DOI: 10.1002/ejic.200500643

η²-Iminoacyl and η²-Acyl Monocyclopentadienyl Tantalum Complexes Bearing Oxo and Oxo-Borane Ligands

Javier Sánchez-Nieves,^[a] Pascual Royo,^{*[a]} and Marta E. G. Mosquera^{[a][‡]}

Dedicated to J. Antonio Abad, an excellent scientist and friend

Keywords: Tantalum / Oxo ligands / Insertion reactions / Isocyanide / Carbon monoxide

Alkyl-chloro ligand exchange by the reaction of $[TaCp*R_2{O·B(C_6F_5)_3}]$ (R = CH_2Ph , Me) with Ph₃CCl gave the monoalkyl compounds $[TaCp*RCl{O·B(C_6F_5)_3}]$ (R = CH_2Ph , Me). Insertion of CNAr (Ar = 2,6-Me_2C_6H_3) and CO into a Ta–C bond of the mono- and dialkyl complexes gave the iminoacyl compounds $[TaCp*X{\eta^2-C(R)=NAr}{O·B-(C_6F_5)_3}]$ (X = R = CH_2Ph , Me; X = Cl, R = CH_2Ph) and the acyl compounds $[TaCp*X{\eta^2-C(R)=NAr}{O·B-(C_6F_5)_3}]$ (X = R = CH_2Ph , Me; X = Cl, R = CH_2Ph) and the acyl compounds $[TaCp*X{\eta^2-C(R)=O}{O·B(C_6F_5)_3}]$ (X = R = CH_2Ph , Me; X = Cl, R = CH_2Ph), respectively. The related chloro compound $[TaCp*Cl{\eta^2-C(Me)=NAr}{O·B(C_6F_5)_3}]$ was isolated from the reaction of the oxo derivative

Introduction

The formation of C–C bonds through insertion of isocyanides (CNR) and carbon monoxide (CO) into M–C bonds is well-documented, and this reaction initially affords iminoacyl and acyl complexes, respectively.^[1] For a given metal atom, the stability and further evolution of these compounds are determined by the nature of the ancillary ligands. Many reaction pathways may follow to give a broad variety of products:^[1] (a) migratory insertion of a second alkyl or aryl group to give η^2 -imine or η^2 -ketene complexes;^[2–5] (b) intra- or intermolecular coupling of iminoacyl or acyl units affording diaza- or dioxobutene complexes;^[6,7] (c) transfer of the NR or O moieties to the metal centre;^[8–11] (d) insertion of a second CNR^[12–16] or CO^[17] molecule into the new M–C bond formed after the first insertion process and (e) hydrogen migration.^[18,19]

We reported the results of our studies on the insertion reactions of CNR into the Ta–C(methyl) bond of monocyclopentadienyl complexes of the type $[TaCp*Cl_xMe_{4-x}]^{[8-10]}$ for which processes (a) and (c) were observed. Similar reactions with imido compounds of the type [TaCp*MeX(NtBu)] (X = Cl, Me, OR, NHtBu) gave (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

the imine- η^2 -iminoacyl derivatives $[TaCp^*(NtBu)X\{\eta^2-C[C(Me)=NR]=NR\}]$.^[20] With regard to the CO insertion reactions, double migration of the alkyl group [process (a)] was observed for $[TaCp^*Cl_2Me_2]$,^[10] whereas the coupling of the acyl groups [process (b)] occurred for $[TaCp^*Me_2(NR)]$ (R = 2,6-Me_2C_6H_3) to give the dinuclear compound $[TaCp^*(NR)Me]_2\{\mu-\eta^2-OC(Me)=C(Me)O\}$,^[10] and ligand exchange [process (c)] for complexes $[TaCp^*CIMe(NR)]$ (R = 2,6-Me_2C_6H_3,^[10] tBu)^[11] led to the oxo compounds $[TaCp^*Cl(O)\{\eta^2-C(Me)=NR\}]$. Furthermore, the η^2 -(methyl)acyl complexes remained elusive and were only detected as intermediates by NMR spectroscopy, whereas the related η^2 -iminoacyl complexes are stable.

It was observed that for monocyclopentadienyl imido tantalum derivatives addition of a second CNR molecule into the iminoacyl compounds $[TaCp^*(NR)X\{\eta^2-C(Me)=NR\}]$ (R = 2,6-Me₂C₆H₃, *t*Bu; X = Cl, Me) resulted in differing behaviours depending on the R group of the imido ligand. No reaction was found for R = 2,6-Me₂C₆H₃,^[10] whereas a second insertion occurred for R = *t*Bu.^[20] Conversely, the imido complexes $[TaCp^*MeX(NR)]$ (R = 2,6-Me₂C₆H₃, *t*Bu; X = Cl, Me) reacted with CO to give the dinuclear compound $[TaCp^*(NR)Me]_2\{\mu-\eta^2-OC-(Me)=C(Me)O\}$ for X = Me^[10] and one of the few mononuclear derivatives $[TaCp^*Cl(O)\{\eta^2-C(Me)=NR\}]$ containing a terminal tantalum-oxo double bond for X = Cl.^[10,11]

The versatility and potential applications of all these results determined by the R and X substituents of the imido

 [[]a] Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain Fax: +34-91-885-4683 E-mail: pascual.royo@uah.es

^[‡] X-ray diffraction studies.

FULL PAPER

complexes [TaCp*MeX(NR)] led us to extend our studies to similar insertion reactions of CNR and CO into the Ta– alkyl bonds of the related oxo-borane compounds [TaCp*X₂{ $O\cdot B(C_6F_5)_3$] that have recently been isolated.^[21]

Results and Discussion

The monoalkyl oxo-borane compounds $[TaCp*RCl{O·B(C_6F_5)_3}]$ (R = CH₂Ph 1c, Me 1d) were synthesised by an alkyl-chloro metathesis reaction of $[TaCp*R_2{O\cdot B(C_6F_5)_3}]$ (R = CH₂Ph 1a, Me 1b) with one equiv. of Ph₃CCl as chlorinating agent (Scheme 1). The reaction for 1c proceeded smoothly at room temperature to give a pale yellow solid in good yield, whereas complex 1d could not be isolated in the solid state. The formation of 1d was demonstrated on a small scale by ¹H NMR spectroscopy with a C_6D_6 solution of **1b** that was treated with Ph₃CCl and heated to 40 °C. All attempts made to obtain the monomethyl complex through alkylation of $[TaCp*Cl_2{O\cdot B(C_6F_5)_3}]$ and redistribution reactions between $[TaCp*Cl_2{O\cdot B(C_6F_5)_3}]$ and $[TaCp*Me_2{O\cdot B (C_6F_5)_3$ failed. The ¹¹B and ¹⁹F NMR spectra of complexes 1c and 1d are consistent with the presence of a tetracoordinate boron atom,^[21-31] and the ¹H NMR spectra with the monosubstitution of only one of the alkyl ligands.

Scheme 1.

The alkyl complexes $[TaCp*R_2{O·B(C_6F_5)_3}]$ (R = CH₂Ph **1a**, Me **1b**) and $[TaCp*(CH_2Ph)Cl{O·B(C_6F_5)_3}]$ (**1c**) immediately reacted at room temperature with one equiv. of the isocyanide CNAr (Ar = 2,6-Me₂C₆H₃) to give the corresponding η^2 -iminoacyl compounds $[TaCp*X{\eta^2-C(R)=NAr}{O·B(C_6F_5)_3}]$ (X = R = CH₂Ph **2a**, Me **2b**; X = Cl, R = CH₂Ph **2c**) in high yields by insertion of the isocyanide ligand into a Ta–C bond (Scheme 1). These pale yellow complexes are air and thermally stable in solution. The ¹³C NMR resonance at ca. $\delta = 240$ ppm is the most apparent spectroscopic feature and confirms the presence of the η^2 -iminoacyl ligand in complexes **2**.

We previously reported^[10] on the isolation of the related oxo complex $[TaCp*Cl{\eta^2-C(Me)=NAr}(O)]$ from the reaction of the monomethyl compound [TaCp*ClMe(NAr)] with CO through a process that involved insertion of CO into the Ta–Me bond and further rearrangement of the η^2 acyl intermediate with intramolecular oxo-imido exchange. Since the starting oxo-borane chloro-methyl complex could not be isolated, thus preventing access to the oxo-borane compound [TaCp*Cl{ η^2 -C(Me)=NAr}{O·B(C_6F_5)_3}] (2d) by insertion of CNAr into the Ta-C bond of the corresponding alkyl-chloro compound, we tried to obtain this compound by an alternative route. With this aim, we investigated the reaction of the oxo iminoacyl compound $[TaCp*Cl{\eta^2-C(Me)=NAr}(O)]$ with $B(C_6F_5)_3$, which afforded 2d in high yield. The formation of 2d was confirmed by ¹³C and ¹⁹F NMR spectroscopy. The ¹³C NMR spectrum shows the resonance corresponding to the C_{sp^2} atom of the η^2 -iminoacyl ligand ($\delta = 240.1 \text{ ppm}$) to be slightly low-field shifted with respect to that of the starting compound [TaCp*Cl{ η^2 -C(Me)=NAr}(O)] (δ = 236.8 ppm). An analogous behaviour was observed in the ¹H NMR spectrum for the methyl-iminoacyl group, which was shifted from $\delta = 2.65$ ppm in [TaCp*Cl{ η^2 -C(Me)=NAr}(O)] to δ = 2.94 ppm in 2d.

The molecular structure of compound $[TaCp*Cl{\eta^2-C(Me)=NAr}{O\cdot B(C_6F_5)_3}]$ (Ar = 2,6-Me₂C₆H₃) (2d) was obtained by X-ray diffraction studies. Figure 1 depicts an ORTEP drawing of 2d with selected bond lengths and angles. Compound 2d exhibits the typical geometry known for group 5 half-sandwich iminoacyl compounds with a tetrahedral coordination environment around the tantalum atom. Considering the centroid of the Cp* ring and the midpoint of the C(10)–N bond as coordination sites, the other two positions are occupied by the chloro and oxo ligands. The N atom of the η^2 -iminoacyl group is located in a *trans* position with respect to the oxo ligand, as in analogous half-sandwich imido complexes and in [TaCp*Cl{ η^2 -C(Me)=NAr}(O)]. Furthermore, the oxygen atom is attached to the boron atom of the B(C₆F₅)₃ group.

All the values of the bond lengths and angles of compound **2d** are very close to the corresponding bond lengths and angles found for the parent compound [TaCp*Cl{ η^2 -C(Me)=NAr}(O)]^[10] except for the Ta–O bond, which is longer in [TaCp*Cl{ η^2 -C(Me)=NAr}(O)] [1.731(7) Å] than in **2d** [1.809(5) Å] as a consequence of the coordination of the oxygen atom to the B(C₆F₅)₃ ligand.^[21,23–28,30,31] The linear Ta–O–B angle [174.4(6)°] and the B–O bond length [1.52(1) Å] are typical of oxo-borane compounds.^[21–31] The Ta–O bond in **2d** is longer than that in the oxo-borane compound [TaCp*Cl₂{O·B(C₆F₅)₃}]^[21] [1.784(2) Å]. This bond length is similar to the lower end of the range of Ta–O bond lengths for compounds with Ta–O–Ta bridges (1.82–2.10 Å).^[32–35] and with terminal Ta–OH bonds (1.85–1.97 Å).^[36–38] However, the single bond Ta–O distances are ca. 2.18 Å,

Figure 1. ORTEP diagram of the X-ray structure of compound 2d. Thermal ellipsoids are drawn at the 50% level, and hydrogen atoms and C_6F_5 groups have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Ta–O 1.809(5), Ta–N 2.127(7), Ta–C(10) 2.120(9), Ta–Cl 2.392(2), B–O 1.525(11), N–C(10) 1.26(1), N–Ta–C(10) 34.5(3), C(10)–N–Ta 72.4(5), N–C(10)–Ta 73.1(5), B–O–Ta 174.4(6).

and thus a bond order of two should be considered for the Ta–O bond in 2d.

The reaction of the dialkyl [TaCp* R_2 {O·B(C₆F₅)₃}] (R = CH_2Ph 1a, Me 1b) and the monobenzyl [TaCp*(CH_2Ph)- $Cl{O\cdot B(C_6F_5)_3}$] (1c) complexes with CO in toluene gave the η^2 -acyl compounds [TaCp*X{ η^2 -C(R)=O}{O·B- $(C_6F_5)_3$] (X = R = CH₂Ph **3a**, Me **3b**; X = Cl, R = CH₂Ph 3c) after ca. 24 h at room temperature in moderate yields (Scheme 1). These pale yellow compounds were air and thermally stable below 120 °C for several hours. The ¹³C NMR spectra showed a resonance at ca. $\delta = 305$ ppm corresponding to the C_{sp^2} atom of the η^2 -acyl fragment. The slowness of the insertion reactions of CO is in contrast with the rapid transformations observed for complexes 1 with isocyanide and the behaviour observed^[10,11] for the reactions of the imido compounds [TaCp*MeX(NR)] (R = 2,6- $Me_2C_6H_3$, tBu; X = Cl, Me) with CO. This difference may be attributed to the lower oxophilicity of the tantalum atom in compounds 1 that is caused by the presence of the oxo ligand.

The X-ray structure of compound **3a** is shown in Figure 2. The environment around the Ta atom is analogous to that described for compound **2d** (see above) with the oxygen atom of the acyl group located *trans* to the oxo-borane ligand, as expected. The Ta–O(1) bond length of 1.816(2) Å is similar to that observed for compound **2d**, and the O(1)–B bond length [1.512(4) Å] and Ta–O(1)–B angle [173.0(2)°] have values that are normally seen for these types of compounds.^[21–31]

The whole set of angles and bond lengths of the [Ta-(η^2 -acyl)] group is in line with compounds of this type^[1] and is similar to those found in the other two tantalum-acyl complexes for which X-ray structures are known, [TaCp*Me{ η^2 -C(CH₂CMe₂Ph)=O}{N(2,6-Me₂C₆H₃)}]^[39] and [TaCp*Cl₃{ η^2 -C(CH₂CMe₃)=O}].^[40] However, in the particular case of the isostructural imido derivative [TaCp*Me{ η^2 -C(CH₂CMe₂Ph)=O}{N(2,6-Me₂C₆H₃)}], the Ta–O bond [2.21(1) Å] is slightly longer than the corre-

Figure 2. ORTEP diagram of the X-ray structure of compound **3a**. Thermal ellipsoids are drawn at the 50% level, and hydrogen atoms and C_6F_5 groups have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Ta–O(1) 1.816(2), Ta–O(2) 2.110(3), Ta–C(1) 2.229(4), Ta–C(2) 2.011(3), B–O(1) 1.512(4), O(2)–C(2) 1.209(4), O(2)–Ta–C(2) 34.02(12), C(2)–O(2)–Ta 68.5(2), O(2)–C(2)–Ta 77.5(2), B–O(1)–Ta 173.02(19).

sponding bond in compound 3a [2.110(3) Å], because of the different *trans* effect and higher donor capacity of the imido ligand.

The insertion of a second CNAr or CO molecule into these new acyl and iminoacyl oxo-borane complexes was not observed, in contrast with the behaviour observed for the analogous tert-butyl imido complexes.^[20] Rather, all complexes 2-3 released the acid-base adduct $L \cdot B(C_6F_5)_3$ (L = py, CNAr) in the presence of donor ligands such as isocyanide or pyridine.^[41] Only in the case of compound 2a were we able to isolate the borane-free 18-electron compound $[TaCp^*(CH_2Ph)\{\eta^2-C(CH_2Ph)=NAr\}(O)]$ (4a), with a terminal oxo-tantalum bond. The remaining oxo-borane complexes decomposed under similar conditions. The ¹³C NMR spectrum of the new oxo iminoacyl compound 4a showed the η^2 -iminoacyl C_{sp²} resonance at $\delta = 240.3$ ppm. A comparison of this ¹³C resonance and that assigned to the CH₂iminoacyl group in the ¹H NMR spectrum with the corresponding resonances in the parent compound 2a, showed a behaviour that is opposite to that observed for 2d and $[TaCp*Cl{\eta^2-C(Me)=NAr}(O)].$

Conclusions

The dialkyl oxo-borane compounds $[TaCp*R_2{O·B-(C_6F_5)_3}]$ can be transformed into the monoalkyl derivatives $[TaCp*RX{O·B(C_6F_5)_3}]$ by alkyl-chloro exchange with Ph₃CCl. All of these complexes reacted with one molecule of isocyanide or carbon monoxide to give the η^2 -iminoacyl or η^2 -acyl compounds, respectively. No further insertion processes have been observed. This behaviour is analogous to that observed for the imido compounds [TaCp*MeX(NR)] (R = 2,6-Me₂C₆H₃; X = Cl, Me), although in the oxo-borane compounds the insertion of CO gave stable η^2 -acyl derivatives because of the presence of a Ta–O multiple bond, which prevents further rearrangement.

FULL PAPER

Experimental Section

All manipulations were carried out under argon, and solvents were distilled from appropriate drying agents. NMR spectra were recorded at 300.13 (¹H NMR), 188.31 (¹⁹F NMR), 75.47 (¹³C NMR) and 128.38 Hz (¹¹B NMR) at room temperature with a Varian Unity 300 (¹H, ¹³C, ¹⁹F) or Bruker Advance 400 (¹¹B NMR) instrument. Chemical shifts (δ , CDCl₃) are given in ppm, relative to internal TMS (¹H and ¹³C NMR), and external CFCl₃ (¹⁹F NMR) and BF₃·OEt₂ (¹¹B NMR). Elemental analyses were performed with a Perkin–Elmer 240C instrument. Compounds $[TaCp^*Me_4]$,^[42] $[TaCp^*(CH_2Ph)_2\{O\cdot B(C_6F_5)_3\}]$,^[21] $[TaCp^*Me_2 \{O \cdot B(C_6F_5)_3\}, [21] [TaCp*Cl{\eta^2-C(Me)=NAr}(O)]^{[10]}$ and B- $(C_6F_5)_3^{[43]}$ were prepared by literature methods, and H₂O·B- $(C_6F_5)_3^{[44]}$ was prepared from H₂O and B(C₆F₅)₃ in toluene at room temperature and used in situ without further purification.

 $[TaCp*Cl(CH_2Ph)\{O\cdot B(C_6F_5)_3\}] (1c): A suspension of Ph_3CCl$ (0.14 g, 0.50 mmol) and $[\text{TaCp}^*(\text{CH}_2\text{Ph})_2\{\text{O}\cdot\text{B}(\text{C}_6\text{F}_5)_3\}]$ (1a) (0.50 g, 0.49 mmol) in toluene (5 mL) was stirred overnight at room temperature, with a colour change from yellow to brown. Later, all volatile components were removed under vacuum until the volume was ca. 1 mL, leaving a dark oil that was washed with hexane $(2 \times 10 \text{ mL})$ to yield 1c as a brownish solid (0.36 g, 76%). C₃₅H₂₂BClF₁₅OTa (970.75): calcd. C 43.31, H 2.28; found C 42.99, H 2.25. ¹H NMR: δ = 2.14 (s, 15 H, C₅Me₅), 2.52 (d, ²J_{H,H} = 14.0 Hz, 1 H, CH_2Ph), 2.80 (d, ${}^2J_{H,H}$ = 14.0 Hz, 1 H, CH_2Ph), 6.74 (m, 2 H, C₆ H_5), 7.02 (m, 3 H, C₆ H_5) ppm. ¹¹B NMR: $\delta = 0.10$ $[O \cdot B(C_6F_5)_3]$ ppm; ¹³C NMR{¹H}: $\delta = 11.5$ (C₅Me₅), 82.3 (CH₂Ph), 125.7 (C₅Me₅), 127.1 (C₆H₅), 128.2 (C₆H₅), 128.3 (C₆H₅), 131.4 (C₆H₅), 135.0 (C₆F₅), 138.3 (C₆F₅), 145.9 (C₆F₅), 149.1 (C_6F_5) ppm; ¹⁹F NMR: $\delta = -132.9$ (*o*-C₆F₅), -157.7 (*p*-C₆F₅), -163.3 (m-C₆F₅) ppm.

[TaCp*CIMe{O·B(C₆F₅)₃] (1d): A solution of Ph₃CCl (0.080 g, 0.028 mmol) and [TaCp*Me₂{O·B(C₆F₅)₃}] (1d) (0.025 g, 0.028 mmol) in C₆D₆ was heated at 45 °C for 18 h. Total transformation of 1b to 1d was then observed. ¹H NMR (C₆D₆): $\delta = 1.26$ (s, 3 H, Ta–*Me*), 2.13 (s, 15 H, C₅*Me*₅) ppm. ¹¹B NMR (C₆D₆): $\delta = 0.05$ [O·B(C₆F₅)₃] ppm. ¹⁹F NMR (C₆D₆): $\delta = -133.0$ (*o*-C₆F₅), -157.2 (*p*-C₆F₅), -163.3 (*m*-C₆F₅) ppm.

 $[TaCp^{*}(CH_{2}Ph)\{\eta^{2}-C(CH_{2}Ph)=NAr\}\{O \cdot B(C_{6}F_{5})_{3}\}]$ (Ar = 2,6-Me₂C₆H₃) (2a): A solution of $[TaCp^*(CH_2Ph)_2\{O\cdot B(C_6F_5)_3\}]$ (1a) (0.50 g, 0.49 mmol) in toluene (5 mL) was treated with CNAr (0.065 g, 0.50 mmol), and the mixture was stirred for 1 h at room temperature. All volatile components were removed under vacuum, and the remaining solid was washed with hexane $(2 \times 10 \text{ mL})$ to give **2a** as a white solid (0.49 g, 87%). C₅₁H₃₈BF₁₅NOTa (1157.59): calcd. C 52.91, H 3.31, N 1.21; found C 52.67, H 3.21, N 1.09. ¹H NMR: $\delta = 1.34$ (s, 3 H, $Me_2C_6H_3$), 1.41 (s, 3 H, $Me_2C_6H_3$), 1.93 (s, 15 H, C₅ Me_5), 2.78 (d, ${}^2J_{H,H}$ = 12.5 Hz, 1 H, Ta–C H_2 Ph), 2.93 (d, ${}^{2}J_{H,H}$ = 12.5 Hz, 1 H, Ta–CH₂Ph), 4.46 (d, ${}^{2}J_{H,H}$ = 17.4 Hz, 1 H, C–C H_2 Ph), 4.56 (d, ${}^2J_{H,H}$ = 17.4 Hz, 1 H, C–C H_2 Ph), 6.47– 7.03 (m, 13 H, C₆ H_3 and C₆ H_5) ppm. ¹³C NMR{¹H}: δ = 11.1 (C5Me5), 17.6 (Me2C6H3), 18.8 (Me2C6H3), 42.2 (C-CH2Ph), 54.8 (Ta-CH2Ph), 120.1 (C5Me5), 123.5-149.2 (C6H5, Me2C6H3 and C_6F_5), 237.7 (Ta-C=N) ppm. ¹⁹F NMR: $\delta = -130.7$ (o-C₆F₅), -158.3 (*p*-C₆F₅), -163.8 (*m*-C₆F₅) ppm. IR (KBr): $\tilde{v} = 1601$ $(C=N) \text{ cm}^{-1}.$

[TaCp*Me{ η^2 -C(Me)=NAr}{O·B(C_6F_5)_3}] (Ar = 2,6-Me_2C_6H_3) (2b): The procedure used for 2a, but starting from [TaCp*Me_2{O·B(C_6F_5)_3}] (1b) (0.50 g, 0.57 mmol) and CNAr (0.079 g, 0.060 mmol), gave 2b (0.52 g, 91%). C₃₉H₃₀BF₁₅NOTa (1005.41): calcd. C 46.59, H 3.09, N 1.39; found C 46.40, H 3.00, N 1.28. ¹H NMR: $\delta = 0.79$ (s, 3 H, Ta–*Me*), 1.48 (s, 3 H, *Me*₂C₆H₃), 1.69 (s, 3 H, *Me*₂C₆H₃), 1.95 (s, 15 H, C₅*Me*₅), 2.72 (s, 3 H, C–*Me*), 7.06 (m, 2 H, Me₂C₆H₃), 7.13 (m, 1 H, Me₂C₆H₃) ppm. ¹³C NMR{¹H}: $\delta = 11.0$ (C₅*Me*₅), 17.2 (*Me*₂C₆H₃), 18.6 (*Me*₂C₆H₃), 20.0 (Ta–*Me*), 31.6 (C–*Me*), 118.7 (C₅Me₅), 127.6–148.8 (Me₂C₆H₃) and C₆F₅), 238.3 (Ta–C=N) ppm. ¹⁹F NMR: $\delta = -131.7$ (*o*-C₆F₅), -158.4 (*p*-C₆F₅), -163.8 (*m*-C₆F₅) ppm. IR (KBr): $\tilde{v} = 1629$ (C=N) cm⁻¹.

[TaCp*Cl{η²-C(CH₂Ph)=NAr}{O·B(C₆F₅)₃] (Ar = 2,6-Me₂C₆H₃) (2c): The procedure used for 2a, but starting from [TaCp*Cl(CH₂Ph){O·B(C₆F₅)₃] (1c) (0.50 g, 0.52 mmol) and CNAr (0.072 g, 0.55 mmol), gave 2c (0.51 g, 89%). C₄₄H₃₁BClF₁₅NOTa (1101.91): calcd. C 47.96, H 2.84, N 1.27; found 47.00, H 2.75, N 1.24. ¹H NMR: δ = 1.55 (s, 3 H, *Me*₂C₆H₃), 1.64 (s, 3 H, *Me*₂C₆H₃), 2.09 (s, 15 H, C₅*Me*₅), 4.59 (d, ²*J*_{H,H} = 18.5 Hz, 1 H, C-*CH*₂Ph), 4.72 (d, ²*J*_{H,H} = 18.5 Hz, 1 H, C-*CH*₂Ph), 6.76-7.06 (m, 8 H, C₆H₃ and C₆H₅) ppm. ¹³C NMR{¹H}: δ = 11.4 (C₅*Me*₅), 17.8 (*Me*₂C₆H₃), 21.4 (*Me*₂C₆H₃), 43.3 (C-*C*H₂Ph), 123.2 (*C*₅Me₅), 125.3-149.2 (*C*₆H₅, Me₂C₆H₃ and C₆F₅), 236.7 (Ta-*C*=N) ppm. ¹⁹F NMR: δ = -130.6 (*o*-C₆F₅), -157.9 (*p*-C₆F₅), -163.4 (*m*-C₆F₅) ppm. IR (KBr): \tilde{v} = 1644 (C=N) cm⁻¹.

[TaCp*Cl{η²-C(Me)=NAr}{O·B(C₆F₅)₃] (Ar = 2,6-Me₂C₆H₃) (2d): A solution of [TaCp*Cl{η²-C(Me)=NAr}(O)] (0.25 g, 0.49 mmol) and B(C₆F₅)₃ (0.28 g, 0.51 mmol) in toluene (5 mL) was stirred at room temperature for 1 h. Later, the solution was filtered, layered with hexane (5 mL) and cooled to -10 °C, obtaining 2d as yellow crystals (0.40 g, 74%). C₃₈H₂₇BClF₁₅NOTa·(C₇H₈)₂ (1210.09): calcd. C 51.61, H 3.58, N 1.16; found C 51.01, H 3.22, N 1.19. ¹H NMR: δ = 1.62 (s, 3 H, *Me*₂C₆H₃), 1.91 (s, 3 H, *Me*₂C₆H₃), 2.18 (s, 15 H, C₅*Me*₅), 2.94 (s, 3 H, C–*Me*), 7.13 (m, 2 H, Me₂C₆H₃), 7.20 (m, 1 H, Me₂C₆H₃) ppm. ¹³C NMR{¹H}: δ = 11.5 (C₅*Me*₅), 17.6 (*Me*₂C₆H₃), 19.2 (C–*Me*), 21.1 (*Me*₂C₆H₃), 113.3 (*C*₅Me₅), 128.7–149.4 (Me₂C₆H₃ and C₆F₅), 240.1 (Ta–C=N) ppm. ¹⁹F NMR: δ = -131.5 (*o*-C₆F₅), -158.4 (*p*-C₆F₅), -164.0 (*m*-C₆F₅) ppm. IR (KBr): \tilde{v} = 1638 (C=N) cm⁻¹.

[TaCp*(CH₂Ph){η²-C(CH₂Ph)=O}{O·B(C₆F₅)₃] (3a): A flask containing a solution of $[TaCp^*(CH_2Ph)_2\{O\cdot B(C_6F_5)_3\}]$ (1a) (0.50 g, 0.49 mmol) in toluene (10 mL) was charged with CO, and the mixture was stirred for 24 h at room temperature. The solution was then filtered, all volatile components were removed under vacuum to leave ca. 4 mL of solution and the solution was layered with hexane (4 mL) and cooled to -10 °C to give 3a as yellow crystals (0.39 g, 70%). C43H29BF15O2Ta·C7H8 (1146.56): calcd. C 52.38, H 3.25; found C 52.43, H 3.17. ¹H NMR: δ = 1.88 (s, 15 H, C₅Me₅), 2.54 (d, ${}^{2}J_{H,H}$ = 12.1 Hz, 1 H, Ta–CH₂Ph), 2.70 (d, ${}^{2}J_{H,H}$ = 12.1 Hz, 1 H, Ta– CH_2Ph), 4.59 (d, ${}^2J_{H,H}$ = 19.4 Hz, 1 H, C– CH_2Ph), 4.88 (d, ${}^{2}J_{H,H}$ = 19.4 Hz, 1 H, C– CH_2Ph), 6.70–6.90 (m, 6 H, C₆H₅), 7.20–7.45 (m, 4 H, C₆H₅) ppm. ¹³C NMR{¹H}: δ = 10.8 (C₅Me₅), 49.2 (C-CH₂Ph), 60.0 (Ta-CH₂Ph), 120.0 (C₅Me₅), 123.5–148.9 (C_6H_5 and C_6F_5), 306.9 (Ta–C=O) ppm. ¹⁹F NMR: δ = -133.0 (*o*-C₆F₅), -157.7 (*p*-C₆F₅), -163.4 (*m*-C₆F₅) ppm. IR (KBr): $\tilde{v} = 1643$ (C=O) cm⁻¹.

[TaCp*Me{η²-C(Me)=O}{O·B(C₆F₅)₃] (3b): The procedure used for **3a**, but starting from [TaCp*Me₂{O·B(C₆F₅)₃}] (**1b**) (0.50 g, 0.57 mmol) and CO, gave **3b** as a white solid (0.41 g, 80%). C₃₁H₂₁BF₁₅O₂Ta (902.23): calcd. C 41.27, H 2.35; found C 40.87, H 2.30. ¹H NMR: $\delta = 0.81$ (s, 3 H, Ta-*Me*), 1.90 (s, 15 H, C₅*Me*₅), 3.23 (s, 3 H, C-*Me*) ppm. ¹³C NMR{¹H}: $\delta = 10.6$ (C₅*Me*₅), 28.7 (Ta-*Me*), 37.6 (C-*Me*), 119.4 (*C*₅Me₅), 134.3–149.8 (*C*₆F₅), 313.8 (Ta-*C*=O) ppm. ¹⁹F NMR: $\delta = -133.2$ (*o*-C₆F₅), -157.7 (*p*-C₆F₅), -163.4 (*m*-C₆F₅). IR (KBr): $\tilde{v} = 1644$ (C=O) cm⁻¹. **[TaCp*Cl{η²-C(CH₂Ph)=O}{O·B(C₆F₅)₃] (3c):** The procedure used for **3a**, but starting from [TaCp*Cl(CH₂Ph){O·B(C₆F₅)₃] (**1c**) (0.50 g, 0.52 mmol) and CO, gave **3c** as a yellowish solid (0.40 g, 78%). C₃₆H₂₂BClF₁₅O₂Ta (998.76): calcd. C 43.29, H 2.22; found C 43.17, H 2.24. ¹H NMR: δ = 2.05 (s, 15 H, C₅Me₅), 4.41 (d, ²J_{H,H} = 19.0 Hz, 1 H, C–CH₂Ph), 4.91 (d, ²J_{H,H} = 19.0 Hz, 1 H, C–CH₂Ph), 7.05–7.40 (m, 5 H, C₆H₃) ppm. ¹³C NMR{¹H}: δ = 10.5 (C₅Me₅), 49.2 (C–CH₂Ph), 123.7 (C₅Me₅), 127.8–130.0 (C₆H₅), 135.8, 138.3, 139.2, 141.7, 146.8 and 150.1 (C₆F₅), 310.5 (Ta–C=O) ppm. ¹⁹F NMR: δ = –132.5 (*o*-C₆F₅), –156.9 (*p*-C₆F₅), –162.9 (*m*-C₆F₅) ppm. IR (KBr): $\tilde{\nu}$ = 1658 (C=O) cm⁻¹.

 $[TaCp^{*}(CH_{2}Ph)\{\eta^{2}-C(CH_{2}Ph)=NAr\}(O)]$ (Ar = 2,6- Me₂C₆H₃) (4a): A solution of $[TaCp^*(CH_2Ph)\{\eta^2-C(CH_2Ph)=NAr\}$ - $\{O \cdot B(C_6F_5)_3\}$] (2a) (0.25 g, 0.22 mmol) in toluene (5 mL) was treated with pyridine (0.026 g, 0.33 mmol), and the mixture was stirred for 2 h at room temperature. All volatile components were removed under vacuum until ca. 1 mL remained, and hexane (10 mL) was added to precipitate a white solid that was washed with a hexane/toluene mixture $(2 \times 10 \text{ mL}, 9:1)$ to give 4a (0.10 g, 72%). C₃₃H₃₈NOTa (645.62): calcd. C 61.39, H 5.93, N 2.17; found C 61.00, H 5.83, N 2.21. ¹H NMR: $\delta = 1.25$ (s, 3 H, $Me_2C_6H_3$), 1.72 (d, ${}^{2}J_{H,H}$ = 11.9 Hz, 1 H, Ta–CH₂Ph), 1.80 (s, 3 H, $Me_{2}C_{6}H_{3}$), 1.99 (s, 15 H, C_5Me_5), 2.77 (d, ${}^2J_{H,H}$ = 11.9 Hz, 1 H, Ta– CH_2Ph), 3.75 (d, ${}^{2}J_{H,H}$ = 17.6 Hz, 1 H, C–C H_{2} Ph), 4.25 (d, ${}^{2}J_{H,H}$ = 17.6 Hz, 1 H, C–CH₂Ph), 6.50–7.26 (m, 13 H, C₆H₃ and C₆H₅) ppm. 13 C NMR{¹H}: $\delta = 10.9$ (C₅Me₅), 17.2 (Me₂C₆H₃), 18.4 (Me₂C₆H₃), 39.3 (C-CH₂Ph), 48.8 (Ta-CH₂Ph), 121.1 (C₅Me₅), 126.1-149.8 $(C_6H_5 \text{ and } Me_2C_6H_3)$, 240.3 (Ta-C=N) ppm. IR (KBr): $\tilde{v} = 1631$ $(C=N) \text{ cm}^{-1}.$

Crystal Structure Determination for 2d and 3a: Selected crystals were covered with perfluoropolyether oil and mounted on a Nonius KAPPA-CCD single crystal diffractometer. The crystal structure was solved by direct methods and refined using full-matrix least-squares on F^2 (SHELXL-97). All non-hydrogen atoms were aniso-tropically refined. Hydrogen atoms were geometrically placed and left riding on their parent atoms. Two molecules of toluene crystal-

Table 1. Crystallographic data for compounds 2d and 3a.

Compound	2d	3a
Empirical formula	C ₅₂ H ₄₃ BClF ₁₅ NOTa	C ₅₀ H ₃₇ BF ₁₅ O ₂ Ta
Formula mass	1210.08	1146.56
λ [Å]	0.71069	0.71069
Crystal system	triclinic	triclinic
Space group	PĪ	PĪ
<i>T</i> [K]	200(2)	150(2)
a [Å]	9.565(1)	12.739(2)
<i>b</i> [Å]	13.7547(3)	13.171(2)
<i>c</i> [Å]	19.545(3)	15.104(2)
a [°]	77.483(7)	88.20(1)
β [°]	79.50(1)	82.58(2)
γ [°]	71.389(4)	63.20(1)
V [Å ³]	2361.1(5)	2242.1(6)
Ζ	2	2
Calcd. density [mgm ⁻³]	1.572	1.698
Absorption coefficient [mm-1]	2.478	2.555
θ range [°]	3.52-27.50	3.61-27.50
Reflections collected/unique reflections	13375/8067	19150/10201
R(int.)	0.0863	0.0228
Data/restraints/parameters	8067/3/586	10201/239/622
GOF	1.101	1.042
Final R indices	$R_1 = 0.0575$	$R_1 = 0.0292$
$[I > 2\sigma(I)]$	$wR_2 = 0.1211$	$wR_2 = 0.0678$
Largest diff. peak/hole [eÅ-3]	1.596/-1.899	1.303/-1.364

lised with every molecule of **2d**; both solvent molecules were found in the difference Fourier map but one of them was very disordered and it was not possible to get a chemically sensible model for it, so the Squeeze procedure^[45] was used to remove its contribution to the structural factors. In **3a** some restraints on the solvent molecule were applied. Crystal data for both compounds are given in Table 1. CCDC-272817 (for **2d**) and CCDC-272818 (for **3a**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

We gratefully acknowledge the Ministerio de Educación y Ciencia (project MAT2004–02614) and DGUI-Comunidad de Madrid (project GR/MAT/0622/2004) (Spain) for financial support.

- [1] L. D. Durfee, I. P. Rothwell, Chem. Rev. 1988, 88, 1059.
- [2] R. Lai, S. Lebot, F. Djafri, J. Organomet. Chem. 1991, 410, 335.
- [3] M. H. P. Rietveld, H. Hagen, L. van de Water, D. M. Grove, H. Kooijman, N. Veldman, A. L. Spek, G. van Koten, *Organometallics* 1997, *16*, 168.
- [4] A. Castro, M. V. Galakhov, M. Gómez, P. Gómez-Sal, A. Martín, F. Sánchez, P. Velasco, *Eur. J. Inorg. Chem.* 2000, 2047.
- [5] R. Fandos, I. López-Solera, A. Otero, A. Rodríguez, M. J. Ruiz, P. Terreros, *Organometallics* 2004, 23, 5030.
- [6] L. Kloppenburg, J. L. Petersen, Organometallics 1997, 16, 3548.
- [7] A. Sebastián, Ph. D. thesis, Alcalá University (Alcalá de Henares), 2004.
- [8] M. V. Galakhov, M. Gómez, G. Jiménez, M. A. Pellinghelli, P. Royo, A. Tiripicchio, *Organometallics* 1994, 13, 1564.
- [9] M. V. Galakhov, M. Gómez, G. Jiménez, P. Royo, M. A. Pellinghelli, A. Tiripicchio, *Organometallics* 1995, 14, 2843.
- [10] M. Gómez, P. Gómez-Sal, G. Jiménez, A. Martín, P. Royo, J. Sánchez-Nieves, Organometallics 1996, 15, 3579.
- [11] J. Sánchez-Nieves, Ph. D. thesis, Alcalá University (Alcalá de Henares), 2000.
- [12] L. Kloppenburg, J. L. Petersen, Polyhedron 1995, 14, 69.
- [13] C. Valero, M. Grehl, D. Wingbermuhle, L. Kloppenburg, D. Carpenetti, G. Erker, J. L. Petersen, *Organometallics* 1994, 13, 415.
- [14] F. J. Berg, J. L. Petersen, Organometallics 1993, 12, 3890.
- [15] F. J. Berg, J. L. Petersen, Organometallics 1991, 10, 1599.
- [16] F. J. Berg, J. L. Petersen, Organometallics 1989, 8, 2461.
- [17] N. S. Radu, M. P. Engeler, C. P. Gerlach, T. D. Tilley, A. L. Rheingold, J. Am. Chem. Soc. 1995, 117, 3621.
- [18] S. M. Beshouri, D. E. Chebi, P. E. Fanwick, I. P. Rothwell, J. C. Huffman, *Organometallics* 1990, 9, 2375.
- [19] M. I. Alcalde, M. P. Gómez-Sal, P. Royo, *Organometallics* 1999, 18, 546.
- [20] J. Sánchez-Nieves, P. Royo, M. A. Pellinghelli, A. Tiripicchio, Organometallics 2000, 19, 3161.
- [21] J. Sánchez-Nieves, L. M. Frutos, P. Royo, O. Castaño, E. Herdtweck, Organometallics 2005, 24, 2004.
- [22] A. R. Siedle, R. A. Newmark, W. M. Lamanna, J. C. Huffman, Organometallics 1993, 12, 1491.
- [23] J. R. Galsworthy, M. L. H. Green, M. Muller, K. Prout, J. Chem. Soc., Dalton Trans. 1997, 1309.
- [24] J. R. Galsworthy, J. C. Green, M. L. H. Green, M. Muller, J. Chem. Soc., Dalton Trans. 1998, 15.
- [25] L. H. Doerrer, J. R. Galsworthy, M. L. H. Green, M. A. Leech, J. Chem. Soc., Dalton Trans. 1998, 2483.
- [26] L. H. Doerrer, J. R. Galsworthy, M. L. H. Green, M. A. Leech, M. Muller, J. Chem. Soc., Dalton Trans. 1998, 3191.
- [27] G. Barrado, L. Doerrer, M. L. H. Green, M. A. Leech, J. Chem. Soc., Dalton Trans. 1999, 1061.

FULL PAPER

- [28] Y. Han, C. J. Harlan, P. Stoessel, B. J. Frost, J. R. Norton, S. Miller, B. Bridgewater, Q. Xu, *Inorg. Chem.* 2001, 40, 2942.
- [29] D. Neculai, H. W. Roesky, A. M. Neculai, J. Magull, B. Walfort, D. Stalke, Angew. Chem. Int. Ed. 2002, 41, 4294.
- [30] F. Wolff, R. Choukroun, C. Lorber, B. Donnadieu, Eur. J. Inorg. Chem. 2003, 628.
- [31] M. J. Sarsfield, M. Helliwell, J. Am. Chem. Soc. 2004, 126, 1036.
- [32] M. H. Chisholm, J. C. Huffman, L. S. Tan, *Inorg. Chem.* 1981, 20, 1859.
- [33] P. Jernakoff, C. D. de Bellefon, G. L. Geoffroy, A. L. Rheingold, S. J. Geib, Organometallics 1987, 6, 1362.
- [34] M. Herberhold, J. Peukert, W. Milius, J. Prakt. Chem. Chem.-Ztg. 1999, 341, 797.
- [35] S. W. Schweiger, D. L. Tillison, M. G. Thorn, P. E. Fanwick, I. P. Rothwell, J. Chem. Soc., Dalton Trans. 2001, 2401.
- [36] A. I. Gouzyr, H. Wessel, C. E. Barnes, H. W. Roesky, M. Teichert, I. Uson, *Inorg. Chem.* **1997**, *36*, 3392.

- [37] R. E. Blake, D. M. Antonelli, L. M. Henling, W. P. Schaefer, K. I. Hardcastle, J. E. Bercaw, *Organometallics* **1998**, *17*, 718.
- [38] R. W. Quan, J. E. Bercaw, W. P. Schaefer, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1991, 47, 2057.
- [39] A. Castro, M. V. Galakhov, M. Gómez, P. Gómez-Sal, A. Martín, F. Sánchez, J. Organomet. Chem. 2000, 595, 36.
- [40] T. Y. Meyer, L. R. Garner, N. C. Baenziger, L. Messerle, *Inorg. Chem.* 1990, 29, 4045.
- [41] W. A. Piers, Adv. Organomet. Chem. 2005, 52, 1.
- [42] R. D. Sanner, S. T. Carter, W. J. Bruton, J. Organomet. Chem. 1982, 240, 157.
- [43] S. Lancaster, www.syntheticpages.org, 2003, 216.
- [44] L. H. Doerrer, M. L. H. Green, J. Chem. Soc., Dalton Trans. 1999, 4325.
- [45] P. Vandersluis, A. L. Spek, Acta Crystallogr. Sect. A 1990, 46, 194.

Received: July 19, 2005

Published Online: November 11, 2005