette (final concentration of 50 µM in reaction volume) and scanned 

after 5 min. The reversibility of the flavonoid:Fe2+ ion complex was evaluated by 

the addition of 1.25 mM EDTA (in final reaction volume) to the cuvette 5 minutes 

prior to scanning.  

 

Statistical analyses 

Compounds were divided into three groups according to their performance in 

each assay. Within each group the F-test for testing differences in fit between 

two non-linear models was used. These tests were done on all pairs of all 

compounds and P-values were corrected using the Bonferonni post-hoc 

correction. A significance level of 95 % (P<0.05) was used as guideline to 

determine differences between models. 

 

RESULTS  

Inhibition of Fe(II) induced lipid peroxidation 

The IC50 values, calculated as described above, are summarized in Table 4.2 

along with the lower and upper values of the 95% confidence limits of the 

calculated IC50 value as well as the coefficient of correlation (R2) between the 

model used and the data points of flavonoid responses. 
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Table 4.2.  Results, expressed as IC50 values, of the lipid peroxidation 

(TBARS) antioxidant assay. 
 

 

 
 

Lipid peroxidation 
IC50 value (µM) R2 

Good inhibitors   
Aspalathin 50 (45.6; 55.3) a 0.9974 
(+)-Catechin 52 (45.5; 59.2) a 0.9958 
Epigallocatechin gallate# 21 (20.5; 21.4) c 0.9998 
Chrysoeriol 67 (37.3; 120.4) a 0.9831 
Quercetin 18 (16.9; 18.1) b 0.9974 

Average inhibitors   
Luteolin 199 (166.6; 237.0) d 0.9943 
Orientin 158 (117.6; 212.1) de 0.9896 
Rutin 174 (156.4; 194.2) de 0.9962 
Isoquercitrin 105 (99.3; 112.0) f 0.9965 
Hyperoside 273 (257.5; 288.5) g 0.9989 

Poor inhibitors   
Isoorientin 724 (386.7; 1355) h 0.9894 
Vitexin 1113 (1048; 1183) h 0.9914 
Isovitexin 1648 (1485; 1830) i 0.9910 
Nothofagin 2506 (1378; 4557) i 0.9922 

IC50 values, calculated from 3 replicates per treatment, are shown with lower and 
upper 95% confidence levels, respectively. Values in column followed by the 
same letter do not differ significantly (P>0.05). IC50 value for Trolox in lipid 
peroxidation assay is 75.7 µM. Concentration indicated as per final reaction 
volume.  
#Green tea flavonoid used as reference. 
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In the rat liver microsomal lipid peroxidation assay quercetin (18 µM) and EGCG 

(21 µM) displayed the lowest IC50 values (P<0.05) followed by aspalathin (50 

µM) and (+)-catechin (52 µM) (Table 4.2). A significant (P<0.05) decrease in 

efficiency was, however, noted for orientin (158 µM) and isoorientin (724 µM), 

the oxidised products of aspalathin. Nothofagin (2506 µM) had the highest IC50 

value comparable to that of isovitexin (1689 µM) (P>0.05). Vitexin (1113 µM), 

however, had a significantly lower IC50 value than that of nothofagin (2506 µM) 

and isovitexin (1689 µM) (P<0.05). Isoorientin (724 µM) was as effective as 

vitexin (P>0.05). Chrysoeriol (67 µM) exhibited a similar (P>0.05) inhibitory effect 

to aspalathin (50 µM) and (+)-catechin (52 µM) while the demethylated flavone 

luteolin (199 µM) showed less protection (P<0.05). The glycosylated flavonols 

hyperoside (273 µM), isoquercitrin (105 µM) and rutin (174 µM) were 

substantially less effective (P<0.05) than their aglycone, quercetin (18 µM). The 

potency of the rooibos flavonoids and EGCG as inhibitors of microsomal lipid 

peroxidation, in decreasing order, is quercetin > EGCG > aspalathin ≈ (+)-

catechin ≈ chrysoeriol ≥ isoquercitrin > orientin ≥ luteolin ≥ rutin > hyperoside >> 

isoorientin ≈ vitexin > isovitexin ≥ nothofagin.  

 

Radical scavenging ABTS•+ Decolourization Assay 

The radical scavenging activity of aspalathin (IC50 = 3.24 µM) was not 

significantly (P>0.05) different from that of quercetin (3.55 µM) and EGCG (3.52 

µM), while the difference between the activity of nothofagin (4.69 µM) and EGCG 

(3.52 µM) is also not significantly different (Table 4.3). The post-hoc Bonferroni 

test indicated that there is a significant difference (P<0.05) between the activity 

of nothofagin (4.69 µM) and that of catechin (5.40 µM). The flavone analogues of  
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Table 4.3.  Results, expressed as IC50 values, of the ABTS•+ antioxidant assay.  
 

 

 
 

ABTS 
IC50 value (µM) R2 

Good radical scavengers   
Aspalathin 3.24 (3.02; 3.47) a 0.9991 
Nothofagin 4.69 (3.92; 5.63) b 0.9910 
Epigallocatechin gallate# 3.52 (3.01; 4.11) ab 0.9941 
Quercetin 3.55 (3.27; 3.85) a 0.9995 
Chrysoeriol 8.87 (8.17; 9.63) d 0.9983 
(+)-Catechin 5.40 (4.35; 6.69) c 0.9985 
Hyperoside 6.27 (5.79; 6.79) c 0.9936 

Average radical scavengers   
Luteolin 10.82 (10.16; 11.52) e 0.9965 
Orientin 11.43 (10.99; 11.88) f 0.9993 
Isoorientin 11.14 (10.54; 11.78) ef 0.9986 
Rutin 11.01 (9.82; 12.36) ef 0.9971 
Isoquercitrin 19.23 (17.21; 21.49) g 0.9998 

Poor radical scavengers   
Isovitexin 145.4 (127.4; 166.0) h 0.9978 
Vitexin 287.2 (242.4; 340.2) i 0.9958 

IC50 values, calculated from 3 replicates per treatment, are shown with lower and 
upper 95% confidence levels, respectively. Values in column followed by the same 
letter do not differ significantly (P>0.05). IC50 value for Trolox in ABTS assay is 12 
µM. Concentration indicated as per final reaction volume.  
#Green tea flavonoid used as reference. 
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aspalathin (3.24 µM), viz. isoorientin (11.14 µM) and orientin (11.43 µM), 

exhibited higher IC50 values than the dihydrochalcone but were equipotent 

(P>0.05) to each other, their aglycone luteolin (10.82 µM) as well as chrysoeriol 

(8.87 µM). The flavone analogues of nothofagin, i.e. isovitexin (145.4 µM) and 

vitexin (287.2 µM) exhibited significantly (P<0.05) higher IC50 values than their 

dihydrochalcone. Vitexin followed by isovitexin were the weakest radical 

scavengers of the flavonoids tested. The maximum plateau of their sigmoidal 

dose response curve was at about 50% and 40% inhibition respectively (data not 

shown). Hyperoside (6.27 µM) was less effective than quercetin (3.55 µM), but 

more effective than isoquercitrin (19.23 µM) and rutin (11.01 µM) (P<0.05). (+)-

Catechin (5.40 µM) was equipotent (P>0.05) to hyperoside (6.27 µM). The 

potency of the rooibos flavonoids and EGCG in scavenging the ABTS•+ cation 

assay, in a descending order, is: aspalathin ≈ quercetin ≈ EGCG > nothofagin > 

(+)-catechin ≈ hyperoside > chrysoeriol > luteolin ≥ isoorientin ≥ rutin ≥ orientin > 

isoquercitrin >> isovitexin >> vitexin.  

 

Iron Chelation 

No band I shifts (320-420 nm) were observed for aspalathin and nothofagin and 

none of the compounds evaluated could produce a band II shift in the A ring 

region (250-320 nm). The complexation of Fe(II) by quercetin resulted in a 46 nm 

band shift in the band I region while that of rutin, isoquercitrin and hyperoside 

caused shifts of 23, 19 and 5 nm, respectively (Table 4.1). The chelation of Fe(II) 

by luteolin, orientin and isoorientin resulted in band shifts in this region from 25 to 

27 nm. Addition of EDTA was able to reverse more than 90% of these shifts, 

except in the case of quercetin where only 71% of the compound was recovered 
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from the complex. (+)-Catechin, EGCG, chrysoeriol, vitexin or isovitexin were not 

able to complex Fe(II) with the B ring. 

 

DISCUSSION 

Aspalathin, the dihydrochalcone unique to rooibos, was a very efficient inhibitor 

of both lipid peroxidation and ABTS•+ within the context of the rooibos flavonoids. 

The inhibitory response, however, of its 4-dehydroxylated counterpart, 

nothofagin, clearly illustrated the necessity of using more than one method to 

evaluate the antioxidant activity of a substance due to the finding that it was 

equipotent to aspalathin in scavenging ABTS•+, but was the least efficient of all 

the flavonoids tested in inhibiting lipid peroxidation. The slightly higher IC50 value 

of nothofagin to that of aspalathin in the ABTS•+ assay can be attributed to the 

absence of the one hydroxyl group in the B-ring since the activity of one of the 

hydroxyl groups of the catechol moiety in ring B is enhanced by the electron 

donating effect of the adjacent hydroxyl group (Haenen et al., 1997; Heijnen et 

al., 2001).  

 

Rezk et al. (2002) studied phloretin, a dihydrochalcone with a C4-hydroxyl group 

on the B ring and phloridzin, the C6′-glucoside of phloretin, in peroxynitrite 

scavenging and the inhibition of rat microsomal lipid peroxidation. The activity of 

the hydroxyl group at position 3 was enhanced by the electron donating effect of 

the hydroxyl groups at positions 5 and 7. A carbonyl group on C4 additionally 

increases the antioxidant activity of phloretin (Rezk et al., 2002). Neither 

aspalathin nor nothofagin has a C3-OH group, but both are 2′,4′,6′-

trihydroxylated in Ring A (4′,6′-dihydroxylation of dihydrochalcones is similar in 
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pattern to 5,7-dihydroxylation of flavonoids since the latter do not have a 2′-OH 

group as it has been incorporated into the pyran ring C). Rezk et al. (2002) 

proposed that the dihydrochalcone radical that is formed after hydrogen 

abstraction may be stabilised in a way similar to the strong activity of 2,6-

dihydroxyacetophenone, i.e. by a keto-enol tautomeric transformation between 

the carbonyl group and the R-methylene. Both aspalathin and nothofagin has a 

hydroxyl group at the 2′-position of the A ring, an essential pharmacophore for 

the radical scavenging potential of a dihydrochalcone (Nakamura et al., 2003). 

 

Another possible explanation for the scavenging activities of the two rooibos 

dihydrochalcones to be considered, may be found in the hypothesis put forward 

by Mathiesen et al . (1997). In their NMR studies on two dihydrochalcones viz. 

myrigalone B (2′,6′-dihydroxy-4′-methoxy-3′,5′-dimethyl-dihydrochalcone) and 

angoletin (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethyl-dihydrochalcone) the spectra 

showed that the A ring which is an active radical scavenger moiety of the 

dihydrochalcone is orthogonal to the carbonyl group in the side chain. 

Abstraction of one of the ortho phenolic hydrogen atoms during radical 

scavenging, the thereby formed highly active phenoxy radical may adopt a 

coplanar conformation forming a strong intramolecular hydrogen bond between 

the remaining phenolic hydrogen and the carbonyl group. Mathiesen et al. (1997) 

concluded that substances with an orthogonal conformation able to form 

intramolecular hydrogen bonds by loss of a phenolic hydrogen, would be DPPH• 

scavengers, while compounds lacking these properties would be inactive. 
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The ability for these systems to chelate metal ions could also be responsible for 

the low IC50 value of aspalathin in the lipid peroxidation assay due to the fact that 

aspalathin possesses two of the three possible binding sites for metal ions by 

flavonoids listed by Yuting et al. (1990) and Cholbi et al. (1991), i.e. the catechol 

moiety in the B ring and between the keto group and C2′-OH in ring A. In 

physiological liquids, the Fe(II) cation would be present as an aquacomplex with 

a variable number of coordinating water molecules (Leopoldini et al., 2006). 

Aspalathin, having a polar nature, will also be present in the aqueous phase. The 

binding of the transition metal ions to the biological target is a prerequisite for the 

•OH radical mediated cell damage (Samuni et al., 1983). Chelation of Fe(II), the 

initiating agent of the assay, would prevent the formation of hydroxyl radicals and 

the subsequent progress of lipid oxidation will be consequently retarded. 

Moridani et al. (2003) in fact determined the ability of a flavonoid to complex Fe2+ 

ions by monitoring bathochromic shifts related to band I or band II shifts. In the 

present study using Moridani’s method, aspalathin was however unable to 

complex Fe(II) ion, or was insensitive to the assay used. This finding suggests 

that the efficacy of aspalathin in the lipid peroxidation assay can therefore not be 

explained by the chelation ability although its role as preventor of oxidation by 

metal chelation seems structurally plausible. The radical scavenging activity of 

flavonoids still prevails after metal complexation processes (Laughton et al., 

1989; Hanasaki et al., 1994; Hider et al., 2001). Aspalathin, associated with the 

polar heads of the membrane, could thus still be able to scavenge any radicals 

that might have been formed. 
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This hypothesis would also explain the inability of nothofagin to inhibit/prevent 

lipid peroxidation. It was initially expected that the less ring B hydroxylated 

nothofagin would enable it to perform better in the more lipophilic environment of 

the lipid peroxidation assay. Nothofagin should have had a higher affinity for the 

hydrophobic core of the membrane, enabling it to scavenge radicals between the 

acyl chains of the membrane. This, however, was not found to be the case as it 

was determined that nothofagin had the highest IC50 value of all the flavonoids 

tested. Nothofagin has, however, only one site for metal ion chelation and 

without the presence of the B ring catechol moiety, it is possible that nothofagin 

cannot retain lipid peroxidation by its scavenging properties only.  

 

Whether a dihydrochalcone will penetrate into a biological membrane or not is 

still not clear. If the rooibos dihydrochalcones, similar to the compounds studied 

by Mathiesen et al. (1997), are able to form phenoxy radicals that are able to 

adopt a coplanar structure, then membrane penetration would be facilitated. 

According to polarities, aspalathin should be scavenging radicals amongst the 

more polar heads of the phospholipids and nothofagin between the less polar 

acyl chains. Whether this assumption regarding molecular orientation is valid or 

not, will no doubt be clarified by further NMR-based studies. 

 

The flavone analogues derived from aspalathin, i.e. orientin and isoorientin, had 

lower IC50 values for both antioxidant assays employed than the corresponding 

flavone analogues derived from nothofagin, i.e. vitexin and isovitexin. This 

observation further emphasizes the importance of the ring B catechol moiety. 

The IC50 values of both orientin and isoorientin, were higher in both the lipid 
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peroxidation and ABTS•+ assays than that of their precursor, with isoorientin 

being a far less efficient inhibitor of lipid peroxidation than orientin (Table 4.3). 

Both were able to chelate and release Fe(II) in the presence of EDTA to the 

same extent, contrary vitexin and isovitexin. The two C6-glycosyl isomeric forms 

of the flavones, isovitexin and isoorientin, were both poor inhibitors in the lipid 

peroxidation assay, but in the ABTS•+ assay isoorientin was 13 times more 

effective than isovitexin, possibly due to the more polar nature of isoorientin. 

Orientin had the lowest IC50 value of the glycosylated flavones, similar to those of 

the aglycone luteolin in both antioxidant assays, suggesting that the angular C8- 

glycoside, orientin, promoted an increase in the activity while the linear C6-

glycoside, isoorientin, decreased activity. Mora et al. (1990) also reported an 

enhanced protection from orientin when compared to isoorientin in the 

microsomal lipid peroxidation assay, while Mun’im et al. (2003) reported strong 

activities from orientin and isoorientin towards DPPH• and linoleic acid 

peroxidation, as well as against bactericidal action of peroxyl radical. Both 

flavones had an IC50 value of 9.5 µM and a MIC of 62 µM, respectively, for the 

DPPH• and bactericidal action of peroxyl radical assays, whereas the IC50 value 

for vitexin was >60 µM and the MIC value 250 µM for these assays, respectively. 

 

The degree to which the polarity of these flavonoids is affected by the relative 

position of the glucose moiety on the A ring, is still not known. However, both 

orientin and isoorientin are known to be polar molecules which will be expected 

to be associated with the aqueous phase of the membranes. However, in the 

case of orientin which has the glucose moiety on C8 hydrogen bonds are more 

likely to form between the hydroxyl groups of the sugar moiety and BC rings of 
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the flavonoid, resulting in a more rigid and stable conformation of the molecule. 

The flavones are however in general known to be planar (Harborne and Baxter, 

1999) and with orientin with the O-glucopyranosyl group at C8 and thus having a 

more rigid conformation, it can penetrate the membrane bilayer more easily and 

thereby scavenge the formed radicals. However, in the case of isoorientin, in 

which the O-glucopyranosyl group I attached to C6, the generated alternative 

structural geometry may cause a sufficient degree of steric hindrance 

suppressing the flavone from membrane penetration. The same argument can 

be used to explain the relative performances of vitexin vs that of isovitexin as 

inhibitor of lipid peroxidation. 

 

Flavonoids are also known to anchor themselves through chemical bonds to the 

polar head of phospholipids, forming reversible physicochemical complexes 

(Bombardelli and Spetta, 1991). As both the C8-glycosylated flavones have 

lower IC50 values, it is possible that the carbohydrate moiety of the compound 

attaches itself to the polar head of the membrane, thereby enabling a prolonged 

contact between the rest of the molecule and a subsequent enhanced 

antioxidant activity in the non-polar environment of the membrane (Anselmi et 

al., 2004; Erlejman et al., 2004).  

 

The radical scavenging ability of flavonoids is also affected by the position or 

attachment of the sugar moiety as is demonstrated by orientin being a more 

efficient scavenger of the superoxide radical than isoorientin (Joubert et al., 

2004). However, in scavenging the DPPH• the two isomers were almost 

equipotent (Joubert et al., 2004), as was the case in the scavenging of the 
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ABTS•+ radical in this study. The higher efficacy of the C6-glycosylated isovitexin 

to that of the C8-glycosylated vitexin in scavenging ABTS•+ can not yet be 

explained. 

 

Luteolin, the flavone aglycone, showed average antioxidant activity in both 

assays. Addition of a glucoside on C6 or C8 to form isoorientin or orientin did not 

affect the radical scavenging activity of luteolin much, though the inhibiting 

potential of orientin was significantly higher. However, in the case of orientin the 

antiperoxidative activity was increased, though not significantly, but in the case 

of isoorientin it was significantly decreased, possibly due to the presence of the 

sugar moiety effecting a favourable orientation for penetration of the membrane.  

 

The flavonol quercetin had the lowest IC50 values of all the flavonoids 

investigated in both the lipid peroxidation and ABTS•+ assays. Its flavone 

counterpart luteolin was far less effective in both assays. Both of these 

molecules are aglyconic incorporating B-ring catechol moieties; planar due to the 

C2-C3 double bond and contain a C4-keto functional group. The structural 

difference between the two molecules in question is the additional C3-OH group 

present in quercetin which affects the polarity of the molecule and subsequently 

the ultimate distribution of the flavonoid in the membrane. The significance of this 

is that the most apolar flavone will be located deeper in the membrane towards 

the hydrophobic core of the bilayer while, on the other hand, increasing polarity 

resulting form an increasing number of hydroxyl groups in the molecule provides 

these flavonoids with a higher propensity in associating more with the aqueous 

phase (Scheidt et al., 2004). In the C ring the hydroxyl group at position 3 is the 
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only reactive one and its activity will be enhanced by the electron donating effect 

of the two hydroxyl groups at positions 5 and 7 as well as a carbonyl group at C4 

(Rezk et al., 2002). The presence of a C3-OH in quercetin but not in luteolin will 

therefore explain the lower IC50 value of quercetin in the ABTS•+ assay. 

 

The structural moiety comprising the C4 carbonyl and the C3 hydroxy group may 

be strongly responsible for one of the metal chelation sites in quercetin (Yuting et 

al., 1990; Cholbi et al., 1991), enabling quercetin to prevent the initiation of lipid 

peroxidation. Quercetin is also more hydroxylated than luteolin, making quercetin 

the more polar of the two compounds. Pawlikowska-Pawlęga et al. (2003) 

showed that quercetin only influenced the polar region of the bilayer of human 

erythrocyte membranes, protecting the surface against peroxidation and leaving 

the hydrophobic core of the membrane unchanged.  

 

Introduction of sugar moieties on the flavonol C3-OH had the effect of increasing 

the IC50 value of quercetin in the ABTS•+ assay and it was found that the activity 

of hyperoside (C3-O-galactose) was between that of quercetin and rutin (C3-O-

rutinose) with isoquercitrin (C3-O-glucose) being the least efficient radical 

scavenger of the flavonols. This ranking was not influenced by the moiety being 

a monosaccharide or a disaccharide. The efficiency of quercetin in the lipid 

peroxidation assay was reduced significantly with the addition of glucose 

(isoquercitrin), rutinose (rutin) and galactose (hyperoside), in this order. 

Hyperoside was a less efficient metal chelator than rutin and isoquercitrin, the 

latter being equally effective. The presence of a sugar moiety did however 

reduce the antiperoxidative activity of adjacent hydroxyl groups due to the 
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additional steric hindrance such groups would generate (Ratty and Das, 1988; 

Cholbi et al., 1991; Mora et al., 1990). Saija et al. (1995) showed that the 

glycoside group of rutin lowered its liposolubility and hampered its penetration 

into a model membrane and subsequent incorporation between the acyl chains 

of lipids.  

 

When comparing the monomeric rooibos flavonoid aglycones for antioxidant 

activity, the order of increasing IC50 values for both the lipid peroxidation and 

ABTS•+ assays would be quercetin>(+)-catechin>chrysoeriol>luteolin. This order 

emphasizes the fact that the C3-OH group is a more important structural 

requirement for antioxidant activity than a C4-keto group. In liposomes, the C3-

OH of quercetin enhanced the planarity of the molecule, giving higher rigidity to 

the ring and holding the A and C rings in a more coplanar position (Silva et al. 

2002).  

 

Methylation of the C3´-OH group in luteolin to form chrysoeriol significantly 

decreased the IC50 values in both the antioxidant assays. Luteolin, but not 

chrysoeriol, also responded in the metal chelation assay. The increased 

efficiency of chrysoeriol in the microsomal assay could, despite the compromised 

B ring catechol moiety, be attributed to its decreased hydrophilicity, enabling 

chrysoeriol to act as an antioxidant in a more lipophilic environment. Methoxy 

groups are known to enhance the lipophilicity and membrane partitioning ability 

of flavonoids (Heim et al., 2002). 3’-O-methyl catechin and 4’-O-methyl catechin, 

lacking metal chelating structures was, however, less effective than (+)-catechin 

in protecting against low-density lipoprotein oxidation (Cren-Olivé et al., 2003). 
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Chrysoeriol could also act as a radical scavenger for a longer time, since a 

phenoxyl radical can be stabilized by the electron donating ability of a methoxy 

group, resulting in a more efficient performance as antioxidant (Danilewicz, 

2003). Joubert et al (2004), however, attributed the poor performance of vitexin 

and chrysoeriol as superoxide scavengers in an aqueous environment, to the 

presence of only one hydroxyl group on the B ring. 

 

Hydrogenation of the double bond in the C ring, as was found by Mora et al. 

(1990), as well as the absence of the C4-keto group, significantly decreased the 

antiperoxidative and radical scavenging effects of quercetin. The 2,3 double 

bond in the C ring in conjunction with the C4-keto group improves electron 

delocalisation, stabilising the radical (Bors et al., 1990). However, in an 

investigation that included luteolin, quercetin and (+)-catechin, Cholbi et al. 

(1991) concluded that the C2-C3 double bond in the C ring and the C4-keto 

group is not essential to inhibit lipid peroxidation. However, substances having 

the C2-C3 double bond and both C3- and C5-OH groups as well as the C4-keto 

group may show extensive resonance but that this does not necessarily always 

translate into higher radical stability (Bors and Saran, 1987). 

 

(+)-Catechin failed to indicate a bathochromic shift in the presence of Fe(II), 

which is similar to the finding by Moridani et al. (2002). However, Mira et al. 

(2002) found (+)-catechin capable of chelating Cu(II) and a study by Fernandez 

et al (2002) showed that (+)-catechin chelated Cu(I) as well as Fe(III). In order to 

effect this metal complexation, the flavanol (+)-catechin which does have the C3-

OH group but lacks C4-carbonyl group, must involve the ortho-catechol moiety in 
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the B ring as metal ion binding site. The present study furthermore demonstrates 

quercetin, chrysoeriol, luteolin and (+)-catechin to be efficient reducing agents, 

but with only luteolin and quercetin displaying metal ion chelation properties in 

the assay used.  

 

From the antioxidant data collected on the rooibos flavonoids, several structure-

activity or structure-function relationships were confirmed, viz. (i) the importance 

of a B ring catechol moiety in the scavenging of free radicals and thereby 

inhibiting free radical formation as well as the propagation of free-radical 

reactions by chelating of metal ions; (ii) that scavenging behaviour and phase 

distribution depends on the degree of hydroxylation of the molecules especially 

in the B and C rings; (iii) the position of the sugar moiety at either C6 or C8 

affects antioxidant efficacy; (iv) that methylation of a B ring hydroxyl group 

increases the inhibition efficiency; (v) that the C3-OH group is a more important 

functional group for inhibitory performance than a C4-keto group and (vi) that the 

introduction of sugar moieties on the C3-OH in ring C of flavonols reduces their 

antioxidant behaviour due to steric hindrance interactions. 
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CHAPTER 5 

ANTIMUTAGENIC ACTIVITY OF THE MAJOR FLAVONOIDS OF 

ROOIBOS (Aspalathus linearis) 

 

ABSTRACT 

The antimutagenic properties of thirteen of the most prevalent rooibos 

(Aspalathus linearis) flavonoids were compared in the Salmonella typhimurium 

mutagenicity assay using tester strains TA98 and TA100 with 2-acetamido-

fluorene (2-AAF) and aflatoxin B1 (AFB1) as mutagens, respectively. The 

mutagenic properties of the flavonoids were also investigated in the presence 

and absence of metabolic activation using Aroclor-induced rat liver homogenate 

fraction (S-9). The polyphenols included the dihydrochalcones, aspalathin and 

nothofagin with their respective flavone analogues, i.e. orientin and isoorientin, 

and vitexin and isovitexin as well as seven other flavonoids, i.e. luteolin, 

chrysoeriol, (+)-catechin, quercetin, quercetin-3-O-glucoside, hyperoside and 

rutin. Aspalathin and nothofagin displayed moderate antimutagenic properties. 

The most effective antimutagen against both mutagens was luteolin that 

exhibited properties comparable to that of the benchmark epigallocatechin 

gallate (EGCG). Chrysoeriol was also very effective against AFB1. Luteolin 

however showed to be comutagenic with 2-AAF at a low concentration. The 

antimutagenic properties were associated with specific structural requirements, 

i.e. the formation of the C ring, the degree of hydrophilicity due to the extent of 

hydroxylation and O-methylation, as well as glycosylation on the A and B rings, 

the C4-keto group and C2-C3 double bond. Dose response effects were 

mutagen specific and ranged from typical to atypical to include biphasic as well 
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as threshold effects. Depending on the flavonoid and the concentration tested 

antimutagenic (e.g. luteolin and both mutagens tested), comutagenic (e.g. 

chrysoeriol with 2-AAF), promutagenic (e.g. quercetin-3-O-glucoside and 2-

AAF) or mutagenic (e.g. quercetin) responses were noticed. Quercetin was the 

only mutagenic flavonoid. The potent antimutagenic response of rooibos could 

not be exclusively attributed to any of the monomeric flavonoid constituents 

tested. 

 

INTRODUCTION  

The health benefits of flavonoids are well known and are displayed as a 

remarkable range of biochemical and pharmacological properties that may 

significantly affect the function of various mammalian cells (Middelton et al., 

2000). The anti-inflammatory, antioxidant, antithrombotic and anticarcinogenic 

effects are some of the properties that have been under consideration for 

therapeutical purposes for several human diseases. In this regard, the 

beneficial properties of Japanese tea are well documented (Yang et al., 2001) 

and green tea is regarded as one of the major sources of natural flavonoids 

(Chen and Yen, 1997). The popularity of decaffeinated teas or herbal 

beverages has also increased as there is growing evidence about the harmful 

effects of caffeine (Stavric, 1996). A traditional and indigenous South African 

herbal drink, prepared from rooibos (Aspalathus linearis), is subsequently 

gaining popularity as a health drink (Erickson, 2003) with a relatively low tannin 

content and no caffeine (Blommaert and Steenkamp, 1978). 
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Rooibos has a unique flavonoid profile which is enzymatically and chemically 

altered during processing by oxidation or “fermentation” (Joubert, 1996). The 

most abundant flavonoids are aspalathin and nothofagin, two C-C linked ß-

hydroxy-dihydrochalcone glucosides, which can constitute up to 10% and 1% 

respectively of the dry unfermented (‘green’) rooibos (Schulz et al., 2003 ). 

Aspalathin is unique to rooibos (Koeppen and Roux, 1965) whereas nothofagin 

is found only in rooibos and Nothofagus fusca (Joubert, 1996). It is not known 

whether the dihydrochalcones are directly linked to the biosynthesis of flavones 

though chalcones are known to be intermediates in the biosynthesis of 

flavonoids (Harborne and Baxter, 1999). However, it is possible that the 

dihydrochalcones can be enzymatically oxidized to the corresponding flavones 

during “fermentation”. Aspalathin is considered to be the precursor to the 

flavanones dihydro-orientin and dihydro-isoorientin (Koeppen and Roux, 1966). 

Marais et al. (2000) demonstrated that oxidative cyclisation of aspalathin 

resulted in the formation of the flavanones (S)- and (R)-Eriodictyol-6-C-β-D-

glucopyranoside. Further oxidation could result in the formation of the 

corresponding flavones orientin and isoorientin. Similarly it is plausible that 

nothofagin, the B ring monohydroxy analogue of aspalathin, could give rise to 

vitexin and isovitexin. Other monomeric rooibos flavonoids include rutin, 

isoquercitrin (quercetin-3-O-ß-D-glucoside) (Koeppen et al., 1962), luteolin and 

quercetin (Snyckers and Salemi, 1974), chrysoeriol, vitexin and isovitexin 

(Rabe et al., 1994) as well as hyperoside (quercetin-3-O-β-D-galactoside) 

(Bramati et al., 2003). (+)-Catechin was reported to occur in very low 

concentrations in fermented rooibos (Ferreira et al., 1995).  
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The relative quantities of these compounds differ between the aqueous extracts 

of fermented and unfermented rooibos (Bramati et al., 2002, 2003; Joubert et 

al., 2005) as well as between batches of different plantations (Van der Merwe 

et al., 2006). 

 

The antioxidant properties of rooibos and its major polyphenolic constituents 

have been established (Yoshikawa et al., 1990; Von Gadow et al., 1997; 

Joubert et al., 2004), while the antimutagenic properties of fermented and 

unfermented rooibos as well as its antigenotoxic properties have been 

investigated (Shimoi et al., 1996; Marnewick et al., 2000; Standley et al., 2001; 

Edenharder et al., 2002; Van der Merwe et al., 2006). 

 

Information on the biological activities, in particular the antimutagenic activity, of 

the individual flavonoid constituents is, however, limited. Steele et al. (1985) 

studied the effect of (+)-catechin against the mutagenicity of various aromatic 

amines, while the modulating effects of rutin, quercetin (Francis et al., 1989), 

(+)-catechin (Francis et al., 1989; Choi et al., 1994) and luteolin (Choi et al., 

1994) against aflatoxin B1 (AFB1)-induced mutagenesis have been reported. 

The protective effect of rutin, luteolin and quercetin against benzo[a]pyrene 

(Das et al., 1994), 2-amino-3-methylimidazo[4,5-ƒ]quinoline (IQ) (Edenharder et 

al., 1993, 1997) and the inhibition of the mutagenicity of three kinds of cyclic 

nitroarenes by luteolin, quercetin, rutin, isoquercitrin and catechin (Edenharder 

and Tang, 1997) has been reported. Shimoi et al. (1996) associated the 

anticlastogenic properties of a rooibos infusion with luteolin. Little is known 

about the antimutagenic properties of the dihydrochalcones, though MacGregor 
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and Jurd (1978) found the dihydrochalcones hesperetin and neohesperidin to 

be non-mutagenic against TA98. 

 

The present study describes the antimutagenicity of the major monomeric 

flavonoids of rooibos. Epigallocatechin gallate (EGCG), the most abundant 

(Kuroda and Hara, 1999; Frei and Higdon, 2003) and one of the major 

antimutagenic principles of Japanese green tea (Camellia sinensis) (Kada et 

al., 1985), was included as reference. The antimutagenic properties of 

aspalathin and nothofagin and their flavonoid analogues, with emphasis on 

dose response effects and structural requirements, are reported for the first 

time.  

 

MATERIALS AND METHODS 

Reagents 

Aspalathin and nothofagin were isolated from unfermented rooibos to a purity 

>95% based on HPLC, NMR and LC-MS at the PROMEC Unit (see Chapter 3). 

HPLC grade flavonoids, i.e. chrysoeriol, orientin, isoorientin (as homoorientin), 

vitexin, isovitexin, hyperoside and quercetin-3-O-glucopyranoside (isoquercitrin) 

were obtained from Extrasynthese (Genay, France). Luteolin, quercetin (as 

quercetin dihydrate), rutin (>95%), (+)-catechin (>98%) and epigallocatechin 

gallate (>95%, EGCG) were purchased from Sigma-Aldrich S.A. The chemical 

structures of the various dihydrochalcones and flavonoids utilised in this study 

are shown in Table 5.1. The mutagens 2-AAF, AFB1, nicotine adenine 

dinucleotide phosphate (NADP) and glucose-6-phosphate were acquired from 

Sigma-Aldrich S.A., bacto agar from Difco Laboratories (Detroit, USA) and  
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Table 5.1.  Chemical structures of the major rooibos flavonoids. 
 

 Flavonoid 

A C

B
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8
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HO 

OH

O
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HO
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OH
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O
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 C2=C3 

double 
bond 

 
C3 

moiety 

 
C4 

C=O 

 
 

C6 

 
 

C8 

 
 

B ring substitution 
Dihydrochalcone       
Aspalathin      3, 4-dihydroxy 
Nothofagin      4-hydroxy 
Flavone       
Luteolin + - + - - 3´, 4´-dihydroxy 
Chrysoeriol + - + - - 4´-hydroxy-3´-methoxy
Orientin + - + - CG 3´, 4´-dihydroxy 
Isoorientin + - + CG - 3´, 4´-dihydroxy 
Vitexin + - + - CG 4´-hydroxy 
Isovitexin + - + CG - 4´-hydroxy 
Flavanol       
Catechin - OH - - - 3´, 4´-dihydroxy 
Epigallocatechin gallate# - Gallate - - - 3´,4´,5´-trihydroxy 
Flavonol       
Quercetin + OH + - - 3´, 4´-dihydroxy 
Isoquercitrin + OG + - - 3´, 4´-dihydroxy 
Hyperoside + OGa + - - 3´, 4´-dihydroxy 
Rutin + OR + - - 3´, 4´-dihydroxy 

OR : O-rutinosyl; OG : O-glucopyranosyl; R : CG : C-glucopyranosyl; OGa : O-galactosyl.  
#Green tea flavonoid used as reference. 
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nutrient broth from Oxoid (Hampshire, UK). D-Biotin and L(-)-Histidin were 

purchased from ICN Biomedicals Inc, (Ohio, USA) and Merck Chemicals Pty. 

Ltd. (Darmstadt, Germany), respectively.  All chemicals (analytical grade) were 

used as purchased. Salmonella typhimurium TA98 and TA100 were obtained 

from Prof B N Ames, Berkeley University, CA, USA.  

 

Mutagenicity assay 

The plate incorporation mutagenicity test was conducted as described by 

Maron and Ames (1983) and Mortelmans and Zeiger (2000) using tester strains 

Salmonella typhimurium TA98 and TA100 with 2-acetamido-fluorene (2-AAF; 5 

µg/plate) and aflatoxin B1 (AFB1; 20 ng/plate) as mutagens, respectively. 

Metabolic activation was achieved by an Aroclor 1254 induced S9 homogenate 

(0.7 nmole cytochrome P450/mg protein), prepared from male Fischer rats 

(Maron and Ames, 1983), and incorporated in the S9 mixture at a level of 2 mg 

protein/ml. Stock solutions of the flavonoids and the mutagens were prepared 

in DMSO prior to conducting the mutagenic assay. The Ames assay consisted 

of the addition of overnight bacterial culture (100 µl) to the diagnostic mutagen 

(100 µl), the flavonoid (100 µl, ranging varying from 0.001-1.2 mM per plate) 

and 500 µl of S9 mix to 2 ml of top agar at 45°C. The mixture was vortexed, 

poured onto a minimal glucose plate and incubated at 37°C for 48 h in the dark. 

Positive and negative (spontaneous) controls in the presence and absence of 

the diagnostic mutagens respectively, as well as the presence of DMSO and 

the S9 mixture were included. When the mutagenic response of the diagnostic 

mutagen was enhanced, the effect of the flavonoid as potential mutagen or 

promutagen was evaluated in the absence of the diagnostic mutagen with and 
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without metabolic activation. The percentage inhibition/stimulation of the 

mutagen-induced response by the flavonoid was calculated using the formula 

}100
)(
)(

100{
0

0 x
RR
RR
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⎟
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⎠

⎞
⎜
⎜
⎝

⎛

−
−

− , where sR  is the average number of His+ revertants 

induced in the presence of the flavonoid, 0R  the average number of His+ 

revertants in the absence of the mutagen (spontaneous revertants) and pR  is 

the average number of His+ revertants induced by the mutagen. Five repetitions 

for each concentration were included.  

 

Statistical analyses 

All individual groups were independent and tested for normality using the 

Kolmogorov-Smirnof Test. Levene's Test was used to determine whether the 

groups had equal variances. Significant group differences were determined by 

the F-test (equality of variances) or the Welch test (inequality of variances), 

while the post-hoc Tukey test was used to determine which groups differed 

significantly. The Student's Two-sample T-test was used to test for group 

differences when there were only two groups, with the Pooled method for 

groups with equal variances or the Satterthwaite method for groups with 

unequal variances. Significant group differences were indicated by P<0.05. 

 

RESULTS  

The response of the flavonoids in the mutagenicity assay manifested in four 

ways: as (a) an antimutagen displaying a protective effect due to a decrease in 

the number of revertants of the positive control; (b) a comutagen enhancing the 

mutagenic response irrespective of being mutagenic or not; (c) a promutagen 
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requiring metabolically activation and (d) a direct mutagen not requiring 

metabolic activation.  

 

A noticeable higher protection was offered by the different rooibos tea 

flavonoids against AFB1-induced mutagenesis compared to 2-AAF (Tables 5.2 

and 5.3). Aspalathin displayed a moderate antimutagenic effect against 2-AAF 

and AFB1 with no clear dose response effect. Orientin and isoorientin displayed 

a typical protective dose response effect only against AFB1. At the highest 

dose, orientin and isoorientin were more effective (P<0.05) inhibitors of AFB1-

induced mutagenesis than aspalathin. Orientin exhibited a similar protective 

effect than aspalathin (P<0.05) against 2-AAF, while isoorientin exhibited a 

significantly higher protective effect at all the concentrations tested. Nothofagin 

displayed a higher (P<0.05) protective effect than aspalathin at the higher 

concentrations (0.4 and 0.8 mM) against AFB1 while the opposite was true for 

2-AAF. Vitexin exhibited a protective effect similar to that of nothofagin against 

2-AAF at 0.4 mM (P<0.05) while it offered no protection at 0.08 and 0.8 mM. 

Isovitexin enhanced (P<0.05) the mutagenicity of 2-AAF at the higher 

concentrations (>0.4 mM) in a typical dose response. Vitexin and isovitexin 

showed a protective effect similar to that of nothofagin at concentrations ≥0.4 

mM against AFB1, while vitexin exhibited a weaker response than isovitexin 

(P<0.05) at 0.8 mM. 

 
 
Luteolin was the most effective rooibos antimutagen and exhibited a similar 

inhibition than EGCG, the green tea flavanol, at 0.8 mM against 2-AAF and 

AFB1. However, at lower concentrations (<0.4 mM) luteolin was significantly  
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Table 5.2.  Percentage inhibition (-) or stimulation (+) of the mutagenic response of 2-AAF by various flavonoids against tester 

strain Salmonella typhimurium TA98 in the presence of metabolic activation. 
 

Flavonoid 
(mM) 

% Inhibition (-)/stimulation (+) of mutagenic response 
1.2 0.8 0.6 0.4 0.12 0.08 0.06 0.04 0.01 0.008 0.006 

Dihydrochalcones            

Aspalathin - (-)27±3bcd1 - (-)30±5abc1 - (-)31±4cde1 - - - - - 

Nothofagin - (-)19±3bcde1 - (-)19±7cde1 - (-)21±1ef1 - - - - - 

Flavone            

Luteolin (-)100±11 (-)97±2a1,2 (-)100±11 (-)96±3h2 (-)80±33,4 (-)76±3a3 (-)84±54 (-)50±65 (-)7±46 (+)127±5
37 - 

Chrysoeriol (+)82±91 (+)63±82 (+)45±93 (-)7±6efgh4 (-)88±55 (-)57±4b6 (-)61±76 (-)19±154 (+)32±83 (+)130±87 - 

Orientin - (-)35±5bc1 - (-)37±4a1 - (-)32±3cde1 - - - - - 

Isoorientin - (-)41±8b1 - (-)38±3ab1 - (-)37±1cd1 - - - - - 

Vitexin - (-)3±10efg1,2 - (-)15±4def1 - (+)3±5h1,2 - - - - - 

Isovitexin - (+)17±10hi1 - (+)9±5i1 - (-)3±15gh1 - - - - - 

Flavanol            

Catechin (+)20±42,3,4 (-)15±7def3,4 (-)22±42,3,4 (-)25±4cd1,2,3 (-)33±31 (-)27±2de1,2 (-)13±54 - (-)14±55 - - 

Epigallocatechin gallate# - (-)95±2a1 - (-)80±3j2 - (-)44±10bc3 - (-)39±63,4 - (-)27±54 - 

Flavonol            

Quercetin (+)397±111 - (+)344±232 - (+)282±223 - (+)230±94 - (+)158±55 - (+)133±106 

Quercetin-3-O-glucoside - (+)222±151 - (+)153±102 - (+)142±4i2,3 - (+)121±83 - (+)90±84 - 

Hyperoside - (+)14±5gh1 - (-)4±4fgh2 - (-)18±2efg3,4 - (-)14±43,4 - (-)22±74 - 

Rutin - (+)14±4ghi1 (-)0±42 (-)8±2efg3 - (-)11±4fgh4 (-)17±65 - - - (-)47±76 

Values are the means±SD of 5 plates per treatment. Values in columns followed by the same letter do not differ significantly (P>0.05). Values in rows 
followed by the same superscript number do not differ significantly (P>0.05). Average spontaneous revertants (n=40) are 35±6; 2-AAF positive control 
397±33; spontaneous revertants subtracted from response to calculate % inhibition. Concentration of 2-AAF: 5µg/plate. Concentration of compound 
indicated as mM in final volume. #Used as reference. 
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Table 5.3.   Percentage inhibition (-) or stimulation (+) of mutagenic response of AFB1 by various flavonoids against tester strain  
Salmonella typhimurium TA100 in the presence of metabolic activation. 

 
Flavonoid 

(mM) 
% Inhibition (-)/Stimulation (+) of mutagenic response 

1.2 0.8 0.6 0.4 0.12 0.08 0.06 0.04 0.01 0.008 0.006 
Dihydrochalcones            

Aspalathin - (-)43±7gf1 - (-)48±5bcdef1 - (-)33±3bcde2 - - - - - 

Nothofagin - (-)59±3cde1 - (-)59±4b1 - (-)33±8bcdef2 - - - - - 

Flavone            

Luteolin (-)112±21 (-)96±2a2,3 (-)100±91,2 (-)91±5a2,3 (-)85±63,4 (-)89±4a2,3 (-)86±63,4 (-)87±23,4 (-)75±84,5 (-)62±55 - 

Chrysoeriol (-)82±51,2 (-)73±5b2 (-)74±42 (-)82±3a1,2 (-)82±51,2 (-)83±2a1 (-)76±21,2 - (-)54±43 - - 

Orientin - (-)59±3cde1 - (-)46±8bcdefgh2 - (-)35±3bcd3 - - - - - 

Isoorientin - (-)66±10bc1 - (-)50±7bcde2 - (-)23±5cdefgh3 - - - - - 

Vitexin - (-)51±4defg1 - (-)51±4bcd1 - (-)15±5ghi2 - - - - - 

Isovitexin - (-)62±5bcd1 - (-)50±3bcdef2 - (-)37±4bc3 - - - - - 

Flavanol            

Catechin (-)72±111 (-)40±8g2,3 (-)45±92 (-)26±14i3,4 (-)35±52,3 (-)8±4hij4 (-)29±13 - (-)42±25 - - 

Epigallocatechin gallate# - (-)101±4a1 - (-)93±3a1 - (-)69±7k2 - (-)50±43 - (+)2±74 - 

Flavonol            

Quercetin ⊗ - ⊗ - (+)100±121 - (+)32±72 - (-)9±33 - (-)19±53 

Quercetin-3-O-glucoside - (+)26±8h1 - (-)18±3i2 - (-)35±7bc3 - (-)29±53 - (-)31±53 - 

Hyperoside - (-)55±2cdef1 - (-)51±7bc1 - (-)27±5bcdefg2,3 - (-)20±83 - (-)36±62  

Rutin - (-)47±3efg1 (-)46±71 (-)48±9bcdefgh1,2,3 - (-)14±4ghij2,3,4 (-)27±93 (-)44±121,2,3 - - (-)36±101,2 

Values are the means±SD of 5 plates per treatment. Values in columns followed by the same letter do not differ significantly (P>0.05). Values in rows 
followed by the same superscript number do not differ significantly (P>0.05). Average spontaneous revertants (n=40) are 141±15; AFB1 positive control 
416±38; spontaneous revertants subtracted. Concentration of AFB1: 20ng/plate. Concentration of compound indicated as mM in final volume. ⊗Cytotoxic 
effect. #Used as reference. 
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more effective than EGCG against both 2-AAF and AFB1, except that a 

comutagenic effect was noticed against 2-AAF at 0.008 mM. Chrysoeriol 

exhibited a comutagenic effect at the highest and lower concentrations against 

2-AAF (biphasic response) while it protected at concentrations 0.4-0.04 mM. 

Against AFB1 it protected at all the concentrations tested and exhibited similar 

antimutagenic properties than luteolin at 0.4, 0.12 and 0.08 mM. However, it 

offered less protection at concentrations ≤0.06 mM and ≥0.6 mM. Chrysoeriol 

exhibited a higher protective effect than EGCG at concentrations ≤ 0.08 mM. 

 

(+)-Catechin displayed a similar protection than aspalathin and nothofagin 

against 2-AAF at all the concentrations tested. It exhibited a higher protective 

effect than isovitexin against 2-AAF, similar to vitexin at ≥0.4 mM and a lower 

protective effect when compared to orientin and isoorientin. Against AFB1, (+)-

catechin displayed a biphasic response with a high protection at high and low 

concentrations. (+)-Catechin showed a similar protection than aspalathin 

against AFB1 at 0.8 mM, but a lower effect than nothofagin and their structural 

flavone analogues at all the concentrations tested. 

 

Rutin reduced the number of 2-AAF-induced revertants in a typical dose 

response. Rutin and hyperoside exhibited similar antimutagenic responses 

against 2-AAF at 0.4 and 0.08 mM, but stimulated mutagenic response 

(P<0.05) at the highest concentration (0.8 mM). They exhibited a weaker 

protective response than aspalathin, orientin, isoorientin and nothofagin at ≤0.4 

mM. Both rutin and hyperoside exhibited a similar protective effect than 

aspalathin, nothofagin and their structural analogues against AFB1, except at 
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0.08 mM where rutin had a protection similar to vitexin. Both rutin and 

hyperoside exhibited a biphasic antimutagenic response, similar to that of (+)-

catechin and luteolin, against AFB1.  

 

Quercetin enhanced the mutagenic response of 2-AAF at all the concentrations 

in a typical dose dependent manner. It was however cytotoxic against TA100 at 

concentrations higher than 0.12 mM. Quercetin stimulated AFB1-induced 

mutagenesis at concentrations ≥0.06 mM while a protective effect was noticed 

at a concentration <0.01 mM. Quercetin-3-O-glucoside increased the 

mutagenic response of 2-AAF in a dose dependent manner although to a lesser 

extent than quercetin. It lacked any toxic effect against TA100 while inhibiting 

AFB1-induced mutagenesis except at the highest level (0.8 mM) tested where 

the mutagenicity was enhanced.  

 
The flavonoids that enhanced the mutagenic response of 2-AAF and AFB1 

were tested as possible mutagens in the absence and presence of the S9 

mixture for metabolic activation (Tables 5.4 and 5.5, respectively). Responses 

are indicated as the number of revertants including the number of spontaneous 

revertants. Quercetin and quercetin-3-O-glucoside were mutagenic towards 

both strains in the absence of metabolic activation while evidence of a 

promutagenic response (P<0.05) was noticed in the presence of metabolic 

activation. Considering the additive effect of 2-AAF in the absence and 

presence of quercetin, an antimutagenic and comutagenic effect was observed 

at higher (>0.06mM) and lower (0.01mM) concentrations, respectively. 

Quercetin-3-O-glucoside exhibited a similar, though less marked, response. 

When considering the interaction with AFB1, an antimutagenic effect was  
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Table 5.4.  Evaluation of the mutagenic activity of flavonoids found to be comutagenic towards 2-AAF using Salmonella typhimurium 

TA98. 
 

Flavonoid (mM) 
  Number of revertants 

2-AAF S9 1.2 0.8 0.6 0.4 0.12 0.08 0.06 0.04 0.01 0.008 0.006 0.001 
Quercetin + + 1720±39a1 - 1542±77a2 - 1332±74a3 - 1156±30a4 - 910±48a5 - 828±32a6 796±22a6 

 - + 1448±28b1 - 1380±41b1 - 1234±36a2 - 1088±35b3 - 317±32b4 - 235±12b5 51±5b6 

 - - 1310±26c1 - 1324±22b1 - 1126±48b2 - 672±59c3 - 192±42c4 - 96±9c5 40±9b5 

Quercetin-3-O-glucoside + + - 1172±53a1 - 921±37a2 - 890±15a2,3 - 823±273 - 725±274 - - 

 - + - 1164±34a1 - 697±37b2 - 237±39b3 - - - - - - 

 - - - 752±54b1 - 367±42c2 - 109±7c3 - - - - - - 

Hyperoside + + - 415±171 - 355±122 - 295±133,4 - 335±273,4 - 295±224 - - 

 - + - 33±10 - 26±2 - 24±6 - - - - - - 

 - - - 21±3 - 20±4 - 17±2 - - - - - - 

Rutin + + - 388±141 368±142 310±293 - 308±184 305±225 - - - 197±276 - 

 - + - - 38±2 - - - 38±4 - - - 35±4 - 

 - - - - 37±3 - - - 36±5 - - - - - 

Isovitexin + + - 432±371 - 410±221 - 400±81 - - - - - - 

 - + - 34±7 - 34±4 - 37±3 - - - - - - 

 - - - 17±4 - 18±4 - 22±3 - - - - - - 

Chrysoeriol + + 623±91 551±282 437±213 343±194 123±65 172±146 123±266 347±54 485±583 808±267 - - 

 - + 37±1 - 40±5 - 35±5 - 37±3 - 39±4 - - - 

 - - 35±2 - 43±1 - 37±5 - 35±5 - 40±2 - - - 

Values are the means ± SD of 5 plates per treatment. Values in columns followed by the same letter do not differ significantly (P>0.05). Values in rows followed 
by the same superscript number do not differ significantly (P>0.05). Average spontaneous revertants (n=40) are 35±6; 2-AAF positive control 397±33; 
spontaneous revertants not subtracted from response. Concentration of 2-AAF: 5µg/plate. Concentration of compound indicated as mM in final volume. 
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Table 5.5.  Evaluation of the mutagenic activity of the flavonoids found to be comutagenic towards AFB1 using Salmonella 

typhimurium TA100. 
 

Flavonoid (mM) 
 Number of revertants 

AFB1 S9 1.2 0.8 0.6 0.4 0.12 0.08 0.06 0.04 0.01 0.008 0.006 0.001 
Quercetin + + ⊗ - ⊗ - 628±31a1 - 494±18a2 - 350±19a3 - 332±20a3 321±23a3 

 - + ⊗ - ⊗ - 577±20b1 - 454±61a2 - 289±22b3 - 230±11b3 149±10b4 

 - - 431±301 - 401±131 - 317±6c2 - 242±19b3 - 161±18c4 - 157±8c4 143±15b4 

Quercetin-3-O-glucoside + + - 519±22a1 - 422±10a2 - 346±19a3 - 362±143 - 357±113 - - 

 - + - 486±40a1 - 376±16b2 - 239±14b3 - - - - - - 

 - - - 279±15b1 - 252±10c1 - 202±16c2 - - - - - - 

Values are the means±SD of 5 plates per treatment. Values in columns followed by the same letter do not differ significantly (P>0.05); if letters differ, then 
P<0.05. Values in rows followed by the same superscript number do not differ significantly (P>0.05); if numbers differ, then P<0.05. Spontaneous revertants 
not subtracted. Average spontaneous revertants (n=40) are 141±15; AFB1 positive control 416±38. Concentration of AFB1: 20ng/plate. Concentration of 
compound indicated as mM in final volume. ⊗Cytotoxic effect. 
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noticed for both these flavonoids at ≤0.01 mM for quercetin and ≤0.08 mM for 

quercetin-3-O-glucoside. Rutin, hyperoside, isovitexin and chrysoeriol were 

found to be non-mutagenic against TA98 with/without the mutagen and 

with/without metabolic activation. 

 

DISCUSSION 

Varying effects of the flavonoids on the mutagenic behaviour of 2-AAF and 

AFB1 are noticed depending on the mutagen and the concentration of the 

specific flavonoid. Dose response effects are complex and specific responses 

of individual flavonoids against the mutagens include: (i) a typical dose 

response where the inhibitory and/or enhancing effect was directly related to 

the concentration of the flavonoid used, e.g. EGCG and quercetin; (ii) a no 

dose response effect, e.g. aspalathin and nothofagin against 2-AAF where a 

threshold was observed at the three concentrations tested; (iii) a non-typical 

dose response effect reflecting a biphasic shape, e.g. chrysoeriol yielded a 

comutagenic effect against 2-AAF at high and low concentrations with an 

antimutagenic effect at intermediate concentrations. Rutin showed strong 

protection against AFB1 at high and low concentrations while weaker protection 

was noticed at intermediate concentrations and (iv) combinations of the 

aforementioned responses, for example (+)-catechin and rutin against 2-AAF 

as well as quercetin-3-O-glucoside against AFB1 that displayed a comutagenic 

effect at the highest concentration but an antimutagenic effect at lower 

concentrations. Luteolin also displayed a dose dependent behaviour against 2-

AAF when the potent antimutagenic response changed into a comutagenic 

response at the lowest concentration evaluated.  

 

 

 

 



 181

 
The higher protection exhibited by the different rooibos tea flavonoids against 

AFB1- than 2-AAF-induced mutagenesis could be attributed to differences in 

the metabolic pathways yielding the active mutagenic intermediate. Several 

electrophilic products are derived from 2-AAF during a two-step activation 

process that involves both the microsomal and cytosolic enzymes present in 

the S9-mixture to yield N-hydroxy-2-AAF and the acetylated N-acetoxy-2-AAF 

(Heflich and Neft, 1994). In contrast, cytochrome P450 forms the single 

electrophilic AFB1-8,9-epoxide from AFB1 (Bailey and Williams, 1993; Catterall 

et al., 2003). A study by Yen and Chen (1995) on the antimutagenic effect of 

green, pouchong, oolong and black tea against five different mutagens showed 

that the highest protection was against AFB1 using TA98 and TA100. Van der 

Merwe et al. (2006) also found aqueous extracts of rooibos and honeybush to 

offer better protection against mutagenesis induced by AFB1 in TA100 than 2-

AAF-induced mutagenesis in TA98. 

 

At present little information is available on the bioavailability and metabolism of 

the rooibos flavonoids, but biotransformation could either decrease or increase 

their biological activity (Canivenc-Lavier et al., 1996; Muto et al., 2001). Since 

the liver homogenate fraction utilised in the Salmonella assay contains phase I 

and phase II drug metabolising enzymes, it is possible that the flavonoids could 

be metabolically transformed with some of the metabolites, rather than the 

parent flavonoid, mediating the actual biological response (Breinholt et al., 

2002). The primary site of flavonoid biotransformation by rat liver microsomes is 

the 3′- and 4′-position on the B-ring, resulting in major end-products with 3′,4′-

dihydroxylated B-rings (Nielsen et al., 1998; Breinholt et al., 2002). Flavonoids 
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that lack hydroxyl groups in the B-ring or have a 4’-hydroxy group are 

hydroxylated by microsomal enzymes to the corresponding catechol moiety 

(Nielsen et al., 1998). Another metabolic process that may involve the 

flavonoids is conjugation reactions that include methylation, sulfation and 

glucuronidation (Manach et al., 2004). In the present study the mutagenic 

potency of both quercetin and quercetin-3-O-glucoside were significantly 

enhanced by metabolic activation. 

 

The moderate antimutagenic effects exhibited by aspalathin and nothofagin 

and the lack of a dose response effect suggested an apparent upper threshold 

against both mutagens. It is also possible that a catechol moiety could be 

formed on the B ring during metabolism, resulting in the conversion of 

nothofagin, as well as vitexin and isovitexin, into aspalathin, orientin and 

isoorientin, respectively. This could imply that the threshold effects noticed 

could actually be attributed to the metabolites of nothofagin but this hypothesis 

would require further investigation. The cyclisation of aspalathin to a flavanone 

with further oxidation to a flavone would influence its antimutagenic potential. 

Orientin and isoorientin were more effective than their precursor molecule, 

aspalathin, against AFB1-induced mutagenesis at the highest concentration 

tested. However, the protection displayed by nothofagin and its flavone 

analogues, vitexin and isovitexin, against AFB1 were comparable while the 

flavone analogues exhibited less protection than nothofagin against 2-AAF. At 

higher concentrations isovitexin even stimulated the mutagenic response. 

These results confirm the suggestion by Edenharder et al. (1993) that the C 
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ring is of some importance but not a prerequisite for the antimutagenicity of a 

flavonoid.  

 

The hydrophilic nature of flavonoids is known to be an important determinant of 

its antimutagenic function (Edenharder and Tang, 1997; Francis et al., 1989). 

The two major determinants of the hydrophilic nature of flavonoids are the 

hydroxylation status and the presence and position of a sugar moiety. Huang et 

al. (1983) has linked an increase in the number of phenolic hydroxyl groups of a 

flavonoid to an increased antimutagenic activity against benzo[a]-pyrene and 

TA100, while Edenharder et al. (1993) postulated that the increase in the 

number of hydroxyl groups and the subsequent increased polarity reduced the 

antimutagenic potential in the case of TA98 and IQ-induced mutagenesis. The 

number of hydroxyl groups could therefore either enhance or decrease the 

protective effect depending on the flavonoid subgroup and the type of mutagen 

used. Aspalathin, orientin and isoorientin with a catechol moiety as the B ring, 

were more effective inhibitors of 2-AAF-induced mutagenesis than their C4-

monohydroxylated counterparts nothofagin, vitexin and isovitexin. In the case of 

AFB1, however, nothofagin was a more efficient antimutagen than aspalathin 

while the flavone analoques displayed similar protective properties. Amongst 

the flavanols investigated, (+)-catechin exhibited a far lower protective effect 

against AFB1- and 2-AAF-induced mutagenesis when compared to EGCG that 

has a trihydroxy arrangement on the B ring. Methyl etherification of primarily the 

3’-hydroxyl groups, catalyzed by catechol-O-methyl transferase (COMT) 

(Manach et al., 2004) decrease the polarity and had varying effects on 

mutagenesis. O-Methylation of the C3΄-OH of luteolin, yielding chrysoeriol, 
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resulted in a significant to a marked decrease in protection against AFB1. 

Against 2-AAF it exhibited a significantly lower protective effect, becoming 

comutagenic again at higher concentration levels. Methylation of luteolin at the 

C4´-OH group yields the structural isomer of chrysoeriol viz., diosmetin (3’,5,7-

trihydroxy-4’-methoxyflavone) which also exhibited a comutagenic response 

when using IQ as a mutagen against TA98 (Edenharder et al., 1997).  

 

Glycosylation at the A ring decreased the antimutagenic activity as seen when 

comparing the responses of orientin and isoorientin with their aglycone luteolin. 

This decrease in protection could be attributed to steric hindrance or an 

increased polarity resulting in the flavonoid being prevalent in a different cellular 

compartment than the activated mutagen. The relative position of the sugar 

moiety at C6 or C8 seems not important as a similar degree of protection was 

displayed by both isomers against AFB1 and 2-AAF. However, on comparing 

vitexin and isovitexin, the C6 and C8 position for the sugar moiety markedly 

affected protective effects as isovitexin displayed a comutagenic effect against 

2-AAF while exhibiting a stronger antimutagenic effect against AFB1 at a low 

concentration. The degree of glycosylation of the C3-OH interfered in the 

mutagenic activity of the flavonol quercetin and the decrease of mutagenic 

activity was more pronounced against AFB1. The mono-3-O-glucoside of 

quercetin still exhibited a mutagenic effect but to a lesser extent than the 

aglycone quercetin. The presence of a 3-O-galactose (hyperoside) or a 3-O-

rutinose (rutin) completely inhibited the mutagenic effect to display an 

antimutagenic effect. This effect was less pronounced when the mutagen was 

2-AAF. Francis et al. (1989) also found that rutin exhibited better protection 
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against AFB1 than quercetin. It appeared as if the modulation of mutagenesis 

depended, apart from the kind of mutagen, on the concentrations of the 

flavonoid, i.e. at high concentration levels, the antimutagenic activity was 

masked by a mutagenic response. Quercetin and quercetin-3-O-glucoside 

enhanced the mutagenic response of 2-AAF by acting as either a direct 

mutagen, promutagen or comutagen. The former two actions were displayed 

against AFB1 as well.  

 

The mutagenic properties of flavones and flavonols was suggested to be due to 

the interaction with DNA as the C2,C3-double bond ensured a planar structure 

that facilitated intercalation (Webb and Ebeler, 2004). Another prerequisite was 

a C4’-OH on the B-ring to stabilize the binding between flavonoid and DNA by 

hydrogen bonding. Weak intercalation was observed when stabilization was 

due to hydrogen bonding of the conjugated glucose. 2-AAF is an intercalating 

mutagen (Mortelmans and Zeiger, 2000) when using tester strain TA98 and it 

was thought that the comutagenic or mutagenic responses of the flavonoids 

could be related to the observations of Webb and Ebeler (2004). Isovitexin, for 

instance, met the structural requirements described above and was 

comutagenic in TA98. However, isovitexin failed to act as promutagen or direct 

acting mutagen. Orientin was found to moderately intercalate with DNA (Webb 

and Ebeler, 2004), but acted only as an antimutagen.in the present study. The 

intercalation of flavonoids into DNA, therefore, does not appear to explain the 

comutagenic or mutagenic effects of these compounds. 

 
Aspalathin, orientin and isoorientin are known as powerful antioxidants 

(Joubert et al., 2004) with the catechol moiety for aspalathin and adding to 
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that the C3-OH-group and C2-C3 double bond as key structural requirements 

for the corresponding flavones (Rice-Evans, 2001). The structural 

requirements responsible for antioxidant and antimutagenic activity closely 

resemble each other although the relative contribution towards the 

antimutagenic activity is not clear as yet. A study with green tea catechins 

showed that their in vitro antioxidant activity in the DPPH•, superoxide radical 

anion scavenging and hydrogen peroxide scavenging assays correlated with 

their antimutagenic activity against TA102 using tert-butylhydroperoxide or 

hydrogen peroxide (Geetha et al., 2004). In this regard EGCG is known to be 

to be an efficient antioxidant (Hu and Kitts, 2001) as well as antimutagen. 

Edenharder and Grünhage (2003) assayed flavonoids like fisetin, rutin, 

luteolin, quercetin and isoquercitrin to name a few, with DPPH• and in the 

Salmonella strain TA102 with peroxide mutagens CHP and BHP. Their 

conclusion also was that the antimutagenic activities of flavonoids against the 

peroxide mutagens are mainly caused by radical scavenging. Hatch et al. 

(2000), however, after having statistically compared the activities of 39 

diverse flavonoids from a database, concluded that the antioxidant or radical 

scavenging properties of the flavonoids are probably not involved in the 

inhibition of mutagenesis. 

 

A similar trend was noticed in the present study where the antimutagenic 

potency of the major rooibos flavonoids did not correlate with their potent 

antioxidant properties. Aspalathin was an efficient antioxidant (Joubert et al., 

2004), while it was not an efficient antimutagen. Luteolin and chrysoeriol were 

the most effective antimutagenic rooibos flavonoids with similar inhibitory 
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effects to that of EGCG. Luteolin also exhibited a far better protective effect 

than (+)-catechin, which is in agreement with studies conducted by Choi et al. 

(1994), but luteolin was a poor DPPH• scavenger (Hirano et al., 2001) 

although it was more effective than EGCG in inhibiting LDL oxidation (Hirano 

et al., 2001). As the levels of luteolin and chrysoeriol are extremely low in 

unfermented and fermented rooibos extracts (Bramati et al. 2003, 2002 ) their 

contribution towards the antimutagenic properties of rooibos, can not yet be 

defined. Studies are currently in progress to characterise the antimutagenic 

principles responsible for the antimutagenic properties of rooibos. 

 

The underlying mechanisms involved in the antimutagenic behaviour are not 

known at present but could be related to a critical balance between different 

processes involving the metabolism of the specific flavonoid as well as the 

stabilisation of and/or interference with metabolic enzymes involved in 

carcinogen metabolism.  
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSIONS 

 

Bioactivity-guided fractionation was used to identify the most potent antioxidant 

and antimutagenic fractions from unfermented rooibos (Aspalathus linearis), as 

well as the bioactive principles for the most potent antioxidant fractions. The 

Salmonella mutagenicity test using tester strain TA98 and metabolically activated 

2-acetoaminofluorene was used to assess the antimutagenic potential of the 

different extracts and fractions, while the antioxidant potency was assessed by two 

different in vitro assays, i.e. the inhibition of Fe(II) induced microsomal lipid 

peroxidation and the scavenging of the 2,2'-azino-bis(3-ethylbenzthiazoline-6-

sulfonic acid) (ABTS) radical cation. 

 

The methanol extract of unfermented rooibos exhibited higher antimutagenic and 

antioxidant activity than the chloroform extract. A decrease in protection against 2-

AAF induced mutagenesis was observed with the less polar XAD fractions.  

 

Successive fractionation of the two XAD fractions most active in the ABTS•+ assay 

led to both aspalathin and nothofagin being isolated for the first time to a purity of 

>95%. 

 

Thirteen flavonoids of rooibos were compared in the two antioxidant assays as 

mentioned vide infra as well as a metal chelating assay to compare structural 

 

 

 

 



 194

activities of the dihydrochalcones aspalathin and nothofagin, their flavone 

analogues orientin and isoorientin (from the precursor aspalathin) and vitexin and 

isovitexin from nothofagin, the flavone aglycones luteolin and chrysoeriol as well as 

four flavonols from rooibos, i.e. quercetin, isoquercitrin (quercetin-3-O-glucoside), 

hyperoside (quercetin-3-O-galactoside) and rutin (quercetin-3-O-rutinoside). The 

flavanol (+)-catechin was also included while epigallocatechin gallate (EGCG), the 

major active principle from Camellia sinensis was used as benchmark.  

 

Aspalathin, the dihydrochalcone unique to rooibos, was a very efficient inhibitor of 

lipid peroxidation and scavenger of ABTS•+, while nothofagin was equipotent to 

aspalathin in the ABTS•+ assay, but had the lowest inhibitory effect (highest IC50 

value) of all the flavonoids tested in the lipid peroxidation assay. Neither aspalathin 

nor nothofagin however responded in the metal chelating assay. Orientin and 

isoorientin had lower IC50 values for both antioxidant assays than vitexin and 

isovitexin. Both the 3′,4′-dihydroxy flavones responded in the metal chelation 

assay, while the 3′-monohydroxy flavones did not. The introduction of sugar 

moieties on the flavonol C3-OH reduced the efficacy of quercetin in both assays, 

rendering isoquercitrin and hyperoside the weakest inhibitor of the flavonols in the 

ABTS•+ and lipid peroxidation assays respectively. The order of increasing IC50 

values amongst the monomeric rooibos flavonoid aglycone for both the lipid 

peroxidation and ABTS•+ assays, would be quercetin>(+)catechin>chrysoeriol> 

luteolin.  
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The thirteen flavonoids of rooibos named above were also investigated in the 

Salmonella typhimurium mutagenicity assay, again using EGCG as benchmark. 

Strains TA98 and TA100 utilizing 2-acetamido-fluorene (2-AAF) and aflatoxin B1 

(AFB1) respectively, were used. Mutagenesis of flavonoids was also investigated in 

the absence of the diagnostic mutagen, with and without metabolic activation. The 

dose response effects obtained were concentration dependent and mutagen 

specific and suggested antimutagenic, comutagenic, promutagenic or mutagenic 

behaviour.  

 

Neither aspalathin nor nothofagin displayed potent antimutagenic properties 

against both the mutagens evaluated while luteolin was the most effective 

antimutagen. The antimutagenic activity of orientin and isoorientin, the oxidation 

products of aspalathin, was either increased or decreased to that of aspalathin 

depending on the concentration and the specific mutagen used. The antimutagenic 

behaviour of rooibos could not be solely attributed to any of these monomeric 

flavonoid constituents. 

 

To conclude: 

1. There appears to be no link between the antioxidant and antimutagenic 

activities of the major rooibos flavonoids. 

2. Aspalathin, the flavonoid unique to rooibos and occurring in large quantities 

in unfermented rooibos, was shown to be the major contributor to 

antioxidant activity in quantity and potency. As antioxidant, aspalathin is 
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equipotent to quercetin and the most active flavonoid of Camellia sinensis, 

epigallocatechin gallate (EGCG). However, aspalathin demonstrated only 

moderate antimutagenic behaviour against both the mutagens evaluated 

and it most probably contributes towards the antimutagenic property of 

rooibos due to its relatively higher concentration.  

 

3. Luteolin displayed the strongest antimutagenic activity of the known rooibos 

flavonoids while it did not show strong antioxidant properties in ABTS•+ 

scavenging and microsomal lipid peroxidation assays. It also occurs in small 

quantities in the more polar fractions of unfermented rooibos. 

 

4. Nothofagin displayed radical scavenging properties similar to aspalathin but 

was the least potent rooibos flavonoid in the antiperoxidative ability. It also 

displayed moderate antimutagenicity against both the mutagens evaluated. 

 

Both the major dihydrochalcones of rooibos play an important role in the radical 

scavenging ability of rooibos, while aspalathin is the major contributor in the 

inhibition of Fe(II)-induced lipid peroxidation. Fermentation with a subsequent 

decrease in aspalathin and nothofagin levels could impair this very important 

property of rooibos. 
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Possible future investigations 

1. Fractionation of the first, non-polar fraction of the XAD column to isolate and 

identity a possible active antimutagenic compound utilizing activity-guided 

fractionation. 

2. An investigation into a possible synergism between aspalathin and its two 

flavone isomers, i.e. isoorientin and orientin with regards to enhancing 

antioxidant or antimutagenic activities. Orientin and isoorientin are abundant 

in unfermented rooibos and occur in quantities similar to aspalathin in 

fermented rooibos and both can be considered moderate antioxidants and 

antimutagens. 

3. A disadvantage of the Fe(II)-induced lipid peroxidation assay as used in this 

investigation was that it did not distinguish between the radical scavenging 

nor metal chelating function of the flavonoid as the mechanism to inhibit lipid 

peroxidation, i.e. the role of the flavonoid could not be defined as that of 

radical chain breaker nor as preventor of initiation. The catechol moiety in 

the B ring as well as the 4-keto-C6′-OH structure renders aspalathin a 

potential potent metal ion chelator but this property still needs further 

investigation. 
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ADDENDUM 3A 
Background to IC50 values as calculated by Prism Version 5.00 for Windows; 
GraphPad Software, adapted from the on-line manual to the software. 
 

All schematic representations of graphs, except the first one that was drawn by 

myself, are from the GraphPad Software manual. 

 

A dose-response curve represents a concentration-dependent response and is 

loosely used to describe in vitro experiments where you apply a known 

concentration of drugs.  

 

The IC50 is defined as the concentration of inhibitor (antioxidant) that provokes a 

response halfway between the baseline (bottom) and maximum response (top) 

(figure 3G.1). It is impossible to define the IC50 without having defined the 
baseline and maximum response first. (Note: inhibitory equations run downhill 

with a negative slope to fit the IC50; stimulation equations run uphill to fit the EC50. 

There is no fundamental difference in the calculations, but the graphs available 

were for EC50 calculations.) 

 

 

 

 

 

 

 

 

 

 

Figure 3G.1  Sigmoidal response curve to show calculation of EC50.
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The baseline response need not be 0%; neither the maximum 100% (figure 3G.2). 

 

 

 

 

 

 

 

 

Figure 3G.2 Sigmoidal response curve showing bottom plateau at about 

22% percent response of control. 

 

The relationship between dose and response in a system following mass-action 

kinetics is hyperbolic, not sigmoidal. The dose-response curve becomes sigmoidal 

only when the response is plotted against the logarithm of the dose. 

 

The model (from the Prism GraphPad Software) used to fit the data of this study, 

was ( )( )[ ]HillslopexLogEC
BottomTopBottomy *50101

)(
−+

−
+= . This dose-response model has four 

parameters that need to be met: the bottom plateau, the top plateau, the IC50 and 

the slope factor.  which was not constrained to a standard value in this case. The 

main goal of fitting the dose-response curve is to determine the best-fit value of the 

IC50 on all four parameters. If the top and bottom plateaus are not well defined, or if 

the hill slope is too steep, the IC50 will be uncertain with wide lower and upper 

confidence levels (Manual to Prism 5.00 for Windows; GraphPad Software). These 

problems can be solved by increasing the number of points to analyze. 

 

If the model fitted the data points, the software calculates the logIC50 value and 

also gives the corresponding IC50 value. A standard error value is only shown for 

logIC50 values, and not IC50 values, on the results sheet. A typical results sheet is 

shown below (figure 3G.3).  
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Figure 3G.3  Typical results sheet generated by GraphPad Software. 

 

The standard error is derived from the curve fitting process, and the fitted 

parameter (X variable) is log EC50, not EC50. Similarly statistical analyses are 

performed on the logIC50 values.  

 

The software was however able to determine IC50 values with well defined lower 

and upper 95% confidence intervals. This confidence interval represents a range of 

concentrations within which the IC50 will be found with 95% certainty. Significant 

differences shown for log IC50 values may be applied to the IC50 values (Dr Martin 

Kidd, Statistical Consultant, University of Stellenbosch; personal communication). 

When computing IC50 values for a range of points, the customary mean value ± 

standard deviation can therefore not be used. The correct and most reader-friendly 

way to present these values would be to report the computed IC50 value showing 

the upper and lower levels of the 95% confidence interval with the R2 value to 

show the degree of fit of the points to the model.  

 

The hillslope indicates the kinetics of an inhibition reaction. Sigmoidal dose 

response curve with different hill slopes are shown in Figure 3G.4.  
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Figure 3G.4 Sigmoidal dose response curves with different hill slopes. 

 

Trolox is a well-known non-phenolic antioxidant and was tested in this study in both 

the antioxidant assays in order to obtain a reference IC50 value (data not shown). It 

was noticeable that in both assays for the ranges tested (0.8 – 0.0008 mM and 

20.2 - 2.53 µM final concentration in the reaction volume for the lipid peroxidation 

and ABTS•+ assays, respectively) the relationship between % inhibition and 

concentration followed a linear relationship whereas that of a typical dose-

response curve is hyperbolic. It was therefore not possible to obtain a sigmoidal 

dose-response curve for the Trolox data obtained with the GraphPad Software and 

the IC50 values quoted in the text was calculated from the linear relationship. 

 

 

 

 

 



203 

Addendum 3B.    Scanned image of silica 60 TLC glass plate developed in mobile phase comprising of 
CHCl3:MeOH:H2O:HAc:1100:720:160:20 to compare the Rf values of major rooibos flavonoids 
with that of epigallocatechin gallate (EGCG) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

que hyp rut i-q not i-vit vit asp or i-or lut chr cat egcg

Key: 
que: quercetin not: nothofagin or: orientin cat: catechin
hyp: hyperoside i-vit: isovitexin i-or: iso-orientin egcg: epigallocatechin
rut: rutin vit: vitexin lut: luteolin gallate (from
i -q : iso-quercitrin asp: aspalathin chr: chrysoeriol Camellia sinensis)

que hyp rut i-q not i-vit vit asp or i-or lut chr cat egcg

Key: 
que: quercetin not: nothofagin or: orientin cat: catechin
hyp: hyperoside i-vit: isovitexin i-or: iso-orientin egcg: epigallocatechin
rut: rutin vit: vitexin lut: luteolin gallate (from
i -q : iso-quercitrin asp: aspalathin chr: chrysoeriol Camellia sinensis)

que hyp rut i-q not i-vit vit asp or i-or lut chr cat egcgque hyp rut i-q not i-vit vit asp or i-or lut chr cat egcgqueque hyphyp rutrut i-qi-q notnot i-viti-vit vitvit aspasp oror i-or i-or lut lut chrchr catcat egcgegcg

Key: 
que: quercetin not: nothofagin or: orientin cat: catechin
hyp: hyperoside i-vit: isovitexin i-or: iso-orientin egcg: epigallocatechin
rut: rutin vit: vitexin lut: luteolin gallate (from
i -q : iso-quercitrin asp: aspalathin chr: chrysoeriol Camellia sinensis)
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Addendum 3C.  HPLC chromatogram showing purity of aspalathin at λ = 288 nm 
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Addendum 3D. LCMS spectra of aspalathin. 

LCMS: Aspalathin (Promec); C18; 50% ACN 100µl/min..
09-Apr-2002
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Addendum 3E1.  13C NMR spectrum of aspalathin (4.3 mg in DMSO-d6, 24576 scans) 
(ppm)
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Addendum 3E2.  1H NMR spectrum of aspalathin (4.3 mg in DMSO-d6, 16 scans) 
(ppm)
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Addendum 3F.  HPLC chromatogram showing purity of nothofagin at λ = 288 nm 
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Addendum 3G.  LCMS spectra of nothofagin. 

Notofagin in 50% ACN.
09-Apr-2002
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 ADDENDUM 4A.  Sigmoidal dose response curves (variable slope) of aspalathin 
and nothofagin in the A. lipid peroxidation and B. ABTS•+ 
assays. 

 

A B 

A B 

Note the absence of the upper plateau for 
nothofagin. This caused a wide 95% 
confidence interval for the IC50 value. 

 

 

 

 


	TITLE PAGE

	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	ABBREVIATIONS

	CHAPTER 1 INTRODUCTION
	REFERENCES

	CHAPTER 2 LITERATURE REVIEW
	REFERENCES

	CHAPTER 3 BIOGUIDED FRACTIONATION AND ISOLATION OF THETWO MAJOR DIHYDROCHALCONES FROMUNFERMENTED ROOIBOS (Aspalathus linearis)
	REFERENCES
	REFERENCES

	CHAPTER 4 ANTIOXIDANT ACTIVITY OF THE MAJOR FLAVONOIDS OFROOIBOS (Aspalathus linearis)
	REFERENCES

	CHAPTER 5 ANTIMUTAGENIC ACTIVITY OF THE MAJOR FLAVONOIDS OFROOIBOS (Aspalathus linearis)
	REFERENCES

	ADDENDA



