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Abstract

In previous works (see (1),(2)), the question of computing the different shapes arising
in a family of algebraic curves algebraically depending on a real parameter was
addressed. In this work we show how the ideas in these papers can be used to extend
the results to a more general class of families of algebraic curves, namely families
not algebraically but just continuously depending on a parameter. These families
correspond to polynomials in the variables x, y whose coefficients are continuous
functions of a parameter t ∈ U ⊂ R, where U is in general the union of finitely
many open intervals. Under certain conditions, here we provide an algorithm for
computing a univariate real function R⋆(t), with the property that the topology
of the family stays invariant along every real interval I ⊂ U not containing any
real root of R⋆(t). In that situation, a partition of the parameter space (R, in
this case) where each element gives rise to a same shape arising in the family, can
be computed. Then, these shapes can be described by using well-known methods
((5),(6),(8)). An important situation when the method is applicable is the case
when the coefficients are algebraically independent, or can be expressed in terms of
algebraically independent functions.
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1 Introduction

In previous works ((1), (2)) we addressed the following problem: given a family
of algebraic curves algebraically depending on a parameter t ∈ R, therefore
represented by a real polynomial f(x, y, t), compute the different shapes arising
in the family, and the t-values corresponding to each shape. In (2) an algorithm
for solving this question was provided (the same algorithm was adapted in
(3) to the case when the family was rational, in order to work directly in
parametric form, therefore in a more efficient way). By using the algorithm in
(2), one can compute, for example, the different shapes arising in the family

f(x, y, t) = t(x+ y2 − 1) + (t− 1)2(x3 + y2 − x2) = 0

More precisely, in this case one has three topology types, shown in Figure 1,
corresponding to t ∈ (−∞, 0) (see Fig. 1, left), t = 0 (see Fig. 1, center) and
t ∈ (0,∞) (see Fig. 1, right), respectively.

Fig. 1. Shapes in the family t(x+ y2 − 1) + (t− 1)2(x3 + y2 − x2) = 0

The algorithm in (2) is of interest in contexts where geometrical objects de-
pending on parameters may appear, for example in the topological analysis
of the solutions of first-order differential equations, in robotics, in Computer
Aided Geometric Design, in Control Theory, in Algebraic Biology, etc. Also
of interest in these contexts, in this paper we consider the same problem but
for a wider class of families of algebraic curves, also depending on a real pa-
rameter but where the dependence of the parameter is continuous, but not
necessarily algebraic. So, we consider the problem of computing the shapes
arising in families like, for instance,

f(x, y, t) = y4 + log(t2 + 1)xy2 − |t|y + t2 + 1 = 0,

with t ∈ R. The topology types arising in this family are computed in Example
2, Section 4 of this paper. In order to solve this question, based on (2) and
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on classical results on the specialization of resultants, we first develop some
results on families of algebraic curves algebraically depending on finitely many
parameters. Then, exploiting these results and using properties of continuous
functions, we provide, for a given family of the considered type, a method for
computing a real function R(t⋆) with the following property: whenever R(t⋆) is
not identically 0, the topology type of the family is invariant along every real
interval I ⊂ R where f is defined, not containing any real root of R(t⋆); thus,
the topology of the family along I can be described by taking a representative
t0 ∈ I, and computing the topology of the curve described by f(x, y, t0) (see
(5),(6),(8)).

An important case where R(t⋆) can be guaranteed to be different from 0
happens when all the coefficients f(x, y, t) are algebraically independent, or
can be expressed in terms of algebraically independent functions (see Corollary
11). Hence, under that condition the method is always successful. When R(t⋆)
is identically 0, the method fails. At the moment we are unaware of a solution
for this special case, that we pose here as an open problem. Nevertheless, at
the end of the paper (see Section 5) we make some observations on this special
case, and we connect it with a topological problem.

The structure of the paper is the following. In Section 2 we briefly recall some
ideas and results of (2) that are needed for developing the results of the paper.
In Section 3, some results on families of algebraic curves depending on finitely
many parameters are provided. In Section 4, these results are used to provide
the main result of the paper. Some general considerations on the special case
R(t⋆) = 0 are made in the last section of the paper.

2 Previous Results

Let F = F (x, y, t) be a real polynomial in the variables x, y, t. Given t0 ∈ R

such that F (x, y, t0) = Ft0(x, y) is not identically 0, Ft0(x, y) defines a plane
algebraic curve Ct0 . Hence, we can consider F as defining a family of algebraic
curves F algebraically depending on the parameter t. Clearly, as t0 moves
in R the shape of Ct0 may change. So, it has sense to address the problem
of detecting the different topology types arising in F . Moreover, by Hardt’s
Semialgebraic Triviality Theorem (see Theorem 5.46 in (4)), the number of
different topology types in the family must be necessarily finite. In order to
solve this problem, the following definition is introduced:

Definition 1 Let A ⊂ R. We say that A is a critical set of the family defined
by F , if for all ti, ti+1 ∈ R satisfying that [ti, ti+1] ∩ A = ∅, the topology types
of Fti and Fti+1

are equal.
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Hence, a critical set is essentially a real set containing all the values of the
parameter where the topology of the family may change. In (2) an almost
identical definition is provided; the difference between the definition in (2) and
the above one is that in (2) a critical set is defined as a finite real set satisfying
the condition in Definition 1, and the definition here does not require the set
to be finite. Notice that if a finite critical set A = {a1, . . . , ar} is computed,
then the different topology types in the family can be derived. Indeed, in that
case the parameter space (R, in this case) can be decomposed as

(−∞, a1) ∪ {a1} ∪ (a1, a2) ∪ · · · ∪ {ar} ∪ (ar,+∞)

Then, taking a representative for each element of the above partition, and
applying standard methods ((5), (6), (8)) for describing the topology of an
algebraic curve, the topology types in the family can be computed. So, in
order to determine the topology of the family, the crucial question is the
computation of a finite critical set. This is exactly the problem addressed in
(2). Hence, we recall now the main ideas in (2).

In (2) the following hypotheses on F (that we denote as (I) and (II)) are
required: (I) F is square-free (as a polynomial in the variables x, y); (II)
lcoeffy(F ) does not depend on the variable x. Notice that (II) can always
be achieved by applying if necessary a change of coordinates of the type
x = aX + bY, y = cX + dY , which does not change the topology of the family;
furthermore, (II) holds trivially if degy(F ) = 0. In (2), it is also required, as a
first hypothesis, the non-existence of t0 ∈ R so that Ft0(x, y) is identically 0.
This hypothesis is formulated in order to ensure that every specialization of
the parameter t defines a curve of the family; however, the results in (2) can
be perfectly developed excluding this hypothesis. Thus, in the present work
we will not take it into account.

Furthermore, we need to introduce two polynomials; here,Dw(G) := Resw(G, ∂G
∂w

),

and
√
G denotes the square-free part of G. Also, abusing of language, in the

sequel we will refer to Dw(G) as the “discriminant” of G w.r.t. the variable
w (notice that usually the discriminant denotes the result of dividing out the
resultant Dw(G) by the leading coefficient). Then we define (this notation is
slightly different to that of (2), and was suggested by an anonymous post-
reviewer of the paper (2)),

M(x, t) :=











√

Dy(F (x, y, t)) if degy(F ) 6= 0

F (x, t) if degy(F ) = 0
,

R(t) :=











Dx(M(x, t)) if degx(M) 6= 0

M(t) if degx(M) = 0
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With this definition, the following lemma holds.

Lemma 2 The polynomial R(t) is identically 0 iff F (x, y, t) is identically 0.

Proof. By the definition of M , it holds that M is either square-free, or con-
stant. Indeed, this is clear if degy(F ) 6= 0; if degy(F ) = 0, M is defined as F ,
and since by hypothesis F is square-free, then so is M . Hence, let us see (⇒).
If R = 0 then M = M(t), because otherwise we would have that Dx(M) = 0
and therefore M would not be square-free. But then by definition of R we have
R = M , and therefore M = 0. Now by the definition of M , and taking again
into account that F is square-free by hypothesis, we conclude that F = 0. (⇐)
is straightforward from the definitions of M,R.

Thus, the following theorem, which provides a method for computing a finite
critical set, holds (see Theorem 4 and Theorem 13 in (2)).

Theorem 3 Let F satisfy the hypotheses (I) and (II). Then the set of real
roots of R, is a critical set of F . If R has no real roots, then the elements of
the family show just one topology type.

3 Families of Algebraic Curves Algebraically depending on param-

eters

In Section 2 we have revised known results concerning families of algebraic
curves algebraically depending on a parameter. Based on these ideas, in this
section we provide some results for families of algebraic curves algebraically
depending on finitely many parameters. So, let F ∈ R[x, y, t1, . . . , tn] be a
real polynomial in the variables x, y, t1, . . . , tn satisfying the conditions (I),
(II) introduced in Section 2, where t1, . . . , tn are parameters taking values in
R; in other words, F is square-free as a polynomial in the variables x, y and
lcoeffy(F ) does not depend on x. Hence, for each specification of (t1, . . . , tn) =
(a1, . . . , an) ∈ R

n in F (except for those ones causing F to be identically 0),
the polynomial Fa1,...,an(x, y) obtained this way defines an algebraic curve. In
particular, one may consider F as defining a family F of algebraic curves
algebraically depending on the parameters t1, . . . , tn. Also from Hardt’s Semi-
algebraic Triviality Theorem, it follows that the number of these types must
be finite. So, our purpose is to apply the results in the above section in order
to study the topology types in F .

The definitions of the polynomials M,R provided in Section 2 are easily gen-
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eralized for the case of several parameters. Hence, we define

M(x, t1, . . . , tn) :=











√

Dy(F (x, y, t1, . . . , tn)) if degy(F ) 6= 0

F (x, t1, . . . , tn) if degy(F ) = 0
,

R(t1, . . . , tn) :=











Dx(M(x, t1, . . . , tn)) if degx(M) 6= 0

M(t1, . . . , tn) if degx(M) = 0

Notice that degy(F ) 6= 0 (resp. degx(M) 6= 0) iff lcoeffy(F ) (resp. lcoeffx(M))
is not identically 0. Furthermore, reasoning as in Lemma 2, we have the fol-
lowing result.

Lemma 4 The polynomial R(t1, . . . , tn) is identically 0 iff F (x, y, t1, . . . , tn) =
0.

Now, in the sequel, if G is a polynomial depending on the parameters t1, . . . , tn
(maybe depending also on other variables), we denote the evaluation of G at
t1 = a1, . . . , tn = an as Ga1,...,an . So, Fa1,...,an ,Ma1,...,an, Ra1,...,an denote the
evaluations of F,M,R at t1 = a1, . . . , tn = an, respectively. Notice that
Fa1,...,an = Fa1,...,an(x, y), and Ma1,...,an = Ma1,...,an(x). Thus, a first problem
is to decide whether M and R behave well under the specialization of the
parameters t1, . . . , tn. In order to make this idea more precise, we introduce
the following additional notation; for (a1, . . . , an) ∈ R

n, we define

M̃(x, a1, . . . , an) :=











√

Dy(Fa1,...,an(x, y)) if degy(Fa1,...,an) 6= 0

Fa1,...,an(x) if degy(Fa1,...,an) = 0
,

R̃(a1, . . . , an) :=











Dx(Ma1,...,an(x)) if degx(Ma1,...,an) 6= 0

Ma1,...,an if degx(Ma1,...,an) = 0

Notice that the above polynomials are really the specializations of M,R at
t1 = a1, . . . , tn = an, since there we are taking into account how the degrees
of F,M w.r.t y, x, respectively, specialize at t1 = a1, . . . , tn = an (however,
when we substitute t1 = a1, . . . , tn = an in M,R to get Ma1,...,an , Ra1,...,an we
are not considering this). Then the question is to check whether the equali-
ties M̃(x, a1, . . . , an) = Ma1,...,an(x), R̃(a1, . . . , an) = Ra1,...,an hold or not, i.e.
whether M and R behave well under specialization, or not. A simple exam-
ple will show that these polynomials do not necessarily specialize well; for
example, taking

F (x, y, a) = ay2 + y + x+ 1

one may see that M(x, a) = 4xa2 + 4a2 − a, R(a) = 4a2, and therefore that
M0(x) = M(x, 0) = 0, R0 = R(0) = 0. However, F (x, y, 0) = y + x + 1, and
therefore M̃0(x) = M̃(x, 0) = 1, R̃0 = R̃(0) = 1 (from the definition of R̃).
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First, we need the following lemma.

Lemma 5 Let (a1, . . . , an) ∈ R
n so that Ra1,...,an 6= 0. Then, the following

statements are true:

(i) degy(Fa1,...,an) = degy(F )
(ii) Fa1,...,an(x, y) is either non-depending on x, y, or square-free as a polynomial

in x, y.

Proof. Let us see (i). If degy(F ) = 0 then the statement is obvious, so assume
that degy(F ) > 0. Then, let A := lcoeffy(F ). By using the Sylvester form of the
resultant, one deduces that A divides M . If degx(M) = 0 then by the definition
of R it also holds that A divides R; otherwise, denoting B := lcoeffx(M), also
by the Sylvester form of the resultant one deduces that B divides R, and
since A divides B, A divides R. Then, A(a1, . . . , an) 6= 0 because otherwise
Ra1,...,an = 0, which cannot happen by hypothesis. Hence, (i) holds. Now let
us see (ii), and for this purpose we distinguish the cases degy(F ) = 0 and
degy(F ) 6= 0. We start with degy(F ) = 0; in this case, by the definition ofM we
have M = F . If degx(F ) = 0 then F is non-depending on x, y, and (ii) holds.
Otherwise, degx(F ) 6= 0 and by the definition of R we have R = Dx(F ). As
we have seen, B = lcoeffx(F ) is a factor of R. Hence, lcoeffx(F ) cannot vanish
at (a1, . . . , an) because Ra1,...,an 6= 0 by hypothesis. Then, by Lemma 4.3.1, pg.
96 in (10) it follows that the resultant Resx(F, Fx) specializes well, and this
resultant is exactly Dx(M). Hence, if Fa1,...,an(x, y) is not square-free, we get
that Dx(M) vanishes at (a1, . . . , an), which is in contradiction with the fact

that Ra1,...,an 6= 0. Now, consider the case degy(F ) 6= 0. Here, M =
√

Dy(F ).

Now since statement (i) holds, we have that lcoeffy(F ) does not vanish at
(a1, . . . , an) and therefore also by Lemma 4.3.1, pg. 96 in (10), the resultant
Resy(F, Fy) specializes well; however this resultant is Dy(F ). Since, reasoning
as before, the resultant Resx(M,Mx) also specializes well in the considered
case, we get that if Fa1,...,an(x, y) is not square-free, then Ra1,...,an = 0, which
cannot happen.

Now we can prove the following result on the specialization of M,R. In order
to prove it, one would use Lemma 5, and similar considerations to those in
the proof of Lemma 5; hence, it is left to the reader.

Lemma 6 Let (a1, . . . , an) ∈ R
n so that Ra1,...,an 6= 0. Then, the following

statements hold:

(i) M̃(x, a1, . . . , an) = Ma1,...,an(x).
(ii) R̃(a1, . . . , an) = Ra1,...,an.

A consequence of Lemma 5 and Lemma 6 is the following result, which is
essential for our purposes. This proposition ensures that under certain condi-
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tions, when we specialize all the parameters ti’s except but one a critical set
of the uniparametric family can be determined by computing the real roots
of the specialization of R. For simplicity, in the statement of the result we
assume that the only parameter that we do not specialize is t1; clearly, the
statements holds if we consider any other ti, with i = 2, . . . , n.

Proposition 7 Let (a2, . . . , an) ∈ R
n−1, where R(t1, a2, . . . , an) is not identi-

cally 0, and let G(x, y, t1) = F (x, y, t1, a2, . . . , an). Then, the set of real roots
of R(t1, a2, . . . , an) is a critical set of the family defined by G.

Proof. By statement (ii) of Lemma 5 it holds that G is square-free as a poly-
nomial in x, y. Moreover, because of statement (i) of Lemma 5 we have that
degy(G) = degy(F ). In particular, lcoeffy(G) is the evaluation of lcoeffy(F ) at
t2 = a2, . . . , tn = an, and this evaluation is not identically 0. Since by hypoth-
esis lcoeffy(F ) does not depend on x, then lcoeffy(G) does not depend on x,
either. Therefore, G satisfies the hypotheses (I) and (II); so, by Theorem 3,
the set of real roots of R̃(t1, a2, . . . , an) is a critical set of the family defined
by G. However, for all t1 ∈ R so that R(t1, a2, . . . , an) 6= 0, by Lemma 6 we
have that R̃(t1, a2, . . . , an) = R(t1, a2, . . . , an). Thus, the only t1-values where
R̃(t1, a2, . . . , an) can vanish are the real roots of R(t1, a2, . . . , an), and hence
the proposition follows.

Then we are finally ready to prove the main result of this subsection. For
this purpose, we denote the variety defined in R

n by R(t1, . . . , tn) = 0 as R.
Since by Lemma 4 the polynomial R is not identically 0, then R is a proper
variety, and divides Rn into open connected regions P1, . . . ,Pℓ (see Figure 1,
left). Then, the following theorem, whose proof is illustrated in Figure 2, right,
holds.

Theorem 8 The topology type of F is invariant along each Pi.

Proof. Let i ∈ {1, . . . , ℓ}, and let us prove that the topology type of F
is constant over Pi. Since Pi is connected, given two points P,Q ∈ Pi we
can connect them by means of finitely many oriented segments L1, . . . , Lr

satisfying the following conditions: (i) the start point of L1 is P , and the end
point of Lr is Q; (ii) the end point of Lj , is the start point of Lj+1; (iii) along
each segment Lj , all the parameters but one are constant (i.e. each segment is
parallel to some coordinate axis of Rn). Now let Lu be one of these segments,
and w.l.o.g. assume that t1 is the only parameter which is not constant over
Lu, i.e. the points of Lu satisfy t2 = a2, . . . , tn = an with (a2, . . . , an) ∈ R

n−1.
Then, over Lu we have that G = F |Lu

defines a uniparametric family of
algebraic curves of parameter t1. Now by Proposition 7, the set of real roots
of R(t1, a2, . . . , an) form a critical set of G. Finally, since Lu lies in Pi, then
R does not vanish along Lu, and neither does R(t1, a2, . . . , an). Therefore, by
Theorem 3 the topology type of G, and therefore of F , stays invariant along
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Lu. Since this holds for u ∈ {1, . . . , r}, we conclude that the topology type of
F at P and Q is the same. Finally, P and Q are generic, and therefore the
statement holds.

t2

t1

P3

P1

P2

t2

t1

P

Q

L1

L2

Fig. 2. Theorem 8: notation (left) and proof (right).

4 Families of Algebraic Curves Continuously depending on a pa-

rameter.

Let U [t] be the ring of continuous functions in the variable t, over a subset
U ⊂ R; for simplicity we will assume that U is a real open interval, though
the results are easily generalized for the case when U is the union of finitely
many real intervals. Now let us consider the ring U [t][x, y]; the elements of
U [t][x, y] are polynomials in the variables x, y with coefficients in U [t], i.e.

f(x, y, t) =
m
∑

i=0

n
∑

j=0

aij(t)x
iyj

where the aij(t)’s are continuous. Given f ∈ U [t][x, y], for every t0 ∈ R so that
f(x, y, t0) = ft0(x, y) does not identically vanish one has that ft0(x, y) defines
an algebraic curve. So, one may consider that f ∈ U [t][x, y] defines a family
FU of algebraic curves depending on the parameter t, with t ∈ U ⊂ R. We
say that such a family is a family of algebraic curves continuously depending
on the parameter t. Once again, by Semialgebraic Hardt’s Triviality Theorem
such a family contains finitely many topology types. So, here we address the
algorithmic analysis of these topology types. Moreover, in the sequel we will
also assume that lcoeffy(f) does not depend on x (otherwise, as observed in
Section 2, one can apply an affine change of coordinates involving just x, y,
which therefore does not change the topology of the family).

Now let us consider the following definition, which is a generalization of Defi-
nition 1 to this new context.
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Definition 9 Let U ⊂ R in the above conditions. Then, we say that A ⊂ R is
a critical set of the family FU , if A contains all the t-values where the topology
type of FU over U changes.

Therefore, our aim is to compute a critical set of FU ; for this purpose, we
will make use of the ideas in Section 3. We need to introduce some nota-
tion. Let f ∈ U [t][x, y], having N different terms, that we will denote as
b1(t), . . . , bN(t). Moreover, whenever bi(t) is non-constant, let us denote by F
the result of performing the substitution bi(t) := ui (where ui is a new vari-
able) in f , for i = 1, . . . , N . Notice that F is a polynomial in the variables
x, y, u1, . . . , uN ; one may also see F as defining a family of algebraic curves de-
pending on the parameters u1, . . . , uN . Moreover, we assume that F is square-
free as a polynomial in x, y (if it is not, we compute its square-free part and
we carry on the analysis; notice that substituting back ui := bi(t), the result-
ing polynomial defines the same family than f). Hence, starting from F one
can compute the polynomials M(x, u1, . . . , uN) and R(u1, . . . , uN) introduced
in Section 3. We will write Rf(u1, . . . , uN) instead of simply R(u1, . . . , uN),
to emphasize that this polynomial has been obtained from f . Moreover, let
R⋆(t) := Rf (b1(t), . . . , bN (t)), i.e. the result of performing the “inverse substi-
tution” ui := bi(t) in Rf for all i ∈ {1, . . . , N}. Then the following theorem,
which is the main result of the paper, holds.

Theorem 10 Let I ⊂ U be a real interval so that R⋆(t) does not vanish over
I. Then, the topology type of FU stays invariant along I.

Proof. Since Rf is a polynomial and the bi(t)’s are continuous over I, it
follows that R⋆(t) is also continuous over I. Also, since by Lemma 4 it holds
that Rf (u1, . . . , uN) is not identically 0, then it defines a proper algebraic
variety over RN that we represent by VR (if Rf is constant, VR = ∅). Now, I
is connected and R⋆(t) is continuous; therefore, R⋆(I) is a connected subset of
R

N . Moreover, since R⋆(t) does not vanish over I, this means that for t ∈ I,
the curve L of RN parametrized as x1 = b1(t), . . . , xn = bn(t) does not intersect
VR when t ∈ I; indeed, if P ∈ L ∩ VR, then P = (b1(t

⋆), . . . , bN(t
⋆)) where

R⋆(t⋆) = 0. And since R⋆(I) is connected, we deduce that for t ∈ I, L is
contained in one of the connected components of RN\VR. Then the statement
follows from Theorem 8.

In other words, whenever R⋆(t) is not identically 0 we have that the set A of
real roots of R⋆(t) over U is a critical set of FU . Theorem 10 provides the fol-
lowing corollary. Here, the notion of algebraic dependence is used. Essentially,
we say that several functions α1(t), . . . , αr(t) are algebraically dependent, if
there exists a polynomial G(x1, . . . , xr) such that G(α1(t), . . . , αr(t)) = 0; in
other words, if there exists an algebraic relationship among them. For ex-
ample, α1(t) = sin(t) and α2(t) = cos(t) are algebraically dependent, and
G(x1, x2) = x2

1 + x2
2 − 1 provides an an algebraic relationship involving them.
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We say that α1(t), . . . , αr(t) are algebraically independent, if they are not
algebraically dependent. The problem of detecting whether a given set of ex-
plicit functions is algebraically independent or not has been considered, and
is still open. The reader may find some results on this question in (7); in that
paper, one may find several examples of families of real functions which are
algebraically independent. So, the following corollary holds.

Corollary 11 If the ai,j(t)’s are algebraically independent, then the method
provided for computing a critical set, is successful.

Proof. If R⋆(t) is identically 0, then R(b1(t), . . . , bn(t)) = 0 provides an al-
gebraic relationship satisfied by b1(t), . . . , bn(t). So, an algebraic relationship
among the ai,j(t)’s exists. However, if the ai,j(t)’s are algebraically indepen-
dent, this cannot happen.

The following observations should also be taken into account:

(i) Unlike it happens in the case when the dependence of t is algebraic, i.e. when
f ∈ R[x, y, t], it may happen that R⋆(t) has infinitely many real roots.

(ii) If R⋆(t) has r real roots in U , then there are at most 2r+ 1 topology types
of FU over I. Moreover, in order to determine them one computes the real
roots of R⋆(t), and proceeds as suggested in Section 2.

(iii) The set of exp-log functions (see (9) for further information) is the smallest
set of functions R → R containing exp, log, the identity function and the
constant functions, closed under addition, multiplication and composition
of functions. It is known that every exp-log function has finitely many real
roots. Hence, if the coefficients of f are independent exp-log functions, then
R⋆(t) is a non-identically 0 exp-log function as well, and the critical set
determined by applying Theorem 10 is finite. Moreover, in this case there
are efficient algorithms to compute the real roots of R⋆(t) (see (9)).

The following examples illustrate Theorem 10.

Example 1 Consider the family F of algebraic curves defined by

f(x, y, t) = y4 + etxy2 −
√
ty + x2

Observe that the coefficients of f are continuous for t ∈ U = (0,∞). Hence,
let us compute the topology types of FU . For this purpose, we consider u1 := et

and u2 :=
√
t, and

F (x, y, u1, u2) := y4 + u1xy
2 − u2y + x2

Hence, we get M = −4u3
1u

2
2x

3−27u4
2+16u4

1x
6−128u2

1x
6+144u1x

3u2
2+256x6,

and R = −8916100448256u2
20(u1 − 2)6(u1 + 2)6(12 + u2

1)
9. So,

R⋆(t) = −8916100448256 · t10(et − 2)6(et + 2)6(e2t + 12)9
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which has just one real root in U , namely log 2 (here, log denotes the natural
logarithm). Hence, from Theorem 10 it holds that A = {log 2} is a critical set.
Then, we get at most 4 topology types, corresponding to the following cases:
(I) t = 0; (II) t ∈ (0, log 2); (III) t = log 2; (IV) t ∈ (log 2,∞). These topology
types are shown in Figure 3 (the pictures here have been obtained with Maple’s
package algcurves).

Fig. 3. Topology Types in Example 1: (I) up, left; (II) up, right; (III) down, left;
(IV) down, right

Example 2 Let F be the family defined by

f(x, y, t) = y4 + log(t2 + 1)xy2 − |t|y + t2 + 1

The coefficients of f are continuous for t ∈ R. In this case, we get that

R⋆(t) = −4096 log(t2 + 1)16(t2 + 1)|t|4(4096(t2 + 1)3 + 27|t|4)3

The only real root of R is 0; hence, A = {0} is a critical set. Therefore, we
get at most 3 topology types, corresponding to the cases t ∈ (−∞, 0), t = 0,
t ∈ (0,∞), respectively. One may see that for t = 0, the corresponding curve
in the family is empty over the reals; however, for t 6= 0, the topology type is
shown in Figure 4.

5 Open Questions

Whenever R⋆(t) is not identically 0, a critical set of the family can be com-
puted. However, R⋆(t) can be identically 0. For example, consider the family

12
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Fig. 4. Topology Type for t = 0 in Example 2

defined by

f(x, y, t) = t1/4x2 + t1/2xy + (1/4)t3/4y2 + et

In this case, setting u1 := t1/4, u2 := t1/2, u3 := (1/4)t3/4, u4(t) = et we
have that R(u1, u2, u3) = 16u4

3u4(−4u3u1+u2
2)

2. Hence, R⋆(t) = 0. The reason
for R⋆(t) being identically 0 is that −4u3u1 + u2

2 = 0 expresses an algebraic
relationship among u1 := t1/4, u2 := t1/2, u3 := (1/4)t3/4. In this particular
case the problem is easily solved by simply choosing u1, u2, u3 in a different
way; for example, taking u1 := t1/4, u2 := et we get f(x, y, u1, u2) = u1x

2 +
u2
1xy + (1/4)u3

1y
2 + u2, and R⋆(t) = tet. However, at the moment we cannot

guarantee that a “good” choosing for the ui’s exists in all cases, and we are
also unaware of a characterization of the cases where such a good choosing
exists.

Nevertheless, one may see that a general solution of the case R⋆(t) = 0 can
be related to another problem, which up to our knowledge is currently un-
solved. Let us explain this question in more detail. In Section 3, we addressed
the computation of the topology types arising in an implicitly defined fam-
ily of algebraic curves depending on parameters u1, . . . , un, on the open (n
dimensional) regions determined over the parameter space R

n by the vari-
ety R(u1, . . . , un) = 0. However, we did not address the computation of the
topology of the family over the variety R(u1, . . . , un) = 0 itself. In fact, up
to our knowledge, this problem has not been solved yet, and seems to require
other tools than those used in our paper. In order to solve it, one should have
a method for determining a partition of the variety R(u1, . . . , un) = 0 into
cells (of different dimensions) so that the topology of the family was invariant
over each cell. If such a description were available, one might determine the
cells travelled by the curve in R

n defined by u1 = b1(t), . . . , un = bn(t); that
way, the topology types in the family would be those corresponding to the
cells travelled by the curve, and hence a complete solution to the problem
addressed in the paper could be given.
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