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Abstract

Given a rational parametrization P( t ), t = (t1, . . . , tr), of an r-dimensional
unirational variety, we analyze the behavior of the variety of the base points of
P( t ) in connection to its generic fibre, when successively eliminating the pa-
rameters ti. For this purpose. we introduce a sequence of generalized resultants
whose primitive and content parts contain the different components of the pro-
jected variety of the base points and the fibre. In addition, when the dimension
of the base points is strictly smaller than 1 (as in the well known cases of curves
and surfaces), we show that the last element in the sequence of resultants is the
univariate polynomial in the corresponding Gröbner basis of the ideal associated
to the fibre; assuming that the ideal is in t1-general position and radical.

1 Introduction

We start this introduction by describing and motivating the concepts of fibre and base
point as well as its relations. We consider an algebraically close field K of characteristic
zero and a unirational variety V ⊂ Kn of dimension r = dim(V) < n. With unirational
we mean that there exists a tuple of rational functions (i.e. a rational parametrization)

P( t ) =

(
p1( t )

q( t )
, . . . ,

pn( t )

q( t )

)
∈ K( t )n, where t = (t1, . . . , tr)
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(say w.l.o.g. that gcd(p1, . . . , pn, q) = 1 and that none pi/q is constant) depending on
r independent parameters, t1, . . . , tr, such that the rank of the jacobian of P( t ) is r,
and such that

• for almost all (i.e. for a non-empty open Zariski subset of V) points P ∈ V there
exists, at least one, t 0 ∈ Kr such that P = P( t 0), and

• for all t 0, where P( t ) is defined, P( t 0) ∈ V .

Associated with P( t ) we want to define a map. Clearly it can be done as follows:

ΦP : Kr \ Λ → V
t 0 7→ P( t 0)

where Λ = { t ∈ Kr | q( t ) = 0}. Note that, because of the two requirements above, ΦP
is well defined and ΦP(Kr \ Λ) is dense (in the Zariski topology) in V . At this point,
the first natural questions appear: what is the cardinality of Φ−1

P (P ) for a generic point
P ∈ ΦP(Kr \ Λ)? If this cardinality is bigger than 1, can we replace P( t ) by another
parametrization where this cardinality is 1?

The cardinality of Φ−1
P (P ) is the degree of ΦP (see e.g. [9] for a formal definition)

and the set Φ−1
P (P ) is called the (generic) fibre of ΦP ; we denote the fibre by FP( h ),

where the generic point P has been taken as P( h ), being h a new tuple of parameters.
When the degree of ΦP is 1, we say that the parametrization is rational and, hence,
the second question asks whether the concepts of rationality and unirationality are
equivalent; question that is related to Lüroth’s theorem and Castelnouvo’s theorem
and that we do not deal with here.

Coming back to the definition of ΦP , one may try to get information on the pa-
rameter values in Λ. Intuitively, they might be related to the points of V at infinity.
For a deeper analysis of this, we pass to the projective space. That is, we consider
the projective closure VH of V . Moreover we consider the projective parametrization
PH( t H) associated with P( t ); that is, t H = (t0 : t1 : . . . : tr) and

PH( t H) = (pH
1 ( t H) : . . . : pH

n ( t H) : qH( t H)),

where pH
i , qH are the homogenization of pi, q, respectively, multiplied by a suitable

power of t0 such that all the homogeneous polynomials pH
i , qH have the same degree

and gcd(pH
1 , . . . , pH

n , qH) = 1. In this situation, we try to define a projective map, using
PH( t H), from Pr(K) on VH . This can be done as follows:

ΦPH : Pr(K) \ B(PH) → VH

t H,0 7→ PH( t H,0)

where B(PH) = { t H ∈ Pr(K) | pH
1 ( t H) = · · · = pH

n ( t H) = q( t H) = 0}. The points
in B(PH) are called the (projective) base points of PH( t H). Since, our starting object
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was P( t ), we are interested in B(PH) ∩ { t H ∈ Pr(K) | t0 6= 0}, that we can identify
with the set { t ∈ Kr | p1( t ) = · · · = pn( t ) = q( t ) = 0}; in the next paragraph we will
extended this definition considering this variety defined over a superfield of K. We call
these points the (affine) base points of P( t ), and we denote the set of affine base points
by B(P). These are the points we deal with here; see e.g. [15] for further comments
on projective base points.

But, how are the base points related to the generic fiber? In order to define the
fibre we have considered a new tuple of parameters h . Let F be the algebraic closure
of K( h ). Then, the generic fibre consists in those t 0 ∈ Fr such that P( t 0) = P( h ).
Therefore if V1 is variety defined by the polynomials {pi( t )q( h ) = q( t )pi( h )}i=1,...,r

and V2 the the variety defined by {q( t )}, both over F, then

FP( h ) = V1 \ V2.

On the other hand, the base points is the variety defined over K by {p1, . . . , pr, q}.
Now, let us see the B(P) defined over F instead that over K; we call it again B(P).
Then

FP( h ) = V1 \B(P).

Beside the above motivation on the definability of the rational map associated to
the parametrization, why are the base points so important? The computation of the
fibre, the degree of the map, the implicit equations, the singularities of V , etc, all
these questions can be translated to elimination theory problems and, consequently,
approached by means of Gröbner bases or characteristic sets. Nevertheless, many
authors have been and are trying to approach these associated problems by means
of resultants (classical resultants, u-resultants, multivariate resultants, etc) appearing,
for instance, in the development of the µ-base, moving curves and moving surfaces
theory, etc. However, most of these methods, hit difficulties under the presence of
base points (see [1], [2], [3], [4], [5], [6], [7], [14], [15]). Nevertheless, for the surface
case (r = 2), our approaches, based on generalized resultants, to compute the implicit
equation as well as the degree of the map (see [10], [11], [12]) do work even under the
presence of base points. All these algorithmic methods play a crucial role in many
applications, as for instance in computer aided geometric design, and therefore the
theoretical understanding of the base points helps in the improvement of these potential
practical applications.

Let us take a closer look at the base points of P( t ). If r = 1, since
gcd(p1, . . . , pn, q) = 1, one has that B(P) = ∅. So the curve case is trivial. If r = 2,
B(P) is either empty or consists in the intersection points of (n + 1) plane curves
without common components, namely those defined by p1(t1, t2), . . . , pn(t1, t2), q(t1, t2).
Therefore, if r = 2 then either B(P) = ∅ or dim(B(P)) = 0. The situation is more
complicated when r > 2 since B(P) is the intersection of (n + 1) (r − 1)-dimensional
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varieties without common components. Thus, either B(P) = ∅ or dim(B(P)) < r− 2.
In Example 1, n = 5, r = 3 and dim(B(P)) = 1, and in Example 4, n = 5, r = 3 and
dim(B(P)) = 0.

Motivated by this last fact, in this paper, we analyze the extension of the ideas in
[11], [12] to the case where r > 2. We introduce a sequence of generalized resultants
associated to P( t ) that ends in a univariate polynomial in t1 (see Section 4), and
such that allows us to study how the successive projections of the points in the generic
fibre of P( t ), as well as of the points in B(P), behave (see Section 5). The fibre
is zero-dimensional and hence its projections. However, the base points variety may
have high dimensional components such that their projections fill the whole projection
space, and hence the information with the fiber is lost. For instance, in Example
1 where n = 5, r = 3 and dim(B(P)) = 1, the second successive projection (i.e.
(t1, t2, t3) 7→ (t1, t2) 7→ t1) yields to the whole line K. To avoid this phenomenon, at
each elimination step, one has to detect the hypersurface components of the projection
of the base points and excluded them from the process. More precisely, say that we
have eliminated ti, . . . , tr and we proceed to eliminate ti+1. Then, the corresponding
generalized resultant factors as its content times its primitive part. Associated to each
factor we introduce a variety in the i-dimensional space; let us call them Ci and Mi,
respectively. Alternatively, the fibre and B(P) are also projected onto the same space.
Then the behavior of the projections of the fibre and the base points is essentially as
follows:

• the fibre projects into the primitive part variety Mi (see Theorem 4),

• the hypersurface components (if any) of the base points project into the content
part variety Ci (see Theorem 3),

• while the low dimensional components of the base points go into Mi (see Theorem
4).

For analyzing the next elimination step, we control and indeed exclude the components
embedded in Ci∩Mi. All these problems are studied in Section 5. Finally, in Section 6,
we prove that in the cases where either B(P) = ∅ or dim(B(P)) = 0, the last element
in the sequence of resultants is the univariate polynomial in the corresponding Gröbner
basis of the ideal associated to the fibre; assuming that the ideal is in t1-general position
and radical. This can be seen as a generalization of the results for curves and surfaces
in [11] to the case r > 3.

We cannot finish this introduction without saying that, although from our ideas
one can derive an algorithm for the computation of the degree (when dim(B(P)) < 1),
this algorithm is not efficient in its current form. And we should emphasize that our
main goal in this paper, being more theoretical than algorithmic, is to provide the first
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steps towards the establishment of the theoretical framework to better understanding
the behavior of the base points.

Parts of our proofs presented in this paper are very technical. So, we leave most of
the details of the reasonings to Section 7.

2 Notation and Preliminary Remarks

Throughout this paper, we will use the following notation and terminology. K is an
algebraically closed field of characteristic zero. V ⊂ Kn is a unirational algebraic
variety, of dimension r = dim(V), rationally parametrized by

P( t ) =

(
p1( t )

q( t )
, . . . ,

pn( t )

q( t )

)
∈ K( t )n,

where t = (t1, . . . , tr), and such that gcd(p1, . . . , pn, q) = 1.

Remark 1. We assume (see below) that none of the rational functions pi/q is con-
stant. Furthermore, although the reasonings in this paper can be adapted for r ∈ {1, 2},
for simplicity in the explanation, we assume that r > 2; note that essentially case r = 1
is treated in [16] and r = 2 in [11].

Associated with P( t ), we have the rational map

ΦP : Kr −→ V
t 7−→ P( t ).

Observe that ΦP(Kr) is dense in V and that the jacobian of ΦP has rank r; being both
remarks a consequence of the fact that P( t ) is a rational parametrization. We denote
by deg(ΦP) the degree of ΦP (see Section 1).

Moreover, we consider the following polynomials, where the new variables h =
(h1, . . . , hr) and Z = (Z1, . . . , Zn−2) are introduced; note that n− 2 > 1:

? Gi( t , h ) = pi( t )q( h )− pi( h )q( t ) ∈ K[ h ][ t ], for i ∈ {1, . . . , n},
? G( t , h , Z ) = G2( t , h ) + Z1G3( t , h ) + · · ·+ Zn−2Gn( t , h ) ∈ K[ h , Z ][ t ].

Proposition 1. If pi/q is not constant (see Remark 1), then Gi is not constant.

Proof. Gi is identically zero iff pi/q is constant. Thus Gi is not zero. Now, if Gi( t , h ) =
λ ∈ K, then 0 = Gi( t , t ) = λ which is impossible because of our previous remark.
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For a field L we denote by L its algebraic closure. Let F = K( h ). Moreover, if G is a
finite set of polynomials over L, we represent by VL(G), the algebraic variety defined
by G over L. We introduce the algebraic sets:

? for each i ∈ {1, . . . , n}, W h
i = VF(Gi) ⊂ Fr.

? Wn+1 = VF(q) ⊂ Fr; note that Wn+1 is empty if and only if P( t ) is a polynomial
parametrization.

? We denote by B(P) the algebraic set of base points of the parametrization P( t ),
i.e. B(P) is the variety defined by {p1, . . . , pn, q}. We will see B(P), as we have
done with Wn+1, embedded in Fr. So B(P) = VF({p1, . . . , pn, q}). Note that
then

B(P) = W h
1 ∩ · · · ∩W h

n ∩Wn+1

For every α ∈ Kr such that P( α ) is defined, we denote by FP( α ) the fibre of α
via ΦP ; i.e

FP( α ) = { t ∈ Kr | P( t ) = P( α )}.
Note that deg(ΦP) is the cardinality of a generic fibre.

In addition, we consider a non-empty open Zariski set of Kr, that we denote by
Ω(P), such that for α ∈ Ω(P) it holds that card(FP( α )) = deg(ΦP) (see Theorem
7.16 in [9]). Abusing of the notation, we will denote by FP( h ) the generic fibre

FP( h ) = { t ∈ Fr | P( t ) = P( h )}.

Note that FP( h ) = (W h
1 ∩ · · · ∩W h

n ) \B(P); see e.g. Theorem 2 in [16].

Finally, if A is a subset of an affine space, we will denote by A∗ its Zariski closure.
Moreover, for a polynomial g(x) with coefficients over a unique factorization domain,
we denote by LCoeff(g, x) its leading coefficient w.r.t. x.

3 General Assumptions and Preliminary Results

Throughout this paper, we assume (see also Remark 1) the following general assump-
tions:

A-1 None of the rational function pi/q is constant and gcd(p1, . . . , pn, q) = 1.

A-2 LetM be the subset of those polynomials in {p1, . . . , pn, q} that are not constant.
We assume that the hypersurfaces in Kr, defined by each of the polynomials in
M, do not pass through the point at infinity (0 : · · · : 0 : 1 : 0), where the homo-
geneous variables are (t1, . . . , tr, w); note that this is equivalent to require that for
every g ∈M it holds that degtr(g) is the total degree of g and LCoeff(g, tr) ∈ K.
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A-3 G1 does not divide G3.

These assumptions imply the proposition.

Proposition 2. If assumptions A-1 and A-2 hold, the following statements hold

(i) Let GH
i ( t , w, h ) denote the homogenization of Gi( t , h ) as a polynomial in

K[ h ][ t ]. Then GH
i (0, . . . , 0, 1, 0, h ) 6= 0 for i = 1, . . . , n.

(ii) For i = 1, . . . , n, degtr(Gi) > 0 and LCoeff(Gi, tr) ∈ K[ h ].

Proof. (i) If either pi or q is constant, it follows from A-2. Otherwise, homogenizing
and taking into account the total degrees of pi and q, the result follows from A-1, A-2.
(ii) We express GH

i as gm( t , h ) + · · ·+ g0( t , h )wm, where gi is homogeneous in t of
degree i. By (i) gm does depend on tr and α = LCoeff(Gi, tr) only depends on h .

Next, we see that the above assumptions do not imply any loss of generality.

A-1. Say w.l.o.g. that P( t ) = (p1/q, . . . , ps/q, λs+1, . . . , λn) with λi ∈ K and pi/q
non-constant, we consider the projection

π : V → π(V)∗; (x1, . . . , xn) 7→ (x1, . . . , xs)

and the parametrization H( t ) = π(P( t )) of π(V)∗. Now, since π is birational then
deg(ΦP) = deg(Φπ(P)). Therefore, we can work with H( t ) where A-1 holds.

A-2. For every g ∈ M, let tdeg(g) denote the total degree of g, and let gtdeg(g)( t )
denote the homogeneous form of maximum degree of g( t ); i.e. of degree tdeg(g). Let
α = (α1, . . . , αr) ∈ Kn, with αr 6= 0, be such that gtdeg(g)( α ) 6= 0 for all g ∈ M; note
that, by definition, gtdeg(g) is not identically zero, and hence α always exists. We then
consider the linear parameter change t = L( t ∗) defined by t = (t∗1 + α1t

∗
r, . . . , t

∗
r−1 +

αr−1t
∗
r, αrt

∗
r). Now, for all g ∈M, it holds that g(L( t ∗)) is not constant, and tdeg(g) =

tdeg(g(L)). Moreover, the homogeneous form of g(L) of degree tdeg(g(L)) is of the
form

gtdeg(g)( α )(t∗r)
tdeg(g) + h(t∗1, . . . , t

∗
r−1).

Since gtdeg(g)( α ) 6= 0, A-2 holds for Q( t ∗) = P(L( t ∗)). Moreover, deg(ΦP) =
deg(ΦQ).

A-3. This assumption is not used till Section 4. Moreover, in Remark 2, we see that as
a consequence of the other assumptions there always exists Gi such that G1 does not
divide Gi. Hence a simple change of coordinates yields to the required condition.

Therefore, one has the following theorem.
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Theorem 1. The above assumptions can be assumed without loss of generality.

In the following example, we illustrate the above ideas

Example 1. We consider the 3-dimensional rational variety V ⊂ C5 (so, n = 5 and
r = 3) given by the parametrization

P( t ) =

(
t1
t2

,
t1

2t3
t2

,
t1

2

t2t3
, t2t3,

t1
3

t2

)

[General Assumptions] Although the assumptions A-1 and A-3 are satisfied, A-2 does
not hold. Therefore, we perform the linear transformation

t = L( t ) = (t1 + t3, t2 − t3, t3)

to replace P( t ) by the new parametrization

P( t ) =

(
t1 + t3
t2 − t3

,
(t1 + t3)

2 t3
t2 − t3

,
(t1 + t3)

2

(t2 − t3) t3
, (t2 − t3) t3,

(t1 + t3)
3

t2 − t3

)

This new parametrization fulfills all the general assumptions. The polynomials Gi are

G1( t , h ) = (t1 + t3) t3 (h2 − h3) h3 − (h1 + h3) h3 (t2 − t3) t3
G2( t , h ) = (t1 + t3)

2 t3
2 (h2 − h3) h3 − (h1 + h3)

2 h3
2 (t2 − t3) t3

G3( t , h ) = (t1 + t3)
2 (h2 − h3) h3 − (h1 + h3)

2 (t2 − t3) t3
G4( t , h ) = (t2 − t3)

2 t3
2 (h2 − h3) h3 − (h2 − h3)

2 h3
2 (t2 − t3) t3

G5( t , h ) = (t1 + t3)
3 t3 (h2 − h3) h3 − (h1 + h3)

3 h3 (t2 − t3) t3
G( t , h , Z ) = G2 + Z1G3 + Z2G4 + Z3G5

[Base Points] We analyze the base points. For this purpose, we consider the ideal I, in
C[ t ], generated by {p1, . . . , p5, q}, and we take the Gröbner basis G of I w.r.t. the lex
order with t3 > t2 > t1:

G = {t12 (t2 + t1) , t1 (t1 + t3) ,−t1
2 + t2t3,− (t1 − t3) (t1 + t3)}.

I decomposes as
I = 〈t1, t3〉 ∩ 〈t1 + t3, t2 + t1〉 ∩ 〈t1, t2, t3〉.

Thus, the base points decomposes as union of two lines, namely

B(P) = {(0, λ, 0) |λ ∈ C( h )} ∪ {(−λ, λ, λ) |λ ∈ C( h )}.
In particular, we deduce that dim(B(P)) = 1.
[Fibre] We deal now with FP( h ). For this, we consider the ideal J, in C( h )[ρ, t ],
generated by {G1, . . . , G5, ρq − 1}, and we take the Gröbner basis F of J w.r.t. the lex
order with ρ > t3 > t2 > t1:

F = {−h1
2 + t1

2,−t1h2 + h1t2, h1t3 − t1h3,−1 +
(
h2h3 − h3

2
)
ρ}
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From F , we get that
FP( h ) = {h ,−h }.

Therefore, deg(ΦP) = 2.

In the following lemma, assuming the general assumptions, we summarize the basic
properties of the varieties W h

i .

Lemma 1. It holds that

1. (W h
1 ∩ · · · ∩ W h

n ) \B(P) ⊂ (F\K)r and is zero-dimensional.

2. Let F be a finite subset of K[ t ]. If the ideal generated by F is zero dimensional,
then VF(F) ⊂ Kr.

3. If dim(B(P)) = 0, then B(P) ⊂ Kr.

4. For α ∈ Ω(P), let W α
i = VK(Gi( t , α )). Then, dim(W α

1 ∩ · · · ∩W α
n ) < r − 1.

5. dim(W h
1 ∩ · · · ∩W h

n ) < r − 1.

Remark 2. Because of Lemma 1 (5), gcd(G1, . . . , Gn) = 1. Therefore there exists Gi,
with i > 1 such that G1 does not divide Gi. In particular, as imposed in assumption
A-3, we can assume w.l.o.g. that i = 3.

4 Generic Resultant Sequence

In this section we introduce the notion of generic resultant sequence, and we study its
first properties. For this purpose, we need some additional notation. For i = 1, . . . , r−2
(recall that r > 2; see Remark 1), let W i = (Z1i, . . . , Z(n−2)i) be a tuple of new
variables. Let W = ( W 1, . . . , W r−2). For j ∈ {1, . . . , r − 1} we use the notation
t j = (t1, . . . , tj). We also denote by ppvar(M) and contvar(M) the primitive part and
the content of the polynomial M w.r.t. to the set of variables var. For the following
construction we observe that, by Prop. 2 (ii), G1 and G do depend on tr. Let

• Rr−1 = restr(G1, G), Sr−1 = ppZ (Rr−1).
Rr−1 ∈ K[ t r−1, h , Z ], and Sr−1 ∈ K[ t r−1, h , Z ] \K[ h , Z ]; see Theorem 2 (3)

•





Rr−2 =

{
Sr−1 if Sr−1 does not depend on tr−1, otherwise

restr−1(Sr−1( t r−1, h , W r−2), Sr−1( t r−1, h , Z ))

Sr−2 =

{
Sr−1 if Sr−1 does not depend on tr−1, otherwise
ppZ (Rr−2)

Rr−2, Sr−2 ∈ K[ t r−2, h , W r−2, Z ].
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•





Rr−3 =

{
Sr−2 if Sr−2 does not depend on tr−2, otherwise

restr−2(Sr−2( t r−2, h , W r−2, W r−3), Sr−2( t r−1, h , W r−2, Z ))

Sr−3 =

{
Sr−2 if Sr−2 does not depend on tr−2, otherwise
ppZ (Rr−3)

Rr−3, Sr−3 ∈ K[ t r−3, h , W r−2, W r−3, Z ].
...

•





R2 =

{
S3 if S3 does not depend on t3, otherwise

rest3(S3( t 3, h , W r−2, . . . , W 2), S3( t 3, h , W r−2, . . . , W 3, Z ))

S2 =

{
S3 if S3 does not depend on t3, otherwise
ppZ (R2)

R2, S2 ∈ K[ t 2, h , W r−2, . . . , W 2, Z ].

•





R1 =

{
S2 if S2 does not depend on t2, otherwise

rest2(S2( t 2, h , W r−2, . . . , W 1), S2( t 2, h , W r−2, . . . , W 2, Z ))

S1 = contW r−2,..., W 1, Z (R1)

R1 ∈ K[t1, h , W r−2, . . . , W 1, Z ], and S1 ∈ K[t1, h ].

• S0 = pph (S1) ∈ K[t1, h ].

Definition 1. We say that {S0, (S1, R1), . . . , (Sr−1, Rr−1)} is the generic resultant se-
quence (shorten, in the following, by grs) of P( t ). We denote it by GRS(P).

Before establishing the basic properties on GRS(P), we state some technical lemmas
on resultants and generalized resultants.

Lemma 2. Let L be a unique factorization domain. It holds that

1. Let M1, . . . , M` ∈ L[x], ` ≥ 3, M1 non-constant, and gcd(M1, . . . , M`) = 1.
resx(M1,M2 + Z1M3 + · · · + Z`−2M`) does not depend on {Z1, . . . , Z`−2} iff M1

divides all Mi with i ≥ 3.

2. Let ∆ be a tuple of variables, M ∈ L[∆][x] \ L[x] without factors in L[x], and
N(∆∗, ∆) = resx(M(∆∗, x),M(∆, x)), where ∆∗ is a tuple of new variables. N
depends on ∆, and on ∆∗, and has no factor depending only on ∆∗ nor only on
∆.

Theorem 2. (Basic Properties of grs) Let GRS(P) be the grs of P( t ). It holds that

1. Ri, for 1 ≤ i ≤ r − 1, depends on Z ; in particular it is not zero.
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2. Si, for 0 ≤ i ≤ r − 1, is not zero, and for 2 ≤ i ≤ r − 1 they depend on Z , and
have no factor in K[ t , h ].

3. Sr−1 depends on t r−1.

The results in the next sections use that the generic resultant sequence satisfies
certain conditions on the dependencies on the variable t i as well as the requirement
of having constant (i.e. in K( h , W )) leading coefficients; this motivates the notion of
normality.

Definition 2. We say that GRS(P) is normal if, for i ∈ {2, . . . , r − 1}, degti
(Si) > 0

and LCoeff(Si, ti) does not depend on t i−1.

If GRS(P) is not normal, we perform a linear transformation t = L( t ′) such that
the grs of the transformed parametrization P( t ′) = P(L( t ′)) is normal. Note that,
under a linear transformation, the degree of the induced rational maps is preserved
and both, base points and fibres, are under control. We have not proved that such a
linear transformation exists, although empirically we have seen that for random linear
transformations one yields normality.

5 Base Points, Fibres and GRS(P)

In this section we study the connection of the base points and the fibre with the varieties
defined from

GRS(P) = {S0, (S1, R1), . . . , (Sr−1, Rr−1)}.
To be more precise we will see how the different projections of B(P) of FP( h ) and
the varieties defined the polynomials in GRS(P) are related. For this purpose, for
r ≥ ` > i ≥ 1, we denote by πi the projection map

πi : F` → Fi; πi( t `) = t i,

and by coeffsvar(f) the set of coefficients of a polynomial f w.r.t. to the set of variables
var. Moreover, we consider the fields

Fj =

{
K( h , W r−2, . . . , W j) if 2 ≤ j < r − 1 and r > 3
F if j = r − 1

In addition, throughout this section we assume that GRS(P) is normal. In this
situation, for j ∈ {2, . . . , r − 1}, we consider the following varieties:

• Related to GRS(P).

Rj = VFj
(coeffsZ (Rj)),Mj = VFj

(coeffsZ (Sj)),Cj = VFj
(contZ (Rj)).

Note that Rj = Cj ∪Mj.

11



• Related to FP( h ). We decompose πj(FP) as πj(FP( h )) = (FP)P
j ∪ (FP)I

j where





(FP)P
j = πj(FP( h )) \ πj(B(P))∗ (pure part of the projection)

(FP)I
j = πj(FP( h )) ∩ πj(B(P))∗ (impure part of the projection)

• Related to B(P). Since gcd(p1, . . . , pn, q) = 1, dim(B(P)) ≤ r − 2. Thus,
dim(πr−1(B(P))) ≤ r − 2. Then, we decompose πr−1(B(P)) as

Fr−1 ⊃ πr−1(B(P))∗ = Hr−1 ∪ Lr−1

where

◦ Hr−1 is either the hypersurface contained in πr−1(B(P)) if
dim(πr−1(B(P))) = r − 2 or, otherwise, the empty set, and

◦ Lr−1 is the union of all the components of πr−1(B(P))∗ of dimension strictly
smaller than r − 2.

Additionally, we decompose Mr−1 and Lr−1 as

Mr−1 = MP
r−1 ∪MI

r−1, Lr−1 = LP
r−1 ∪ LI

r−1

as follows:

– MP
r−1 is the union of the components of Mr−1 not included in Hr−1, and

MI
r−1 is the union of the components of Mr−1 included in Hr−1.

– Similarly, LP
r−1 is the union of the components of Lr−1 not included in Hr−1,

and LI
r−1 is the union of the components of Lr−1 included in Hr−1.

If dim(πr−2(B(P))) = r − 2, then πr−2(B(P))∗ = Fr−2. However,
dim(πr−2(L

P
r−1)) ≤ r − 3. Thus, we decompose it as

Fr−2 ⊃ πr−2(L
P
r−1)

∗ = Hr−2 ∪ Lr−2

where

◦ Hr−2 is either the hypersurface contained in πr−2(L
P
r−1)

∗ if
dim(πr−2(L

P
r−1)) = r − 3 or, otherwise, the empty set, and

◦ Lr−2 is the union of all the components of πr−2(L
P
r−1)

∗ of dimension strictly
smaller than r − 3.

Additionally, we decompose Mr−2 and Lr−2 as

Mr−2 = MP
r−2 ∪MI

r−2, Lr−2 = LP
r−2 ∪ LI

r−2

as follows:
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– MP
r−2 is the union of the components of Mr−2 not included in πr−2(M

I
r−1)

∗∪
Hr−2, and MI

r−2 is the union of the components of Mr−2 included in
πr−2(M

I
r−1)

∗ ∪ Hr−2.

– Similarly, LP
r−2 is the union of the components of Lr−2 not included in

πr−2(M
I
r−1)

∗ ∪ Hr−2, and LI
r−2 is the union of the components of Lr−2 in-

cluded in πr−2(M
I
r−1)

∗ ∪ Hr−2.

Repeating the argument, we decompose πj(L
P
j+1) as Fj ⊃ πj(L

P
j+1)

∗ = Hj ∪ Lj,
and we introduce MP

j ,MI
j , L

P
j ,LI

j analogously.

Remark 3. By definition, Rj and Mj, MP
j ,MI

j are Fj-definable. Furthermore, from
the theorem of the closure (see pg. 122 in [8]) and taking into account that B(P) is
K-definable, one deduces that Hj and Lj are also K-definable. Thus, LP

j ,LI
j are also

K-definable. See also Theorem 5 for the K–definability of Cj.

Remark 4. Observe that if dim(B(P)) = 0 then for j ∈ {2, . . . , r − 1} it holds that
Hj = MI

j = LI
j = ∅, MP

j = Mj,L
P
j = Lj and dim(Lj) = 0.

Example 2. In this example, we illustrate the above varieties. For this purpose, we
continue working with Example 1 and, hence, we use the notation introduced there.
First we observe, that GRS(P) is normal. Since r = 3 the associated varieties are

• For the resultant sequence: R2 = C2 ∪M2.

• For the fibre: π2(FP( h )) = (FP)P
2 ∪ (FP)I

2.

• For the base points: π2(B(P))∗ = H2 ∪ L2 with the related decompositions

– M2 = MP
2 ∪MI

2

– L2 = LP
2 ∪ LI

2.

[Varieties associated to GRS(P)] The content of R2 w.r.t. Z is t1
2 (t2 + t1) . So,

C2 = {(0, λ) |λ ∈ C( h )} ∪ {(−λ, λ) |λ ∈ C( h )}

On the other hand, the coefficients of S2 w.r.t. Z are

coeffsZ (S2) = {− (h1 + h3)
2 (h2 + h1)

2 (−t1h2 + h1t2) ,

− (h1 + h3)
2 ∆1∆2,

− (h2 − h3)
2 ∆1∆2,

(h1 + h3)
3 (h2 + h1 + t1 + t2) (h2 + h1 − t1 − t2) ∆1}

where

∆1 = t1h3 + h3t2 − t1h2 + h1t2
∆2 = h2

2h3 + 2h1h2h3 + t1
2h2 + t2h2t1 −t1

2h3 − 2t1h3t2 −h1t2t1 −t2
2h3 + h1

2h3 −h1t2
2

13



Furthermore, the Gröbner basis of coeffsZ (S2) w.r.t. lex order with t2 > t1, as ideal in
C( h )[t1, t2] is

M = {−h2
2t2 + t2

3,−h1t2 + t1h2}.
Therefore,

M2 = {(0, 0), (h1, h2), (−h1,−h2)}
[Fibre] In Example 1, we have seen that FP( h ) = {h ,−h }. Thus

π2(FP( h )) = {(h1, h2), (−h1,−h2)}
and, taking into account π2(B(P))∗ (see below), we get that

(FP)P
2 = {(h1, h2), (−h1,−h2)}, and (FP)I

2 = ∅

[Base Points] In Example 1 we have seen that

B(P) = {(0, λ, 0) |λ ∈ C( h )} ∪ {(−λ, λ, λ) |λ ∈ C( h )}.
Therefore, projecting the lines, one gets that

π2(B(P))∗ = {(0, λ) |λ ∈ C( h )} ∪ {(−λ, λ) |λ ∈ C( h )}.
Thus, π2(B(P))∗ = H2 ∪ L2, where

H2 = {(0, λ) |λ ∈ C( h )} ∪ {(−λ, λ) |λ ∈ C( h )}, and L2 = ∅.

Furthermore, see above, M2 decomposes as M2 = MP
2 ∪MI

2, where

MP
2 = {(h1, h2), (−h1,−h2)}, and MI

2 = {(0, 0)}.

Obviously LP
2 = LI

2 = ∅.

Next, we analyze the relations among the varieties we have introduced in connection
to the projection of the fibre and of the base point variety. As mentioned in the
introduction, we will see that essentially the behavior is as follows

• the projection of the fibre goes into the pure part MP
i of the primitive variety

Mi (see Theorem 4),

• the high dimensional components of the base points project into the content
variety Ci (see Theorem 3),

• while the low dimensional components of the base points go into MP
i (see Theo-

rem 4).
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We know that
W h

1 ∩ · · · ∩W h
n = FP( h ) ∪B(P).

We start with the next lemma where a similar decomposition holds for MP
j . This first

lemma, indeed, establishes that all points in the pure part of the primitives varieties
are either projections of base points or of fibre points. This will be used in the next
theorems to first state that the content varieties are essentially defined by the projection
of the sufficiently high dimensional components of the base points (see Theorem 3),
and to afterwards provide a clearer decomposition of the pure part of the primitive
part variety (see Theorem 4).

Lemma 3. For j ∈ {2, . . . , r − 1}, MP
j = (MP

j ∩ πj(FP( h ))) ∪ (MP
j ∩ LP

j ).

As consequence of this lemma, we get the following theorem. We recall that the
varieties introduced above are defined for j ∈ {2, . . . , r − 1}, where we have assumed
that r ≥ 3.

Theorem 3. (Decomposition of Cj) It holds that

1. If dim(B(P)) < r − 2 then Cr−1 = ∅.
2. If r > 3 and dim(πj((M

P
j+1 ∩LP

j+1)∪MI
j+1)) < j − 1 for j ∈ {2, . . . , r− 2}, then

Cj = ∅.
3. If dim(πr−1(B(P))∗) = r − 2, then Cr−1 = Hr−1.

4. If r > 3 and dim(πj((M
P
j+1 ∩LP

j+1)∪MI
j+1)) = j − 1 for j ∈ {2, . . . , r− 2}, then

Cj is the hypersurface included in πj((M
P
j+1 ∩ LP

j+1) ∪MI
j+1)

∗.

Remark 5. In Example 1, we have seen that dim(B(P)) = 1 = r− 2, and in Example
2 we have seen that C2 = H2; compare to Theorem 3 (3).

Corollary 1. If dim(B(P)) = 0, for j ∈ {2, . . . , r − 1}, Cj = ∅.
Proof. By Theorem 3 (1), since r > 2 (see Remark 1), Cr−1 = ∅. For j ∈ {2, . . . , r−2},
the result follows from Theorem 3 (2), taking into account that πj((M

P
j+1 ∩ LP

j+1) ∪
MI

j+1) = πj(Mj+1 ∩ Lj+1) ⊂ πj(Lj+1) (see Remark 4), from where dim(πj((M
P
j+1 ∩

LP
j+1) ∪MI

j+1)) ≤ dim(πj(Lj+1)) = 0 < j − 1.

Theorem 4. (Decomposition of Rj,Mj) It holds that

1. Rr−1 = πr−1(B(P))∗ ∪ (FP)P
r−1.

2. If r > 3 and j ∈ {2, . . . , r − 2}, Rj = πj(Mj+1)
∗.
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3. For j ∈ {2, . . . , r − 1}, MP
j = (FP)P

j ∪ LP
j ∪Qj, where Qj ⊂ (FP)I

j .

Example 3. We illustrate the theorem by means of Example 1 and 2. Let L1 =

{(0, λ) |λ ∈ C( h )} and L2 = {(−λ, λ) |λ ∈ C( h )}. Then (compare to Theorem 4
(1)),

R2 = C2 ∪M2 = L1 ∪ L2 ∪ {(0, 0), (h1, h2), (−h1,−h2)} =

= L1 ∪ L2 ∪ {(h1, h2), (−h1,−h2)} = π2(B(P))∗ ∪ (FP)P
2

Moreover (compare to Theorem 4 (3)), M2 = (FP)P
2 ∪ L2 ∪Q2, with Q2 = ∅.

Theorem 5. (K-definability of Cj)

1. Cr−1 is K-definable.

2. If r > 3 and dim(πj(M
I
j+1)

∗) < j−1 for j ∈ {2, . . . , r−2}, then Cj is K-definable.

Proof. By Theorem 3, we only need to prove the theorem if j < r − 1 and
dim(πj((M

P
j+1 ∩ LP

j+1) ∪ MI
j+1) = j − 1. By Theorem 3, Cj is the hypersurface in-

cluded in πj((M
P
j+1∩LP

j+1)∪MI
j+1)

∗. Thus, reasoning as in the proof of Theorem 4, Cj

is the hypersurface included in ∆ = Hj ∪πj(M
I
j+1)

∗. Thus, Cj ⊂ Hj. Now the theorem
follows from Remark 3.

6 Connection of GRS(P) to Gröbner Bases

In the previous section we have analyzed some varieties of the GRS(P) in connection
to the base points and a generic fibre. In this section, we study the connection to
Gröbner bases. We assume that

GRS(P) = {S0, (S1, R1), . . . , (Sr−1, Rr−1)}

is normal. In addition, in the sequel, we assume that either B(P) = ∅ or dim(B(P)) =
0. We start with the following lemma.

Lemma 4. (Up and down property) It holds that

1. If P ∈ FP( h ), then π1(P ) is a root of S0(t1).

2. If α is a root of S0(t1), then there exists P ∈ FP( h ) such that π1(P ) = α.

From Lemma 4, one directly gets the following theorem

Theorem 6. π1(FP( h )) = VF(S0).
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From this result we get the following corollaries.

Corollary 2. Let I be the ideal, in K( h )[ρ, t ], generated by {G1, . . . , Gn, ρq− 1}, and
G be a reduced Gröbner basis of I w.r.t. the lex order with ρ > tr > · · · > t1. Let
{g1(t1)} = G ∩ K( h )[t1], then the square-free part of g1 and of S0 are equal, up to
multiplication by a non-zero element in K.

Proof. First we observe that I is zero dimensional, since its variety over F is FP( h ).
Now, the result follows from the closure theorem, the elimination property of Gröbner
bases, Hilbert’s Nullstellensatz, and Theorem 6.

In the next corollary we use the notion of ti-regular position of an ideal of t -
multivariate polynomials over a field (see [18] page 194), that says that if I is zero-
dimensional then it is in ti-regular position if any two zeros of I, over the algebraic
closure of the ground field, have different ti-coordinate. As commented in [18], we
observe that nearly every linear change of coordinates will set the ideal in regular
position.

Corollary 3. Let I be as in Corollary 2. If I is t1-regular and radical then

deg(ΦP) = degt1




S0

gcd

(
S0,

∂S0

∂t1

)


 .

Proof. It follows from Corollary 2 and the Shape Lemma (see Theorem 8.4.6., page
195, in [18]; observe that the notion used in this paper of reduced Gröbner basis is the
notion of normed reduced Gröbner basis used in [18]).

Example 4. Through this example, we illustrate the results in this section. We con-
sider the 3-dimensional rational variety V ⊂ C5 (so, n = 5 and r = 3) given by the
parametrization

P( t ) =

(
t3

t2 − t3
,
(t1 + t3)

4

t2 − t3
,
(t1 + t3)

2

t2 − t3
,

t3
4

t2 − t3
,

t3
3

t2 − t3

)
,

that satisfies our assumptions. The polynomials Gi are

G1( t , h ) = t3 (h2 − h3)− h3 (t2 − t3)

G2( t , h ) = (t1 + t3)
4 (h2 − h3)− (h1 + h3)

4 (t2 − t3)

G3( t , h ) = (t1 + t3)
2 (h2 − h3)− (h1 + h3)

2 (t2 − t3)

G4( t , h ) = t3
4 (h2 − h3)− h3

4 (t2 − t3)

G5( t , h ) = t3
3 (h2 − h3)− h3

3 (t2 − t3)

G( t , h , Z ) = G2 + Z1G3 + Z2G4 + Z3G5
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[Base Points] We analyze the base points. For this purpose, we consider the ideal I, in
C[ t ], generated by {p1, . . . , p5, q}, and we take the Gröbner basis G of I w.r.t. the lex
order with t3 > t2 > t1:

G = {t21, t2, t3}
Thus,

B(P) = {(0, 0, 0)}
and, hence, dim(B(P)) = 0. Therefore, H2 = MI

2 = LI
2 = ∅ and LP

2 = L2 = {(0, 0)}.
[Fibre] We deal now with FP( h ). For this, we consider the ideal J, in C( h )[ρ, t ],
generated by {G1, . . . , G5, ρq − 1}, and we take the Gröbner basis F of J w.r.t. the lex
order with ρ > t3 > · · · > t1:

F = {−h1
2 + 2 t1h3 + t1

2 − 2 h1h3,−h2 + t2, t3 − h3,−1 + (h2 − h3) ρ}
One can check that J as ideal in C( h )[ρ, t ] is radical and t1-regular. From F , we get
that

FP( h ) = {(h1, h2, h3), (−h1 − 2 h3, h2, h3)}.
Thus

π2(FP( h )) = {(h1, h2), (−h1 − 2 h3, h2}
and,

(FP)P
2 = π2(FP( h )), (FP)I

2 = ∅
[Varieties associated to GRS(P)] Since r = 3, we only analyze M2 = MP

2 ; recall that
R2 = M2 and that C2 = MI

2 = ∅. First we observe that GRS(P) is normal. On the
other hand, the Gröbner basis of coeffsZ (S2) w.r.t. lex order with t2 > t1, as ideal in
C( h )[t1, t2] is

M = {−t2 (h2 − t2) , t1
2h2 − h1

2t2 − 2 h1h3t2 + 2 h3t2t1}.
Therefore,

M2 = {(0, 0), (h1, h2), (−h1 + 2h3, h2)}
that decomposes as (see Theorem 4)

M2 = MP
2 = (FP)P

2 ∪ LP
2 ∪Q0 with Q0 = ∅,

or as
R2 = M2 = π2(B(P))∗ ∪ (FP)P

2 .

[Connection to Gröbner bases] The polynomials S1 and S0 are

S1(t1, t2) = t1
2 (−t1 + h1) (h1 + 2 h3 + t1)

S0(t1) = (−t1 + h1) (h1 + 2 h3 + t1) .

On the other hand, the univariate polynomial (in t1) of the ideal of the fibre, namely
J, is (compare to Corollary 2)

−h1
2 + 2 t1h3 + t1

2 − 2 h1h3 = −S0(t1),

and deg(ΦP) = degt1(S0) = 2 (see Corollary 3).
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7 Appendix

In this section we give the details of some technical proofs in the paper. More precisely,
of the proofs of Lemmas 1, 2, 3 and 4, and Theorems 2, 3 and 4.

The proofs of Lemma 3 and Theorems 3 and 4 are, at some points, very technical.
So here, we give the skeleton of the proofs, as well as the intuitive ideas. For more
details see [13] (Section 7).

[Proof of Lemma 1]
(1) Let I be the ideal of K( h )[ρ, t ], generated by A( h , t , ρ) = {G1, . . . , Gn, qρ − 1},
where ρ is a new variable. Since FP( h ) = (W h

1 ∩ · · · ∩ W h
n ) \ B(P), I is zero-

dimensional. Let G( h , t , ρ) be a reduced Gröbner basis of I w.r.t. the lex order
with ρ > tr > · · · > t1; reduced in the sense of Def. 5 at [8], p. 90. There exists
an open subset Σ of Kr such that for h 0 ∈ Σ, G( h 0, t , ρ) is the Gröbner basis of
A( h 0, t , ρ), see e.g.,ex. 7, p. 283, in [8]. Moreover, since I is zero-dimensional,
G( h , t , ρ)∩K( h )[t1] = {g( h , t1)} and every solution of g over F can be continued to a
solution of the full system (see e.g. [18] pg. 194). Now, let α = (a1, . . . , an) ∈ FP( h )
be such that al least one ai is constant, say a1 ∈ K. Let W∗ be the algebraic set
generated, over K, by P(a1, t2, . . . , tr). Note that dim(W∗) < r, and that t1−a1 divides
g( h , t1). We consider the open set Ω(P)∩Σ. Let h 0 ∈ Ω(P)∩Σ. Then, P( h 0) is well
defined, and G( h 0, t , ρ) is a Gröbner basis of A( h 0, t , ρ). Since g( h 0, a1) = 0, a1 is
extended to a solution (A, ρ0) of the full system, where the first component of A is a1.
Therefore, P( h 0) = P(A) and hence P(Ω(P) ∩ Σ) ⊂ W∗ which is a contradiction.
(2) It is a direct consequence of the triangular structure of the reduced Gröbner basis,
w.r.t. the lex order, of a zero-dimensional ideal K-definable.
(3) It follows from statement (2).
(4) LetW α

1 ∩· · ·∩W α
n contain a hypersurface in Kr, and M( t ) its defining polynomial.

Then, there exist Ni ∈ K[ t ] such that

Gi( t , α ) = pi( t )q( α )− pi( α )q( t ) = M( t )Ni( t ), for i = 1, . . . , n

Observe that, since gcd(p1, . . . , pn, q) = 1, then gcd(q( t ),M( t )) = 1. Now, we consider
the set Λα := {β̄ ∈ Kn /M(β̄) = 0, q(β̄) 6= 0}. Λα 6= ∅ is an open subset of VK(M).
Moreover Λα ⊂ FP( α ), which is impossible since card(Λα ) = ∞ and FP( α ) is zero
dimensional because α ∈ Ω(P).
(5) follows from (4).

[Proof of Lemma 2]
(1) Let M = M2 + Z1M3 + · · · + Z`−2M`, and let R be the set of all the roots of
M1 in the algebraic closure of the quotient field of L. The result follows from 0 6=
resx(M1, M) = LCoeff(M1)

degx(M)
∏

α∈R M(α).
(2) Since M does not have factors in L[x] then gcd(M(∆∗, x),M(∆, x)) = 1, and hence
N 6= 0. Let T be the set of non-constant monomials in ∆ appearing in M . We express
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M as M(∆, x) = a(x) +
∑

T∈T aT (x)T. If R is the set of all roots of M(∆∗, x), in the
algebraic closure of the quotient field of L[∆∗], as univariate polynomial in x, then

N = LCoeff(M(∆∗, x), x)degx(M)
∏
α∈R

M(∆, α)

Since N 6= 0, if N does not depend on ∆, then aT (α) = 0 for all T ∈ T and for all
α ∈ R. So, M(∆, x)− a(x) = B(∆, ∆∗, x)M(∆∗, x) for some polynomial B. If a = 0,
M(∆∗, x) divides M(∆, x). Thus M(∆∗, x) ∈ L[x], and hence M(∆, x) ∈ L[x] which
is a contradiction. If a 6= 0 then M(∆∗, x)(1− B(∆∗, ∆∗, x)) = a(x). So, M divides a
which is again a contradiction. So N depends on ∆, and reasoning similarly we get that
also depends on ∆∗. For the second part, let C(∆∗) be a factor of N depending only
on ∆∗; similarly if it only depends on ∆. Let P be a solution of C over the algebraic
closure M of the quotient field of L. Then, N(P, ∆) = 0 and since LCoeff(M, x)(∆) 6= 0
there exists a ∈ M such that M(P, a) = 0 = M(∆, a) = 0. This implies that (x − a)
divides M , which is a contradiction.

[Proof of Theorem 2]
We prove (1) and (2) simultaneously. We start with the case i = r − 1. By Lemma 1
(5), gcd(G1, . . . , Gr) = 1, and by Prop.1 G1 is not constant. Therefore, by assumption
A-3, and Lemma 2 (1) applied to Rr−1, we get that Rr−1 depends on Z and so Sr−1

does. Moreover, by definition, Sr−1 does not have factors in K[ t , h ]. Now, for i = r−2,
applying Lemma 2 (2) to Sr−1, and taking L = K[ t r−2, h ] and ∆ = Z , one gets the
result. Similarly, for Ri with i < r− 2 and for Si with 2 < i < r− 2. Finally, since R1

is not zero it follows that S1, S0 are not zero either.
To prove (3), let us assume that Sr−1 does not depend on t . By (2), Sr−1 depends on
Z . Let α ∈ Fr−2 be such that Sr−1 vanishes at Z = α . By Prop. 2, there exists a such
that G1( t r−1, a, h , α ) = G( t r−1, a, h , α ) = 0. Moreover, since G1( t r−1, tr, h , α ) ∈
F[ t r−1][tr], one has that a does not depends on Z , and hence Gi( t r−1, a, h , α ) = 0 for
i = 1, . . . , n. Let us see that q( t r−1, a) 6= 0. Indeed, if it vanishes, then pi( t r−1, a) =
0 for i = 1, . . . , n. Therefore (tr − a) divides to the gcd(p1, . . . , pn, q) which is a
contradiction. This implies that P( t ) = P( t r−1, a). But this is impossible because a
belongs to the algebraic closure of F[ t r−1] and hence it does not depend on tr while
P( t ) does since dim(V) = r.

[Proof of Lemma 3]
The right-left inclusion is clear. The other inclusion is proved by induction. In the
first step of the induction (i.e. r = j − 1) we observe that, because of the definition
of MP

j , Ω = MP
r−1 \ Hr−1 is dense in MP

r−1, and hence it is enough to reason with
Ω which implies that only the pure components, namely MP

r−1,L
P
r−1 are relevant in

the decomposition. The rest of the this part of the proof follows from the normality
(that implies that points in Ω extend to points in B(P)) and from the decomposition
πr−1(B(P)) in terms of Hr−1 and Lr−1.
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For the second part of the induction, the role of Ω is played by MP
j−1 \ (πj−1(M

I
j )
∗ ∪

Hj−1), that is dense in MP
j−1 and that, as above, implies that only the pure components

are relevant. The rest of the proof follows again from the normality and that by the
projection of the decomposition provided by the induction hypothesis.

[Proof of Theorem 3]
The proof of (1) and (2) are analogous. Let us focus on (2). Let assume that contZ (Rj)
have factors depending on t j and let A ⊂ Fj

j be the irreducible variety defined by any

of these irreducible factors. Then, we reason with the dense Ω = A\πj(FP( h )). By the
normality, the points in Ω extend to points in Mj+1 \ πj+1(FP( h )); and, using Lemma
3, to (MP

j+1 ∩LP
j+1)∪MI

j+1. Then, j− 1 = dim(Ω) ≤ dim(πj((M
P
j+1 ∩LP

j+1)∪MI
j+1)))

which is a contradiction.
In order to prove (3), we observe that Rr−1 vanishes on πr−1(B(P)); in particu-
lar on Hr−1. Furthermore, since Hr−1 ⊂ Fr−1, Hr−1 ⊂ Rr−1. Furthermore, since
dim(Hr−1) = r − 2, Hr−1 ⊂ Cr−1. Now, let us assume that Cr−1 has another com-
ponent (say irreducible) H∗

r−1 6= Hr−1. We consider the (r − 2)-dimensional set
Ω = H∗

r−1 \ πr−1(B(P))∗ = H∗
r−1 \ (Hr−1 ∪Lr−1). Then, using the normality, Ω extends

to Ωe ⊂ FP( h ) ∪ B(P). Using that dim(Ωe) ≥ r − 2 and that dim(B(P)) = r − 2,
one can take P ∗ ∈ Ωe ∩ B(P). Thus, πr−1(P

∗) ∈ Ω ∩ πr−1(B(P)) = ∅, which is a
contradiction.
To prove (4), let Q be the hypersurface included in πj((M

P
j+1 ∩ LP

j+1) ∪MI
j+1)

∗. The
inclusion Q ⊂ Cj follows as in (3) when seeing that Hr−1 ⊂ Cr−1. The other inclusion is
also as in (3), but taking Ω = T\(Q∪πj(FP)) where T is supposed to be an irreducible
factor of Cj different to Q.

In order to prove (3) let H ∈ K[ t r−1] be the defining polynomial of Hr−1. G1 and G
vanish on B(P), so Rr−1 vanishes on πr−1(B(P)); in particular on Hr−1. Furthermore,
since Hr−1 ⊂ Fr−1, all coefficients of Rr−1 w.r.t. Z vanish on Hr−1. Thus, Hr−1 ⊂
Rr−1. Furthermore, since dim(Hr−1) = r − 2, Hr−1 ⊂ Cr−1. Now, let us assume that
contZ (Rr−1) has another factor H∗, coprime with H, and depending on t r−1. Let
H∗

r−1 = VF(H∗). We take Ω = H∗
r−1 \ πr−1(B(P))∗ = H∗

r−1 \ (Hr−1 ∪ Lr−1). Since
H∗

r−1 6= Hr−1, dim(Ω) = r − 2. Every P ∈ Ω, by the normality, extends to P ∗ ∈
W h

1 ∩· · ·∩W h
n = FP( h )∪B(P); note that P does not depend on Z and G1 ∈ F[ t ]. Let

Ωe ⊂ FP( h )∪B(P) be the set of extended points from Ω. dim(Ωe) ≥ r−2. Therefore,
since r > 2 and dim(B(P)) = r − 2, Ωe ∩ B(P) 6= ∅. Let P ∗ ∈ Ωe ∩ B(P). Thus,
πr−1(P

∗) ∈ Ω ∩ πr−1(B(P)) = ∅, which is a contradiction. Therefore, Hr−1 = Cr−1.
To prove (4), let Q be the hypersurface included in

πj((M
P
j+1 ∩ LP

j+1) ∪ MI
j+1)

∗ and let H be its defining polynomial.

Sj+1( t j+1, h , W r−2, . . . , W j), Sj+1( t j+1, h , W r−2, . . . , W j+1, Z ) vanish on Mj+1;
in particular, Rj vanishes on Q ⊂ πj(Mj+1)

∗. Furthermore, since Q ⊂ Fj
j, all coeffi-

cients of Rj w.r.t. Z vanish on Q. Thus, Q ⊂ Rj. Furthermore, since dim(Q) = j−1,
Q ⊂ Cj. Now, let us assume that contZ (Rj) has another factor H∗, coprime with
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H, and depending on t j; say that T = VFj
(H∗). We consider the non-empty open

set Ω = T \ (Q ∪ πj(FP)); note that dim(πj(FP)) = 0 and that gcd(H, H∗) = 1.
Every P ∈ Ω extends to a common solution P ∗ of Sj+1( t j+1, h , W r−2, . . . , W j) and
Sj+1( t j+1, h , W r−2, . . . , W j+1, Z ). Since P does not depend on Z , P ∗ ∈ Mj+1. By
construction P ∗ 6∈ πj+1(FP). Thus, by Lemma 3, P ∗ ∈ (MP

j+1 ∩ LP
j+1) ∩MI

j+1. There-
fore, if we denote by Ωe the set of extended solutions of Ω, Ωe ⊂ (MP

j+1∩LP
j+1)∩MI

j+1.
Furthermore, Ω = πj(Ω

e) ⊂ πj((M
P
j+1 ∩ LP

j+1) ∩ MI
j+1). But dim(Ω) = j − 1, and

hence Ω ⊂ Q which is a contradiction.

[Proof of Theorem 4]
(1) and (2) follow from the normality and from the fact that the involved points do
not depend on Z .
(3) We prove it by induction. The idea is to find two suitable expressions of Rr−1 such
that subtracting from them Hr−1 we clean up the impure components and we achieve
the desired decomposition. By the definition of Rr−1 and by Theorem 3, we have
Rr−1 = Hr−1∪MP

r−1∪MI
r−1. On the other hand, by (1), Rr−1 = Hr−1∪LP

r−1∪(FP)P
r−1.

Now, if we subtract in both sides of Hr−1 ∪MP
r−1 ∪MI

r−1 = Hr−1 ∪ LP
r−1 ∪ (FP)P

r−1 the
variety Hr−1 we clean up the impure components, and taking closures we yields that
MP

r−1 = LP
r−1 ∪ (FP)P

r−1 ∪Qr−1, where Qr−1 = ∅.
Let the result be true for j + 1 ≤ r − 1. The idea is as above: we find two different
expressions of Rj, and we determine a variety big enough to clean up the impure
components to derive the final decomposition. More precisely, using the induction
hypothesis and (2), we get Cj ∪ Mj = (FP)P

j ∪ Hj ∪ Lj ∪ Q0 ∪ πj(M
I
j+1)

∗. On the
other hand, using again the induction hypothesis, we get the Cj is either empty or the
hypersurface included in Hj∪Lj∪πj(Qj+1∩LP

j+1)∪πj(M
I
j+1)

∗; that is, the hypersurface
included in ∆ = Hj ∪ πj(M

I
j+1)

∗. In this situation, we subtract ∆ to get Mj \ ∆ =
(FP)P

j ∪(LP
j \∆)∪(Q0\∆). Taking Zariski closures we get that MP

j = (FP)P
j ∪LP

j ∪Qj

with Qj = Q0 \∆ ⊂ Q0 ⊂ (FP)I
j .

[Proof of Lemma 4]
(1) Let P ∈ FP( h ) and Pi = πi(P ). The proof goes as follows: (a) we prove by
induction that, for i ∈ {2, . . . , r − 1}, Pi ∈ Mi; (b) we prove that S0(P1) = 0.
(a) Since Gi vanishes at P , and P does not depend on Z , Pr−1 ∈ Rr−1 = Cr−1∪Mr−1.
So, by Corollary 1, Pr−1 ∈ Mr−1. Now, let Pi ∈ Mi. Then Pi does not depend on Z
and, hence, Pi−1 ∈ Ri−1 = Ci−1 ∩Mi−1. Now, by Corollary 1, Pi−1 ∈ Mi−1.
(b) Since P2 ∈ M2, P2 does not depend on Z , and hence R1(P1) = 0. Moreover,
since P1 does not depend on Z , W `, and since R1 is univariate in t1, one has that
S1(P1) = 0. Finally, since S1 is univariate in t1 and P1 does depend on h (see Lemma
1 (1)), one concludes that S0(P1) = 0.
(2) Since h ∈ FP( h ), by (1), S0(h1) = 0. Hence S0 is not constant. Moreover,
since S0 is primitive w.r.t. h , all roots of S0 are in F \ K. On the other hand, by
definition, LP

2 is either empty or zero-dimensional. In this situation, if S0(α) = 0,
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then S1(α) = 0, and hence R1(α) = 0. Moreover, by the normality assumption, α
extends to a common solution (α, β) not depending on Z . So, (α, β) ∈ MP

2 = M2 (see
Remark 4). By Theorem 4, (α, β) ∈ Q2∪LP

2 ∪(FP)P
2 . Moreover, by Remark 3, LP

2 is K-
definable. So, since LP

2 is zero-dimensional and α 6∈ K, one has that (α, β) 6∈ LP
2 . Thus,

(α, β) ∈ Q2 ∪ (FP)P
2 ⊂ π2(FP). Therefore, there exists P ∈ FP such that π1(P ) = α.
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