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Abstract—Federated Learning enables distributed data holders
to train a shared machine learning model on their collective data.
It provides some measure of privacy by not requiring the data be
pooled and centralized but still has been shown to be vulnerable
to adversarial attacks. Differential Privacy provides rigorous
guarantees and sufficient protection against adversarial attacks
and has been widely employed in recent years to perform privacy
preserving machine learning. One common trait in many of
recent methods on federated learning and federated differentially
private learning is the assumption of IID data, which in real
world scenarios most certainly does not hold true. In this work,
we empirically investigate the effect of non-IID data on node level
on federated, differentially private, deep learning. We show the
non-IID data to have a negative impact on both performance and
fairness of the trained model and discuss the trade off between
privacy, utility and fairness. Our results highlight the limits of
common federated learning algorithms in a differentially private
setting to provide robust, reliable results across underrepresented
groups.

Index Terms—differential privacy, federated learning, non-IID
data

I. INTRODUCTION

Federated Learning (FL) [1] is a decentralized scheme to

train Machine Learning (ML) models on several nodes, each

being able to contribute compute resources and/or their own

private dataset. In most common FL scenarios, local models

are trained at participant sites and model parameters are sent

to a trusted orchestrator to be fused into one set of parameters

and sent back to participants. Among other advantages, FL

contributes to preserving privacy of participants by negating

the need to share their private data with each other or the

orchestrator. However, it has been shown that FL by itself does

not guarantee privacy and has been known to be vulnerable

to different adversarial attacks such as Membership Inference
Attacks [2], [3], Reconstruction Attacks [4], [5] and Inversion
Attacks [6], [7].

Among methods proposed to provide measurable guarantees

of privacy, Differential Privacy (DP) is capable of providing

algorithmic guarantees of privacy against linkage attacks [8],

[9]. In the context of FL, one can employ Global DP - when

the participants trust the orchestrator and privacy is provided

on participant level - [10] or Local DP - when there is no

trust between the orchestrator and participants and privacy

guarantees are provided on a record level [11].

Although adopting FL and DP can lead to both flexi-

bility in terms of distributed training of ML models and

privacy guarantees, they also incur costs such as computational

overhead [12], reduction of performance [10] and negative

impact on fairness [13]. The latter two problem are especially

prominent in a federated learning scenario where distribution

among nodes is Non-IID, i.e. the distribution of the data on

local FL nodes is different than the distribution of the global

dataset.

In this work, we investigate the effect of non-IID data on

differentially private federated learning of a discriminative

model. We focus on utility - as defined by common metrics

such as F1-score, accuracy, etc. - and fairness of the model.

We will establish baselines for centralized DP and non-DP

FL models using metrics for utility and fairness of the model

output in presence of the skewness in distribution of target

and non-target features. Then we extend our experiments to

the case of FL and measure the impact of non-IID data among

different nodes on utility and performance of the model.

A. Contributions

In this work, we set out to evaluate the impact of different

aspects of non-IID data on federated, differentially private

training of discriminative models. To the best of our knowl-

edge, this is the first work to explore empirically the impact
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of non-IID data in a DP federated machine learning setting.

We present the following contributions:

• Setting baseline and exploring the privacy-
utility/fairness trade-offs in presence of non-IID
data. We show disparate impact of DP in centralized

and fully-IID DP FL setups. We show the negative impact

of DP on the fairness and utility of the centralized DP

and fully-IID DP FL models.

• Establishing the threeway trade-off of distribution-
privacy-utility/fairness of differentially private FL. We

simulate different levels of non-IID data for DP FL and

show how an increase in the non-IID aspect of the data

also generally has more of a negative impact on utility

and fairness for underrepresented classes.

II. RELATED WORK

Impact of DP on model performance and fairness. Bag-

dasaryan et al. [14] empirically show that in both centralized

and federated settings, adding DP to the deep model will

exacerbate any potential ”unfair” traits of the model towards

underrepresented groups. They show this disparate impact

on vision and language models. Gu et al. [15] research the

impact of DP on model fairness in FL and conclude that

although both the noise adding mechanism and the gradient

clipping step have regularization impact on the outcome of the

deep model, they also have a negative impact on the fairness

of the model for underrepresented classes. Suriyakumar et

al. [16] extensively research the impact of DP on machine

learning in healthcare and empirically analyze the trade-offs

between privacy, utility and fairness. They show that applying

the DP-SGD mechanism [1] to machine learning models in

healthcare has a negative impact on the robustness and fairness

of the model in presence of classes and labels with long-tailed

distributions. They also show that DP disparately impacts

group fairness by looking at loss of influence for majority

groups.

Impact of data distribution on utility and fairness. Zhao et

al. [17] show steep degradation of machine learning utility in

federated setting in presence of non-IID and highly skewed

data. Farrand et al. [13] empirically show that adding DP

to a centralized model will have disparate impact on both

utility and fairness of the model outcome, even in presence

of slight class imbalance. They further show that the disparate

impact of adding DP is not limited to the high-privacy regime

and also can be observed in low-privacy settings. Finally they

conclude that increasing the privacy level will result in loss of

utility across all classes, which makes the model less efficient

but more fair. Ozdayi et al. [18] research the impact of data

distribution on fairness and robustness of FL and report the

negative impact of non-IID data on model performance and

fairness. They also conclude that the impact of non-IID data

on fairness is far greater than its impact on model utility.

Our work focuses on the impact of non-IID data on a

federated, differentially private model. To the best of our

knowledge this is the first work to address the interplay

between federated learning, differential privacy and non-IID

data.

III. BACKGROUND

This section provides basic background information for the

main ideas and algorithms used in this work.

A. Federated Deep Learning

The goal of training a discriminative ML model M : X →
Y with parameters θ is to fit function M to estimate the

distribution q(y ∈ Y |x ∈ X). In this work, we focus on the

common case of one label per sample, in which case the output

of q could be a one-hot encoding of the labels.

To perform the training process in a federated setup, Fed-
erated Averaging is one of the most prominent DL training

algorithms. In FL setup, K participants work in tandem with

an orchestrator by iteratively training local models on their

private datasets and sending their local parameters sets θk,i
back to the orchestrator in each communication round i. The

orchestrator combines the received parameter sets into a single

fused version and send it back to the participants. Participants

update their local model using the global parameter set and

repeat this process until convergence. In this work, we assume

the orchestrator waits to receive all participant updates before

performing the fusion and communication.

B. Differential Privacy

Consider adjacent datasets d, d′ ∈ D which only differ in

one element. The randomized mechanism M : D → R is

(ε, δ)-differentially-private if for any subset of outputs of M,

S ⊆ R:

Pr[M(d) ∈ S] ≤ eε Pr [M (d′) ∈ S] + δ. (1)

where ε is the privacy budget, setting the level of intended

privacy. The lower the ε, the higher the privacy level. δ is a

small probability of failure of the DP guarantee. As a rule of

thumb, it is set as less than 1/samplesize.

One of the most prominent methods bringing DP to the ma-

chine learning paradigm is DP-SGD, proposed by McMahan

et al. in 2016 [1]. The DP-SGD method works by clipping

the gradients to control the sensitivity of the mechanism and

adding calibrated noise to the gradient values. An accountant

has been proposed to keep track of the spent privacy budget.

Other accountants have been proposed in the literature that

provide tighter bounds on privacy costs, e.g. Rènyi-DP-based

accountant [19].

C. Non-IID Data in FL

Consider the federated learning setup with n participants

for a discriminative ML use-case. Training dataset X consists

of samples (x, y) ∼ P (x, y) with x being the input feature

vector and y being the target feature we are aiming to predict.

Non-IID data for participant i includes target feature non-IID

(Pi(y) �= P (y)) and non-target feature non-IID for feature xj

( Pi(xj) �= P (xj)).
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Salary\Race White Black Asian Other
<=50K 193844 23364 6641 6021
>50K 16398 801 600 197

TABLE I
DISTRIBUTION OF PROTECTED FEATURE Race CATEGORIES

over the target class Annual Salary

IV. METHODOLOGY

In this work we measure the impact of non-IID data (as

defined in Section III-C) on a DP-FL model.

A. Dataset

To understand the implications of having non-IID data in

a DP FL setup, we chose the Census-Income (KDD) dataset

from UCI Machine Learning Repository [20], which has been

extensively used in research literature on fairness [21]–[23].

It contains demographic census data of U.S population. The

target feature Salary indicates whether the person has an

annual income of over or under 50k dollars. Protected feature

is Race.

We perform extensive preprocessing on features such as

education, marital status and employment status and group

disparate values into high level categories to increase the base-

line classification efficiency. The preprocessed dataset contains

30 predictive features - including one protected feature -,

one target feature and 248466 samples. Table I shows the

distribution of our protected feature Race against the target

feature Annual Salary.

To measure the impact of DP and non-IID distribution

on fairness, we define the group White in Race feature as

the Privileged Group and Annual Salary>50k as the desired

outcome. For the relevant fairness metrics, the rest of the

categories in Race will be conditioned against the privileged

group and the (un)fairness will be measured against the desired

outcome.

B. Non-IID Data

To simulate non-IID data in an FL setting, we follow [18]

and distribute the samples among different FL participants

based on their target feature using Dirichlet distribution. We

control the amount of deviation from IID using the concen-

tration parameter of the Dirichlet distribution. Assuming prior

binomial distribution q over target feature and a categorical

distribution p over target feature from which samples are

drawn independently on participant level, we sample p from

Dir(αq). Noting that α → ∞ emulates fully-IID data while

α → 0 results in fully-non IID data, we choose three

parameters for α: 0.1, 1 and 100. These parameters based

on our experiments will emulate extreme non-IID, medium

non-IID and almost IID data respectively. Figure 1 illustrates

the distribution of target class and the protected attribute

(Race) among 15 participants of our FL scenario with different

concentration parameters.

Fig. 1. Distribution of target feature and the protected class among 15 FL
participants. Left column shows the IID data with α = 100, middle column
shows mild non-IID data with α = 100 and right column shows extreme
non-IID data with α = 100

C. Metrics

To measure the utility of our experiments, we will report

F1-score, Precision and Recall. In research area of fairness

in ML, different metrics are defined and used for different

usecases. For our binary discriminative model, we have chosen

Equalized Odds Rate (EOR), Generalize Entropy Index (GEI)

and Differential Fairness Bias Amplification (DFBA).
1) Differential Fairness: Let P ⊂ R

k × {0, 1} be the

input space of a binary classifier model. Consider dataset X
with feature set x : {x1, x2, ..., xn} and protected features set

A ⊂ x and si, sj ∈ A tuples of protected feature values.

Randomized mechanism M : X → Y is ε-Differentially Fair

(DF) with respect to (A,Θ) if for all (si, sj) ∈ A × A and

x ∼ θ:

e−ε ≤ PM,θ (M(x) = y | si, θ)
PM,θ (M(x) = y | sj , θ) ≤ eε,

for θ ∈ Θ and y ∈ Range(M) where P (si | θ) >
0, P (sj | θ) > 0 [24].

Intuitively ε-DF bounds the difference in log-likelihood of

the probabilities of the outcomes of the randomized mecha-

nism for any combination of protected feature values by ε.
To measure the impact of applying ε1-DF mechanism M on

ε2-DF dataset X on the dataset’s fairness, we can measure the

Differential Fairness Bias Amplification (DFBA) which is the

difference between ε values: ε2 − ε1 [24].
2) Generalized Entropy Index: Generalized Entropy Index

(GEI) is a measure of inequality, originally defined in the

context of economics to analyze the distribution of income

and economic (in)equality [25].

For α /∈ {0, 1} and bi =
(
ypredicti − ylabeli + 1

)
, with

N being the number of individual samples in dataset X
the Generalized Entropy Index with mean μ = 1

N

∑1
N bi is

defined as:

1

Nα(α− 1)

N∑
i=1

[(
bi
μ

)α

− 1

]

GEI is an individual and group level fairness metric and can

be thought as the measure of redundancy in the data against

the desired outcome from an information theoretic perspective.
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3) Equal Odds Rate: Equal Odds Rate (EOR) [26] mea-

sures how close sensitivity of the outcome of the mechanism

for privileged groups is to that of unprivileged groups in

the protected feature with regard to the desired outcome.

Equalized odds is achieved when there is absolute conditional

independence between unprivileged groups in the protected

feature and model outcome with regards to the desirable

outcome.

Formally, mechanism M exhibits absolute equal odds -i.e.,

is fair - for privileged group G and unprivileged group G′ and

desired outcome O ∈ {0, 1} if E(x,y)∼G [M(x) | y = O] =
E(x,y)∼G′ [M(x) | y = O]

D. Implementation Details

We use a shallow feed-forward network with three fully

connected layers. For federated setup, we simulate 15 clients

and perform cross-silo FL. All our experiments are imple-

mented using PyTorch1 v1.10 and Opacus2 v1.0.0 libraries.

Experiments are run on a machine with a Tesla-P100 GPU

and 32GB of RAM.

In this work we use Rènyi-DP [19] to achieve tighter

privacy bounds. We assume no trust between participants and

the orchestrator and opt for local DP by performing DP-SGD

on each participant. We also assume a lack of availability of

any public datasets to pre-train the models and/or to share

between participants to mitigate the impact of non-IID data as

has been suggested in some recent literature.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Impact on Utility

Fig. 2. Privacy and distribution trade-off against utility. The top row shows
the privacy-utility trade-off and the bottom row shows the privacy-distribution
trade off.

1https://pytorch.org/
2https://opacus.ai/

Figure 2 visualizes the privacy and distribution-utility trade-

offs of our FL system. On privacy-utility front, considering

the scale of the graphs makes it clear that recall is far

more impacted than precision when the level of privacy

increases. Looking at the F1-scores it can be deduced that

the performance does decrease with increase in privacy level,

with no significant difference between different distribution

levels. However, looking at precision and recall graphs, we

observe that while recall also drops with increase in privacy,

precision shows an improvement which keeps its trend except

for the high privacy regime. This could be contributed to

the regularization effect of noise-adding mechanisms of DP.

Although there is negligible drop of performance for the

central model as we increase the privacy level, the positive

impact of DP on precision can still be observed.

We have visualized the distribution-utility trade-off on the

bottom row of Figure 2. We observe that going from fully-IID

to extreme non-IID data, there is a drop in F1-Score and recall

for privacy preserving regimes. However, while we see the

same trend in precision for non-DP case and the high privacy

regime, especially in case of low privacy regime we can see an

increase in precision going from fully-IID to extreme non-IID.

We can contribute this also to the regularization effect of DP

which decreases the number of samples identified positively

by the algorithm in this binary classification experiment, while

increasing the number of samples incorrectly identified as

negative.

B. Impact on Convergence Rate

Fig. 3. F1-score of FL models with different privacy levels and distributions
for 100 epochs.

Figure 3 depicts the impact of different privacy levels and

distributions on the performance of our federated learning

system. As can be observed, with non-DP setup the data

distribution has no discernible impact on the performance and

the convergence rate of the final model. However, while in
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private setups the performance is negatively impacted, the data

distribution has no significant impact on the convergence rate

of the model.

C. Impact on Individual and Dataset-Level Fairness

Fig. 4. Privacy trade-off against fairness

Figures 4 and 5 visualizes the privacy and distribution-

fairness trade-off of our FL system for dataset level fairness

metrics of differential fairness bias amplification and gener-

alized entropy index. We observe that for centrally trained

model, increasing the privacy level has a negative impact

on both DFBA and GEI. However for the FL scenario the

behavior of the system with regards to these two metrics

is different. GEI is increased for all distribution scenarios

when we go from no privacy to low privacy regime. However,

increasing the privacy results in slight GEI drop, meaning

that although the model is performing worse overall in terms

of utility, increasing the DP reduces its negative impact on

fairness by around 0.01. As for DFBA, we observe that in

no privacy regime the classifier is causing bias to increase,

while adding any measure of DP to the model will reduce

the classifier bias to less than dataset bias. Increasing the

DP level decreases this reduction in bias, but even in high

privacy regime DP reduces the classifier bias to a level less

than the dataset bias. It should be noted that this impact

is not necessarily a positive one and should be evaluated

independently for each specific use-case.

As for fairness-distribution trade-off, surprisingly DFBA

decreases as we go from fully IID to extreme non-IID data. In

Fig. 5. Distribution trade-off against fairness

other privacy regimes, the DFBA stays the same for different

data distributions. GEI stays the same for no privacy regime

and increases slightly for low privacy regime, but shows a a

moderate decrease in medium and high privacy regimes which

could be attributed to the regularization effect of DP on model

fairness.

D. Impact on Group-Level Fairness

Figures 6 and 7 show the impact of privacy and data

distribution on EOR for underprivileged groups. We observe

that adding privacy to the model has a small negative impact

on the fairness of the model according to EOR. It is less

prominent for the Asian group as their class imbalance is less

severe than the other underprivileged groups. However in the

federated setup, regardless of data distribution the negative

impact of privacy is more prominent as we increase the privacy

level. It is much more severe for the Other ethnicity group

which is both under-represented in number of samples and in

percentage of samples with desirable outcome.

In terms of distribution-fairness trade-off, we can observe

that with no privacy the impact of data distribution on EOR is

negligible. In private regimes the level of non-IID data has a

negative impact on EOR fairness. The regularization effect of
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Fig. 6. Distribution trade-off against fairness. EOR is measured for each
underprivileged group against the designated privileged group and for the
desirable outcome of Annual Salary > 50k

high levels of DP can still be observed, as the negative impact

on EOR is dampened going from low privacy to high privacy

level.

VI. CONCLUSION AND FUTURE WORKS

In this work, we performed an extensive empirical analysis

of the impact of non-IID data on the utility and fairness of

differentially private federated deep learning models. Employ-

ing a real world dataset ubiquitous in ML fairness research

with all three types of imbalance - class, label and node, the

latter added during FL simulations - we explored the trade-

Fig. 7. Privacy trade-off against fairness. EOR is measured for each
underprivileged group against the designated privileged group and for the
desirable outcome of Annual Salary > 50k

offs between utility, privacy and data distribution. We showed

that DP has a generally negative, although disparate, impact

on both utility and performance of discriminative deep models

for underprivileged groups. We also showed that non-IID data

deepens the utility and fairness gap between minority and

majority groups. We chose our utility and fairness metrics

to enable us to explore the different aspects of non-IID data

impact on our privacy preserving federated experimental setup

to the fullest. Specifically differential fairness by definition has

an organic connection to differential privacy, which encourages

us to further explore how we can utilize this connection, e.g.

providing lower bounds for differential fairness degradation

by considering the privacy budget and non-IID aspects of the

data.

Although consistent with our general intuitions about the

impact of DP and non-IID data, this work is a limited explo-

ration of the interplay between fairness and utility and their

trade-off with privacy and data distribution. We are currently

working on extending our experiments with a wide variety of

datasets and more complicated models, e.g. large scale vision

models. It would allow us to better understand the impact of

non-IID data in privacy preserving FL.

We also plan on employing FL algorithms other than the

vanilla FedAvg -e.g. FedProx [27], FairFed [28] - to see

whether they can mitigate the utility and fairness degradation

in non-IID FL setups. We have carefully eliminated the

algorithms that have prerequisites which would make them

unsuitable for DP-FL, e.g. sharing part of the dataset between

participants.

Regardless, we have shown consistently that in presence of

non-IID data, the utility and fairness of the privacy preserving

discriminative models are negatively impacted which leads us

to the conclusion that breaking the IID assumption hinders FL,

and this must be carefully monitored when FL is deployed.
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