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ABSTRACT 

To asses the influence of mineral additions (MA) at early age and on hardened performance of fluid 

cement based pastes, an experimental program was carried out. The design of the mixtures correspond to 

paste compositions used in self compacting concretes of moderated strength, as those employed for 

architectural applications. Two types of fillers (limestone and quartzite) have been used to substitute 50 % 

of cement in a reference paste, with and without a high range water reducing admixture (HRWRA). Then, 

three active MA (microsilica, nanosilica and metakaolin) were combined. A physical and mechanical 

characterization in the hardened state showed that the inclusion of MA to a cement-filler mixture can 

moderately improve the hardened performance of the pastes. Air and water cured samples were tested in 

order to evaluate the influence of curing conditions. 

At early ages (24 hours), in-situ temperature and ultrasonic pulse velocity (UPV) were monitored on 

samples with limestone filler, combined with the three active MA, to study the reaction process and 

microstructure development, respectively. The reaction degree of the samples under study during the first 

24 hours was related to the microstructure development. Evaporation, drying shrinkage and cracking at 

early age were also monitored, considering an air flow of 3 m/s on the exposed sample surface. Some 

relations were described linking cracking risks at early ages with the chemical and physical phenomena 

involved at early age microstructure evolution. 

Cement paste; Mineral additions; Early age properties; Monitoring; UPV; Drying 

Shrinkage; Cracking 

 

1. Introduction 

Mineral additions (MA) have become an essential part of contemporary cement based 

materials and are considered to be one of the main components of the mixtures, together 

with cement, water, admixtures and aggregates [1, 2]. The use of MA in cement based 

materials can be explained considering different material design strategies, among 

which, the most important are: 

a. Cement substitution. It produces cheaper compounds, because MA with lower 

energy consumption are used, substituting a proportion of cement. As a result, 

the material generates a lower ecological impact due to the reduction of 

embodied CO2. However, mechanical performance achieved is limited and, 

under certain conditions, durability can be compromised. 

b. Performance improvement, mainly mechanical, in the hardened state. High 

performance and high strength materials can be obtained. Reactive MA are used 
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in order to modify cement paste microstructure. Physical and mechanical 

properties of the mixtures, such as permeability or strength, can be improved. 

On the other hand, an increase of heat production and a drop of pH can occur, 

because additions react with portlandite from hydrated cement, due to their 

hydraulic or pozzolanic ability, producing calcium silicate hydrates (CSH). 

c. Increase of volume paste. It is used to obtain self compacting mixtures. The 

easiness of material placement can also be considered as a source of energy and 

ecological impact reduction, with a hardened performance similar to 

conventional mixtures. Large amounts of MA, up to 100 % of cement weight, as 

industrial by-products or natural fillers, are commonly used. 

In all cases, the mixture composition and the amount of MA is determined by a 

compromise among the required properties of the material at the different stages of the 

development process. 

According to the material microstructure and performance during time, the evolution of 

cement based materials can be divided in four different stages: mixing and fresh state, 

early ages (corresponding to setting and initial hardening, up to 24 first hours after 

mixing), short term hardened state and long term. 

A performed-based approach to the subject has been traditionally used, considering that 

the material performance at any stage depends on the proper development at the 

previous ones. The main technological features of the material performance are well 

defined in three of the four stages: workability in the fresh state, mechanical properties 

in short term hardened state and durability in the long term. 

From this approach, early age cement based materials have usually been considered as a 

transitory state between fresh and hardened state. Most of the research has focused on 

the setting process and the curing conditions, considering two limits associated to 

technological performance: initial setting time, corresponding to the handling limit of 

fresh mixture, and final setting time, defining the moment when the material can be 

considered hardened. 

Hardened performance (short and long term) depends on the microstructural 

development during early ages, as early age is a former stage in the material evolution 

[3]. As a result, a new approach considers cement based materials evolution as a time-

dependent sequential process and, therefore, material development at early ages is a key 

point of the process, because it enables the material performance in the following 

stages. A better understanding of early ages would allow for a better performance in the 

hardened state and the long term. 

At early ages, a combination of chemical and physical processes take place in cement 

based materials, producing a change of the material microstructure, going from a liquid 

dispersion/solution to a pseudo-rigid solid. As a consequence, an evolution in material 

performance takes place. Two mechanisms have been described to be involved in the 

early age microstructure evolution [4]: grain connection (related to mechanical 

percolation threshold and elastic modulus) and pore filling (related to compressive 

strength). 

Early age is considered to last the first 24 hours after casting. A different behaviour 

regarding fresh and hardened states has been described. Depending on the effectiveness 

of the process, the expected hardened performance will be achieved. 

MA have been reported to modify the material evolution at early ages through two main 

mechanisms: facilitating the nucleation of hydrated cement products (fillers and non-

active MA [5-8]) and reacting with portlandite (active MA [8-17]), producing calcium 

silicate hydrates (CSH) and aluminates [9-11, 18]. Usually, MA are blended with 
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cement constituting a binary mixture, although some research on ternary mixtures, 

combining a filler and an active addition have been described [18]. 

The environmental conditions during early ages can also modify the cement hydration 

and microstructure development. The chemical process requires certain temperature and 

humidity conditions which can be compromised by the heat and water interchanges that 

occur between the material and the environment. The effect of the environmental 

conditions at early ages involves changes on hydration kinetics and changes on porosity 

structure and shrinkage [19]. If the material has displacement constraints, early age 

cracking due to shrinkage can occur, producing a permanent damage and compromising 

durability [20-23]. 

A proper characterization of cement based materials at early ages requires experimental 

techniques different to the ones commonly used for fresh or hardened states. Monitoring 

several parameters, further than just determining setting times, has been proposed to 

assess the material evolution during early ages [19, 24]. The chemical process can be 

estimated measuring the heat production, because cement hydration is an exothermal 

reaction [5, 25]. Three experimental methods are used to determine heat production: 

isothermal and adiabatic tests and in-situ temperature measurement. Isothermal 

calorimetry measures the heat released by a small sample, liberated to the environment 

through a heat flux meter [4, 5, 13], while adiabatic calorimetry evaluates the heat 

produced by an insulated sample through the sample temperature increase [5, 8, 11, 26-

27]. In both techniques, a fine value of heat production rate is obtained, but the sample 

conditions are altered and cement hydration - a temperature dependent process [5] - can 

be modified. 

In situ temperature records the internal temperature of a larger sample [26]. The main 

advantages are: the simplicity of the measurement; the sample conditions are not 

modified; and that the temperature variations are recorded at the same time as the 

hydration happens. On the other hand, the heat production rate can not be directly 

obtained, although a heat reaction degree, similar to that obtained in isothermal 

calorimetry [5] can be calculated, because the heat released is proportional to the 

temperature difference between the sample and the environment. 

The changes on material microstructure can be estimated monitoring ultrasonic pulse 

velocity propagation (UPV) [4, 26-27]. UPV evolution depends on hydration process 

and can be related to physical changes and mechanical performance [29-31]. 

In this paper, an experimental program on early age cement based pastes , combining 

MA (fillers and active additions), is presented, monitoring key parameters, such as in-

situ temperature, UPV, shrinkage, evaporation and cracking, and a characterization in 

the hardened state of fluid cement based pastes was done. The design of fluid mixtures 

correspond to paste compositions used in self compacting concretes of moderated 

strength, as those employed for architectural applications. 

The aim of this study was to identify the relations between the inclusion of different 

types and simple combinations of MA (binary and ternary mixtures) and the measured 

properties monitored on samples of cement based pastes. The study was designed in two 

stages to find: firstly, the relationships among early age properties evolution with regard 

to time, and secondly, between early age properties and hardened performance of the 

pastes under study. 

The simultaneous monitoring of these parameters could allow a better understanding of 

the relations among the mechanisms involved in the hydration, microstructure evolution 

and cracking at early ages, since: temperature changes are related to hydration and 

chemical reaction processes; UPV is associated to microstructure development and 

drying shrinkage can be linked to early age cracking. 
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2. Experimental Program.  

2.1 Materials 

In this study, ten different fluid cement pastes were tested. The compositions of the 

pastes are summarized in Table 1. A reference mixture, called REF, with a cement type 

CEM I 42,5 R (according to UNE-EN 197-1 [32]), supplied by Cementos Portland 

Valderrivas, and a water to cement ratio (w/c) of 0.36 was manufactured. In order to 

increase fluidity, the reference mixture was modified with a high range water reducing 

admixture (HRWRA), Glenium® ACE 425 manufactured by BASF, and it was 

designated REFG. 

Then, two fillers were added to the REFG composition, substituting 50 % of the 

cement: a limestone filler, Betocarb® P1-DA (85 ±5 % under 63 ), supplied by Omya 

Clariana SL, and a siliceous filler (105-115 ), manufactured by Gomez Vallejo S.A. 

Particle size distributions of both fillers are plotted in Figure 1. These mixtures are 

called CA and SI , respectively, and the water to fines content ratio (w/f) remained at 

0.36. 

In a third stage, three active mineral additions were included to the mixtures, 

substituting part of the filler: a densified microsilica (MS), Meyco MS 610, and an 

amorphous nanosilica suspension (NS), Meyco MS 685, both supplied by BASF 

Construction Chemicals España S.L., and a metakaolin (MK), Optipozz (average 

diameter 1.35 ), manufactured by Burgess Pigment Company and supplied by Omya 

Clariana S.L. 

The chemical composition of the cement and the additions used, are presented in Table 

2. The values correspond to nominal compositions, according to manufacturers, except 

the microsilica and the metakaolin, which were obtained through EDAX analyses. The 

water of the HRWRA and the nanosilica suspension was discounted from the liquid 

water added to the mixture and the w/f remained at 0.36 in all mixtures (Table 1). In all 

the mixtures except the cement paste without HRWRA, the spread measured using the 

flowing table test (standard UNE-EN 1015–3 [33]) was over 300 mm. 

2.2 Experimental Methods 

Preparation of the compositions was done in two stages: dry components were mixed 

first and later, water and HRWRA were added. Due to the fineness of the limestone 

filler, and in order to obtain homogeneous mixtures, the mixing time was extended to 4 

minutes in all cases. 

2.2.1 Hardened state 

A physical and mechanical characterization of the hardened pastes was carried out on 

standard 40 x 40 x 160 mm paste samples (UNE-EN 196-1:2005 [34]). The specimens 

were demolded at 24 hours and two curing conditions were considered. Water was 

applied on a set of samples and cured up to day 7, and another set was air cured at 

laboratory conditions (22 ±2 ºC and 60 ± 10 % RH). 

Apparent density (Dap) and open (accessible to water) porosity (Pacc) were calculated at 

7 days, weighing dry (Wd), water saturated (Wsat) and submerged (Wsub) samples, using 

a hydrostatic balance, accordingly to Eq. 1 and Eq 2, respectively. 

 subsatdap WWWD          (Eq. 1) 
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   subsatdsatacc WWWWP          (Eq. 2) 

Compressive strength (according to UNE-EN 196-1:2005 [34]) and UPV were 

measured at 1, 7, 14 and 28 days on air cured (laboratory conditions) and water cured 

samples. In all cases, the water cured samples were taken out of the water 24 hours 

before testing. 

2.2.2 Early age temperature and UPV 

Temperature, UPV, free shrinkage and mass loss were monitored simultaneously on 

paste samples of the same batches during early ages (up to 24 hours).  

The temperature of the sample was monitored with a TESTO AG 904 thermometer, 

placed inside the sample and connected to a computer. The samples were cast in a 

plastic mould of 300 x 150 x 80 mm, and open to the environment air (laboratory 

conditions of 25-26 ºC and 50-55 % RH).  

UPV was monitored on samples cast in a plastic mould of 150 x 100 x 70 mm and with 

a PUNDIT Plus Ultrasonic device with 54 kHz ultrasonic p-wave transducers in direct 

contact with the sample through perforations on the plastic moulds (distance between 

measurement heads of 140 mm). The transducers were fixed to the mould using a hot 

melted adhesive that avoided position changes, or fresh paste leaks. 

2.2.3 Free shrinkage, mass loss and early age cracking 

Free shrinkage and mass loss during early ages, up to 24 hours, were monitored on the 

paste samples. The free shrinkage test was carried out both on samples sealed (covered 

with a plastic film) and on samples in contact with the environment where, the exposed 

surface of the sample was subject to an air flow of 3 m/s during the first 6 hours. The 

samples mass loss, corresponding to the water evaporated from the exposed surface of 

the samples under the air flow, was monitored simultaneously, placing the shrinkage 

apparatus on a balance connected to a computer. The experimental setup for shrinkage 

and mass loss monitoring can be observed in Figure 3. 

The shrinkage apparatus consisted on a steel tray with internal dimensions of 500 x 100 

x 50 mm and an electronic LVDT connected to a digital register, which recorded 

displacement measurements (0.01 mm) every 10 minutes during the first 24 hours. 

Further descriptions have previously been published [23]. 

Early age cracking potential was measured using a double restrained slab test. The test 

setup (Figure 4) consisted of a steel tray with internal dimensions of 390 x 390 x 40 

mm. To the base of the tray, galvanized steel U shaped pieces (30 mm width, 30 mm 

wings, 200 mm length) were screwed, at 20 mm of the edge and remained inside the 

sample, acting as anchorages that restrained displacement in the horizontal plane 

(producing a bidirectional restraint). 

The pastes were cast in the mold and subjected to an air flow of 3 m/s during the first 6 

hours, in order to evaporate all the water exuded from the exposed surface of the slab, 

maximizing the risk of cracking during early ages [21-23]. The samples were demolded 

after 24 hours and stored in laboratory conditions (22 ±2 ºC and 60 ± 10 % RH) until 

crack measurement at 7 days, allowing free shrinkage of the samples. This time period 

was selected due to the difficulty to measure all the cracks when the slab surface was 

still wet, although the main cracks were clearly visible after a few hours. As the slabs 

were demolded at 24 hours, the double displacement restrain system did only apply 

during this period. Crack length and width were measured using a ruler and a 

comparison scale respectively. 
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3. Experimental results and analysis 

The experimental program assessed the fresh and hardened performance of the 

reference mixtures and those with MA. A characterization of physical (apparent density, 

open porosity) and mechanical properties (compressive strength and UPV at several 

ages) in the hardened state was managed on samples with limestone and siliceous 

fillers, combined with microsilica (MS), nanosilica (NS) and metakaolin (MK). 

At early ages, temperature, UPV, shrinkage, mass loss and cracking were analysed only 

on samples with limestone. Samples with siliceous filler were not tested at early ages, 

because siliceous filler does not significantly modify early age evolution of cement 

pastes, as has been described [5, 7]. 
 

3.1  Hardened performance and mechanical characterization 

3.1.1 Apparent density and open porosity 

Apparent density and open (water accessible) porosity at 7 days of the reference 

mixtures (with and without HRWRA) and those with MA (limestone and siliceous 

fillers combined with active MA) are summarised in Table 3. These parameters were 

obtained according to Eq. 1 and Eq. 2. Apparent density is very similar for all batches. 

The mixtures with filler showed a decrease of the apparent density compared to 

reference compositions, due to the lower density of the fillers with regard to cement and 

the increase of porosity. The inclusion of active MA slightly decreased density. The 

inclusion of MS and MK moderates the open porosity while the use of NS produced the 

opposite effect. 

3.1.2 Mechanical performance 

Table 4 summarises compressive strength and UPV at 28 days, considering both water 

and air curing. Air curing resulted in a significantly lower compressive strength, 

especially on the reference mixtures, when compared to water cured samples. Mixtures 

with siliceous filler also showed a decrease in strength, while the reduction was lower 

for samples with limestone filler. The mixture with limestone filler and NS slightly 

increased compressive strength when air curing was applied. 

UPV at 28 days is also affected by the curing method applied. For all cases considered 

in this study, the samples cured in water showed larger values of UPV than the air cured 

ones.  

The evolution of compressive strength and UPV at 1, 7, 14 and 28 days of the mixtures 

under study are plotted in Figures 4and 5, respectively. The continue lines correspond to 

logarithmic adjustments. Compressive strength of the reference mixtures, both with and 

without HRWRA, expectedly presented larger values (almost double) during the 1 to 28 

days period, with regard to mixtures with 50 % of filler substitution. The inclusion of 

active MA to the mixture with filler produced an improvement of 10-20 % on 

compressive strength. In fact, compressive strength reached at day 1 was between 30 

and 50 % of the values achieved at 28 days. 

UPV evolution was different depending on the filler considered. The difference between 

the reference and limestone filler samples increased with time, while the difference 

decreased in the case of the siliceous samples. 
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3.2 Early age temperature monitoring and reaction degree 

3.2.1 Early age temperature 

Temperature evolution, during early ages (up to 24 hours), is plotted in Figure 6. The 

laboratory conditions measured for each test is presented in Table 5. 

The use of a HRWRA in the reference mixture (REFG) produced a delay on the 

temperature evolution, enlarging the induction period. Due to the constant 

environmental conditions and the heat and water interchanges between the sample and 

the environment, a decrease of maximum temperature occurred, with regard to the 

reference mixture without HRWRA (REF). However, the substitution of 50 % of the 

cement by limestone filler (sample CA) shortened the delay, although the HRWRA to 

cement ratio was the same in both cases (REFG and CA). The maximum temperature of 

all the samples with limestone filler was clearly lower than the reference mixtures, 

because the amount of cement was 50 %. Mixtures with MS and NS produced thermal 

curves similar to the sample with limestone filler only, but the maximum temperature 

occurred sometime before and was lower than CA. This fact can be related to the 

pozzolanic ability of the micro and nanosilica. In the case of the mixture with 

Metakaolin, the curve was softer and the maximum temperature was lower, and it was 

delayed when compared to the other samples with limestone filler. 

3.2.2 Temperature evolution 

In all the mixtures, four stages can be defined in relation to the hydration process of the 

cement phases [5, 25]. In a first stage, an early temperature peak and, afterwards, a 

slight decrease occurred, until a minimum value was reached. This initial stage is 

commonly known as induction period and the initial peak can be related to early 

ettringite formation. In a second stage, an accelerated increase of temperature was 

measured. Thirdly, a constant increase occurred until the maximum temperature was 

reached. In both stages, fast portlandite and CSH formation governed the heat 

production, conditioned by water and space availability and stopped by water 

consumption. Finally, a slow decrease of temperature took place. A shoulder after the 

maximum value can be observed, which corresponded to the calcium aluminates 

hydration [5]. This shoulder is larger in the mixture with Metakaolin because it provides 

more aluminates to the composition (Table 2). 

3.2.3 Reaction degree (Rd,24) 

During the first 24 hours, the sample temperature was always higher than the room 

temperature (25-26 ºC), whereby the heat-flow always went from the sample to the 

environment. As the heat released by the sample is proportional to the temperature 

difference (T) during time, and the heat of the sample is produced due to the 

exothermal reactions of the hydration process, the hydration rate can be estimated as 

proportional to the integration of temperature difference. Accordingly, a reaction degree 

index (Rd, 24) can be defined as the fraction of the heat released at any point during 

testing [5]. It must be noted that the released heat includes the heat accumulated by the 

sample during the temperature rise, although it is also measured when the temperature 

decreases. In this study, the heat released has been considered at 24 hours (Eq. 3): 

   

ht

d TTtR

24

00

24,         (Eq. 3) 
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Figure 7 presents the reaction degree of the paste samples during the first 24 hours after 

mixing, calculated according to Eq. 3. An S-shaped curve was obtained for all mixtures. 

The Rd,24 parameter allows an easier comparison of the hydration evolution among the 

mixtures considered in the study, rather than in-situ temperature. From a preliminary 

analysis, it can be said that the delay of the maximum values of temperature (CAMC 

and REFG mixtures) indicates a lower reaction degree at the same age. REF paste 

reacted faster than the other samples, closely followed by CA pastes, with MS and NS 

and without MA. The main key-point thermal values are summarised in Table 5. 
 

3.3 UPV and microstructure evolution 

3.3.1 UPV monitoring 

Figure 8 plots the UPV curves during the first 24 hours. As it happened in temperature 

measurements, the inclusion of a HWRA to the reference cement paste produced a delay 

in the curve. In both cases (REF and REFG mixtures), the UPV at 24 hours was around 

3500 m/s. The inclusion of limestone filler (mixture CA) produced an UPV curve quite 

similar to the reference mixtures, although a jump can be observed at 8 hours (around 

2000 m/s) and later, at 24 hours the UPV was around 3000 m/s. Samples with active 

MA presented UPV very similar values to the CA mixture, although no jump is 

observed. 

3.3.2 UPV evolution 

As it happened when temperature was considered, four different stages of UPV 

evolution can be defined in all the mixtures under study, which can be related to the 

microstructure evolution. A first stage is governed by an unstable period during the first 

1-4 hours. The values obtained ranged from 1000 to 1600 m/s. It should be noted that 

the UPV in water is 1500 m/s, although the presence of entrained air and solid particles 

can modify wave propagation, producing UPV values on pastes smaller than 1500 m/s 

[27]. 

In a second stage, a landing or plateau with UPV values around 1600 m/s was observed 

in all samples. This phase lasted several hours (from one hour, in the case of MS, to 5 

hours, when the reference paste with HRWRA was tested). In a third stage, an 

accelerated increase of the UPV was observed, that lasted until the inflection point was 

reached (UPV values around 2000-2500 m/s and second derivative is zero). At the end, 

a stage characterized by a slow increase happened, leading later to stability. 

Figure 9 relates UPV and temperature monitored on the samples during the first 24 

hours. The maximum temperature value corresponded approximately to the inflection 

point calculated for UPV. UPV can also be related to the reaction degree index (Rd,24) 

defined in 3.2, and is plotted in Figure 10. A linear adjustment can be established for 

UPV over 1500-1600 m/s (second UPV stage) for all the samples under study, which 

corresponds to values of Rd,24 above 0.01 to 0.05, depending on the mixture 

composition. The reference mixture with HRWRA (REFG) showed a higher UPV at the 

same reaction degree than the reference mixture without HRWRA (REF). UPV values 

of samples with limestone filler were lower than reference mixtures in all cases. 

The main key-point UPV values are also summarised in Table 5. 
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3.4 Early age drying shrinkage and cracking 

Early age shrinkage of the mixtures was tested considering two conditions: covered 

with a plastic film and uncovered and subjected to an air flow of 3 m/s during the first 6 

hours.  

The covered samples did not produce any shrinkage measurement. Considering that 

autogenous shrinkage is a volume change resulting when there is no moisture transfer to 

the surrounding environment, it can be assessed that the shrinkage apparatus used did 

not record autogenous shrinkage for the mixtures under study. 

On the contrary, all the samples under the air flow shrank, reaching maximum values 

between 1.8 and 5 mm/m, as it can be observed in Figure 11. The laboratory conditions 

for each test are summarised in Table 5 present. As the shrinkage measured was related 

to air flow and, therefore, to water evaporation, it can be concluded that all the 

shrinkage measured on the samples tested was due to drying of the sample surface 

exposed to the air flow. 

3.4.1 Early age drying shrinkage evolution 

Drying shrinkage began from 1.5 to 3 hours and finished between 3-5 hours, depending 

on the mixture considered. Samples with active MA showed the maximum shrinkage, 

followed by reference mixtures. The mixture with only limestone filler registered the 

lowest drying shrinkage and the process began the latest. The reference mixture with 

HRWRA shrank 1.5 hours later than the reference mixture without admixtures. The 

main key-point shrinkage values are summarised in Table 5. 

Regarding the shape of the shrinkage curves, four stages can be identified. In a first 

stage, the pastes are in a plastic state and there is no shrinkage. In a second step, the 

shrinkage began in a fast way until a knee point (inflection point) was reached, followed 

by a third stage of slower increase until early age shrinkage ended. Afterwards, the paste 

was in a hardened state and shrinkage was almost stopped. Accordingly to the different 

phases described, early age drying shrinkage occurred during stages 2 and 3. 

3.4.2 Evaporation rate 

The mass loss of the shrinkage test samples subject to airflow was measured, placing 

the shrinkage apparatus on a balance connected to a computer. It was observed that 

shrinkage ended at 6 hours, when the air flow finished, remaining constant until 24 

hours (end of test). The evaporation rate of the samples was calculated, considering the 

area of the exposed surface, and is plotted in Figure 12. 

All the samples delayed the beginning of evaporation, as can be seen in Table 5. 

Reference mixture without HRWRA and samples with only limestone filler began to 

evaporate approximately 1 hour after placing, while in reference with HRWRA samples 

and in those with active MA, evaporation was delayed approximately half an hour. The 

delay in the evaporation start corresponded to the initial bleeding time of the sample, 

which in turn depends on water movements and settlement of the fresh pastes. As the 

airflow produced the evaporation of the bleeding water when it appears and that no 

water was visible on the sample exposed surface, it can be assumed that the evaporation 

rate corresponded to the bleeding rate of each mixture. A linear adjustment was 

calculated with the evaporation measurements (Figure 12), in order to estimate an 

average evaporation rate (Table 5). The mixtures with only limestone filler and those 

with MS showed the lowest evaporation rate. 
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3.4.3 Early age drying shrinkage vs. Evaporation rate 

Shrinkage can be related to evaporation rate during shrinkage stages 2 and 3, as shown 

in Figure 13. A linear adjustment can be established during this period, as both 

parameters must be related [19]. The sample with MS presented the maximum slope of 

the curve (higher shrinkage with lower evaporation rate). Reference mixtures and those 

with NS and MK had very similar slope (values around 4.5-5) and the samples with 

only limestone filler produced the softer slope. 

In all the cases, some evaporation occurred before shrinkage began (during the plastic 

state of the samples). According to this, it can be said that although drying shrinkage 

depends on water evaporation, the combination with another phenomenon must occur in 

the paste at early ages which produces shrinkage. This phenomenon corresponds to 

paste stiffening due to the microstructure development and the change from a plastic 

state (viscous behaviour) to a pseudo-rigid state (visco-elastic behaviour) [4]. 

3.4.4 Early age drying shrinkage vs. Reaction degree (Rd,24) 

Figure 14 plots early age drying shrinkage related to Rd,24. In all cases, shrinkage began 

for Rd between 0.02 and 0.05, while the hydration was still incipient. Most of the 

shrinkage happened during the first 4 hours, although the end occurred between 4 and 6 

hours (Rd,24 values between 0.1 and 0.2). 

Reference mixtures (REF and REFG) shrank at a similar Rd,24, although it corresponded 

to an hour of delay for samples with HRWRA when time was considered. This results 

confirms the affirmation that Rd,24 is a better parameter than time alone for comparing 

with other early age parameters. 

Samples with MS and MK had shrinkage and Rd,24 values similar to reference mixture 

with HRWRA (REFG). Sample with NS needed higher Rd,24 values although maximum 

shrinkage was similar to MS and MK. Again, the mixture with only limestone filler 

(CA) had a higher Rd,24 at shrinkage start. 

3.4.5 Early age cracking 

Total early age cracked area measured on slab samples subjected to an air flow of 3 m/s 

on the sample exposed surface are summarised in Table 5. Maximum measured crack 

lengths and cracking areas are compared to the reference mixture values in Figure 15. 

This test assesses the cracking sensitivity of the mixtures under study and, as a result, 

cracking risk can be estimated. Results obtained indicated that all studied batches 

cracked under the applied test conditions. The first cracks were clearly visible during 

the first ages (2-4 hours). 

The use of a HRWRA (REFG) did not modify the samples cracked area, though the 

crack length was three times larger. Slabs with limestone filler only (CA) and with MS 

and NS noticeably reduced both parameters. On the contrary, the mixture with MK 

showed a double cracked area than the reference mixture. 

Figure 16 shows the cracked surfaces of the samples after the test. The cracks were ink 

marked to obtain a visible cracking map of the exposed surface of the tested slabs. 

Reference mixture without admixtures (REF) presented one main crack, along the 

surface, from side to side. The sample with HRWRA (REFG) had a mapped cracking 

pattern, with several interconnected cracks crossing the surface. The mixtures with MA 

had a rather different cracking pattern, following the embedded restraints, as no cracks 

could be observed in the middle of the exposed surface. This change suggests that 

different cracking mechanisms could be involved. 
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It can be assumed that the measured cracking is produced by the early age sample 

drying shrinkage (the test conditions, air flow and temperature, were the same in 

cracking and drying shrinkage tests). As early age shrinkage happened during the initial 

1-6 hours, and after that until 24 hours, shrinkage remained practically constant, it can 

be said that cracking must occur during these very early ages, which corresponded to Rd 

under 0,2. Therefore, the cracking risk at early ages due to drying shrinkage was highest 

during the first 6 hours after mixing. 
 

4. Discussion 

4.1 Reference mixtures. Influence of HRWRA 

The reference mixtures showed a very similar hardened performance in both cases 

(without admixtures, REF, and with HRWRA, REFG), so it can be said that the use of 

HRWRA did not significantly affect on the hardened properties.  

In contrast, other differences in the fresh state were observed. The hydration process 

(temperature) and microstructure evolution (UPV) of the mixture REFG was delayed 

compared to REF. Although and considering the same reaction degree (Rd,24), the use of 

HRWRA on the cement paste produced a larger microstructure evolution and stiffness. 

Drying shrinkage was also delayed, and the total shrinkage at 6 hours was lower when 

the HRWRA was used. However, evaporation (mass loss) of the REFG mixture 

occurred before and was lower than REF, but it did not produce any negative effect on 

shrinkage and early age cracking was very similar in both cases. Therefore, the use of a 

HRWRA modified the hydration process and microstructure formation, delaying both, 

but did not increase cracking risks at early ages. 

4.2 Influence of limestone filler 

The substitution of 50 % of cement by limestone filler (mixture CA) decreased the 

hardened performance of the paste when compared to reference mixtures. Compressive 

strength at 28 days was reduced to 50%, open porosity was three times larger and 

stiffness (related to UPV) was also lower. 

At early ages, the use of limestone filler accelerates the hydration process, when 

compared to the reference mixture with HRWRA, and the Rd,24 evolved quite similar to 

the reference without HRWRA. However, UPV was lower at the same age and the 

shrinkage start was delayed 3 hours (like REFG mixture). Total shrinkage and early age 

evaporation were much lower for CA mixture than for the reference mixtures and the 

Rd,24 in any shrinkage stage was double (Table 5). Consequently, early age cracking risk 

was quite lower. 

4.3  Influence of MA 

The inclusion of the active MA improved compressive strength around 20 % regarding 

to CA, while the apparent density was slightly lower. Stiffness remained quite similar, 

according to UPV measurements. 

At early ages, the mixtures with MS and NS did not show significant changes neither on 

temperature plot nor UPV, regarding CA, and the linear correlation between Rd,24 and 

UPV remained much the same. Although shrinkage was much larger on samples with 

MS and NS, no increase on cracking risk was identified. The evaporation rates differ for 
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both active additions: MS has values similar to CA, while NS was much larger. 

Therefore, different evaporation rates produced almost the same shrinkage and cracking. 

This could be due to a different pore size distribution, because of the different particle 

size of both MA [15-16]. 

The mixture with MK showed differences at early ages compared to MS and NS, 

especially regarding hydration process and cracking risks. The aluminates content of 

MK can explain the change in the temperature curve, which produces a delay on the 

Rd,24. Nevertheless, the microstructure development (related to UPV) with regard to 

Rd,24 is quite similar to MS. Total shrinkage is also very similar to both MS and NS, 

although the beginning is slightly delayed. At the end, evaporation rate is the highest for 

MK, very close to NS. The consequence of the combination of both circumstances (Rd,24 

delay and larger evaporation rate which produced larger drying shrinkage) can explain 

the increase of early age cracking risk when MK was used. 

4.4 Hydration and microstructural evolution 

A temporal sequence of the different stages defined through the monitoring of early age 

material parameters (in-situ temperature, UPV and shrinkage during the first 12 hours) 

is summarised in Figure 17. A relation among the parameters and defined stages can be 

established as: 

- The beginning of the hydration process (marked by the minimum of 

temperature, stage 2) preceded the UPV landing (stage 2), during which 

shrinkage also starts (stage 2). 

- Early age Shrinkage (stages 2 and 3) occurred during the acceleration period of 

the hydration (temperature accelerated rising, stage 2). 

- The beginning of UPV increase (stage 3), which meant a consolidation of the 

hardened state of the pastes, occurred at the end of the measured shrinkage (end 

of stage 3). 

An exception to these relations can be observed for the reference mixture with 

HRWRA, as temperature and UPV evolution was delayed but not shrinkage. This 

change explains the retardant effect of this type of admixtures. 

When the hydration process, microstructure evolution and environmental effect are 

taken into account, the relations among these parameters can be enlarged: the hydration 

process produces the changes on the microstructure and, when certain environmental 

conditions apply, drying shrinkage can occur. 

4.5 Percolation threshold and shrinkage 

According to the experimental results obtained, drying shrinkage happened due to the 

combined effect of water evaporation and grain connection (which produced a 

mechanical percolation threshold), as far as none of them alone produced shrinkage:  

a. When hydration happened without evaporation (shrinkage samples covered with 

a plastic film), no shrinkage was recorded. 

b. During the induction period (initial temperature decrease, stage 1) evaporation 

was observed, but no shrinkage was measured. 

The main part of early age shrinkage happened between 1.5 and 4 hours, when 

hydration had already begun (stage 2 of temperature curve). Nevertheless, water 

evaporation had started earlier. This means that all the water evaporated before 

shrinkage began produced a volume reduction of the sample in the plastic stage, but not 

measurable horizontal shrinkage. Therefore, a threshold on paste stiffness is necessary 

in order to mobilize shrinkage mechanisms (grain connection and mechanical 
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percolation threshold), further than evaporation alone. Grain connection produces pore 

formation and water evaporation creates menisci, both necessary to produce shrinkage. 

As a consequence of the previous explanation, the percolation threshold (which means 

the change of the paste from a viscous liquid to a visco-elastic porous solid) can be 

identified to be the beginning of the shrinkage stage 2. Rd,24 of around. 0.02 has been 

identified to correspond to the mechanical percolation threshold of cement based pastes 

[4]. 

4.6 Early age cracking risk related to microstructure evolution 

The greatest cracking risk due to early age drying shrinkage has also been identified to 

be the stage 2 of shrinkage. UPV around 1500-1600 m/s and the accelerated temperature 

increase (stage 2, < 4 hours) are also associated to early age cracking risk. 

Mechanisms of early age cracking due to drying shrinkage could be explained from the 

relations among hydration, microstructure, evaporation and shrinkage described. At 

early ages, two main mechanisms have proved to affect the microstructure formation: 

grain connection (first few hours) and pore filling (till 24 hours) [4]. After the initial 

induction period of the fluid paste, the hydration products nucleate around the cement 

grains, until they are interconnected (percolation threshold and pore formation). As a 

consequence, the material behaves as a viscous-elastic porous solid and it is not plastic 

any more. 

If during this early age, the paste is subjected to evaporation on the exposed surface, 

drying shrinkage would occur, due to the lack of water in the pores and menisci 

formation. When the displacement of the sample is restrained, tensile strength could be 

overcome and the specimen would crack. The evaporation would also inhibit pore 

filling (second mechanism involved in microstructure development) in the paste near 

the exposed surface, because water is essential to dissolve hydration products and to 

allow nucleation inside the pore. In the rest of the material, where pores are water filled, 

the microstructure evolution continues and stiffness increases, facilitating crack 

propagation due to stress concentrations at the crack tips. 

 

 

 

5. Conclusions 

 

An experimental program has been carried out on the effects of mineral additions (MA), 

using two fillers and three active additions (microsilica, nanosilica and metakaolin), on 

the early age and hardened performance of fluid pastes.  

In the hardened state, the inclusion of filler to the reference samples reduced the 

apparent density due to the porosity increase. Samples tested showed lower strength 

when subject to air curing, although mixtures with limestone filler showed to be less 

sensitive to curing conditions. The addition of active MA moderately increased 

compressive strength, when compared to samples with filler only. 

At early ages, temperature, ultrasonic pulse velocity (UPV), evaporation and shrinkage 

were monitored during the first 24 hours and cracking was measured in mixtures with 

limestone filler combined with the three active MA. Several stages on temperature, 

UPV and shrinkage were defined and some relations among them were established, 

which can be summarised as: 
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- The reaction degree (Rd,24) calculated from in-situ temperature measurements 

can be correlated with the evolution of UPV at early ages, after the induction 

period. It has been observed that the increase of UPV corresponded to the 

acceleration of the hydration process. 

- Drying shrinkage at early ages is related both to the microstructure development, 

due to the hydration process, and to the environmental effect which produces 

water evaporation.  

- Shrinkage beginning corresponds to the change on the paste behaviour from 

fluid (viscous) to rigid (visco-elastic). 

- For the mixtures considered in this study, the Rd,24 at the shrinkage beginning 

was approximately 0.02, when the hydration process is still incipient. 

- Drying shrinkage ended before the first 6 hours after mixing. Therefore, all the 

strain that produced early age cracking corresponded to this stage: accelerated 

increase of the sample temperature and UPV around 1500-1600 m/s.  

- The maximum cracking risk can be estimated to occur during this stage, when 

the reaction degree (Rd,24) is under 0.2. 

- The use of limestone filler anticipates the temperature increase at early ages, 

which is related to the speed of the hydration process. 

- The combination of filler and active MA increased the early age drying 

shrinkage, although only in the case of the mixture with metakaolin a larger 

cracking risk was identified. This could be related to the reaction of the 

aluminates present in its composition. 

The results obtained on pastes can be useful to study the main mechanisms involved in 

early age and hardened behaviour of more complex multiphase systems, as mortar or 

concrete. Further research on other MA combinations and mixture proportions is needed 

in order to better understand the parameters involved in early age cracking risks, which 

can compromise long term performance and durability. 
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Table 1  Compositions of the fluid cement pastes under study (components in g) 

 
 REF REF G CA CAM

S 

CAN

S 

CAM

C 

SI SIMS SINS SIMC 

Cement CEM I 42,5 

R 
1700 1700 850 850 850 850 850 850 850 850 

Siliceous Filler 

(105/115) 
- - - - - - 850 765 807.5 807.5 

Limestone Filler 

(Betocarb P1-DA) 
- - 850 765 807.5 807.5 - - - - 

Micro-silica 

(MEYCO MS 610) 
- - - 85 - - - 85 - - 

Nano-silica 

(MEYCO MS 685) 
- - - - 193 - - - 193 - 

Metakaolin (Burgess 

Optipozz) 
- - - - - 42.5 - - - 42.5 

Water (*) 607 581 594 594 443 594 594 594 443 594 

HRWRA (Glenium 

ACE425) - 25.5 12.75 12.75 12.75 12.75 
12.7

5 
12.75 12.75 12.75 

           
w/c (**) 0.36 0.36 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 
w/fines (cement + 
additions) (**) 

0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 

(*) Liquid water added. 

(**)The amount of water included in the components (HRWRA and Nano-silica) was also taken into account. 

 

Table 2  Nominal chemical compositions of sample components (in % of weight) 

Chemical analyses (%) 
CEM I 

42.5 R 
Limestone 

Siliceous 

filler 
Microsilica Nanosilica Metakaolin 

SiO2 19.45 - > 98.0 97.47 22 ± 1.5 51.27 

Al2O3 5.33 - < 0.8  - 44.22 

Fe2O3 3.24 ≤0.03 < 0.05  - 1.04 

CaO 63.86 -- < 0.1 1.98 - - 

MgO 1.97 - < 0.05  - 1.92 

SO3 3.20 0.04   - - 

Na2O 0.15 - < 0.06  - - 

K2O 0.85 - < 0.4 0.55 - - 

H2O - - -  78 ± 1.5 - 

TiO2 - - -  - 1.56 
CaCO

3
 - ≥98.5 -  - - 

MgCO
3
 - ≤0.8 -  - - 

Other 1.85 - < 1.01 - < 0.6 - 

 



19 

Table 3  Physical properties of hardened samples (at 7 days) 

 REF REFG CA CAMS CANS CAMC SI SIMS SINS SIMC 

Apparent density 
(g/cm3) 

2.036 2.067 1.957 1.937 1.920 1.940 2.004 1.978 1.974 1.978 

Open Porosity (%) 1.382 1.529 4.261 3.218 4.733 3.344 4.844 3.147 5.019 3.912 

 

Table 4  Mechanical properties of hardened samples (28 days) 

 
Mixture Compressive Strength  (MPa) UPV  (m/s) 

 Water cured Air cured Water cured Air cured 

REF  72.5 58 4128 3568 

REFG 72.5 62 4072 3608 

CA 34.5 33 3552 3216 

CAMS 39 33 3408 3152 

CANS 39.5 40.5 3528 3264 

CAMC 41.5 37.5 3576 3248 

SI 29 24 3720 3216 

SIMS 34.5 29 3736 3384 

SINS 36 32 3800 3512 

SIMC 33.5 28 3768 3424 
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Table 5  Key points of the early age parameters of the fluid cement pastes under study 

 

 REF REF G CA CAMS CANS CAMC 

Temperature       

Minimum (ºC) 29.00 26.40 27.25 26.70 26.95 26.50 

Minimum (minutes) 60 200 140 90 70 100 

Maximum (ºC) 72.70 63.80 46.90 45.95 45.80 42.80 

Maximum (minutes) 370 630 440 420 420 520 

Reaction degree (Max. temperature) 0.33 0.32 0.39 0.38 0.38 0.39 

UPV (m/s)       

Initial time (reachs 1500-1600 m/s) 

(minutes) 
90 80 60 180 120 30 

UPV at max. temperature (m/s) 1983 2291 1958 1958 1850 2041 

“Knee” point (m/s) 2389 2734 2026 2171 2038 2247 

Reaction degree (UPV Knee point) 0.59 0.51 0.50 0.58 0.63 0.48 

Laboratory conditions (temp (ºC)/ RH (%)) 25 / 50 25 / 52 25 / 54 25 / 55 26 / 51,5 25 / 50,5 

       

Drying Shrinkage (air flow 3 m/s)       

Horizontal shrinkage (mm/m) at “Knee” 

point 
1.48 1.06 0.90 2.10 1.68 2.12 

Horizontal shrinkage (mm/m) at 6 hours 3.16 2.42 1.76 4.62 4.34 4.24 

Maximum horizontal shrinkage (mm/m) 3.18 2.42 1.76 4.62 4.36 4.26 

Initial time (minutes/reaction  degree) 
100 

(0.02) 

130 

(0.02) 

170 

(0.05) 

120 

(0.03) 

120 

(0.03) 

150 

(0.03) 

“Knee” point time (minutes (reaction  

degree)) 

130 

(0.03) 

200 

(0.03) 

210 

(0.07) 

150 

(0.04) 

160 

(0.04) 

200 

(0.04) 

Final time (minutes/reaction  degree) 240 (0.1) 
300 

(0.04) 
350 (0.2)) 

300 

(0.15) 

320 

(0.18) 

320 

(0.11) 

Mass loss (air flow 6 hours)       

Initial time 50m 20m 1h 30m 20m 20m 

Final time 6h 10m 6h 5h 50m 6h 6h 40 m 6h 10m 

Measured Evaporation at 6 hours(kg/m2) 2.26 2.00 1.30 1.36 2.48 2.58 

Evaporation rate at 6 hours(kg/h m2) 0.45 0.35 0.24 0.20 0.43 0.45 

Evaporation at Shrinkage “Knee” point  0.76 0.98 1.00 0.62 1.28 1.54 

Laboratory conditions (temp (ºC)/ RH (%)) 21 / 70 21 / 51 21 / 59 20 / 55 20 / 60 18 / 51 

       

Slab cracking test (400 x 400 mm)       

Total Cracked area (mm2/m2) 1148.92 1074.95 546.68 720.58 595.33 2051.61 
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Fig. 1   Particle size distribution of mineral fillers (m) 
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Fig. 2  Experimental setup for shrinkage and mass loss monitoring during early ages 

 

Fig. 3  Steel mould and experimental setup of the double restrained slab early age 

cracking test 
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Fig. 4  Compressive strength of hardened samples with limestone (CA) and siliceous 

(SI) filler at 1, 7, 14 and 28 days. Results of Air cured and Water cured samples 
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(Continued Figure 4) 
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Fig. 5  Ultrasonic Pulse Velocity (UPV) of hardened samples with limestone (CA) and 

siliceous (SI) filler at 1, 7, 14 and 28 days. Results of Air cured and Water cured samples 
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(Continued Figure 5) 
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Fig. 6  Temperature during early ages in paste samples 
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Fig. 7  Reaction degree of the pastes under study (up to 24 hours) 
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Fig. 8  Ultrasonic pulse velocity (UPV) at early ages of paste samples 
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Fig. 9  UPV of fluid pastes related to in-situ temperature at early ages (up to 24 hours) 
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Fig. 10  Ultrasonic Pulse Velocity (UPV) of pastes at early ages related to reaction 

degree (Rd, 24) 
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Fig. 11  Early age drying Shrinkage of paste samples with limestone filler with air flow 

(3 m/s) 
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Fig. 12  Water evaporation on paste samples at early ages (first 6 hours after casting 

under 3 m/s of air flow) 
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Fig. 13  Drying shrinkage and Evaporation during early age shrinkage development 

(approx. 2-4 hours) 
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Fig. 14  Drying Shrinkage of pastes with related to reaction degree at very early ages 
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Fig. 15  Cracked area and maximum crack length measured on cracking test of limestone 

filler samples and reference pastes 
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Fig. 16  Cracked samples with limestone filler and reference pastes after slab cracking 

test (dimensions 40 x 40 cm). From left to right and downwards: REF, REF-G, CA, CAMC, 

CAMS and CANS 
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Fig. 17  Evolution and temporal relationships among key point early age parameters 

(temperature, UPV and shrinkage) 
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Parameter Stage 1 Stage 2 Stage 3 Stage 4 

Shrinkage 
Plastic State (no 

shrinkage) 

Beginning until 
knee point (fast 

shrinkage) 

From knee point 
until shrinkage 

ending 

Hardened state 
Slow shrinkage 

UPV Unstable 
Landing (ca. 

1500-1600 m/s) 

Accelerated 
increase until 

knee point 

Slow increase 
and stabilization 

Temperature 
Minimum 
reached 

Accelerated 
increase 

Uniform increase 
until maximum 

Temperature 
decrease 

 

 


