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“The bank card swiped over and over again; just said the words in a flash to forget; cannot 

remember dishes just eaten a few hours ago; often fail to speak the names of old friends or 

relatives…”.  The globally estimated number of dementia cases was 57.4 million in 2019, and 

this figure would climb up to 152.8 million in 2050 1. Among the elderly, dementia has become 

a common chronic disease. However, the general public and even family members of patients 

do not know much about dementia with various misconceptions. A common (mis)conception 

goes, ”People will naturally get confused or senile when they get old” or ”There is no cure for 

dementia”. If the elderly develop the above mental symptoms and abnormal behaviors, it is 

likely to be the early signs of dementia. 

    Neurodegenerative diseases, such as dementia and Parkinson’s disease are two common 

brain disorders with enormous burden globally 1-4, and as the population grows older, the 

prevalence and incidence of these diseases rise in tandem. However, the efficacy of current 

drugs or medications regarding reversing or slowing the progression of neurodegenerative 

conditions is still being debated 5, 6. Large clinical trials on new potential drug treatments are 

still ongoing. Multifactorial causes of neurodegeneration have been regarded to be the primary 

factor undermining the efficacy of a single medicine or monotherapy 7. Among individuals aged 

45 years and older with a non-communicable disease, at least a third would develop multiple 

comorbid conditions 8. It is commonly observed that dementia patients are diagnosed with 

multiple comorbidities, including cardiovascular diseases, diabetes, and psychosocial problems 

9, 10. A growing body of evidence has shed light on the interplay between the other organ 

systems and the brain, including the brain-heart axis 11, (gut)-liver-brain axis 12, and lung-brain 

axis 13, and not all of the above interactions have been studied in well-designed epidemiological 

studies. 

According to the available information, there are probable mechanisms linking systemic 

function deterioration to neurodegenerative disorders. First, between other systemic 
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comorbidities and neurodegeneration, there are shared risk factors like age, obesity, smoking, 

physical inactivity, etc. 14-19. As aging-related brain conditions, the accumulative effect of 

harmful exposure might directly affect brain health or indirectly promote brain disorders 

through systemic dysfunction. That is to say, systemic dysfunction predominates the 

downstream pathophysiology of brain aging and may partially mediate the effect of common 

risk factors on the neurodegenerative process. Time-dependent alterations of aging hallmarks 

also reflect the cumulative effect of the imbalance between avoiding hazards that speed up aging, 

accepting variables that promote health, and administering or adhering to treatments 20. As a 

result, risky exposures like sedentary behaviors or inactive physical activity may alter systemic 

risk factors, which in turn may cause neurodegenerative disorders 21.    

Systemic dysfunction also relates to brain structural alterations. The integrity of brain 

structure guarantees the normality of neural function and brain structural deterioration clinically 

signs the occurrence of neurodegeneration. Alzheimer's patients consistently experience 

cognitive impairment, including memory loss and executive dysfunction, while brain imaging 

studies reveal shrinkage of healthy brain tissue and enlargement of lesions 22, 23. Subclinical 

brain damage 24, particularly accumulation of white matter hyperintensity (WMH) in the frontal 

and internal capsule, would also undermine the neural regulation of movement and further 

contribute to the common occurrence of Parkinsonism in older adults 25. The homeostatic 

processes of cerebral metabolism depend on the maintenance of systemic function, and the 

presence of peripheral abnormalities, such as circulatory inflammation, vascular lesions, 

oxygen deficit, insulin resistance, and so forth, would invariably to some extent interfere with 

normal brain aging. 26, 27.  

Evidence from epidemiological studies has already demonstrated the association of some 

systemic disorders, i.e. diabetes mellitus 28, atrial fibrillation 29, hypertension 28, heart failure 30, 

coronary heart disease 30, systemic microangiopathy 31, with a higher risk of cognitive 
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impairment or occurrence of neurodegenerative diseases. However, it remains unclear about 

the roles of other understudied systemic dysfunction, such as pulmonary function restriction, 

liver steatosis, and low bone mineral density, in these brain disorders. As age grows, the elderly 

are at a higher risk of structural and functional decline in multiple organs. Exposure to other 

risk factors, such as smoking, obesity, and nutrition deficiency, could accelerate the dysfunction 

and development of co-occurring comorbidities, i.e. chronic obstructive pulmonary disease, 

non-alcoholic liver disease, and osteoporosis. Previous studies have reported associations 

between the above systemic function impairment and structural brain changes 32-34. For instance, 

persons with liver steatosis had a higher fractional anisotropy and lower levels of brain 

perfusion and cerebral blood flow 32. And liver fibrosis was also related to brain volumetric 

alterations 32. The vast majority of patients with fatty liver disease are overweight but without 

significant symptoms, its link with neurodegeneration remains unexplored. A better 

understanding of the association between systemic malfunction and brain abnormalities would 

allow us to develop a multi-system strategy for neurodegeneration prevention. 

 

OVERALL AIM AND OUTLINE OF THIS THESIS 

The overarching goal of this thesis is to get a better knowledge of the relationship between 

systemic dysfunction and neurodegenerative disorders, notably dementia and Parkinson's 

disease, in middle-aged and older persons. Neurodegeneration and reduced lung function are 

the main topics of Chapter 2. I investigated the association between incident dementia and 

lung function impairment, as determined by respiratory testing, in Chapter 2.1. Cognitive 

function and cerebral brain lesions were assessed in Chapter 2.2, and I examined variations in 

these markers under various degrees of lung impairment. In Chapter 3, I quantified the 

relationship between incident neurodegenerative diseases including dementia and Parkinson's 

disease, and non-alcoholic fatty liver disease. The link between cardiac dysfunction, as 
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indicated by plasma cardiac biomarkers, and neurodegeneration is the main topic of Chapter 

4. N-Terminal Pro-B-Type Natriuretic Peptide (NT-proBNP) and alterations in cognition and 

brain structural imaging markers were the subjects of my chapter 4.1 research. This chapter 

focused on determining if high levels of NT-proBNP accelerate cognitive decline and loss of 

brain tissue volumes over time, as both cognitive decline and brain structural changes are two 

hallmarks of dementia. In chapter 4.2, I evaluated the association between Parkinsonism and 

Parkinson's disease and three cardiac biomarkers, including NT-proBNP, high-sensitivity 

cardiac troponin T (hs-cTnT), and creatine kinase myocardial band (CK-MB). In Chapter 5, 

the temporal relationship between bone mineral density and dementia was investigated to gain 

insights into how bone mineral density occurs at the prodromal phase of dementia. Lastly, the 

main discussion in Chapter 6 reviews the findings of Chapters 2-5, discusses methodological 

aspects when appraising these results, and proposes implications for prevention practices and 

future research. 
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Abstract 

Background: The etiology of dementia may partly be underpinned by impaired lung function 

via systemic inflammation and hypoxia.  

Objective: To prospectively examine the association between COPD and subclinical 

impairments in lung function and the risk of dementia.  

Methods: In the Rotterdam Study, we assessed the risk of incident dementia in participants 

with Preserved Ratio Impaired Spirometry (PRISm; FEV1/FVC≥0.7, FEV1<80%) and in 

participants with COPD (FEV1/FVC<0.7) compared to those with normal spirometry (controls; 

FEV1/FVC≥0.7, FEV1≥80%). Hazard ratios (HRs) with 95% confidence intervals (CI) for 

dementia were adjusted for age, sex, education attainment, smoking status, systolic blood 

pressure, body mass index, triglycerides, comorbidities and Apolipoproptein E (APOE) 

genotype. 

Results: Of 4,765 participants, 110 (2.3%) developed dementia after 3.3 years. Compared to 

controls, participants with PRISm, but not COPD, had an increased risk for all-type dementia 

(adjusted HRPRISm 2.70; 95% CI, 1.53–4.75; adjusted HRCOPD 1.03; 95% CI, 0.61–1.74). These 

findings were primarily driven by men and smokers. Similarly, participants with FVC% 

predicted values in the lowest quartile compared to those in the highest quartile were at 

increased risk of all-type dementia (adjusted HR 2.28; 95% CI, 1.31–3.98), as well as 

Alzheimer’s Disease (AD; adjusted HR 2.13; 95% CI, 1.13–4.02).  

Conclusions: Participants with PRISm or a low FVC% predicted lung function were at 

increased risk of dementia, compared to those with normal spirometry or a higher FVC% 

predicted, respectively. Further research is needed to elucidate whether this association is causal 

and how PRISm might contribute to dementia pathogenesis. 

Keywords: PRISm; FVC; COPD; AD; dementia 
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Introduction 

Dementia is characterized by poor cognitive performance interfering with activities of daily 

living and impaired health-related quality of life at older ages 35, with an increasing prevalence 

worldwide 36. In order to mitigate the burden of dementia through postponement or prevention, 

and to respond adequately on such a major health problem, the identification of key modifiable 

risk factors is warranted and include smoking, obesity, hypertension, depression, sleep apnea, 

diabetes and hyperlipidemia 37. Chronic obstructive pulmonary disease (COPD) and decreased 

lung volume capacity have also been associated with a greater risk of dementia and 

compromised cognitive ability 38. Possible etiological links with dementia comprise systemic 

inflammation and hypoxia induced oxidative stress 38-40.  

More recently, Preserved Ratio Impaired Spirometry (PRISm) – with a prevalence ranging from 

3% to 20% in adults 41 – has emerged as a clinically relevant entity related to premature 

mortality 41, 42, but thus far has been largely understudied, because of a hitherto stronger focus 

on COPD. The term PRISm encompasses the findings of restrictive respiratory pattern with 

impaired spirometry (i.e. decreased FEV1 or FVC) but preserved FEV1/FVC ratio 41. People 

with PRISm suffer from lung function restriction but due to normal range of FEV1/FVC ratio 

would not be diagnosed as COPD according to the GOLD guidelines in clinical practice 41, 43. 

Previous studies have suggested PRISm is a fluctuating state, serving as an intermediate phase 

between normal spirometry and COPD 42, 44. However, very little is known about the clinical 

sequelae of PRISm, including risk of dementia.  

Therefore, the aim of this study was to investigate the association of both COPD and subclinical 

reduced lung function, as evidenced by the presence of impaired lung volumes (PRISm), with 

the risk of dementia at follow-up within a prospective population-based cohort study.  
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Methods 

This study was conducted within the Rotterdam Study, a prospective cohort study that started 

in 1990, comprising almost 15,000 participants aged at least 45 years, with the aim of studying 

chronic diseases in the general population 45. Every four to five years, participants underwent 

follow-up examinations, consisting of a home interview and various physical examinations at 

the research center. We used data collected between 2009 and 2014 as baseline for this study, 

when participants underwent spirometry at the research center. A total of 4,765 persons with 

interpretable spirometry and without asthma and without prevalent dementia were retained for 

analyses (Figure 1). 

Standard protocol approvals, registrations and patients consents 

The study had been approved by the medical ethics committee of the Erasmus Medical Centre 

(Rotterdam, the Netherlands), and the review board of the Netherlands Ministry of Health, 

Welfare and Sports (1068889-159521-PG). Informed consent was provided by all participants. 

Spirometry test 

Lung function was assessed via pre-bronchodilator spirometry performed by trained 

paramedical personnel using a Master Screen PFT Pro (Care Fusion, Netherlands) according to 

the American Thoracic Society (ATS)/European Respiratory Society (ERS) guidelines 46. 

Predicted forced vital capacity (FVC) and predicted forced expiratory volume in one second 

(FEV1) values were calculated using Global Lung Initiative (GLI) reference equations taking 

age, sex, height and ethnicity into account 47. Based on these values, the following subgroups 

were defined: COPD (FEV1/FVC<70%), PRISm (FEV1/FVC≥70% and FEV1<80% predicted) 

and normal spirometry (FEV1/FVC≥70% and an FEV1≥80% predicted) were distinguished 41, 

43. Spirometry was conducted in accordance with the American Thoracic Society 

(ATS)/European Respiratory Society (ERS) guidelines 46, 47, with specific preparatory 

instructions, e.g. with respect to smoking or other factors. In order to guarantee the reliability 
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and reproducibility, at least two spirometry tests were implemented on each participant, and the 

best reading was obtained. No specific preparatory instructions were given (e.g. related to 

smoking or other factors). The quartile categories of lung function parameters were derived 

from values in this study, which is similar to quintile subgroups in a previous study 48. For 

calculation of trending hazard ratio with 10% change in lung function, lung function parameters 

were included in cox models after being divided by 10. Airflow limitation was confirmed by 

the value of a post-bronchodilator FEV1/FVC below 0.7 43. 

Dementia assessment 

Dementia assessment was conducted for participants at baseline and subsequent center visits 

with the Mini-Mental State Examination and the Geriatric Mental Schedule 49. Those with a 

Mini-Mental State Examination score <26 or Geriatric Mental Schedule score >0 underwent 

further investigation along with an interview with a research physician, that contained the 

Cambridge Examination for Mental Disorders of the Elderly. The whole population also 

underwent routine cognitive assessment. Moreover, the entire cohort was continuously under 

surveillance for dementia through electronic linkage of the study database with medical records 

from general practitioners and the regional institute for outpatient mental health care. If 

available clinical neuroimaging was used for determining dementia subtype 45. An adjudication 

panel led by a consultant neurologist established the final diagnosis according to standard 

criteria for dementia (Diagnostic and Statistical Manual of Mental Disorder, Third Edition-

Revised: DSM-III-R) and Alzheimer’s disease (AD) (National Institute of Neurological and 

Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association: 

NINCDS–ADRDA). Follow-up until 14 December, 2017 was virtually complete (95.5% of 

potential person-years). Within this period, participants were followed until the date of 

dementia and AD diagnosis, death, loss to follow-up or 14 December, 2017, whichever came 

first. 
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Covariates 

The following variables were considered as possible confounders, primarily based on previous 

literature and their role as shared causes between lung function and dementia. Demographic 

information included age, sex, education level (primary education, lower education, 

intermediate education, higher education), smoking status (never, former, current), systolic 

blood pressure (mmHg), body mass index (BMI, kg/m2, calculated by weight [kg] divided by 

height [m] squared) and chronic comorbid conditions (diabetes and stroke) 45. Blood samples 

were extracted for determination of levels of triglycerides and DNA at the research center. 

Apolipoprotein E (APOE) genotype was determined using a PCR in the original cohort (RS-I, 

starting between July, 1989 and September, 1993) and a bi-allelic TaqMan assay (rs7412 and 

rs429358) on labeled DNA samples in the two cohorts (RS-II-3, starting between February, 

2000 and December, 2001; and RS-III-2, starting between February, 2006 and December, 2008), 

respectively. This study included these three sub-cohorts. APOE-ε4 represented carrier of one 

or two ε4 alleles. Participants were categorized into three groups: high genetic risk (ε2ε4, ε3ε4 

or ε4ε4 genotypes), intermediate risk (ε3ε3) or low risk (ε2ε2 or ε2ε3) 50. As the strongest 

genetic risk factor for dementia, APOE has additionally potent cardiovascular effects, including 

arteriosclerosis and cardiac function. In this regard, APOE may also impact lung function. We 

therefore included APOE in the models as possible confounder 48, 51. Missing values were 

handled by five-times imputation using chained equation 52. 

Statistical analysis 

Baseline characteristics are described among subgroups of lung function. Data are expressed as 

mean ± standard deviation (SD) for normally distributed variables or as median (interquartile 

range [IQR]) for non-normally distributed variables.  

For analyses of the association between lung function at baseline and risk of incident dementia, 

we used Cox proportional-hazards regression analyses. Lung function was categorized as 
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normal spirometry, PRISm and COPD. In addition, lung volume capacity comprised subgroups 

of quartiles of FEV1% predicted, FVC% predicted and ratio of FEV1/ FVC. Follow-up time 

started on the date of spirometry test at baseline and ended until diagnosis of dementia, death, 

lost to follow-up, or December 14, 2017. The proportional hazards assumption was checked 

using Schoenfeld residuals. Model 1 was adjusted for APOE category, age, sex and education 

level. Model 2 was additionally adjusted for smoking status, BMI, systolic blood pressure, 

triglyceride and comorbidity (history of stroke and diabetes mellitus). Covariates above were 

selected based on previous literature knowledge, clinical relevance and availability of the data. 

Given the relatively small number of incident cases of dementia, we also constructed a third 

model in which the covariates were accounted for using propensity scores. Propensity scores 

were employed to reduce the number of covariates through summarizing information of 

variables into a single score, thus avoiding any problem of overfitting the models 53, 54. In this 

study, propensity scores are the predicted probabilities of PRISm and COPD and derived by 

fitting logistic regression models adjusting for age, sex, education level, smoking status, 

systolic blood pressure, BMI, triglycerides, chronic comorbid conditions (diabetes and stroke) 

and APOE phenotypes. 

We also studied how PRISm and COPD related to the risk of mortality to gauge the possible 

effect of competing risk in our associations. The competing risk, such as death before 

occurrence of incident dementia, are considered as independent event but is neglected in 

conventional methods for survival analyses, thus the true observation of the event of interest 

could be hindered in the presence of competing risk and then distort the association we explored 

55. For unadjusted survival analyses intended to portray absolute risks, we used sub-distribution 

hazard models to account for competing risks to estimate cumulative incidence of dementia and 

all-cause death 56. 



19 
 

In addition, we conducted stratified analyses in women, men, non-smoking participants, 

smokers and participants without APOE-e4 allele and history of stroke and diabetes. These 

were selected as possible effect modifiers based on previous literature and biological 

plausibility 37, 57-61.   
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Results 

Clinical and lung functional characteristics of participants 

Among 4,765 participants (mean age 68.2±12.9 years, 54.9% women), 16.0% (n=763) had 

COPD, 6.7% (n=319) had PRISm and 77.3% (n=3683) had normal spirometry. More than 

twenty percent (23.0%) of the participants received higher education, and two thirds (66.1%) 

were current or former smokers. The participants had a median BMI of 27.0±5.1 Kg/m2, systolic 

blood pressure of 141±29.0 mmHg and triglyceride level of 1.3±0.8 mg/dl. While 8.4% (n=396) 

had a history of diabetes mellitus, 1.1% of them experienced stroke before (n=53). 1199 (27.1%) 

participants carried APOE-ε4 allele (Table 1). 

Lung function and risk of incident dementia and Alzheimer’s Disease 

During a median of 3.3 years of follow-up, 110 participants (2.3%) developed incident dementia, 

of whom 89 (1.9%) developed Alzheimer’s disease. Moreover, among all participants, 292 

(6.1%) died due to non-dementia related causes within the follow-up period (Table 2). 

First, we evaluated the association between lung function impairment at baseline and risk of 

incident dementia. As shown in Table 2, higher proportion of participants with PRISm 

developed dementia compared to participants with normal spirometry, while COPD patients 

did not. Compared with participants with normal spirometry, participants with PRISm exhibited 

a higher risk of all-type dementia (Model 2 hazard ratio [HR], 2.70; 95% confidence interval 

[CI], 1.53–4.75), while subjects with COPD did not (HR2, 1.03; 95% CI, 0.61–1.74), after 

accounting for all covariates. After being adjusted for propensity score, age and sex, results of 

model 3 were similar to model 2 (Table 2). Hazard ratios of association of PRISm and COPD 

with all-type dementia were 2.47 (95% CI, 1.40–4.35) and 1.08 (95% CI, 0.63–1.83), 

respectively. 
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Concurrently, participants with PRISm were also at increased risk of AD, albeit this did not 

reach statistical significance (HR2, 1.87; 95% CI, 0.92–3.81). COPD was not significantly 

associated with AD (HR2, 0.87; 95% CI, 0.48–1.59) (Table 2).   

We also investigated the risk of developing dementia associated with lower lung function by 

using continuous parameters (FEV1%, FVC%, FEV1/FVC%) and their categorized quartiles 

(Figure 2). A lower value in FEV1% predicted was associated with an elevated risk of all-type 

dementia (HR2, 1.12; 95% CI, 1.02–1.23). Relative to participants with the highest FVC% 

predicted values (Quartile 4), those with the lowest FVC% predicted values (Quartile 1) were 

at increased risk of both all-type dementia (Model 2 hazard ratio [HR2], 2.28; 95% confidence 

interval [CI], 1.31–3.98) and AD (HR2, 2.13; 95% CI, 1.13–4.02), after accounting for 

demographics and APOE genotypes. A lower value in FVC% predicted was significantly 

associated with an increased risk of both all-type dementia and AD in all models. FEV1/FVC 

was not associated with dementia risk in any model (Figure 2).   

Moreover, a competing risk model was used to measure the competing risk of mortality during 

the follow-up period on the observation of dementia events. Although participants with PRISm 

suffered from higher cumulative incidence of all-cause mortality than participants with normal 

spirometry, participants with PRISm still exhibited significantly higher cumulative incidence 

of all-type dementia (P=0.018), but not of AD (P>0.05). (Supplementary Figure 1) 

Stratified analysis 

Methods and figures on the stratified analyses are presented in the online supplement. 

Regarding the association between COPD or PRISm and the risk of incident dementia, stratified 

analyses were performed in women, men, smokers, non-smoking participants, participants 

without history of stroke and diabetes, and APOE-e4 non-carriers. Significant associations were 

found between PRISm and all-type dementia  in  men (adjusted HR = 5.29, 95% CI, 2.40-11.65) 

– but not in women (adjusted HR = 1.65, 95% CI, 0.71-3.87) –, current or former smokers 
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(adjusted HR = 3.36, 95% CI, 1.71-6.60) – but not in never-smoking participants (adjusted HR 

= 1.95, 95% CI, 0.68-5.57) – , and in participants without a history of stroke (adjusted HR = 

2.58, 95% CI, 1.45-4.59) and diabetes (adjusted HR = 2.56, 95% CI, 1.38-4.78) –, and 

participants without APOE-e4 allele (HR = 1.56, 95% CI, 0.71-3.45). Significant association 

between PRISm and AD risk were only observed among men. (Supplementary Figure 2)  

We have tested the effect of interaction of lung function and sex, and interaction of lung 

function and smoking status in cox models, respectively, which tests for multiplicative 

interaction. These tests of interaction did not reach statistical significance. (data not shown) 

In addition, supplementary Figure 3 shows the association between continuous spirometry 

parameters with the risk of newly diagnosed dementia (Supplementary Figure 3A) or newly 

diagnosed Alzheimer’s disease (Supplementary Figure 3B), stratified by sex, smoking status 

and absence of stroke, diabetes and APOE-e4 non-carriers. A lower FEV1% predicted was 

associated with a greater risk of all-type dementia only among women, never-smoking 

participants and those without prior stroke, but not among men, current or former smoking 

participants and participants without prior diabetes and APOE-e4 non-carriers. A lower FVC% 

predicted was associated with an increased risk of all-type dementia among all subgroups 

except APOE-e4 non-carriers. Statistical significance was not found between decreased 

FEV1/FVC and risk of all-type dementia. Regarding elevated risk of AD, reduced FVC% 

predicted and FEV1/FVC elevated were associated with AD among women, nonsmokers and 

those without prior stroke, while FEV1% predicted did not show an increased risk of AD among 

those without prior stroke.  
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Discussion 

In this population-based cohort study, individuals with PRISm were at increased risk of all-type 

dementia, while those with COPD were not. Especially, predicted FVC% was strongly 

associated with a higher risk of dementia among the whole study population.  

The main finding of this study is that PRISm was associated with an increased risk of dementia. 

Comorbidities, such as diabetes and stroke are more common among participants of this 

restrictive lung-function pattern 62, and may confound the link with impaired cognition and the 

increased risk for dementia. However, while we found a higher prevalence of prior stroke in 

participants with PRISm, the association between PRISm and dementia persisted after adjusting 

for these comorbidities. There are several possible mechanisms linking PRISm with dementia. 

Firstly, ambient pollution and inhalational exposures are associated with higher risk of PRISm 

63, which could also contribute to the development of dementia 64, 65. For example, fine 

particulate matter in air could not only lead to impaired lung function through disturbing 

alveolarization process and altering lung elastance at an earlier life stage 66, but also be linked 

to higher dementia risk via accumulation of Aβ42 and alteration on neuro-inflammation and 

brain immune response, as exposure to certain level of air pollution could upregulate expression 

of mRNA COX2 and IL-1β in olfactory bulb, disrupt tight junctions in frontal blood-brain 

barrier and activate nuclear NF B in brain endothelial cells 65, 67.  

Secondly, some studies reported that FVC decline in subjects with PRISm was accompanied 

with systemic inflammation 68-70. Systemic inflammation in turn  may be linked with cognitive 

impairment and/or occurrence of dementia 71. Serum inflammatory cytokines, like (IL)-18, IL-

1 receptor antagonist and IL-6, have been linked with AD 72, and high levels of serum IL-6 

were associated with a greater risk of non-AD dementia as well 73. Unfortunately, we did not 

have inflammatory markers available in this population to test this hypothesis. 



24 
 

Thirdly, reduced lung function could limit peak oxygen uptake and oxygen saturation, resulting 

in potential  hypoxia 40, 74, 75. In turn, hypoxia has been reported to induce cognitive deficiency 

and dementia in both human and animal studies 76, 77. Mice with hypoxia exhibited tau 

hyperphosphorylation, Aβ upregulation and dysfunction of neurotransmitter system 77. 

In stratified analyses, we found that the association between PRISm and dementia was present 

in men, current and past smokers, and participants without history of stroke and diabetes. 

Though speculative, sex differences can potentially be explained by unmeasured confounding 

by sex hormones 78, 79. Indeed, estrogen has protective effects on systemic and cerebrovascular 

atherosclerosis, which in turn impact both lung function and dementia risk 58, 78. In this 

population-based study, we could not corroborate this speculation and future research is 

therefore needed to explore these hypotheses further. 

The effect modification by smoking status indicates that the effect of poor lung function on risk 

of dementia is further aggravated in presence of smoking. This may be related to direct toxic 

effects of smoking in the brain, for instance increased levels of oxidants and free radical species, 

which promotes formation of senile plaque and neurofibrillary tangles. In turn, these 

pathological processes may interact with cerebral hypoxia and hypoperfusion due to poor lung 

function 80, 81.  

With respect to stroke, APOE-e4 carriership and diabetes, we only had sufficient power to show 

the largest stratum and found that associations among persons without stroke, APOE-e4 non-

carriers and non-diabetics remained largely similar to the overall population. 

Among continuous lung function parameters, FVC% predicted, but not  FEV1/FVC ratio or 

FEV1% predicted, was significantly associated with both all-type dementia and AD risk. 

Previous studies have varyingly reported on FEV1, FEV1/FVR ratio, or FVC% predicted to be 

associated with dementia. Heterogeneity across study population, including differences in age-
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range, sampling strategy and co-morbid conditions may explain differences in the strength of 

associations of the various parameters with dementia. 

We did not demonstrate an association between COPD and the risk of dementia, in contrast to 

the prior study 48. Previously, we found participants with PRISm and COPD to suffer from 

increased all-cause and cardiovascular mortality 41, and similarly the present competing risk 

model suggested the highest figure of all-cause mortality in COPD group. Therefore,  mortality 

may hinder the occurrence of incident dementia during the follow-up period.  

Strengths and limitations 

An important strength of this study is the relatively large number of elderly participants 

included for assessment of the lung function through standardized protocols and dementia data 

based on continuous follow-up. Competing risks is a limitation when using traditional cox 

proportion-hazard regression analyses. However, we used competing risk model to calculate 

cumulative risk of dementia to correct effect of variable of interest. The small number of 

incident dementia cases limited our study power, but we applied propensity scores to avoid 

potential overfitting problem with adjustment for extensive covariates. 

Conclusions 

As a conclusion, among this community-dwelling population, participants with PRISm or 

participants with a low FVC% predicted lung function were at increased risk of dementia, 

compared to those with normal spirometry or a higher FVC% predicted, respectively. Further 

research is needed to elucidate whether this association is causal and how PRISm might 

contribute to dementia pathogenesis. Therefore, it is necessary to recognize PRISm and 

evaluate status of FVC% predicted when conducting spirometry tests in clinical settings. 
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Figure 1. Flow chart for participants with interpretable spirometry at baseline, informed consent for 

follow-up and graph for definition of lung function categories.  
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Table 1. Baseline characteristics of participants, stratified by lung function category 

  Normal  PRISm COPD P value 

n (%)  3683 (77.3) 319 (6.7) 763 (16.0) - 

Age, years  67.8 (12.5) 68.6 (14.4) 70.6 (13.4) <0.001 

Female, (%) 2120 (57.6) 171 (53.6) 324 (42.5) <0.001 

Education level    
 

  Primary education 246 (6.8) 31 (9.9) 81 (10.7) <0.001 

  lower education 1445 (39.7) 117 (37.1) 279 (36.9)  

  Intermediate education 1089 (29.8) 93 (29.5) 249 (32.9)  

  Higher education 864 (23.7) 74 (23.5) 148 (19.6)  

Smoking status, (%)    
 

  Never  1383 (37.6) 97 (30.4) 135 (17.7) <0.001 

  Former  1960 (53.2) 177 (55.5) 415 (54.4)  

  Current 340 (9.2) 45 (14.1) 213 (27.9)  

Systolic pressure 141 (29) 142 (29) 142 (26) 0.369 

Body mass index, kg/m2  27.0 (5.0) 28.4 (5.9) 26.1 (5.0) <0.001 

Triglycerides, mg/dl  1.3 (0.7) 1.4 (0.9) 1.2 (0.7) <0.001 

History of stroke 34 (0.9) 7 (2.2) 12 (1.6) 0.040* 

History of diabetes mellitus 292 (8.0) 31 (10.0) 73 (9.7) 0.200 

Apolipoprotein E genotype, (%)    
 

  ε4-allele positive 937 (27.3) 66 (22.8) 196 (27.8) 0.142 

  ε4-allele negative 2496 (72.7) 224 (77.2) 509 (72.2)  

FEV1/FVC  78.7 (6.4) 76.1 (7.1) 65.6 (7.6) <0.001 

FEV1% predicted  103.2 (18.7) 73.8 (10.6) 79.1 (24.7) <0.001 

FVC% predicted  101.2 (17.9) 72.2 (11.7) 94.0 (24.9) <0.001 

Definition of abbreviations: COPD = Chronic Obstructive Pulmonary Disease; FEV1 = Forced 

Expiratory volume in one second; FVC = Forced Vital Capacity; PRISm = Preserved Ratio 

Impaired Spirometry. Data represent original data without imputed values. Missing values were 

present for education attainment (1.0%), systolic blood pressure (2.8%), triglyceride (1.7%) and 

history of diabetes (7.1%).  

*Fisher’s exact test 
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Table 2. Lung function category and risk of dementia 

  All-type dementia 
 cases/death/N FU, years HR1 (95% CI) HR2 (95% CI) HR3 (95% CI) 

Normal 75/179/3683 3.3 (1.6) 1.0 1.0 1.0 

PRISm 15/25/319 3.4 (1.6) 2.42 (1.38;4.24) 2.70 (1.53;4.75) 2.47 (1.40;4.35) 

COPD 20/88/763 3.4 (1.6) 1.06 (0.63;1.77) 1.03 (0.61;1.74) 1.08 (0.63;1.83) 

      

  AD 
 cases/death/N FU, years HR1 (95% CI) HR2 (95% CI) HR3 (95% CI) 

Normal 65/179/3673 3.3 (1.6) 1.0 1.0 1.0 

PRISm 9/25/313 3.4 (1.6) 1.70 (0.84;3.43) 1.87 (0.92;3.81) 1.74 (0.86;3.54) 

COPD 15/88/758 3.4 (1.6) 0.89 (0.49;1.60) 0.87 (0.48;1.59) 0.89 (0.49;1.63) 

Definition of abbreviations: AD=Alzheimer Disease; COPD = Chronic Obstructive Pulmonary Disease; CI=Confidence Interval; FU = Follow-up; 

HR = Hazard Ratio; PRISm = Preserved Ratio Impaired Spirometry; Model1 = Cox regression adjusted for APOE genotype, age, sex and education 

level; Model2 = Model1 plus adjustment smoking status, BMI, systolic blood pressure, triglycerides and history of comorbidities (stroke and 

diabetes mellitus); Model3 = Cox regression adjusted for propensity scores*, age and sex.  

* Propensity scores was calculated with age, sex, education level, smoking status, BMI, systolic blood pressure, triglyceride, history of 

comorbidities (stroke and diabetes mellitus) and APOE genotype; follow-up time started after spirometry at baseline. 
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Figure 2. Respiratory indexes (FEV1% predicted, FVC % predicted and FEV1/FVC ratio) and 

risk of dementia (A) and Alzheimer’s disease (B) 

 

 

Definition of abbreviations: AD=Alzheimer Disease; A = All-type dementia; B = Alzheimer’s 

disease; CI=Confidence Interval; HR = Hazard Ratio; FEV1 = Forced Expiratory volume in one 

second; FVC = Forced Vital Capacity; HR1 = HR from Cox Proportional-Hazard regression 

analysis adjusted for APOE genotype, age, sex and education level; HR2 = HR1 with additional 

adjustment for current or ever smoking, BMI, systolic blood pressure, triglyceride and history 

of comorbidities (stroke and diabetes mellitus). Participants in the highest percentile (Quartile 

4) of spirometry indexes were regarded as reference group (hidden). 

* follow-up time start after spirometry at baseline
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Supplementary Figure 1. Cumulative incidence curves for all-cause mortality and incident dementia according to lung function rank 

 

Definition of abbreviations: PRISm = Preserved Ratio Impaired Spirometry; COPD = Chronic Obstructive Pulmonary Disease; AD = Alzheimer’s 

disease; * follow-up time start after spirometry at phase.
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Supplementary Figure 2. Lung function impairment and risk of incident dementia among specific types of population 

 

Definition of abbreviations: HR = Hazard Ratio; PRISm = Preserved Ratio Impaired Spirometry; COPD = Chronic Obstructive Pulmonary Disease; 

Model = Cox regression adjusted for APOE genotype (except for stratified analyses among non-APOE-e4 carriers); Nonsmokers = participants 

without history of smoking; Smokers = former or current smokers; Non-stroke = participants without stroke; Participants with normal spirometry 

(hidden) were regarded as reference group.* follow-up time start after spirometry at phase.
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Supplementary Figure 3. Per 10% decline in different respiratory indexes and risk of incident dementia among specific types of population 

 



33 
 

Definition of abbreviations: HR = Hazard Ratio; A = All-type dementia; B = Alzheimer’s disease; FEV1 = Forced Expiratory volume in one second; 

FVC = Forced Vital Capacity; Model = Cox regression adjusted for APOE category; Nonsmokers = participants without history of smoking; 

Smokers = former or current smokers; Non-stroke = participants without stroke; * follow-up time start after spirometry at phase. 
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Chapter 2.2 Lung Function Impairment In Relation To Cognition and Vascular 

Brain Lesions: The Rotterdam Study 

  



35 
 

Abstract 

Objective 

To investigate the association of chronic obstructive pulmonary disease (COPD) and Preserved 

Ratio Impaired Spirometry (PRISm) with cognitive performance and presence of vascular brain 

lesions (VBL).  

Methods: We determined both cross-sectional and longitudinal association of lung function 

impairment with cognition, as well as cross-sectional association of lung function impairment 

with VBL, in the general population. Between 2009 and 2014 we included 3,941 participants 

from the Rotterdam Study with spirometry tests, brain MRI scans and cognition tests, of whom 

1,815 had follow-up data on cognition.  

Results: Our finding indicated that cross-sectionally, participants with PRISm or COPD 

GOLD2-4 had worse global cognitive performance. We did not find differences in cognition 

over time between those with normal spirometry versus those with lung function impairment. 

In addition, PRISm and COPD GOLD2-4 was associated with higher prevalence of lacunar 

infarcts compared to normal spirometry.  

Conclusions: This study suggests that persons with COPD GOLD2-4 or restrictive lung 

function, defined as PRISm, are characterized by poorer global cognitive function and higher 

prevalence of lacunar infarcts. 

Keywords: PRISm; lung function; COPD; vascular brain lesions; cognition 
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Introduction 

Dementia is a major public health issue 36, 82, but before the clinical onset of this condition, 

patients in the preclinical stage experience a period of accelerated cognitive decline, which is 

further preceded by pathological changes in the brain 83. Elucidating etiological pathways and 

mechanisms preceding cognitive decline is crucial in order to identify persons who are at risk 

for dementia, and who may benefit from preventive interventions. Previous studies shown the 

strong impact of vascular risk factors and systemic vascular disease on cognitive decline and 

corresponding changes on brain MRI, i.e. vascular brain lesions (VBL) 84-87. In this regard, 

several studies have explored the link between lung function impairment and cognitive decline 

88. Possible explanations for this association include chronic hypoxia and shared risk factors, 

such as smoking. 

While most studies have focused on COPD, lung function impairment in the elderly may also 

reflect a restrictive lung pattern, often termed PRISm. Only recently, studies have started 

investigating PRISm more extensively with reported prevalences ranging from 3% to 20% in 

the elderly 89. Possible systemic effects of PRISm are thought to include similar pathways as 

for COPD. Yet, the impact of PRISm on cognitive decline remains largely unexplored, although 

in previous study we tested the effect of lung function impairment on dementia 90. One study 

using spirometry showed that lung function impairment suggestive for a restrictive ventilatory 

pattern is associated with impaired cognitive function, but their definition for restrictive 

spirometry differed from the formal definition of PRISm 51, 89. 

In this study, we aimed to investigate the association of COPD and PRISm with cognitive 

performance cross-sectionally and longitudinally. We also explored cross-sectional association 

between lung function impairment and presence of VBL. 
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Methods 

This study was conducted within the Rotterdam Study, a prospective cohort study that started 

in 1990, comprising almost 15,000 participants aged at least 45 years, with the aim of studying 

chronic diseases in the general population 91. Every four to five years, participants underwent 

follow-up examinations, consisting of a home interview and various physical examinations at 

the research center. MRI scanning was introduced in to the core protocol of the study from 2005 

onwards and spirometry from 2009 onwards. Participants with dementia or asthma at baseline 

were excluded. A total of 3,941 participants had undergone interpretable spirometry, MRI scan 

and cognition tests that visited the research center at baseline between 2009 and 2014. After 

excluding 151 participants with poor testing status, 3,790 participants with at least one 

individual cognitive tests were included for cross-sectional analyses of lung function and 

cognition. Of these 1,815 participants attended the follow-up examinations with good testing 

status (from 05/2014 to 05/2016) and thus were eligible for observation of cognitive changes 

over time. Additionally, 3,941 participants at baseline were included for cross-sectional 

analyses of lung function and presence of microbleeds, lacunar infarcts and cortical infarcts, of 

whom 3,801 participants were included for exploring association of lung function with volume 

of white matter lesions cross-sectionally after excluding 140 participants with cortical infarcts. 

When measuring volumes of white matter, grey matter, or brain lesions, it is important to 

exclude scans with cortical infarcts, because the tissue segmentation is unreliable in these cases. 

Thus, we had to remove scans with cortical infarcts to get robust and exact measurements of 

sizes of white matter lesions, and further explore associations of lung function impairment with 

white matter lesions. (Figure 1). 

 

Spirometry testing 
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Lung function was assessed via pre-bronchodilator spirometry performed by trained 

paramedical personnel using a Master Screen PFT Pro (Care Fusion, Netherlands) according to 

the American Thoracic Society (ATS)/European Respiratory Society (ERS) guidelines 46. 

Predicted forced vital capacity (FVC) and predicted forced expiratory volume in one second 

(FEV1) values were calculated using Global Lung Initiative (GLI) reference equations taking 

age, sex, height and ethnicity into account 47. COPD1 (GOLD stage 1 defined as FEV1/FVC<70% 

and FEV1≥80% predicted), COPD2-4 (GOLD stage 2-4 defined as FEV1/FVC<70% and 

FEV1<80% predicted), PRISm (defined as FEV1/FVC≥70% and FEV1<80% predicted) and 

normal spirometry (defined as FEV1/FVC≥70% and an FEV1≥80% predicted) were 

distinguished 89, 92. 

 

Cognitive testing 

Participants underwent the same cognitive tests at the baseline and at follow-up examinations: 

Stroop test, Letter-Digit Substitution Task (LDST), Word Fluency Task (WFT), 15-Word 

Learning Test of delayed recall, immediate recall and recognition (WLTdel, WLTimm, 

WLTrecog) and Purdue Pegboard test (PPB test) 93. The Stroop Test measures attention and 

concentration and consisted of three trials. In trial 1, the card contains color names printed in 

black and participants are asked to name the printed word. In trial 2, the card contains colored 

blocks and participants are asked to name the printed color. In trial 3, the card contains color 

names printed in a different color than the color name and participants are asked to name the 

color of the ink. The outcome variable is the time needed to finish the trial. The LDST was used 

to measure processing speed. Participants make as many letter-digit combinations as possible 

within 60 seconds, following an example that shows the correct combinations. The WFT was 

used to test verbal fluency. Participants are asked to name as many animals as possible within 

60 seconds. The WLT tests memory functions with immediate recall and delayed recall 
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components. Participants are given a list of 15 unrelated words repeated over five different trials 

and are asked to repeat them. To test immediate recall, participants were presented three times 

with a sequence of 15 words and subsequently asked to recall as many of these words as possible. 

Free delayed recall was tested 15 minutes later. Recognition was tested by presenting the 

participants a sequence of 45 words, the 15 words presented during the immediate recall mixed 

with 30 new words. Participants were asked if they recognized the words as the ones presented 

to them during the immediate recall trial 93, 94. The PPB is a measure of unilateral and bilateral 

fine manual dexterity and consists of a pegboard with two parallel rows of 25 holes and a 

number of pins. The participants were asked to place as many pins as possible into the holes on 

the board in a prescribed order, within 30 seconds. The test consists of 3 trials: placing the pins 

using the right hand only; using the left hand only; using both hands. Outcome variable was the 

number of pins placed correctly in every trial 95. 

The distribution of all tests was transformed into a normal standardized distribution and a Z-

score for every individual was calculated at baseline and follow-up. Z-score were calculated by 

individual raw scores minus the mean value of whole population, divided by the population 

standard deviation. We constructed a compound score (G-factor) for global cognitive function 

as the average of all individual tests. The G-factor is the first component of the principal 

component analysis. For tests with multiple subtasks, only one subtask was included in order 

to prevent highly correlated tasks distorting the factor loadings 94. These tests contained Stroop 

test (color naming test), LDST, WFT, WLTdel and PPB test. Of these 3,790 persons with at 

least one individual cognitive test, 3,134 participants underwent all subgroup cognitive tests 

needed for assessing G-factor at baseline. Correspondingly, among 1,815 participants with 

follow-up data on cognition, 878 participants obtained G-factor. 

 

MRI protocol and image processing 
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MRI of the brain was performed on a 1.5T scanner (General Electric Healthcare, Milwaukee, 

WI) using an 8-channel head coil. Imaging acquisition included a high-resolution axial T1-

weighted sequence, a fluid-attenuated inversion recovery sequence, a proton density–weighted 

sequence, and a T2*- weighted gradient echo sequence. Total brain volume was quantified by 

automatic tissue segmentation. Details about the sequences, preprocessing, and the 

classification algorithm have been described previously 96. All segmentation results were 

visually inspected and manually corrected if needed. All scans were appraised by trained 

researchers for the presence of cerebral microbleeds (i.e., small round to ovoid hypointense 

areas on T2*-weighted images), lacunar infarcts (i.e., focal lesions ≥3 and <15 mm) and cortical 

infarcts, as well as volumes of white matter lesions. These ratings were done blinded to clinical 

data 97. 

 

Covariates 

Demographic information included age, sex, education level (primary education, lower 

education, intermediate education, higher education), smoking status (never, former, current), 

systolic blood pressure (mmHg), body mass index (BMI, kg/m2, calculated by weight [kg] 

divided by height [m] squared), serum lipids (triglycerides, total cholesterol, high-density 

lipoprotein cholesterol (HDL-C)) [mmol/L], history of chronic comorbid conditions (diabetes, 

stroke and depressive symptom, chronic kidney disease, atrial fibrillation, heart failure, and 

coronary heart disease), and concomitant medications (antihypertensives, diuretics, 

vasoprotectives, betablocking agents, calcium blockers, ACE-inhibitors, serum lipid reducing 

agents and statins), which are associated with cognitive impairment or dementia 30, 37, 98-100. 

Diabetes was defined as a fasting plasma glucose level ≥ 7 mmol/L, a non-fasting plasma 

glucose level ≥ 11.1 mmol/L or the use of blood glucose lowering medication 101. Stroke was 

defined according to the World Health Organization criteria 102. Depressive symptoms were 
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assessed with validated version of the Centre for Epidemiologic Studies Depression (CES-D) 

scale (range:0-60) 103. Scores of 16 or greater are regarded as suggestive of clinically significant 

depressive symptoms 103. Coronary artery disease (CHD) were defined as the presence of 

myocardial infarctions, all CHD mortality or revascularization 104. Heart failure (HF) was 

defined in accordance with the European Society of Cardiology 105. Atrial fibrillation (AF) was 

verified by two physicians using all 12-lead ECGs along with the Modular ECG Analysis 

System (MEANS) 106-108. Blood samples were extracted for determination of levels of 

triglycerides and DNA at the research center. Apolipoprotein E (APOE) genotype was 

determined using a PCR in the original cohort (RS-I, starting between July, 1989 and September, 

1993) and a bi-allelic TaqMan assay (rs7412 and rs429358) on labeled DNA samples in the two 

cohorts (RS-II-3, starting between February, 2000 and December, 2001; and RS-III-2, starting 

between February, 2006 and December, 2008), respectively. This study included these three 

sub-cohorts. APOE-ε4 represented carrier of one or two ε4 alleles. With regard to dose-

dependent effect of APOE-ε4 allele on cognition 109, 110, participants were categorized into three 

groups: without APOE-ε4 allele (ε2ε2, ε3ε3 or ε2ε3 genotypes), with APOE-ε4 heterozygotes 

(ε2ε4 or ε3ε4) and with APOE-ε4 homozygotes (ε4ε4). As the strongest genetic risk factor for 

dementia 109, APOE genotype has additionally potent cardiovascular effects, including 

arteriosclerosis and cardiac function. In this regard, APOE genotype may also impact lung 

function. We therefore included APOE genotype in the models as possible confounder 48, 51. 

Imputation was not conducted on missing covariates due to missing at completely random and 

very low missingness proportion (<5%). (Table 1) 

 

Statistical analysis 

Data are expressed as median (interquartile range [IQR]) for continuous variables among 

subgroups of different lung function categories. Categorical variables were compared with 
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Pearson Chi square test or Fisher exact test. Continuous variables were tested by using Kruskal-

Wallis test for more than two group comparisons. 

We determined the cross-sectional association of lung function impairment with cognitive 

function at baseline using linear regression analyses. We calculated average differences in G-

factor and z-scores of individual cognitive tests between subgroups with different lung function  

(groups with normal lung function as reference) through Tukey all-pair comparisons method 

based on ANOVA models. 3) In order to assess associations of G-factor of cognition with lung 

function parameters, these parameters were further categorized into quintiles with the lowest 

quartile as reference. Cross-sectional analyses were adjusted for age, sex, education, smoking 

status, BMI, systolic blood pressure, serum lipids (triglycerides, total cholesterol, HDL 

cholesterol) , history of comorbidities (stroke, diabetes, depressive symptom, atrial fibrillation, 

heart failure, coronary heart disease), medications (antihypertensives, diuretics, 

vasoprotectives, beta-blocking agents, calcium blockers, ACE-inhibitors, serum lipid reducing 

agents and statins), and APOE genotype. Longitudinal association of lung function with 

cognition were also determined using linear regression models with adjustment of same 

covariates above in cross-sectional analyses and  additionally for baseline test scores and the 

time between two cognitive tests. The time between two cognitive tests were calculated with 

the formula: Timegap = (Datesfollow-up - Datesbaseline) / 365.24. 

Then, we determined the cross-sectional association between lung function impairment and the 

presence of microbleeds, lacunar infarcts and cortical infarcts, using logistic regression models. 

Similarly, average differences in volumes of white matter lesions (WML) between different 

subgroups were obtained using above methods in cognition analyses. In order to meet 

requirement of normal distribution, we used log transformation for original values of WML 

volume. Cross-sectional analyses were adjusted for the covariates above in cross-sectional 

analyses of cognition. 

https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Antihypertensives&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Diuretics&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Vasoprotectives&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Betablocking_agents&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Calcium_blockers&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=ACE-inhibitors&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Serum_lipid_reducing_agents&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Serum_lipid_reducing_agents&action=edit&redlink=1
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Covariates to be included as possible confounders were defined based on clinical relevance and 

literature knowledge 30, 37, 98-100, 111-115. 

In addition, we conducted stratified analyses in women, men, non-smoking participants, and 

participants without history of stroke, diabetes and depressive symptoms, as these were most 

common conditions in general population and were reported to modify the association on the 

basis of current literature and biological plausibility 58, 99, 116-118. For example, estrogen, as a 

major sex hormone, plays an important role in preventing systemic and cerebrovascular 

atherosclerosis, which conversely influence both lung function and cognition 58, 78, 79, 119. 

Stratified analyses may provide detailed information on the association between lung function 

and cognition among different population.  

In sensitivity analysis, we additionally performed binomial logistic regression for analyses of 

effect of lung function on cognitive change. For some cognitive tests, including LDST, WFT, 

WLTdel, WLTimm, WLTrecog and PPB test, cognitive decline was defined as a drop in 

following-up scores of more than mean difference between baseline and following-up tests per 

year [Scoresdrop/year > |(Scoresfollow-up - Scoresbaseline) / (Nparticipants*Timegap)|]. On the contrary, 

cognitive decline was defined as an increase in following-up scores of more than mean 

difference in Stroop tests [Scoresincrease/year > |(Scoresfollow-up - Scoresbaseline) / 

(Nparticipants*Timegap)|]. Analyses were adjusted for similar covariates above in cross-sectional 

analyses for cognition. 

A p value of <0.05 was considered statistically significant. Data analyses was done using R 

version 3.6.0 (Foundation for Statistical Computing, Vienna, Austria). 
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Results 

Characteristics of the study population 

Among 3,941 included participants (mean age 67.5±12.5 years, 53.7% women), 3080 (78.2%) 

had normal spirometry, 249 (6.3%) had PRISm, 304 (7.7%) had COPD GOLD stage 1 and 308 

(7.8%) had COPD GOLD stage 2-4. (Table 1) 

Participants without follow-up were younger (62.3 versus 74.2 years, P<0.001), had less 

impaired spirometry (20.4% vs 22.6%, P=0.002) and showed higher scores in individual 

cognitive tests, compared to participants with follow-up. (S.Table 1) 

Lung function and cognition 

Table 2 presents the association between lung function impairment and cognitive performance. 

Cross-sectional analyses revealed that lung function impairment was associated with poor 

performance on several cognitive tests in the cross-sectional analyses (n=3,790). (Table 2A)  

In the cross-sectional analyses, we found that PRISm was associated with lower global 

cognition scores [mean difference in G-factor score compared to normal spirometry: –0.27 (95% 

confidence interval (CI): –0.43;–0.11)] and scores of LDST, WFT and PPB test. Similarly, 

COPD GOLD 2-4, but not COPD GOLD 1, was associated with poorer performance on global 

cognition, LDST, both WLT immediate and delayed recall and PPB test, compared with 

participants with normal spirometry.  

Longitudinal analyses performed in 1,815 individuals did not reveal any statistically significant 

associations. (Table 2B) 

We also tested the association between lung function parameters and cognitive performance 

(Figure 2). Higher values in FEV1% predicted and FVC% predicted were associated with better 

global cognitive function in the cross-sectional analyses (Figure 2A). Similar associations were 

not observed in longitudinal analyses (Figure 2B).  

Lung function and VBL  
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Cerebral microbleeds were present in 851 (21.6%) participants, lacunar infarcts in 355 (9.0%), 

and cortical infarcts in 140 (3.6%). (Table 1) 

In the cross-sectional analyses, lacunar infarcts were significantly associated with PRISm (odds 

ratio [OR]: 1.65; 95% confident interval[95% CI]: 1.03;2.56), COPD GOLD 2-4 (OR: 1.78; 95% 

CI: 1.20;2.61) and lower values in FEV1% predicted (OR: 1.17; 95% CI: 1.10;1.25), FVC% 

predicted (OR: 1.19; 95% CI: 1.10;1.29) and FEV1/FVC (OR: 1.18; 95% CI: 1.01;1.38). Lung 

function impairment were not associated with cerebral microbleeds or cortical infarcts. As for 

WML, we found that lower values in FVC% predicted [MD: 0.02; 95% CI: 0.01;0.03)], but not 

in FEV1% predicted or FEV1/FVC, were associated with larger log-transformed volume of 

WML. We did not find significant associations of PRISm and COPD GOLD 2-4 with volume 

of WML. (Figure 3)  

Stratification analyses 

We stratified analyses for the association between lung function and cognition by sex, by 

smoking status and by history of stroke, diabetes and depressive symptoms.  

Among women and subgroups without comorbidities, participants with PRISm or COPD 

GOLD 2-4 had lower scores in global cognitive function compared to participants with normal 

spirometry at baseline. And only PRISm is cross-sectionally associated with lower global 

cognition scores among both men and never-smoking subgroup. We found no significant 

association of lung function impairment with worse cognitive function in the stratified 

longitudinal analysis. (S.Figure 1) 

Sensitivity analyses 

S.Figure 2 shows effect of baseline lung function on individual cognitive decline, using 

binomial logistic regression. There were no statistically significant association between worse 

lung function impairment and more steep cognitive decline, compared to participants with 

normal spirometry. (S.Table 2) 
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Discussion 

In this study, individuals with lung function impairment, both PRISm and COPD GOLD 2-4 were 

characterized with poorer cognitive function, while those with COPD GOLD 1 were not. In 

addition, both PRISm and COPD GOLD 2-4 were also associated with presence of lacunar infarcts, 

on brain MRI. 

In line with previous studies we found that moderate-to-severe COPD was associated with 

cognitive impairment 51. Similarly, lower baseline lung function parameters, including FEV1% 

predicted and FVC% predicted, were significantly associated with cognitive impairment. The link 

between COPD and cognitive impairment can be partly explained by shared underlying risk factor 

such as smoking, comorbidities and APOE-ε4. Although in our study we did not find differences 

in some comorbidities (stroke, diabetes and depression symptoms) and APOE-ε4 distribution 

across groups, we cannot fully rule out that there may still be residual confounding by APOE (as 

well as the other variables), explaining why adjustments for these factor(s) did not completely 

remove the effects found. However, after controlling for many potential confounders in our linear 

regression models, we still observed significant associations between PRISm or COPD GOLD2-4 

and cognitive impairment. This suggests that we cannot exclude a possible direct effect of COPD 

on cognition, or the other way around, assuming there is no residual confounding. In case of a 

direct effect, chronic hypoxia as a consequence of lung function impairment may result in 

neurodegeneration 120, 121. Severity of hypoxemia may get worse by increased ventilation/perfusion 

mismatch resulting from progressive airflow limitation in more severe COPD 122. Alternatively, 

COPD may cause cognitive decline through inflammatory infiltrate. Some reported that increased 

percentage of lymphocytes and macrophages was weakly negatively correlated with decreased 
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scores of cognitive tests (MMSE) 123. Conversely, poor cognition may influence cooperation 

during spirometry resulting in lower lung function values. 

We also found that PRISm was associated with cognitive impairment. Herein, we are the first to 

study the association between PRISm and cognition. A previous US population-based study found 

restrictive lung function, characterized by decreased FVC and normal FEV1/FVC ratio, was 

associated with cognitive impairment 51. Possible mechanisms linking lung function impairment 

with dementia may include several different aspects. First, PRISm may result from harmful 

exposures, such as ambient pollution and inhalational exposures 63, at earlier life stage which has 

also been shown to lead to impairment of cognitive function 124. Previous studies reported that 

lower FVC in subjects with PRISm was accompanied with systemic inflammation 68, 70, 125. 

Inflammation has been observed to link to the pathogenesis of cognitive impairment 125. For 

instance, several markers of inflammation, such as plasma fibrinogen, d-dimer and C-reactive 

protein, are associated with cognitive decline 126, 127. Also, restrictive ventilator pattern has been 

reported to be associated with a higher incidence of diabetes, which is also a common risk factor 

of cognitive impairment and dementia 128. However, we adjusted for diabetes in models and still 

found significant associations, implicating the association between PRISm and cognition to be 

independent of a shared etiology or at least beyond the factors controlled for.  

In this study, we did not find a significant association between lung function impairment and 

accelerated cognitive decline when compared to those with normal spirometry. The lack of an 

association between lung function impairment at baseline and accelerated cognitive decline may 

be partly explained by selection bias. In this study, participants lost to follow-up were younger and 

had higher cognitive scores in most individual tests, and they may suffer from more fast accelerated 

cognitive decline over time, compared to those within follow-up. This indicates insignificant 
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declining magnitude between participants with lung function impairment and those with normal 

spirometry in longitudinal analyses. Although lung function impairment may not accelerate 

cognitive decline, participants with baseline lung function impairments still were exposed to high 

risk of incident dementia as found in previous work 90.  

Another finding of this study is that impaired lung function (COPD GOLD 2-4 and PRISm) was 

associated with presence of lacunar infarcts, consistent to results of previous studies 129, 130. A 

significant association of COPD GOLD 1 with VBL was not observed. Furthermore, the 

significant association of lower FVC with a higher number of VBL and larger volume of white 

matter lesions was found in this study and other studies 129, 131, 132. Impaired lung function may be 

linked to development of VBL through reducing oxygen supply to brain, which could may 

aggravate harmful effect of ischemia on VBL pathogenesis 129, 133-135. 

Strengths and Limitations 

The most important strength of this study is the relatively large number of elderly participants 

recruited from the general population, that were included for the assessment of both lung function 

and neurocognitive ability through standardized protocols. Interpretable spirometry was 

guaranteed by strict adherence to the instruction of performing lung function test. Another strength 

also includes high-quality data of VBL detection derived from effective brain-imaging techniques, 

and the longitudinal follow-up with prospective information collection. 

A limitation of this study is that COPD is a chronic disease, which is commonly accompanied with 

multiple comorbidities. Therefore, it is challenging to ascertain the effect of COPD on cognitive 

performance and development of VBL independent of other comorbidities. However, the 

associations of COPD and cognition, as well as presence of VBL, were independent of commonly 

known conditions, including diabetes, stroke and depressive symptoms. Another limitation is 
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cross-sectional design for exploring association between lung function impairment and presence 

of VBL. However, the significant associations of lower values in lung function parameters and 

presence of cerebral microbleeds and/or lacunar infarcts may indicate potential links between lung 

function impairment and VBL development. In addition, we do not have multiple repeated 

measurements of respiratory tests available in our study, except respiratory tests at baseline. In 

fact, longitudinal lung function assessment could better capture dynamic impact of lung function 

on cognitive change over time in real-world practice. Moreover, the third limitation is the small 

sample size in the longitudinal analysis. There are several reasons accounting for the limited 

number of participants in the longitudinal analysis as follows: 1) increased mortality with growing 

age from about 70 years at the baseline; 2) inability to perform the follow-up cognitive test due to 

frailty within follow-up; 3) higher prevalence of dementia with older age prevents cognitive test 

later on. The last limitation lies on strict spirometry test that requires good cognitive performance 

which may be a limitation because it may underestimate observing whether COPD causes 

cognitive decline. 

Conclusions 

As a conclusion, among this community-dwelling population, there was a cross-sectional 

association between lung function impairment and poor cognitive function, as well as presence of 

lacunar infarcts. Despite often being an ignored subgroup in pulmonary research and clinical 

practice, PRISm may play a role in the etiology of cognitive impairment and VBL development. 

More research is needed to elucidate whether this association is causal and how PRISm might 

contribute to pathogenesis of cognition impairment. 
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Figure 1. Flow chart for participants with interpretable spirometry at baseline and informed 

consent for follow-up. COPD = Chronic Obstructive Pulmonary Disease; PRISm = Preserved 

Ratio Impaired Spirometry; VBL = Vascular Brain Lesions. 
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Table 1. Baseline characteristics among participants with different lung function (N=3941) 

  Normal  PRISm COPD1 COPD2-4 P Value 

n (%)  3080 (78.2) 249 (6.3) 304 (7.7) 308 (7.8)  

Age, yr  67.3 (12.3) 67.9 (15.3) 67.6 (12.1) 71.0 (14.3) <0.001 

Female, % 1730 (56.2) 136 (54.6) 122 (40.1) 130 (42.2) <0.001 

Education level      

  Primary education 202 (6.6) 25 (10.2) 25 (8.3) 38 (12.5) <0.001 

  lower education 1166 (38.3) 90 (36.6) 98 (32.3) 121 (39.7)  

  Intermediate education 934 (30.7) 70 (28.5) 101 (33.3) 101 (33.1)  

  Higher education 745 (24.5) 61 (24.8) 79 (26.1) 45 (14.8)  

Smoking status, %       

  Never  1155 (37.5) 83 (33.3) 69 (22.7) 35 (11.4) <0.001 

  Former  1633 (53.0) 127 (51.0) 164 (53.9) 163 (52.9)  

  Current 292 (9.5) 39 (15.7) 71 (23.4) 110 (35.7)  

Systolic pressure 140 (29) 140 (27) 141 (27) 141 (27) 0.676 

BMI, kg/m2  26.9 (4.8) 28.5 (6.2) 25.8 (4.7) 26.8 (5.2) <0.001 

Triglycerides, mmol/L 1.3 (0.7) 1.4 (0.9) 1.2 (0.7) 1.3 (0.7) 0.01 

Total cholesterol, mmol/L 5.5 (1.5) 5.2 (1.5) 5.5 (1.4) 5.1 (1.5) <0.001 

HDL cholesterol, mmol/L 1.4 (0.6) 1.3 (0.5) 1.4 (0.6) 1.4 (0.5) <0.001 

History of comorbidity,%      

  Stroke 30 (1.0) 5 (2.0) 3 (1.0) 7 (2.3) 0.095* 

  Diabetes mellitus 233 (7.6) 20 (8.2) 28 (9.3) 31 (10.2) 0.359 

  Depression symptom 244 (7.9) 15 (6.1) 26 (8.6) 34 (11.1) 0.153 

  Atrial fibrillation 132 (4.3) 31 (12.4) 19 (6.3) 30 (9.7) <0.001 

  Heart failure 44 (1.4) 17 (6.8) 5 (1.6) 25 (8.1) <0.001 

  Coronary heart disease 224 (7.3) 33 (13.3) 29 (9.5) 42 (13.6) <0.001 

APOE, %       

  without APOE-ε4 allele 2074 (72.1) 177 (77.6) 200 (71.4) 203 (71.5) 0.299 

  with APOE-ε4 

heterozygotes 
732 (25.5) 50 (21.9) 71 (25.4) 76 (26.8)  

  with APOE-ε4 

homozygotes 
70 (2.4) 1 (0.4) 9 (3.2) 5 (1.8)  

Medications, %      

  Antihypertensives 18 (0.6) 5 (2.0) 3 (1.0) 3 (1.0) 0.073 

  Diuretics 401 (13.0) 63 (25.3) 27 (8.9) 63 (20.4) <0.001 

  Vasoprotectives 4 (0.1) 0 (0.0) 0 (0.0) 1 (0.3) 0.648 

  Betablocking agents 619 (20.1) 82 (32.9) 72 (23.8) 92 (29.9) <0.001 

  Calcium blockers 229 (7.4) 27 (10.8) 29 (9.6) 39 (12.7) 0.004 

  ACE-inhibitors 765 (24.9) 78 (31.3) 72 (23.8) 92 (29.9) 0.035 

  Serum lipid reducing 

agents 
885 (28.8) 87 (34.9) 90 (29.7) 114 (37.0) 0.006 

  Statins 792 (25.7) 79 (31.7) 78 (25.7) 108 (35.1) 0.001 

FEV1/FVC (%) 78.7 (6.5) 76.4 (7.0) 67.4 (3.5) 61.8 (10.1) <0.001 
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FEV1% predicted  103.4 (18.7) 73.9 (10.8) 91.3 (13.7) 67.0 (16.0) <0.001 

FVC% predicted  101.5 (17.9) 72.2 (12.0) 106.0 (15.9) 81.4 (15.0) <0.001 

Microbleeds, % 636 (21.0) 67 (27.0) 64 (21.0) 84 (27.0) <0.001 

Lacunar infarcts, % 243 (7.9) 30 (12.0) 31 (10.2) 51 (16.6) <0.001 

Cortical infarcts, % 95 (3.1) 12 (4.8) 16 (5.3) 17 (5.5) 0.03 

Definition of abbreviations: APOE = apolipoprotein E; BMI=Body Mass Index; COPD = Chronic 

Obstructive Pulmonary Disease; FEV1 = Forced Expiratory Volume in one second; FVC = Forced 

Vital Capacity; HDL = High-density lipoprotein; PRISm = Preserved Ratio Impaired Spirometry. 

Data represent original data without imputed values. Missing values were present for education 

attainment (1.0%), systolic blood pressure (2.4%), BMI (1.0%), triglyceride (1.4%), total 

cholesterol (1.4%), HDL cholesterol (1.4%), history of diabetes (1.1%), depressive symptom 

(0.4%), and medications, including antihypertensives (0.1%), diuretics (0.1%), vasoprotectives 

(0.1%), beta-blocking agents (0.1%), calcium blockers (0.1%), ACE-inhibitors (0.1%), serum lipid 

reducing agents (0.1%) and statins (0.1%). 

p-values are for comparing differences among participants with different lung function  

*Fisher test 

https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Diuretics&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Vasoprotectives&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Betablocking_agents&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Calcium_blockers&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=ACE-inhibitors&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Serum_lipid_reducing_agents&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Serum_lipid_reducing_agents&action=edit&redlink=1
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Table 2 The association between lung function and individuals cognition tests presented for cross-sectional (A) and longitudinal analyses 

(B) 

      
Cross-sectional analyses 

(A) 
    

 Number of 

participants 
Normal PRISm COPD GOLD1 COPD GOLD2-4 

G-factor n=3134 Reference -0.27 (-0.43;-0.11)*  -0.08 (-0.23;0.06) -0.22 (-0.37;-0.06)* 

LDST, z-score n=3685 Reference -0.26 (-0.42;-0.09)* -0.02 (-0.17;0.13) -0.18 (-0.33;-0.03)* 

Stroop test1, z-score n=3688 Reference 0.13 (-0.05;0.30) -0.01 (-0.16;0.15) 0.14 (-0.02;0.30) 

Stroop test2, z-score n=3688 Reference 0.16 (-0.02;0.34) 0.00 (-0.16;0.16) 0.25 (0.08;0.42) 

Stroop test3, z-score n=3679 Reference 0.21 (0.03;0.39)* 0.05 (-0.11;0.21) 0.11 (-0.05;0.27) 

WFT, z-score n=3743 Reference -0.17 (-0.34;0.01) -0.01 (-0.16;0.15) -0.14 (-0.31;0.02) 

WLTdel, z-score n=3575 Reference -0.08 (-0.26;0.09) -0.08 (-0.24;0.08) -0.21 (-0.38;-0.05)* 

WLTimm, z-score n=3574 Reference -0.12 (-0.29;0.06) 0.05 (-0.10;0.21) -0.17 (-0.33;-0.01)* 

WLTrecog, z-score n=3646 Reference -0.10 (-0.28;0.09) -0.02 (-0.19;0.15) -0.16 (-0.33;0.01) 

PPB test, z-score n=3395 Reference -0.17 (-0.34;-0.01)* -0.10 (-0.25;0.05) -0.18 (-0.33;-0.03)* 
      

      Longitudinal analyses (B)     

 Number of 

participants 
Normal PRISm COPD GOLD1 COPD GOLD2-4 

G-factor n=878 Reference 0.01 (-0.24;0.26) 0.15 (-0.04;0.34) 0.06 (-0.16;0.26) 

LDST, z-score n=1225 Reference -0.06 (-0.29;0.16) 0.10 (-0.09;0.29) -0.05 (-0.26;0.15) 

Stroop test1, z-score n=1220 Reference -0.13 (-0.39;0.12) -0.02 (-0.23;0.19) 0.02 (-0.20;0.24) 

Stroop test2, z-score n=1219 Reference -0.09 (-0.33;0.15) -0.01 (-0.21;0.19) 0.06 (-0.15;0.27) 

Stroop test3, z-score n=1210 Reference -0.11 (-0.35;0.14) -0.01 (-0.21;0.20) 0.05 (-0.18;0.27) 

WFT, z-score n=1266 Reference -0.06 (-0.34;0.22) 0.01 (-0.22;0.24) 0.04 (-0.20;0.28) 

WLTdel, z-score n=1221 Reference -0.13 (-0.41;0.15) 0.09 (-0.15;0.32) 0.06 (-0.19;0.31) 

WLTimm, z-score n=1230 Reference -0.04 (-0.31;0.24) 0.18 (-0.06;0.41) -0.07 (-0.31;0.18) 

WLTrecog, z-score n=1209 Reference 0.04 (-0.27;0.34) 0.00 (-0.26;0.25) 0.06 (-0.22;0.33) 

PPB test, z-score n=1118 Reference 0.08 (-0.19;0.35) 0.03 (-0.18;0.25) -0.03 (-0.26;0.21) 
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Definition of abbreviations: APOE = apolipoprotein E; BMI=Body Mass Index; COPD = Chronic Obstructive Pulmonary Disease; FEV1 

= Forced Expiratory Volume in one second; FVC = Forced Vital Capacity; G-factor = principle component scores of cognition tests; 

LDST = Letter-Digit Substitution test; HDL = High-density lipoprotein; PRISm = Preserved Ratio Impaired Spirometry; PPB test = 

Purdue Pegboard test; WFT = Word Fluency test; WLTdel = Word learning test, delayed recall; WLTimm = Word learning test, 

immediate recall; WLTrecog = Word learning test, recognition. The table presents estimated mean difference (95% confidence interval) 

in cognitive scores after adjustment for covariates.  

A) Represents cross-sectional association between spirometry tests and cognitive tests; B) Represents the longitudinal association 

between spirometry tests and cognitive tests. Cross-sectional analysis is adjusted for age, sex, education, smoking status, BMI, systolic 

blood pressure, serum lipids (triglycerides, total cholesterol, HDL cholesterol) , history of comorbidities (stroke, diabetes, depressive 

symptom, atrial fibrillation, heart failure, coronary heart disease), medications (antihypertensives, diuretics, vasoprotectives, beta-

blocking agents, calcium blockers, ACE-inhibitors, serum lipid reducing agents and statins), and APOE genotype. Longitudinal analysis 

is based on cross-sectional model plus time between two cognitive tests and test scores at baseline.  

*Statistically significant results 
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https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Betablocking_agents&action=edit&redlink=1
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https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Serum_lipid_reducing_agents&action=edit&redlink=1
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Figure 2. The association between lung function parameters with the G-factor of cognition presented for cross-sectional (A) and 

longitudinal (B) analyses 

 
 

Definition of abbreviations: BMI = Body mass index; FEV1 = Forced Expiratory Volume in one second; FVC = Forced Vital Capacity; 

G-factor = principle component scores of cognition tests; HDL = High-density lipoprotein; LDL = Low-density lipoprotein.  

A) Represents cross-sectional association between spirometry tests and G-factor of cognitive tests; B) Represents the longitudinal 

association between spirometry tests and G-factor of cognitive tests. The figures show difference of G-factor between subgroups of 

higher quintile of spirometry parameters and those of the lowest (reference) quintile. Higher G-factor indicate better cognition 

performance. ModelA with adjustment for age, sex, education, smoking status, BMI, systolic blood pressure, serum lipids (triglycerides, 

total cholesterol, HDL cholesterol), history of comorbidities (stroke, diabetes, depressive symptom, atrial fibrillation, heart failure, 
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coronary heart disease), medications (antihypertensives, diuretics, vasoprotectives, beta-blocking agents, calcium blockers, ACE-

inhibitors, serum lipid reducing agents and statins), and APOE genotype; ModelB = ModelA plus time between two cognitive tests and 

test scores (G-factor) at baseline. 
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Figure 3. Cross-sectional analysis for vascular brain lesions among participants with different lung function 

 

Definition of abbreviations: BMI = Body mass index; COPD = Chronic Obstructive Pulmonary Disease; FEV1 = Forced Expiratory 

Volume in one second; FVC = Forced Vital Capacity; MD = Mean Difference; OR = Odds Ratio; PRISm = Preserved Ratio Impaired 

Spirometry; WML = White Matter Lesion. Odds ratios and mean difference were attained using logistic regression models and linear 

regression model adjusted for age, sex, education, smoking status, BMI, systolic blood pressure, serum lipids (triglycerides, total 

cholesterol, HDL cholesterol), history of comorbidities (stroke, diabetes, depressive symptom, atrial fibrillation, heart failure, coronary 

heart disease), medications (antihypertensives, diuretics, vasoprotectives, beta-blocking agents, calcium blockers, ACE-inhibitors, 

serum lipid reducing agents and statins), and APOE genotype. 
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S.Figure 1. Mean difference of G-factor between participants with lung function impairment and reference group in cross-sectional (A) 

and longitudinal analyses (B) 

 

Definition of abbreviations: COPD = Chronic Obstructive Pulmonary Disease; G-factor = principle component scores of cognition tests; 

HDL = High-density lipoprotein; PRISm = Preserved Ratio Impaired Spirometry. Spirometry test in relation to G-factor of cognition 

tests in cross-sectional analyses at baseline. Lower G-factor indicates worse cognition performance. A) Represents mean difference of 

G-factor in cross-sectional analyses; B) Represents mean difference of G-factor in longitudinal analyses. 
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S. Table1 Representativeness of the study population for longitudinal data analyses 

  
Without 

follow-up 
Follow-up P Value 

n (%)  
1975 

(52.1) 

1815 

(47.9) 
- 

Age, yr  62.3 (7.5) 74.2 (8.3) <0.001 

Female, % 
1070 

(54.2) 
989 (54.5) 0.872 

Education level    

  Primary education 158 (8.0) 120 (6.7) <0.001 

  lower education 670 (34.0) 751 (42.1)  

  Intermediate education 565 (28.7) 588 (33.0)  

  Higher education 576 (29.3) 324 (18.2)  

Smoking status, %     

  Never  678 (34.3) 620 (34.2) <0.001 

  Former  982 (49.7) 
1019 

(56.1) 
 

  Current 315 (15.9) 176 (9.7)  

Systolic pressure 132 (24) 148 (25) <0.001 

BMI, kg/m2  26.9 (5.1) 27.0 (4.8) 0.515 

Triglycerides, mmol/L  1.3 (0.8) 1.3 (0.7) 0.812 

Total cholesterol, mmol/L  5.6 (1.5) 5.4 (1.6) <0.001 

HDL cholesterol, mmol/L  1.4 (0.6) 1.4 (0.5) 0.411 

History of comorbidity,%    

  Stroke 23 (1.2) 6 (0.3) 0.004 

  Diabetes mellitus 160 (8.1) 134 (7.5) 0.345 

  Depression symptom 150 (7.6) 152 (8.4) 0.744 

  Atrial fibrillation 68 (3.4) 135 (7.4) <0.001 

  Heart failure 15 (0.8) 73 (4.0) <0.001 

  Coronary heart disease 115 (5.8) 198 (10.9) <0.001 

APOE, %     

  without APOE-ε4 allele 
1265 

(69.9) 

1293 

(75.5) 
<0.001 

  with APOE-ε4 heterozygotes 498 (27.5) 385 (22.5)  

  with APOE-ε4 homozygotes 47 (2.6) 34 (2.0)  

Medications, %    

  Antihypertensives 18 (0.9) 8 (0.4) 0.118 

  Diuretics 209 (10.6) 311 (17.1) <0.001 

  Vasoprotectives 2 (0.1) 3 (0.2) 0.676* 

  Betablocking agents 321 (16.3) 492 (27.1) <0.001 

  Calcium blockers 115 (5.8) 183 (10.1) <0.001 

  ACE-inhibitors 398 (20.2) 553 (30.5) <0.001 

  Serum lipid reducing agents 538 (27.3) 574 (31.6) 0.004 
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  Statins 435 (22.1) 562 (31.0) <0.001 

Spirometry,%    

  Normal 
1572 

(79.6) 

1405 

(77.4) 
0.002 

  PRISm 128 (6.5) 109 (6.0)  
  COPD1 155 (7.8) 130 (7.2)  
  COPD2-4 120 (6.1) 171 (9.4)  
FEV1/FVC (%) 77.8 (8.0) 77.0 (8.6) <0.001 

FEV1% predicted  99.6 (20.9) 99.7 (24.2) 0.538 

FVC% predicted  
100.0 

(18.6) 
98.7 (21.4) 0.020 

Definition of abbreviations: APOE = apolipoprotein E; BMI = Body Mass Index; COPD = Chronic 

Obstructive Pulmonary Disease; FEV1 = Forced Expiratory Volume in one second; FVC = Forced 

Vital Capacity; LDST = Letter-Digit Substitution test; HDL = High-density lipoprotein; PRISm = 

Preserved Ratio Impaired Spirometry; PPB test = Purdue Pegboard test; WFT = Word Fluency 

test; WLTdel = Word learning test, delayed recall; WLTimm = Word learning test, immediate 

recall; WLTrecog = Word learning test, recognition. 

p-values are for comparing differences between participants within and lost to follow-up 

*Fisher test 
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S. Table2 Binomial logistic regression analyses for effect of lung function on cognitive decline 

Odds ratios (ORs) for cognitive decline 
 Number of participants Normal PRISm COPD GOLD1 COPD GOLD2-4 

LDST n=1225 Reference 0.99 (0.56;1.75) 0.75 (0.45;1.22) 1.55 (0.93;2.61) 

Stroop test1 n=1220 Reference 0.80 (0.44;1.44) 1.03 (0.63;1.70) 1.03 (0.61;1.73) 

Stroop test2 n=1219 Reference 0.65 (0.35;1.19) 0.94 (0.57;1.55) 1.13 (0.67;1.92) 

Stroop test3 n=1210 Reference 0.77 (0.39;1.46) 0.94 (0.54;1.59) 1.01 (0.58;1.76) 

WFT n=1266 Reference 1.28 (0.72;2.31) 0.95 (0.59;1.55) 0.86 (0.53;1.42) 

WLTdel n=1221 Reference 1.00 (0.55;1.81) 0.62 (0.36;1.05) 1.00 (0.58;1.71) 

WLTimm n=1230 Reference 1.17 (0.65;2.13) 0.82 (0.49;1.37) 1.04 (0.61;1.77) 

WLTrecog n=1209 Reference 0.64 (0.33;1.19) 1.00 (0.58;1.68) 0.96 (0.55;1.64) 

PPB test n=1118 Reference 1.01 (0.52;1.97) 1.03 (0.61;1.74) 0.88 (0.50;1.57) 

Definition of abbreviations: BMI = Body mass index; COPD = Chronic Obstructive Pulmonary Disease; LDST  = Letter-Digit 

Substitution Task; PRISm = Preserved Ratio Impaired Spirometry; PPB test = Purdue Pegboard test; Word Fluency Task = WFT; 

WLTdel = 15-Word Learning Test of delayed recall; WLTimm = 15-Word Learning Test of immediate recall; WLTrecog = 15-Word 

Learning Test of recognition. The table presents odds ratio (OR) (95% confidence interval) in cognitive scores after adjustment for 

covariates. For some cognitive tests, including LDST, WFT, WLTdel, WLTimm, WLTrecog and PPB test, cognitive decline was defined 

as a drop in following-up scores of more than mean difference between baseline and following-up tests per year. On the contrary, 

cognitive decline was defined as an increase in following-up scores of more than mean difference in Stroop tests. Analyses are adjusted 

for age, sex, education, smoking status, BMI, systolic blood pressure, serum lipids (triglycerides, total cholesterol, HDL cholesterol) , 

history of comorbidities (stroke, diabetes, depressive symptom, atrial fibrillation, heart failure, coronary heart disease), medications 
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(antihypertensives, diuretics, vasoprotectives, beta-blocking agents, calcium blockers, ACE-inhibitors, serum lipid reducing agents and 

statins), and APOE genotype. 

https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Antihypertensives&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Diuretics&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Vasoprotectives&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Betablocking_agents&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Calcium_blockers&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=ACE-inhibitors&action=edit&redlink=1
https://p-epi-wiki.erasmusmc.nl/wiki/ergowiki/index.php?title=Serum_lipid_reducing_agents&action=edit&redlink=1
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Chapter 3 Fatty Liver Disease and Neurodegeneration 
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Chapter 3.1 Association of Nonalcoholic Fatty Liver Disease and Fibrosis With 

Incident Dementia and Cognition: The Rotterdam Study 
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Abstract  

Introduction: We investigated the association of NAFLD and fibrosis with incident-dementia and 

cognition among the elderly.    

Methods: We included non-dementia participants at baseline with available fatty liver index (FLI) 

(set 1; visit 1997-2002; n=3,975; FU=15.5 years) or with abdominal ultrasound (set 2; visit 2009-

2014; n=4,577; FU=5.7 years) or liver stiffness (set 3; visit 2009-2014; n=3,300; FU=5.6 years). 

Cox-regression was used to quantify associations for NAFLD or liver fibrosis with incident-

dementia and logistic regression for NAFLD and cognitive function.   

Results: NAFLD and fibrosis were consistently not associated with increased risk of incident 

dementia. Interestingly, NAFLD was associated with a significantly decreased risk for incident-

dementia until five years after FLI-assessment. Moreover, NAFLD was not associated with worse 

cognitive function.  

Discussion: NAFLD and fibrosis were not associated with increased risk for incident-dementia. 

In contrast, NAFLD was even protective in the first five years of follow-up, hinting towards 

NAFLD regression before dementia onset.  

Keywords 

NAFLD; fibrosis; liver stiffness; cognition; dementia; epidemiology; general population; 

longitudinal analysis 
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Introduction 

Non-alcoholic Fatty Liver Disease (NAFLD) is increasingly common and affects >25% of the 

global population 136. It has become one of the most prevalent chronic liver diseases, ranging from 

simple fat accumulation to liver cirrhosis 137. In addition, recent studies indicate that NAFLD is 

associated with kidney dysfunction 138, 139, cardiovascular disease 140 and extra-hepatic 

malignancies such as colon and stomach cancer 141, 142. However, its link with neurodegenerative 

conditions, such as dementia or cognition impairment remains unclear.  

As a metabolic disease, NAFLD has several risk factors in common with dementia, for example, 

insulin resistance, hypertension, obesity, physical inactivity and dyslipidemia 143. Accumulating 

evidence also suggests a direct association of NAFLD with brain structural changes via the so-

called liver-brain axis 144-146. This might link NAFLD to dementia, driven by the following 

mechanisms: 1) inflammation due to liver fat may activate microglial cells resulting in elevated 

expression of inflammatory cytokines in the brain 147; 2) increased brain insulin resistance in 

patients with NAFLD may cause oxidative stress, excessive free fatty acids and brain 

mitochondrial disorders 148; 3) cerebrovascular and hemodynamic disturbances provoked by a 

prothrombotic state 143. Despite this growing evidence for a liver-brain axis, current available 

studies reported no effects of NAFLD on dementia 149, 150 or only in frail NAFLD participants with 

fibrosis 151. However, some other studies indicated that cognitive impairment was more common 

in patients with NAFLD 152 or fibrosis 153, which might indicate a potential association with 

dementia and NAFLD. 

The majority of those studies are, however, cross-sectional, had limited follow-up or had a small 

sample size. Moreover, some studies lacked abdominal imaging to determine steatosis and 

transient elastography was often not available to assess fibrosis. Given these limitations and the 
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inconsistent results, the impact of NAFLD on dementia remains unclear. Therefore, we aim to 

study the associations of NAFLD and fibrosis with incident dementia and cognitive function in a 

well-defined, prospective cohort with available ultrasound and transient elastography data. A 

defining feature of our study is the use of different measures of NAFLD using various modalities 

that together provide a comprehensive assessment of liver function.  
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Methods 

Participants 

This study was conducted within the Rotterdam Study, a prospective ongoing cohort that started 

in 1990. Participants aged at least 45 years from a suburb in Rotterdam were included to investigate 

chronic diseases in the general population 45. Study visits comprised a home interview and various 

physical examinations at the research center and were repeated every four to six years. In this study, 

we included three different sets (FIGURE 1) in which we assessed the impact of NAFLD or 

fibrosis on the risk of incident dementia several ways. Set 1 comprised of participants in whom we 

had available fatty liver index (FLI) to determine NAFLD, measured between 1997 and 2002. Set 

2 comprised of participants visiting the study center between 2009 and 2014 in whom we had 

abdominal ultrasound performed to assess NAFLD. Set 3 is a subset of set 2, and comprises 

participants that also underwent liver stiffness measurement to assess fibrosis.  Sets 2 and 3 were 

also used to investigate the association with cognition cross-sectionally. 

Exclusion criteria were: 1) Prevalent dementia; 2) Lack of follow-up; 3) Missing dementia data; 

4) Secondary causes for steatosis or missing alcohol data. These secondary causes were steatosis-

inducing drug use (i.e. amiodarone, corticosteroids and methotrexate), viral hepatitis or excessive 

alcohol consumption (>20 grams/day for female or >30 grams/day for male) assessed by food 

frequency questionnaire (FFQ) or alcohol interview 154. In addition, for set 3, participants with 

invalid liver stiffness measurements were also excluded. (Supplementary table 1).  

Steatosis assessment 

NAFLD was defined as the presence of FLI ≥ 60 (set 1) or hepatic steatosis based on abdominal 

ultrasound (set 2) in the absence of secondary causes for steatosis. FLI was calculated with the 

following algorithm: FLI = (e0.953*loge (triglycerides) + 0.139*BMI + 0.718*loge (GGT) + 
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0.053*waist circumference - 15.745) / (1 + e0.953*loge (triglycerides) + 0.139*BMI + 

0.718*loge (GGT) + 0.053*waist circumference - 15.745) x 100, where triglycerides were 

measured in mg/dL, GGT in U/L, waist circumference in cm, and BMI in kg/m2. Participants were 

categorized according to their FLI score as no NAFLD for FLI <30 and NAFLD for FLI ≥ 60 155. 

Steatosis based on abdominal ultrasound was defined as hyperechoic liver parenchyma compared 

to the spleen or kidney according to the protocol of Hamaguchi et al 156. Abdominal ultrasound 

was performed by a single certified and experienced sonographer (PVW) on a Hitachi Hi Vision 

900.  

Fibrosis assessment 

Liver stiffness was assessed using transient elastography (FibroScan, EchoSens, Paris, France). At 

least ten measurements were obtained through either M or XL probe according to the device's 

instructions. Final measurements >7.1 kilopascal (kPa) with an interquartile range > 30% were 

considered unreliable and discarded, according to the Boursier criteria 157. Liver fibrosis was 

defined as liver stiffness measurement (LSM) ≥ 8.0 kPa 158. 

Dementia assessment 

Dementia assessment was performed at baseline and subsequent center visits with the Mini-Mental 

State Examination and the Geriatric Mental Schedule 49. Those with a Mini-Mental State 

Examination score <26 or Geriatric Mental Schedule score >0 underwent further investigation 

including Cambridge Examination for Mental Disorders of the Elderly. Moreover, diagnosis of 

dementia by other health care professionals was available through electronic linkage of the study 

database with medical records from general practitioners and the regional institute for outpatient 

mental health care. An adjudication panel led by a consultant neurologist established the final 

diagnosis according to standard criteria for dementia (Diagnostic and Statistical Manual of Mental 
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Disorder, Third Edition-Revised: DSM-III-R). Follow-up was complete until 1st January 2018. 

Within this period, participants were followed until the date of dementia, death, loss to follow-up 

or 1st of January 2018, whichever came first. 

Cognitive testing 

Participants underwent several neuropsychological tests during the study visit, this includes the 

Stroop tests (trial 1 for word naming, trial 2 for color naming and trial 3 for color naming and 

matching with color word), the Letter-Digit Substitution Task (LDST), the Word Fluency Task 

(WFT), a 15-Word Learning Test with immediate (WLTimm) and delayed recall (WLTdel), and 

Purdue Pegboard test (PPB test), which are described in supplementary table 1. These test results 

were transformed into a Z-score, this reflects the number of standard deviations the test results 

were below or above the mean score. To assess the overall cognitive function, a general cognitive 

factor (G-factor) was calculated using only the LDST, WFT, WLTdel tests and the trial 3 of Stroop 

test, to prevent distortion by highly correlated tasks 93. Detailed information was presented in 

Supplementary table 2. 

Covariates 

Demographic and physiological information included age, sex, education level (lower education, 

intermediate education, higher education), smoking status (never, former, current), alcohol intake 

(units/day), body mass index (BMI, kg/m2), alanine aminotransferase (ALT, U/L) and chronic 

comorbid conditions (diabetes, hypertension and stroke) 45. Apolipoprotein E (APOE) genotype 

was determined using a PCR and a bi-allelic TaqMan assay (rs7412 and rs429358) on labelled 

DNA samples. APOE-ε4 allele represented carrier of one or two ε4 alleles.  

Statistical analysis 
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Baseline characteristics are described for the overall population in all three sets. Data are expressed 

as mean ± standard deviation (SD) or as median (with 25th and 75th percentile [P25-P75]). For 

time-to-event analyses, we assessed the associations between of NAFLD and liver stiffness with 

the risk of incident dementia using Cox proportional-hazards regression analyses. Baseline was 

defined as date of blood test (for FLI) or abdominal ultrasound and follow-up ended at the 

diagnosis of dementia, death, loss to follow-up, or 1st January 2018. Model 1 was adjusted for 

APOE phenotype, age, sex and education. Model 2 was in addition adjusted for alcohol, smoking, 

stroke, hypertension, diabetes and cholesterol. Model 3 was in addition adjusted for BMI. 

Covariates above were selected based on previous literature, clinical relevance, and data 

availability 37, 159. 

Next, we determined the cross-sectional association of NAFLD or fibrosis with cognitive function 

using linear regression analyses and Tukey all-pair comparisons method based on ANOVA models. 

We calculated the differences of the individual cognitive tests and G-factor for participants with 

NAFLD compared to those without NAFLD and for fibrosis compared to no fibrosis. Results were 

adjusted for age, sex, education level, smoking status, BMI, cholesterol, triglycerides, 

hypertension, stroke, diabetes, depression and APOE genotypes.   

A p-value of <0.05 was considered statistically significant. All analysis were performed using R 

version 4.0.4 (Foundation for Statistical Computing, Vienna, Austria).  



72 
 

Results 

Baseline characteristics of the overall population 

There were 3,975 participants with available NAFLD data based on FLI included in set 1, 4,577 

participants with available ultrasound to assess NAFLD in set 2, and 3,300 participants with 

available liver stiffness measurement to assess fibrosis in set 3, exclusions are described in 

supplementary table 2. Participants from the different sets had a similar mean age (around 70 years), 

BMI (near 27 kg/m2) and approximately 60% of them were women. In set 1, 1293 (32.5%) 

participants had NAFLD (FLI ≥ 60), and in set 2, 1586 (34.7%), which was based on abdominal 

ultrasound. In set 3 the median liver stiffness was 4.8 kPa (P25-P75: 3.8-5.9) and 192 (5.8%) 

participants had fibrosis. (TABLE 1) 

As shown in FIGURE 1, in set 1, 753 (18.9%) participants developed dementia during a median 

follow-up of 15.5 years. In set 2 the median follow-up was 5.7 years, and 262 (5.7%) participants 

had incident dementia.  In set 3, only 127 (3.8%) had incident dementia with 5.6 years of median 

follow up. Participants’ characteristics stratified by NAFLD status for set 1 and 2 are presented in 

supplementary table 3. 

NAFLD and fibrosis in relation to incident dementia  

The presence of NAFLD (based on FLI ≥ 60, set 1) did not increase the risk of incident dementia 

(HR: 0.92; 95% confidence interval (CI): 0.69–1.22) in the fully adjusted model. Similarly, no 

increased risk of dementia could be demonstrated for the presence of NAFLD, based on abdominal 

ultrasound in set 2. NAFLD was even associated with a significantly decreased risk for incident 

dementia in model 2 (HR 0.73, 95% CI: 0.54 – 0.98), which was no longer significant after 

additional adjusting for BMI (HR: 0.84; 95% CI: 0.61–1.16). Consistent with those results, no 



73 
 

association was found for fibrosis (HR: 1.07; 95% CI: 0.58-1.99) or liver stiffness (HR: 1.01 per 

kPa; 95% CI: 0.92–1.10) with incident dementia in fully adjusted models in set 3 (Table 2). 

Interestingly, for the first five years of follow-up, participants with NAFLD (FLI ≥ 60, set 1) were 

at a significantly lower risk of incident dementia (HR: 0.49; 95% CI: 0.25–0.96) in the fully 

adjusted model, compared to no NAFLD (FLI < 30). With the period of follow-up extending, the 

protective association between NAFLD and risk of incident dementia disappeared (between 5-10 

years, HR: 1.08; 95% CI: 0.62–1.87; above 10 years, HR: 1.25; 95% CI: 0.80–1.96, Table 3). 

Weight loss prior to abdominal ultrasound since their previous visit (mean time between visits 6.1 

years) was more evident among participants that had developed dementia during the follow up, 

compared to those without incident dementia (mean: -0.37 vs -0.05 kg per year; set 2). 

NAFLD and liver fibrosis in relation to cognitive performance 

Figure 2 presents the association of NAFLD (abdominal ultrasound, set 2) and liver fibrosis (set 

3) with cognitive performance. Cross-sectional analyses revealed that NAFLD was not 

significantly associated with poor performance on global cognition (Mean difference (MD) of Z-

score) in G-factor score compared to reference group without NAFLD: 0.032 (95%CI: -

0.029;0.092); in fact, better performance of Stroop test 2 was observed in cross-sectional analyses. 

On the contrary, we found that liver fibrosis was associated with lower global cognition scores 

(MD compared to reference group without liver fibrosis: –0.172, 95% CI: -0.307;-0.037) and lower 

scores of LDST and more time to finish Stroop test 1 and 3 (Supplementary table 4). 
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Discussion 

We investigated the impact of NAFLD on dementia and cognitive function in a large prospective 

ongoing population-based cohort with up to 15.5 years median follow-up. NAFLD was not 

associated with an increased risk of incident dementia or impaired cognitive function.  In addition, 

the presence of NAFLD was not associated with impaired cognitive function. 

In contrast to the suggested liver-brain axis in previous studies, NAFLD did not increase the risk 

of incident dementia in this study, regardless of the modality of diagnosis (FLI or ultrasound). We 

even found NAFLD to be significantly protective for dementia within the first five years after FLI-

assessment. Similar trends were seen for the association between ultrasound-based NAFLD and 

incident dementia during the 5.7 years median follow-up. This points us towards one of the 

challenges regarding NAFLD and dementia research: the reversibility of NAFLD due to weight 

loss 160. Dementia, albeit unintentionally, is also accompanied by weight loss during its preclinical 

phase 161, which was confirmed by our results. This could induce NAFLD regression, as even 

minor improvements in body fat have rather large effects on liver fat and hepatic triglycerides 162, 

163.  Consequently, weight loss in the years prior to dementia could thus obscure any relation 

between NAFLD and incident dementia. In our study, the demonstrated protective effect of 

NAFLD on dementia disappeared after five years. This suggests that if NAFLD is associated with 

an increased risk for dementia at all, it is a long-term effect, and NAFLD itself might already have 

disappeared before dementia is diagnosed.  

Given the reversibility of NAFLD, exposure duration could be of major importance to comprehend 

the association between NAFLD and dementia. Individuals with NAFLD can develop permanent 

liver fibrosis, resulting in higher liver stiffness, based on the duration and severity of NAFLD 164. 

Therefore, we assessed the association between fibrosis and liver stiffness with incident dementia 
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longitudinally. In line with our results for NAFLD, fibrosis and liver stiffness were also not 

associated with incident dementia, indicating that NAFLD nor severity of NAFLD is associated 

with increased risk for incident dementia. Considering cognitive impairment as a classic prodromal 

symptom preceding the onset of dementia [33], we explored the cross-sectional association 

between NAFLD and cognition. Similarly, we did not find a significant association between 

NAFLD and impaired cognitive function. However, fibrosis was significantly associated with 

impaired performance on the Stroop Test, Letter-Digit substitution test resulting in lower G-factor 

score. These tests cover attention and concentration, processing speed and global cognitive 

function respectively. Further research is required whether this hints towards an association with 

dementia as well, or is driven by common risk factors (e.g. the presence of diabetes or metabolic 

syndrome) or accumulation of toxins by impaired liver function.  

Given these consistently negative results, we cannot demonstrate an association of NAFLD with 

dementia or cognitive function within our follow-up duration. This is in line with a recent registry 

study among over 40.000 participants, which could not link NAFLD and dementia using ICD-10 

codes 149. Moreover, a study with almost 20 years of follow-up could not identify NAFLD as risk 

factor for incident dementia150. However, they reported that histology proven fibrosis improved 

the prediction of dementia. Fibrosis was also linked to dementia among the frail elderly 

previously151. However, these results need to be interpreted with caution since fibrosis was 

calculated based on age, which itself is undisputedly associated with dementia.  

More literature is available on cognitive function, and in these studies NAFLD has been linked to 

impaired performance on serial digit learning test 152 and symbol digit substitution test 152, reduced 

reaction time 152, lower MoCA scores 165, 166, brain volume reduction 144, and reduced brain activity 

166. However, most results were unadjusted or disappeared after adjustment for important 
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confounders such as age and education level. Moreover, most findings were not replicated and 

some studies, similar to ours, could not identify any association with NAFLD and cognition 153. 

Therefore, the effect of NAFLD on cognitive function seems to be minor, if existing at all.  

Although this study had a large sample size and extensive analysis were performed for both 

incident dementia and cognitive function in relation to NAFLD and fibrosis, the following 

limitations need mentioning. First, this cohort is almost entirely European, with a mean age of 70 

years at baseline. Therefore, our results might not be generalizable to multi-ethnic and younger 

populations. Second, NAFLD and fibrosis were not based on liver biopsy since that procedure is 

invasive and subject to potential complications and therefore unethical to perform in a healthy 

population on this scale. Alternatively, we used abdominal ultrasound in set 2 and  FLI in set 1, 

which correlates strongly with ultrasound diagnosis of NAFLD167. Despite fully adjusted models, 

residual confounding might not be ruled out, as FLI includes BMI. In line with this limitation, 

NAFLD was only assessed at baseline and no data was available for NAFLD exposure duration. 

Third, because we had only 192 cases of fibrosis, we might not have found an association with 

incident dementia. Therefore, the continuous outcome of liver stiffness was also used to explore 

associations with incident dementia, it should be noted however that this might not reflect only 

liver injury per se. Fourth, the cross-sectional study design for NAFLD and cognition allows not 

to study causal relationships for NAFLD on cognition. However, it served as indirect evidence for 

the absence of associations between NAFLD and dementia, in line with the longitudinal analysis.  
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Conclusion 

In conclusion, individuals with NAFLD were not at increased risk of dementia among this general 

elderly population, nor could an association with liver stiffness or fibrosis and dementia be 

demonstrated. Moreover, NAFLD was associated with a reduced risk of dementia for the first five 

years after the assessment, suggesting that NAFLD regression is likely before dementia onset, 

which could be driven by weight loss before dementia onset. As yet, NAFLD may have no clinical 

implications for dementia awareness. Further studies should focus on NAFLD exposure duration, 

NAFLD trajectory and risk of dementia with longer follow up durations. 
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FIGURE 1 Overview of different study sets and key characteristics for investigating the 

association between NAFLD and fibrosis with dementia and cognitive function.   

 

Set 1 and set 2 were used to study associations between NAFLD (either based on FLI or ultrasound) 

with incident dementia. Set 3 was used to study associations between liver stiffness and fibrosis 

with incident dementia. Additionally, the impact of NAFLD and fibrosis on cognitive function was 

studied cross-sectionally in set 2 and set 3. 
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FIGURE 2 Mean difference of performance on cognitive tests between participants with NAFLD 

compared to no NAFLD and fibrosis compared to no fibrosis expressed in z-scores. 

 

Presence of NAFLD or fibrosis, in relation to cognition tests in cross-sectional analyses. Higher 

scores indicate better performance, except for the Stroop tests. Results were obtained from linear 

regression analyses and Tukey all-pair comparisons method based on ANOVA models. 

Differences were calculated for the individual cognitive tests and G-factor for participants with 

NAFLD compared to those without NAFLD and for fibrosis compared to no fibrosis. Results were 

adjusted for age, sex, education level, smoking status, BMI, cholesterol, triglycerides, 

hypertension, stroke, diabetes, depression and APOE genotypes.  Abbreviations: APOE, 

apolipoprotein E; G-factor, principle component scores of cognition tests; LDST, Letter-Digit 

Substitution test; MD, Mean difference; PPB test, Purdue Pegboard test; WFT, Word Fluency test; 

WLTdel, Word learning test, delayed recall; WLTimm, Word learning test, immediate recall; 

WLTrecog, Word learning test, recognition.
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TABLE 1 Baseline characteristics per analysis set 

  
Set 1 Set 2 Set 3 

n = 3.975 n = 4.577 n = 3.300 

Demographics     

  Age (years) 70.0 (8.0) 69.9 (9.1) 67.6 (8.4) 

  Female 2408 (60.6) 2709 (59.2) 1892 (57.3) 

  Alcohol consumption 3068 (77.2)  3866 (84.5)  2830 (85.8) 

  Former/current smoking 2495 (63.1)  2933 (64.2)  2081 (63.2) 

  Educational level    

    Low 2357 (59.8)  2237 (49.4)  1517 (46.4) 

    Intermediate 1129 (28.6)  1355 (29.9)  972 (29.7) 

    High 456 (11.6) 934 (20.6) 779 (23.8) 

Physical examination    

  BMI (kg/m2) 27.0 (4.1) 27.6 (4.4) 27.1 (3.9) 

  Enlarged waist 

circumference* 
1799 (45.3) 2015 (44.1) 1356 (41.1) 

Comorbidity    

  Metabolic syndrome 1983 (50.0) 1869 (41.6) 1252 (38.5) 

  Diabetes 549 (13.8) 715 (15.8) 458 (14.0) 

  Stroke  71 (1.8) 122 (2.7) 59 (1.8) 

  Hypertension  2727 (68.8) 3374 (73.7) 2276 (69.0) 

Biochemistry / genetics   

  ALT (U/L) 20 [16, 25] 18 [15, 24] 18 [14, 24] 

  GGT (U/L) 23 [17, 32] 23 [17, 33] 22 [16, 33] 

  Cholesterol (mmol/L) 5.78 (0.97) 5.42 (1.11) 5.48 (1.10) 

  Triglycerides (mmol/L) 1.34 [1.02, 1.83] 1.27 [0.98, 1.72] 1.26 [0.97, 1.70] 

  APOE-ε4 1062 (27.8) 1137 (26.7) 842 (27.5) 

Hepatic comorbidity    

  NAFLD†  1293 (32.5) 1586 (34.7) 1066 (32.3) 

  Liver stiffness (kPa) - 4.8 [3.8, 5.9] 4.8 [3.8, 5.9] 

Abbreviations:  APOE, apolipoprotein E; ALT, alanine transaminase; BMI, body mass index; FLI, 

fatty liver index; GGT, gamma glutamyl transpeptidase; NAFLD, non-alcoholic fatty liver disease. 

Data is presented as mean (SD), median [P25-P75] or n and percentage. Baseline characteristics 
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are presented per set. *Waist circumference > 102 cm for male and > 88 cm for female. †Based 

on FLI ≥ 60 in set 1 or ultrasound in set 2 and 3. 
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TABLE 2 Risk of incident dementia for NAFLD and liver stiffness 

  cases 
FU* 
(year) 

Model 1 Model 2 Model 3 

HR 95% CI HR 95% CI HR 95% CI 

NAFLD (FLI ≥ 60) 753/3975 15.5 0.91 0.76 - 1.10 0.79 0.65 - 0.97 0.92 0.69 – 1.22 

NAFLD (Ultrasound) 262/4577 5.7 0.87 0.66 – 1.15 0.73 0.54 – 0.98 0.84 0.61 – 1.16 

Fibrosis† 127/3300 5.6 1.12 0.61 – 2.05 1.08 0.58 – 2.00 1.07 0.58 – 1.99 

Liver stiffness (kPa) 127/3300 5.6 1.02 0.95 – 1.10 1.00 0.92 – 1.09 1.01 0.92 – 1.10 

Abbreviations:  APOE, apolipoprotein E; BMI, body mass index; CI, confidence interval; FLI, fatty liver index; FU, follow-up; HR, 

hazard rate; kPa, kilopascals; NAFLD, non-alcoholic fatty liver disease. Results are given as HR and 95% CI for incident dementia as 

outcome. Model 1: adjusted for APOE-4, age, sex and education; Model 2 was in addition adjusted for alcohol, smoking, stroke, 

hypertension, diabetes and cholesterol; Model 3 was in addition adjusted for BMI. NAFLD was either based on FLI ≥ 60 or on hepatic 

steatosis assessed with abdominal ultrasound and was compared to participants with FLI < 30 or participants without hepatic steatosis. 

*Median follow up in years. †Defined as LSM ≥ 8.0 kPa. 
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TABLE 3 Risk of incident dementia for NAFLD based on fatty liver index per 5 years of follow up 

Period cases 
Model 1 Model 2 Model 3 

HR 95% CI HR 95% CI HR 95% CI 

0 – 5 years 155/3975 0.59 0.38 – 0.91 0.50 0.32 – 0.80 0.48  0.24 – 0.94 

5 – 10 years 194/3472 0.85 0.59 – 1.21 0.78 0.54 – 1.14 1.10 0.63 – 1.91 

> 10 years  404/2786 1.11 0.87 – 1.43 0.94 0.71 – 1.23 1.07 0.72 – 1.57 

Abbreviations:  APOE, apolipoprotein E; BMI, body mass index; CI, confidence interval; HR, hazard rate; NAFLD, non-alcoholic fatty 

liver disease. Model 1 was adjusted for APOE-4, age, sex and education; Model 2 was in addition adjusted for alcohol, smoking, stroke, 

hypertension, diabetes and cholesterol; Model 3 was in addition adjusted for BMI.  NAFLD was based on FLI ≥ 60 and compared to 

FLI < 30. 
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Supplementary table 1: details of the cognitive tests used in cross-sectional analysis 

Letter Digit 

Substitution Task 

(LDST) 

Processing speed was measured with the LDST. After providing 

an example with the correct combinations, participants were asked 

to make as many letter-digit combinations in 60 seconds as 

possible.  

 

Stroop tests Attention and concentration were measured using the Stroop test, 

which comprises three trials. In the first trial, participants are 

asked to name the printed word of a card which contains color 

names in black. In the second trial, participants were asked to 

name the printed color of colored blocks. And last, in the third 

trial, participants were asked to name the color of the ink of the 

card that contains color names printed in different ink colors than 

the actual color name.  

 

Word Fluency Task 

(WFT) 

Verbal fluency was measured with the WFT. Participants were 

asked to provide as many animal names as possible during 60 

seconds.  

 

15-Verbal word 

learning test (WLT) 

Immediate recall and delayed recall were measured with the 

WLT. First, participants were provided a list of 15 unrelated 

words and were asked to repeat them after five different trials and 

receiving another list of 15 unrelated words (WLTimm). This was 

asked again after 30 minutes (WLTdel). 

 

Purdue Pegboard 

test (PBB test) 

Unilateral and bilateral fine manual dexterity was quantified using 

the PPB. This test uses a pegboard comprising two rows, with 25 

holes each and a number of pins. Participants get 30 seconds to 

place as many pins as possible in the holes in the prescribed order. 

First with the right hand, then the left and last using both hands.  
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Supplementary table 2: Application of exclusion criteria per set. 

 Set 1 Set 2 Set 3 

Eligible for inclusion 6.048 5.967 4.540 

Dementia at baseline 79 45 27 

No dementia data 4 10 7 

No follow-up 24 22 17 

NAFLD exclusion criteria    

   Viral hepatitis  25 43 34 

   Excessive alcohol* 1.430 776 629 

   Steatogenic drug use 115 97 68 

Missing alcohol data 396 397 315 

Invalid liver stiffness† - - 143 

Total participants excluded 2.073 1.390 1.240 

Participants included 3.975 4.577 3.300 

*Excessive alcohol: daily intake of >30 grams for male and > 20 grams for female.  †According 

to the Boursier criteria.  

Abbreviations: NAFLD, non-alcoholic fatty liver disease.  
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Supplementary table 3: baseline characteristics by NAFLD status for incident dementia analysis 

 Set 1: Fatty liver index 
 

Set 2: Ultrasound 

 FLI < 30 

n = 1335 

FLI 30 – 60 

n = 1347 

FLI ≥ 60 

n = 1293 

 No NAFLD 

n = 2991 

NAFLD 

n = 1586 

Demographics 
   

 
  

  Age (years) 70.2 (8.3) 70.3 (8.0) 69.6 (7.7)  69.9 (9.5) 69.9 (8.5) 

  Female 949 (71.1) 745 (55.3) 714 (55.2)   1783 (59.6)    926 (58.4)  

  Alcohol consumption 1023 (76.6) 1067 (79.2) 978 (75.6)   2523 (84.4)   1343 (84.7)  

  Former/current smoking 749 (56.5) 873 (65.3) 873 (67.7)   1885 (62.1)    1078 (68.1)  

  Educational level       

    Low 804 (60.7) 780 (58.3) 773 (60.4)   1379 (46.6)    858 (54.8)  

    Intermediate 359 (27.1) 400 (29.9) 370 (28.9)    911 (30.8)    444 (28.4)  

    High 162 (12.2) 158 (11.8) 136 (10.6)    671 (22.7)    263 (16.8)  

Physical examination       

  BMI (kg/m2) 23.5 (2.3) 26.8 (2.3) 30.9 (3.7)  26.2 (3.7) 30.2 (4.4) 

  Enlarged waist 

circumference* 
121 (9.1) 601 (44.6) 1077 (83.3)  

  895 (29.9)   1120 (70.6)  

Comorbidity       
  Metabolic syndrome 230 (17.3) 670 (49.9) 1083 (84.0)   841 (28.6)   1028 (66.2)  

  Diabetes 73 (5.5) 157 (11.7) 319 (24.7)    313 (10.6)    402 (25.8)  

  Stroke 20 (1.5) 22 (1.6) 29 (2.2)     82 (2.7)     40 (2.5)  

  Hypertension  759 (56.9) 928 (69.0) 1040 (80.7)   2061 (68.9)   1313 (82.8)  

Biochemistry / genetics       

  ALT (U/L) 18 [15, 21] 20 [16, 25] 23 [18, 30]  17 [14, 22] 21 [16, 28] 

  GGT (U/L) 17 [14, 23] 23 [17, 30] 31 [23, 44]  21 [15, 30] 28 [20, 39] 

  Cholesterol (mmol/L) 5.72 (0.95) 5.83 (0.98) 5.80 (0.99)   5.46 (1.10)  5.35 (1.12) 

  Triglycerides (mmol/L) 1.04 [0.84, 

1.30] 

1.37 [1.08, 

1.79] 

1.80 [1.39, 

2.38] 
 

 1.16 [0.91, 

1.53] 

 1.56 [1.18, 

2.07] 

  APOE-ε4 374 (29.2) 357 (27.4) 331 (26.7)    809 (29.0)    328 (22.3)  

Data is presented as mean (SD), median [P25-P75] or n and percentage. Baseline characteristics are 

presented set 1 and set 2, stratified for NAFLD status. *Waist circumference > 102 cm for male and > 

88 cm for female.  

Abbreviations:  APOE, apolipoprotein E; ALT, alanine transaminase; BMI, body mass index; FLI, fatty 

liver index; GGT, gamma glutamyl transpeptidase; NAFLD, non-alcoholic fatty liver disease. 
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Supplementary table 4:  Mean difference of performance on cognitive tests between participants 

with NAFLD compared to no NAFLD and fibrosis compared to no fibrosis expressed in z-scores. 

Cognitive test 
NAFLD   Fibrosis 

n MD 95% CI  n MD 95% CI 

G-factor, z-score 3574 0.032 -0.029; 0.092  2657 -0.172  -0.307; -0.037* 

LDST, z-score 4414 0.042 -0.019; 0.103  3197 -0.201 -0.335; -0.067* 

Stroop test1*, z-score 4425 -0.047 -0.114; 0.021  3204 0.199    0.053; 0.345* 

Stroop test2*, z-score 4424 -0.079 -0.148; -0.011*  3203 0.135    -0.015; 0.284 

Stroop test3*, z-score 4415 -0.046 -0.110; 0.019  3199 0.179    0.041; 0.316* 

WFT, z-score 4503 0.000 -0.065; 0.065  3248 -0.132 -0.274; 0.010 

WLTdel, z-score 4193 -0.027 -0.093; 0.039  3028 -0.024 -0.165; 0.118 

WLTimm, z-score 4193 -0.011 -0.076; 0.054  3027 -0.006 -0.145; 0.133 

WLTrecog, z-score 4290 -0.012 -0.082; 0.058  3088 -0.054 -0.203; 0.096 

PPB test, z-score 3982 0.051 -0.009; 0.111   2958 -0.086 -0.219; 0.048 

Higher scores indicate better cognitive function, except for Stroop tests. Results were obtained from 

linear regression analyses and Tukey all-pair comparisons method based on ANOVA models. 

Differences were calculated for the individual cognitive tests and G-factor for participants with 

NAFLD compared to those without NAFLD and for fibrosis compared to no fibrosis. Results were 

adjusted for age, sex, education level, smoking status, BMI, cholesterol, triglycerides, hypertension, 

stroke, diabetes, depression and APOE genotypes.   

Abbreviations: APOE, apolipoprotein E; CI, confidence interval; G-factor, principle component 

scores of cognition tests; LDST, Letter-Digit Substitution test; MD, Mean difference; NAFLD, non-

alcoholic liver disease; PPB test, Purdue Pegboard test; WFT, Word Fluency test; WLTdel, Word 

learning test, delayed recall; WLTimm, Word learning test, immediate recall; WLTrecog, Word 

learning test, recognition.  
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Chapter 3.2 Sex-Stratified Associations Between Fatty Liver Disease and 

Parkinson's Disease: The Rotterdam Study 
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Abstract  

Fatty liver disease was not associated with Parkinsonism or Parkinson's disease in an elderly 

European population, the Rotterdam Study, (n=8.848), neither in men nor women. Results were 

consistent either using non-alcoholic fatty liver disease (NAFLD) or metabolic-dysfunction 

associated fatty liver disease (MAFLD) as exposure defined by either fatty liver index (FLI) or 

ultrasound. 
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Background 

Fatty liver disease is the most common chronic liver disease, with an estimated global prevalence 

of 33% in 2019.168 While most patients with fatty liver disease do not encounter any symptoms, 

this liver disorder is associated with a range of hepatic and extra-hepatic complications. 

Recently, fatty liver disease has been linked to Parkinson's disease (PD). However, this registry 

study from Korea with over 20.000 PD cases reported opposing results between men and 

women:169 Women with fatty liver disease assessed by the fatty liver index (FLI) were at an 

increased risk (Hazard ratio (HR): 1.09; 95% Confidence interval (CI): 1.02-1.16) of PD, while 

men had a lower risk (HR: 0.86, 95%CI: 0.82-0.91).  

Another registry study from Israel investigated whether fatty liver disease with active 

inflammation, known as steatohepatitis, was associated with PD. They reported that both men and 

women with steatohepatitis were more likely to have PD (Odds ratio (OR): 1.13, 95%CI: 1.08-

1.19).170 However, they did not report on the broader entity of fatty liver disease itself.  

Considering the limited and conflicting evidence on the association between fatty liver disease and 

PD, we investigated this association within the ongoing Rotterdam Study.  

Participants 

For this specific study, we included participants who visited the study centre between 1997 and 

2008 with data on liver disease. Participants were excluded in case of prevalent Parkinsonism or 

PD, incomplete data on the FLI components, no follow-up, or missing data on covariates. Detailed 

information on the Rotterdam Study isavailable elsewhere.171 

Exposure 
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In accordance with validated criteria in Caucasian populations, the presence of fatty liver disease 

was defined as a FLI of ≥60 (range 0-100). FLI is an algorithm comprising BMI, waist 

circumference, gamma-glutamyl transferase (GGT), and triglycerides:  

 

𝐹𝐿𝐼 =
𝑒0.953∗ln(𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒𝑠)+0.139∗𝐵𝑀𝐼+0.178∗ln(𝐺𝐺𝑇)+0.053∗𝑤𝑎𝑖𝑠𝑡 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒−15.745

1 + 𝑒0.953∗ln(𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒𝑠)+0.139∗𝐵𝑀𝐼+0.178∗ln(𝐺𝐺𝑇)+0.053∗𝑤𝑎𝑖𝑠𝑡 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒−15.745
∗ 100 

A subset of the initial cohort underwent abdominal ultrasound (which has superior diagnostic 

accuracy) to assess fatty liver disease between 2009 and 2014. Subsequently, two largely 

overlapping entities for fatty liver diseases were used: (1) Metabolic dysfunction-associated fatty 

liver disease (MAFLD) was defined as the presence of fatty liver disease together with either 

overweight, diabetes, or two minor metabolic dysfunction criteria; (2) non-alcoholic fatty liver 

disease (NAFLD) was defined as the presence of fatty liver disease, in the absence of excessive 

alcohol consumption, viral hepatitis, or steatogenic drug use.  

Outcome 

Potential cases of Incident Parkinsonism and PD were identified by (1) data obtained during 

follow-up visits,  (2) continuous monitoring of medical records, and/or (3) medication use. 

Potential cases were evaluated by a panel led by an experienced neurologist. Parkinsonism was 

defined as hypo- or bradykinesia with ≥ 1 cardinal sign (resting tremor, rigidity, or postural 

imbalance), or as a clinical diagnosis of Parkinsonism by a neurologist or geriatrician (if motor 

examination details were unavailable). Within those subjects, Parkinson’s disease was defined 

with clinical history suggestive of Parkinson’s disease verified by a neurologist or geriatrician, or 

with a positive response to dopaminergic treatment, or a dopamine transporter scan consistent with 

Parkinson’s disease. The baseline was set on the date of liver assessment and follow-up ended at 

the diagnosis of Parkinsonism, PD, death, loss to follow-up, or 1st of January 2018.  
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Statistics: Cox regression models were used to quantify the risk of Parkinsonism and PD for the 

presence of MAFLD in the main analysis and NAFLD in the sensitivity analysis. Analyses were 

stratified for sex and multivariable models were adjusted for age, smoking status, and education 

levels as confounders based on literature. Finally, the analyses were repeated in the subset that 

underwent abdominal ultrasound.  

Results 

We included 9.364 participants between 1997 and 2008. Among them, 71 individuals were 

excluded with prevalent Parkinsonism or PD, 352 for lack of follow-up and 93 for missing data on 

covariates. In our final dataset (n = 8.848; age 64.7±9.6, 43.7% men) the mean FLI was 48.2±27.3 

and 35.9% had FLI ≥ 60, which resulted in 35.8% MAFLD prevalence (45.5% among men, 28.3% 

among women). Additional baseline characteristics are available in Table 2.  

In this study, 159 participants developed Parkinsonism and 74 PD during a median follow-up of 

11 [IQR:9-17] years. MAFLD and NAFLD were neither associated with Parkinsonism nor PD in 

men nor women (Table 2). Consistent results were obtained among 5.526 participants of our 

primary cohort that underwent abdominal ultrasound between 2009 and 2014. 

Context 

These results differ from the large Korean registry study with a median follow-up of 7 years, which 

reported fatty liver disease being a risk factor in women while in men, the presence of fatty liver 

disease reduced the risk of PD, as assessed by ICD-10 and registration codes.169 The difference 

could be partly explained by FLI applicability in Asian people. To get comparable diagnostic 

accuracy in Asian populations as in non-Asians, the FLI cut-off for fatty liver disease may need to 

be lowered to ≥31 for men and ≥18 for women instead of ≥60 for both sexes.172 Failing to use 

ethnic-specific cut-offs may distort any association in the study by Jeong et al and might explain 
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the low fatty liver disease prevalence of only 18.6% in men and 5.4% in women compared to the  

South Korea expected 41.1% in men and 20.3% in women.173 In our study, 35.8% had fatty liver 

disease aligning with the expected prevalence in Europe, and results may thus be more 

representative of the entire caucasian fatty liver disease population.168  

Furthermore, our cohort was older (mean age 65 years), therefore, it might not directly be 

compared to the study population investigated by Jeong and colleagues (mean age 54-55 years).169 

However, PD is uncommon in patients aged 40-59 (0.04-0.11%) while after that age, the 

prevalence increases rapidly to 1.9% in octogenarians.174 Hence our study populations' age might 

be highly suitable to investigate associations between PD and NAFLD. Interestingly, when Jeong 

et al. focused on individuals aged ≥65 years (in which most PD cases occur) the sex differences in 

the association between fatty liver disease and PD disappeared.169  

Conclusion 

Fatty liver disease was not associated with Parkinsonism or PD in an elderly European population. 

Results were consistent either using NAFLD or MAFLD as exposure defined by either FLI or 

ultrasound. 
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Table 1: Characteristics at baseline and at abdominal ultrasound  

 Baseline (1997-2008)  Abdominal ultrasound (2009-2014) 

 n = 8.848  n = 5.526 

Age 64.7 (9.6)  69.4 (9.1) 

Men  3863 (43.7)    2361 (42.7)  

Smoking  6142 (69.4)    3729 (67.5)  

Education      

   Low  4632 (52.4)    2671 (48.3)  

   Intermediate  2601 (29.4)    1666 (30.1)  

   High  1615 (18.3)    1189 (21.5)  

BMI 27.3 (4.2)  27.6 (4.4) 

Metabolic syndrome  3846 (43.8)    2697 (49.7)  

ALT 20 [15, 27]  19 [15, 24] 

GGT 24 [17, 36]  24 [17, 35] 

MAFLD  3169 (35.8)    1902 (34.4)  

NAFLD*  2310 (34.1)   1484 (34.5) 

*NAFLD prevalence was calculated in patients without secondary causes for steatosis and complete data on alcohol consumption 

(n =  6.773 [baseline] and n = 4.302 [abdominal ultrasound]). 

Abbreviations:  ALT, alanine aminotransferase; BMI, body mass index; GGT, gamma-glutamyltransferase; MAFLD, metabolic 

dysfunction associated fatty liver disease; NAFLD, non alcoholic fatty liver disease.  
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Table 2: Risk among men and women with fatty liver disease for Parkinsonism and Parkinson’s 

Disease  

 Parkinsonism  Parkinson’s Disease 

 Cases / n HR 95% CI  Cases / n HR 95% CI 

Assessed by FLI        

   MAFLD        

      Men 89/3863 0.97 0.63 – 1.49  41/3863 1.04 0.56 – 1.94 

      Women 70/4985 0.91 0.54 – 1.55  33/4985 0.69 0.30 – 1.58 

        

   NAFLD        

      Men 62/2813 0.71 0.41 – 1.22  28/2813 0.81 0.37 – 1.78 

      Women 49/3960 1.09 0.59 – 2.02  25/3960 0.82 0.33 – 2.07 

        

Assessed by 

ultrasound 

       

   MAFLD        

      Men 35/2361 1.35 0.68 – 2.69  14/2361 1.07 0.36 – 3.23 

      Women 23/3165 0.68 0.27 – 1.73  13/3165 0.62 0.17 – 2.27 

        

   NAFLD        

      Men 25/1754 1.01 0.43 – 2.35  9/1754 1.08 0.27 – 4.38 

      Women 21/2548 0.74 0.29 – 1.92  12/2548 0.66 0.18 – 2.45 

Abbreviations:  CI, confidence interval; FLI, fatty liver index; HR, hazard rate; MAFLD, 

metabolic dysfunction-associated fatty liver disease; NAFLD, non-alcoholic fatty liver disease. 

Results are given as HR and 95% CI for incident Parkinsonism or Parkinson’s Disease as 

outcome. Analyses were adjusted for age, sex, smoking status and education. 
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Chapter 4 Cardiac Biomarkers and Neurodegeneration 
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Chapter 4.1 NT-proBNP and Changes In Cognition and Global Brain Structure: The 

Rotterdam Study 
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Abstract 

Objective: To investigate the association between NT-proBNP and changes in cognition and 

global brain structure. 

Methods: In the Rotterdam Study, baseline NT-proBNP was assessed at baseline from 1997 to 

2008. Between 1997-2016, participants without dementia or stroke at baseline (n= 9,566) had 

repeated cognitive tests (every 3-6 years) for global cognitive function, executive cognitive 

function, fine manual dexterity, and memory. Magnetic resonance imaging of the brain was 

performed repeatedly at re-examination visits between 2005 and 2015 for 2,607 participants to 

obtain brain volumes, focal brain lesions, and white matter microstructural integrity as measures 

of brain structure.  

Results: Among 9,566 participants (mean age 65.1±9.8 years), 5,444 (56.9%) were women, and 

repeated measures of cognition were performed during a median follow-up time of 5.5 years (range 

= 1.1-17.9), of whom 2,607 participants completed at least one brain imaging scans. Higher levels 

of NT-proBNP were associated with a faster decline of scores in the global cognitive function (P 

value = 0.003), and the Word-Fluency test (P value = 0.003), but were not related to a steeper 

deterioration in brain volumes, global fractional anisotropy and mean diffusivity, as indicators of 

white matter microstructural integrity, or focal brain lesions.  

Conclusions: Higher baseline NT-proBNP levels were associated with a faster decline in 

cognition, however, no association with global brain structure was found. 

Keywords: brain structure; cognition; MRI; NT-proBNP, change, repeated measurements 
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Introduction 

N-terminal pro-B-type natriuretic peptide (NT-proBNP) is the inactive N-terminal fragment of 

proBNP, which is released by ventricular myocytes in response to increasing load in volume and 

pressure 175. NT-proBNP is used in clinical settings as a well-established diagnostic marker of 

ventricular distention and cardiac dysfunction 176. Recent evidence demonstrated that impaired 

cardiac function was associated with abnormal brain aging. The heart-brain-axis hypothesis 

proposes possible mechanisms linking cardiac dysfunction to brain health, including reduced 

cardiac output, atherosclerotic changes, and perturbated cerebral perfusion, which may result in 

cognitive decline and brain atrophy 177-180. Especially given that normal cerebral blood flow is 

essential for brain function maintenance, hemodynamic dysfunction of the heart-brain axis may 

play a role in vascular brain injury and impairment of cognition 178. This is supported by a 

substantial proportion of patients with heart failure also experiencing cognitive impairment 181. As 

a promising non-invasive biomarker of this axis 182, NT-proBNP clinically indicates left 

ventricular dysfunction and also relates to a higher risk of dementia 183. Evidence from cross-

sectional studies also showed that elevated NT-proBNP levels were associated with markers of 

abnormal brain aging, including decreased brain issue volumes and worse cognitive function 24, 182, 

184. A more comprehensive insight into cerebral pathophysiology that links cardiac dysfunction to 

abnormal brain aging would benefit from clarifying the direction of the associations and assisting 

in unraveling the underlying mechanisms. 

However, in previous studies, proposed associations between NT-proBNP and brain structure or 

cognition were based on single time-point measures of structural brain markers or cognitive tests 

at baseline, precluding any inferences on a temporal link between NT-proBNP and markers of 

brain aging or cognition. Also, although few studies reported an association between higher NT-

proBNP levels and a faster decline in global cognitive function, using Mini-Mental State 
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Examination 185, 186, the application of limited cognitive tests in previous studies might impede an 

investigation of individual cognitive domains, such as memory and executive function. Analyses 

of a comprehensive test battery of cognition could unravel the effect of  NT-proBNP on both global 

and specific functions of multiple cognitive domains, which could contribute to a better overview 

of the association between cardiac function and cognition.  

In this study, we determined the longitudinal associations between NT-proBNP levels and changes 

in cognition and global brain structure with multiple measures in community-dwelling older adults. 
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Methods 

The current study was embedded within the population-based Rotterdam Study, a prospective 

cohort study of which details have been described previously 45.  

NT-proBNP was assessed during the study center visits at baseline in 9,946 participants between 

1997 and 2008. These cohorts formed the baseline of this current study. Of these 9,946 participants, 

380 persons with prevalent stroke (n=223) or dementia (n=157), were excluded. We used a 

standardized test battery for multiple cognitive domains to determine both longitudinal and cross-

sectional associations between NT-proBNP levels and cognition. These cognitive tests were 

administered every 3 to 6 years at re-examination visits from 1997 to 2016. The cognitive test 

battery 93, including the Word-Fluency test (WFT), the Letter-Digit-Substitution task (LDST), the 

Stroop test, the Purdue Pegboard test (PPB test), and the 15-Word Learning test for delayed recall, 

immediate recall, and recognition (WLTdel, WLTimm, WLTrecog), were described in 

supplemental table 1. Total of 9,566 participants completed at least one of the following tests at 

baseline: the WFT (n=9,118), the LDST (n=9,039), the Stroop test 1 (n=8,862), the Stroop test 2 

(n=8,846), the Stroop test 3 (n=8,821), the PPB test (n=3,137), the WLTdel (n=3,032), the 

WLTimm (n=3,033), and the WLTrecog (n=3,031). Among 8,667 participants at baseline, we also 

constructed a compound score for global cognitive function (G-factor) using only the WFT, the 

LDST, and the Stroop test 3 in principal component analysis, to prevent distortion by highly 

correlated tasks. The validity of g-factor has been tested within the Rotterdam Study  94and 

accounted 64.1% of all variance in the cognitive tests, which  is a typical proportion of variance 

that g-factor can explain 187.To guarantee the quality of the cognitive evaluation, cognitive tests of 

participants diagnosed with incident dementia (n=110) at a follow-up date of the cognitive test 

were excluded from their diagnosis onward. 
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Brain MRI scans were performed repeatedly at re-examination visits between 2005 and 2015 to 

obtain brain volumes, focal brain lesions, and white matter microstructural integrity as measures 

of brain structure. 2,775 participants had complete structural segmentation data of brain imaging 

at baseline. After the exclusion of 128 persons with prevalent stroke (n=64) or dementia (n=64) 

and 40 persons with cortical brain infarcts on MRI, 2,607 participants were included in the analyses.  

Numbers of cognitive tests or brain MRI scans during the follow-up were presented in 

supplemental table 2. 

Assessment of NT-pro-BNP  

Serum NT-proBNP levels were determined using electrochemiluminescence immunoassay at 

baseline (Elecsys proBNP, F Hoffman-La Roche Ltd, Basel, Switzerland) on an Elecsys 2010 

analyzer, which measures concentrations ranging from 0.6 to 4130 pmol/L. Values below the 

detection limit are reported as < 0.6 pmol. Values above the measuring range are reported as > 

4130 pmol/L or up to 8277 pmol/L for 2-fold diluted samples. The detailed information of NT-

peoBNP measurement has been reported elsewhere 188. NT-proBNP levels were measured in 

pmol/L.  

Brain structure 

Brain MRI scanning was performed on a single 1.5T MRI unit (General Electric Healthcare, 

Milwaukee, WI) with an 8-channel head coil. There were no software or hardware changes within 

the study period. The scans protocol included T1-weighted, proton density-weighted, fluid-

attenuated inversion recovery and T2*-weighted gradient recalled echo sequences. Detailed 

information about brain MRI is presented in the supplementary methods. The distribution of brain 

volumes and white matter microstructure was transformed into a normal standardized distribution. 

Normalized scores (z-scores) for each scan were calculated by the individual raw score minus the 
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mean value of the whole population, divided by the population standard deviation. White matter 

hyperintensity volumes were log-transformed. Lower fractional anisotropy and higher mean 

diffusivity indicate worse white matter microstructural integrity 189. 

Cognition 

Similarly, z-scores were calculated for values of all cognitive tests. Lower scores on the WFT, the 

LDST, the PPB test, the WLTdel, the WLTimm, and the WLTrecog, and higher Stroop test scores 

indicate worse cognitive functions. As a compound score extracted from the principal component 

analysis, a higher G-factor indicates a better global cognitive function.  

Covariates 

We included potential covariates based on literature knowledge reporting an association with NT-

proBNP, cognitive impairment, brain atrophy, or all, including age, sex, education levels (primary 

education, lower education, intermediate education, higher education), smoking status (never, 

former, current), body mass index (BMI, kg/m2, calculated by weight [kg] divided by height [m] 

squared), systolic and diastolic blood pressure (mmHg), total and high-density lipoprotein 

cholesterol level (mmol/L), apolipoprotein E (APOE) genotype, depressive symptoms, and chronic 

comorbid conditions (diabetes mellitus type 2 and stroke) 37. The majority of these variables are 

also related to cardiac function 190 and therefore were adjusted for in models. Blood samples were 

collected at the research center and used to determine cholesterol levels and DNA genotypes. 

APOE genotype was determined using a PCR or a bi-allelic TaqMan assay (rs7412 and rs429358) 

on labeled DNA samples. APOE genotype was classified into two groups: non-carriership or 

carriership of the APOE-ɛ4 allele, as APOE-ε4 has been recognized as major genetic risk factor 

for cognitive impairment, brain lesions and Alzheimer’s disease onset 191. Depressive symptoms 

were assessed with a validated version of the Centre for Epidemiologic Studies Depression (CES-
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D) scale (range:0-60) 103. Scores of 16 or greater were regarded as suggestive of clinically 

significant depressive symptoms 103. Diabetes mellitus was defined as a fasting plasma glucose 

level ≥ 7 mmol/L, a non-fasting plasma glucose level ≥ 11.1 mmol/L, or the use of blood glucose-

lowering medication 101. Stroke was defined according to the World Health Organization criteria 

102.  

Statistical analysis 

Data were expressed as mean ± standard deviation (SD) for normally distributed variables or as 

median (interquartile range [IQR]) for non-normally distributed variables among participants in 

tertiles of baseline NT-proBNP levels. Missing covariates were imputed with five-times 

imputation using a chained equation 52. 

We used linear mixed-effect models to study associations between NT-proBNP and continuous 

outcomes and applied generalized estimating equations for dichotomous outcomes. NT-proBNP 

concentrations were firstly analyzed per one unit increase of log-transformed values to achieve 

normal distribution and next were categorized into tertiles with the lowest tertile as the reference. 

Similarly, values of white matter hyperintensity were naturally log-transformed due to non-normal 

distribution.  

Based on linear curves of cognitive changes after the age of 65 years, as found in a previous study 

192, the fixed-effect structure included NT-proBNP levels, age, quadratic age (age2), time, quadratic 

follow-up time (time2), sex, smoking status, education levels, body mass index, systolic and 

diastolic blood pressure, total and high-density lipoprotein cholesterol levels, prevalent diabetes 

mellitus, depressive symptom, and APOE genotype. The parameter of NT-proBNP (βNT-proBNP) 

denoted an average effect of an increase in NT-proBNP on cognition, while other variables remain 

unchanged. For longitudinal analyses, we also added an interaction term between baseline age and 
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time, and an interaction term between NT-proBNP levels and time (βNT-proBNP*time), which provides 

the average effect of NT-proBNP per unit increase on cognitive changes per year. In the random-

effect structure, we used random intercepts and random linear slopes to incorporate individual 

response trajectories of cognition. 

Regarding nonlinear trajectories of brain imaging markers with advancing age 193, the main 

difference from the above models of cognition was the different multiplicative terms in the fixed-

effect structure. We included multiplicative terms between baseline age and time variables, 

including follow-up time and time2, and interaction terms for the product of NT-proBNP levels 

and time variables (time and time2), which together interpret the effect of NT-proBNP on the 

overall rate of changes in brain structure per year, along with the same random-effect structure as 

above. Analyses involving volumetric measures were additionally adjusted for intracranial 

volumes. Gray and white matter volumes were adjusted for each other. White matter 

microstructural measures (fractional anisotropy and mean diffusivity) were additionally adjusted 

for intracranial volumes and microstructural white matter measures (normal-appearing white 

matter and white matter hyperintensity). The associations between baseline NT-proBNP levels and 

the presence of microbleeds and lacunar infarcts were tested using the generalized estimating 

equation. We applied the same fixed-effect structure as the above linear mixed-effect model and 

used a first-order autoregressive correlation matrix. 

In addition, we performed stratifications in sex, age (median), and APOE-ε4 allele carriership 

(carrier versus non-carrier). These were selected as possible effect modifiers based on previous 

literature and biological plausibility 193-195. 

Because cut-off values of NT-proBNP are commonly used in clinical practice for the diagnosis of 

heart failure (900 pg/ml (=106.2 pmol/L) for likely heart failure, among populations aged > 50 
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years) 196, in sensitivity analyses, we repeated longitudinal analyses after excluding participants 

with NT-proBNP values > 106.2 pmol/L and/or any of following (cardio-) vascular diseases, 

including prevalent chronic kidney disease, coronary heart disease, and atrial fibrillation, and also 

excluding participants with missing information on heart disease at baseline, with regards to the 

confounding effect of these comorbidities on the associations 197. 

Given that we included one determinant (NT-proBNP) and 18 outcomes (cognitive tests and brain 

MRI), which are partly interrelated, we ran permutation testing to ascertain the number of 

independent tests. For each outcome variable, 10,000 iterations of linear regressions using a 

random variable were performed. The minimum p value for each regression model (permutation) 

was extracted and these p values were sorted to define the significance threshold based on the 5% 

quantile (0.0038). We then calculated the number of independent tests by dividing 0.05 by this 

threshold, resulting in 13.1 independent tests. A multiple-testing adjusted p-value threshold 

(0.0039) was created by calculating the new significance threshold using the Sidák correction, αn 

= 1 - (1 - α)(1/n), where n is the number of independent tests 198. Data analyses were performed 

using R version 4.1.1 (Foundation for Statistical Computing, Vienna, Austria). 
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Results 

Characteristics of the study population 

As shown in Table 1, among 9,566 participants (mean age 65.1±9.8 years), 5,444 (56.9%) were 

women, and repeated measures of cognitive tests were performed during a median follow-up time 

of 5.5 years (range = 1.1-17.9), of whom 2,607 participants completed at least one brain imaging 

scans. (Supplemental table 3)  

NT-proBNP and cognitive changes 

Participants with higher NT-proBNP levels had poorer performance on cognitive tests at baseline, 

including the G-factor, the LDST, the Stroop test, and the PPB test. (Figure 1A, Figure 1B, Figure 

1C, Supplemental table 4)  

Higher levels of NT-proBNP were linearly associated with a steeper decline in the G-factor, WFT 

scores, and PPB scores during the follow-up, but not with other cognitive tests (G-factor, 

interaction terms of time × NT-proBNP: mean difference of -0.003 per year per 1 unit increase in 

log-transformed NT-proBNP, 95% confidence interval (CI): (-0.005,-0.001), P value = 0.003; 

WFT, mean difference: -0.004 per year, 95%CI: (-0.006,-0.001), P value = 0.003; PPB test, mean 

difference: -0.006 per year, 95%CI: (-0.012,0.000), P value = 0.038). The association between NT-

proBNP and PPB test was not statistically significant after multiple testing correction. Compared 

to participants in the lowest tertile of NT-proBNP, participants in the highest tertile showed a faster 

decline in the G-factor, the WFT, and the PPB test (G-factor, mean difference: -0.004 per year, 

95%CI: (-0.009,0.000), P value = 0.046; WFT, mean difference: -0.007 per year, 95%CI: (-0.012,-

0.002), P value = 0.011; PPB test, mean difference: -0.015 per year, 95%CI: (-0.028,-0.002), P 

value = 0.026). After multiple testing correction, these association turned out to be insignificant. 

(Figure 1A, Figure 1B, Figure 1C, Supplemental table 4) 
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NT-proBNP and structural brain changes 

As presented in Figure 2A and Figure 2B, higher levels of NT-proBNP were associated with 

overall smaller volumes of total brain tissue, gray matter, and white matter, larger volumes of 

white matter hyperintensity, lower fractional anisotropy, and higher mean diffusivity at baseline.  

Baseline NT-proBNP was not associated with the steepness of changes in brain structure over time 

(interaction terms of time × NT-proBNP and time2 × NT-proBNP). (Figure 2A, Figure 2B, 

Supplemental table 5)As presented in supplemental table 6, baseline NT-proBNP was not related 

to the occurrence of microbleeds and lacunar infarcts. 

Stratification 

Stratification by sex, age, or APOE-ε4 allele carriership on structural brain change did not show 

any differences between subgroups of the stratified factors. In cognitive analyses, we found a 

steeper deterioration in the G-factor, the WFT, and the Stroop test 3 with a per unit increase in NT-

proBNP among males, but not in female participants. Participants aged above 60 years, and APOE-

ε4 non-carriers, also showed a steeper decline in the G-factor, WFT, and PPB scores compared to 

younger participants or APOE-ε4 carriers. (Supplemental table 7.1-7.3) 

NT-proBNP levels were not longitudinally associated with the rate of changes in the structural 

brain alteration and the occurrence of focal brain lesions in the stratification. (Supplemental table 

8.1-8.3, Supplemental table 9.1-9.3) 

Sensitivity analysis 

After the exclusion of participants with any of (cardio-) vascular diseases and participants with 

missing information on heart disease at baseline, higher levels of NT-proBNP were still associated 

with a steeper decline for the WFT (P value = 0.007, not statistically significant after multiple 

testing correction), but not for the G-factor and PPB test. (data not shown) 
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Discussion 

In this study, we found that higher baseline NT-proBNP levels were associated with a steeper 

decline in cognitive function, in particular the G-factor, and WFT, but were not related to a faster 

deterioration of brain structure over time. 

In line with previous studies (including one study from our group 183), we confirmed a significant 

cross-sectional association between higher levels of NT-proBNP and cognitive impairment 183, 199, 

200. In analyses of cognitive changes, the main finding that higher NT-proBNP levels were also 

associated with a steeper decline in cognition was in accordance with a prior study 201. However, 

the difference between the two studies lay in finding associations with different cognitive domains. 

In this study, higher levels of NT-proBNP were associated with a steeper decline in global 

cognitive function, and verbal fluency, but not with processing speed and memory, while a faster 

decline in processing speed, memory, and reaction was observed in the prior study. Part of the 

difference between the two studies could be explained by a difference in mean age between the 

study populations, as older age is an widely acknowledged risk factor of brain degeneration and 

affects cognitive performance via brain structural deterioration in specific regions. In the current 

study, our findings for change over time for the PPB disappeared after multiple testing adjustment, 

but the associations for the g-factor and WFT remained. This could indicate that NT-proBNP 

mechanisms are more involved in global cognitive function than in specific cognitive domains or 

specific brain structures. Given that the WFT may measure both executive functioning and verbal 

fluency, the WFT may capture a more global cognitive function than other individual cognitive 

tests. There are potential pathophysiological mechanisms behind NT-proBNP marking cognitive 

decline. First, this could be partly explained by cerebral hypoperfusion driven by reduced cardiac 

output 202, 203. Cerebral hypoperfusion might influence cerebral blood flow, which could further 
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lead to dementia development 204, 205. Moreover, cognitive improvement has been observed in 

patients after receiving cardiac transplantation, implying a close link between cardiac function and 

cognition 206. Second, plasma natriuretic peptides have been involved in the regulation of blood-

brain barrier integrity, synaptic transmission, and brain fluid homeostasis, and disruption in these 

functions has been suggested as a potential mechanism for cognitive decline 207, 208. Third, 

structural brain alterations might play a role in mediating the association between NT-proBNP and 

cognitive function 184, 207. As reported in the previous work of our group 24, a significant association 

was observed between increased NT-proBNP levels and subclinical brain damage. To explore 

potential pathways through which NT-proBNP affects cognitive changes, we also investigated the 

impact of  NT-proBNP on structural brain changes over time. 

The cross-sectional association between increased NT-proBNP levels and subclinical brain 

damage was also confirmed in this study, which was comparable to the previous finding reported 

by our group 24. However, we did not observe any significant longitudinal association between the 

cardiac marker and structural brain changes, which contrasts with a prior study 209. Sabayan et al, 

found that higher NT-proBNP was associated with a one percent annual decline in the volumes of 

total brain and gray matter 209. These different findings might be explained by the older age of their 

study population. Older age was associated with a steeper decline in multiple brain imaging 

markers 193, which was also demonstrated by the significantly inverse interaction between age and 

follow-up time on structural brain changes in our models. However, our age stratification did not 

unravel the presence of the association between NT-proBNP and structural brain changes. More 

prospective studies are warranted to explore the cardiac function of structural brain alterations over 

time. 
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In stratification by age, a steeper decline in cognition was rather observed in older participants 

with higher NT-proBNP levels. Older age was related to reduced cerebral perfusion, which might 

further lead to cognitive damage 210. Among the male but not female participants, we observed 

inverse associations between NT-proBNP and changes in cognition. Estrogen provides a beneficial 

effect on both neural cells and against cardiomyocyte apoptosis, by reducing inflammatory 

metabolic syndrome, acute-phase inflammatory processes, and oxidation, all modifying the effect 

of cardiac function on cognition 78, 211, 212. However, evidence on a general population level is still 

lacking. More attention should focus on testing these hypotheses.  

Strengths and Limitations 

The major strength of this study was the large sample size of >9500 participants with cognitive 

tests and >2500 with brain MRI scans, and multiple repeated measures of cognition and brain 

structure over time. However, certain limitations need to be considered. One limitation was the 

weakness in determining the causality of associations concerning inherent restraints of 

observational studies, such as selection bias derived from missing data on repeated measurements 

due to inevitable dropout during the long period of follow-up. Second, our study only focused on 

general brain structure without regarding specific brain regions, which impedes establishing links 

between NT-proBNP, brain regions, and specific cognitive domains. In addition, magnetic field of 

1.5T has its limitations, as a higher magnetic field increases the sensitivity of detecting 

abnormalities of the brain or changes in the brain over time, due to potentially better visualizing 

structural changes and characterizing signal properties of individual lesions, driven by gain in the 

signal-to-noise ratio (SNR) [50]. However, 1.5T MRI is a commonly used imaging method in 

research and in a clinical setting. The limitations of this imaging method regarding the brain 

structure measured used in this research is expected to be minimal, since we investigated the 
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association between NT-pro-BNP and global brain structures, rather than small brain regions; and 

are likely balanced by the advantage of having standardized image acquisition by keeping 

hardware and software stable over time. Third, since this study mainly focused on global measures 

of brain structure, including global FA and MD, regional effects may have been missed, which is 

a limitation. Last, this cohort was almost entirely European, with a median age above 65 years at 

baseline, this might restrict the extrapolation of our findings to multi-ethnic and younger 

populations.  

Conclusions 

In conclusion, higher NT-proBNP levels were found to be associated with a faster decline in global 

cognition and the WFT, but not found with cognitive domains or global structural brain changes 

over time. 
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TABLE 1 Baseline characteristics of the population for cognition set 

Characteristics 

Tertiles of NT-proBNP (pmol/L) 

Total Lowest tertile Medium tertile Highest tertile 

N=9566 N=3191 N=3187 N=3188 

Age, years 65.1 ± 9.8 59.9 ± 7.2 64.2 ± 8.6 71.0 ± 9.9 

Follow-up time, years 5.5 ± 9.8 5.7 ± 9.5 5.6 ± 10.1 4.9 ± 1.6 

Female, (%) 5444 (56.9) 1364 (42.7) 2060 (64.6) 2020 (63.4) 

NT-proBNP level, pmol/L 18.7 ± 51.5 3.3 ± 1.3 8.4 ± 2.0 44.4 ± 83.4 

Diastolic blood pressure, mmHg 78.8 ± 11.5 80.4 ± 10.4 78.6 ± 11.4 77.4 ± 12.4 

Systolic blood pressure, mmHg 139.6 ± 21.1 135.0 ± 17.8 138.5 ± 20.4 145.3 ± 23.4 

Diabetes, (%) 921 (9.6) 296 (9.3) 277 (8.7) 348 (10.9) 

Clinically relevant depressive 

symptoms, (%) 
786 (8.4) 242 (7.7) 265 (8.4) 279 (9.0) 

Cholesterol, mmol/L 5.7 ± 1.0 5.8 ± 1.0 5.8 ± 1.0 5.7 ± 1.0 

High-density lipoprotein 

cholesterol, mmol/L 
1.4 ± 0.4 1.3 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 

Body mass index, kg/m2 27.3 ± 4.2 27.6 ± 4.1 27.1 ± 4.2 27.0 ± 4.2 

Educational level, (%)     

     Primary 1166 (12.3) 236 (7.5) 380 (12.0) 550 (17.4) 

    Lower 3836 (40.5) 1174 (37.1) 1348 (42.6) 1314 (41.7) 

    Intermediate 2781 (29.3) 978 (30.9) 898 (28.4) 905 (28.7) 

   Higher 1699 (17.9) 777 (24.5) 538 (17.0) 384 (12.2) 

Smoking, (%)     

 Never 3131 (33.0) 996 (31.3) 1050 (33.1) 1085 (34.7) 

   Former 4548 (48.0) 1541 (48.5) 1488 (46.9) 1519 (48.6) 

   Current 1797 (19.0) 641 (20.2) 632 (19.9) 524 (16.8) 

APOE genotype, (%)     

ε4 allele carrier 2584 (28.4) 858 (28.2) 879 (29.0) 847 (27.9) 

ε4 alleles non-carrier 6520 (71.6) 2188 (71.8) 2147 (71.0) 2185 (72.1) 

Definition of abbreviations: APOE = Apolipoprotein E; NT-proBNP = N-terminal pro-B-type 

natriuretic peptide. Data represent original data without imputed values. The missing proportion 

for different variables is listed as follows: age (0.1%), body mass index (1.2%), cholesterol (0.6%), 

high-density lipoprotein cholesterol (1.2%), education (0.9%), smoking (0.9%), diabetes (0.6%), 

diastolic blood pressure (0.5%), depressive symptom (1.9%), systolic blood pressure (0.5%) and 

APOE (4.8%). 
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FIGURE 1A Longitudinal associations between tertiles of baseline NT-proBNP levels and changes in individual cognitive tests (global cognitive 1 

function and executive cognitive function) over time (to be continued) 2 

 3 

Definition of abbreviations: G-factor = principal component scores of global cognitive function; LDST = Letter-Digit Substitution test; WFT = 4 

Word Fluency test; NT-proBNP = N-terminal pro-B-type natriuretic peptide. MRI data are presented in tertiles and per 1-log increase in NT-5 

proBNP level, using the linear mixed-effect model. All data in parentheses are 95% confidence intervals. Models were adjusted for age, age2, time, 6 

time2, sex, smoking status, education levels, body mass index, systolic and diastolic blood pressure, total and high-density lipoprotein cholesterol 7 

level, diabetes mellitus, depressive symptom, APOE genotype, and an interaction term of the product of follow-up time and baseline age. Red solid 8 

lines represent the marginal (group) changes in individual cognitive tests, and black dashed lines represent the 95% confidence intervals based on 9 

fully adjusted models. Lower scores on the G-factor, the WFT, the LDST, and higher Stroop test scores indicate worse cognitive functions.  10 
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FIGURE 1B Longitudinal associations between tertiles of baseline NT-proBNP levels and changes in individual cognitive tests (executive cognitive 11 

function) over time 12 

 13 

Definition of abbreviations: NT-proBNP = N-terminal pro-B-type natriuretic peptide. MRI data are presented in tertiles and per 1-log increase in 14 

NT-proBNP level, using the linear mixed-effect model. All data in parentheses are 95% confidence intervals. Models were adjusted for age, age2, 15 

time, time2, sex, smoking status, education levels, body mass index, systolic and diastolic blood pressure, total and high-density lipoprotein 16 

cholesterol level, diabetes mellitus, depressive symptom, APOE genotype, and an interaction term of the product of follow-up time and baseline 17 

age. Red solid lines represent the marginal (group) changes in individual cognitive tests, and black dashed lines represent the 95% confidence 18 

intervals based on fully-adjusted models. Higher Stroop test scores indicate worse cognitive functions.19 
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FIGURE 1C Longitudinal associations between tertiles of baseline NT-proBNP levels and changes in individual cognitive tests (fine 

manual dexterity and memory) over time 

 

Definition of abbreviations: PPB test = Purdue Pegboard test; WLTdel = Word learning test, delayed recall; WLTimm = Word learning 

test, immediate recall; WLTrecog = Word learning test, recognition; NT-proBNP = N-terminal pro-B-type natriuretic peptide. MRI data 

are presented in tertiles and per 1-log increase in NT-proBNP level, using the linear mixed-effect model. All data in parentheses are 

95% confidence intervals. Models were adjusted for age, age2, time, time2, sex, smoking status, education levels, body mass index, 

systolic and diastolic blood pressure, total and high-density lipoprotein cholesterol level, diabetes mellitus, depressive symptom, APOE 

genotype, and an interaction term of the product of follow-up time and baseline age. Red solid lines represent the marginal (group) 

changes in individual cognitive tests, and black dashed lines represent the 95% confidence intervals based on fully adjusted models. 

Lower scores on the PPB test, the WLTdel, the WLTimm, and the WLTrecog indicate worse cognitive functions.
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FIGURE 2A Longitudinal associations between tertiles of baseline NT-proBNP levels and changes in brain volumes and white matter 

microstructure 

 

Definition of abbreviations: NT-proBNP = N-terminal pro-B-type natriuretic peptide MRI data are presented in tertiles of NT-proBNP 

level, using the linear mixed-effect model. All data in parentheses are 95% confidence intervals. Models were adjusted for age, age2, 

time, time2, sex, smoking status, education levels, body mass index, systolic and diastolic blood pressure, total and high-density 

lipoprotein cholesterol level, diabetes mellitus, APOE genotypes, and interaction terms of the product of follow-up time or time2 and 

baseline age. Analyses involving volumetric measures were additionally adjusted for intracranial volumes. Gray and white matter 

volumes were adjusted for each other. Microstructural measures were additionally adjusted for phase encoding direction, intracranial 

volumes, and microstructural white matter measures (volumes of the normal-appearing white matter and white matter hyperintensity). 

Red solid lines represent the marginal (group) changes in brain structure, and black dashed lines represent the 95% confidence intervals 

based on fully-adjusted models.
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FIGURE 2B Longitudinal associations between tertiles of baseline NT-proBNP levels and changes in white matter microstructure 

integrity 

 

Definition of abbreviations: NT-proBNP = N-terminal pro-B-type natriuretic peptide MRI data are presented in tertiles of NT-proBNP 

level, using the linear mixed-effect model. All data in parentheses are 95% confidence intervals. Models were adjusted for age, age2, 

time, time2, sex, smoking status, education levels, body mass index, systolic and diastolic blood pressure, total and high-density 

lipoprotein cholesterol level, diabetes mellitus, APOE genotypes, and interaction terms of the product of follow-up time or time2 and 

baseline age. Microstructural measures were additionally adjusted for phase encoding direction, intracranial volumes, and 

microstructural white matter measures (volumes of the normal-appearing white matter and white matter hyperintensity). Red solid lines 

represent the marginal (group) changes in brain structure, and black dashed lines represent the 95% confidence intervals based on fully-

adjusted models. Lower fractional anisotropy and higher mean diffusivity indicate worse white matter microstructural integrity. 
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SUPPLEMENTARY MATERIAL 

Supplementary materials are available on: 
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Chapter 5.1 Association of Bone Mineral Density and Dementia: The Rotterdam 
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Abstract 

Background & Objective: Low bone mineral density and dementia commonly co-occur in the 

elderly, with bone loss accelerating in dementia patients due to physical inactivity and poor 

nutrition. However, uncertainty persists over the extent to which bone loss already exists prior to 

the onset of dementia. Therefore, we investigated how dementia risk was affected by bone mineral 

density at various skeletal regions in community-dwelling older adults. 

Methods: In a prospective population-based cohort study, bone mineral density at the femoral 

neck, lumbar spine, and total body and the trabecular bone score were obtained using dual-energy 

X-ray absorptiometry (DXA) in 3,651 participants free from dementia between 2002-2005. 

Persons at risk of dementia were followed up until 1 January 2020. For analyses of the association 

between bone mineral density at baseline and the risk of incident dementia, we used Cox 

proportional-hazards regression analyses, adjusting for age, sex, educational attainment, physical 

activity, smoking status, body mass index, systolic blood pressure, diastolic blood pressure, 

cholesterol level, high-density lipoprotein cholesterol, history of comorbidities (stroke and 

diabetes mellitus), and APOE genotype.  

Results: Among the 3,651 participants (median age 72.3±10.0 years, 57.9% women), 688 (18.8%) 

developed incident dementia during a median of 11.1 years, of whom 528 (76.7%) developed 

Alzheimer’s disease. During the whole follow-up, participants with lower bone mineral density at 

the femoral neck (per SD decrease) were more likely to develop all-cause dementia (Hazard ratio 

[HR] total follow-up: 1.12, 95% Confidential interval [CI]: 1.02-1.23) and Alzheimer’s disease (HR total 

follow-up: 1.14, 95% CI: 1.02-1.28). Within the first ten years following baseline, the risk of dementia 

was greatest for groups with the lowest tertile of bone mineral density (femoral neck bone mineral 
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density, HR0-10years 2.03; 95% CI, 1.39–2.96; total body bone mineral density, HR0-10years 1.42; 95% 

CI, 1.01–2.02; trabecular bone score, HR0-10years 1.59; 95% CI, 1.11–2.28). 

Conclusions: In conclusion, participants with low femoral neck and total body bone mineral 

density and low trabecular bone score were more likely to develop dementia. Further studies 

should focus on the predictive ability of bone mineral density for dementia. 

 Keywords: Bone mineral density, femoral neck, lumbar spine, trabecular bone score, dementia, 

Alzheimer’s disease. 
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Introduction 

Over 45 million people worldwide suffer from dementia, and this figure is estimated to double in 

the next two decades 82, 253. The initial step in mapping the health journey of persons developing 

dementia and understanding how systemic changes contribute to the pathogenesis and clinical 

manifestation of dementia is crucial to the development of efficacious preventive strategies. 

Numerous chronic conditions, including cardiac disorders, diabetes, lung function impairment, and 

kidney disease 254, 255, have been related to dementia. Several studies have also suggested a link 

between bone mineral density and dementia or cognitive impairment 256, 257, most likely explained 

by shared risk factors, such as old age, subclinical hyperthyroidism 258, sarcopenia 259, sex steroids 

260, physical inactivity 259, and vitamin D deficiency 261. While it remains unclear whether bone 

health itself may be causally linked to dementia, it is an important predictor of fracture 262, 263, 

which is an important source of morbidity in dementia and can lead to loss of independence 264. 

Therefore, temporally linking bone mineral density to dementia can provide important insights 

into how comorbidities occur at the prodromal phase of dementia. This in turn can aid in preventive 

strategies aimed at optimizing the health and care of dementia patients, including maintaining 

functional independence. 

Previous studies focused solely on bone mineral density, assessed through DXA scanning of 

clinically relevant skeletal sites i.e., femoral neck and lumbar spine 265. More recently, trabecular 

bone score has been developed, which is a novel gray-level texture measurement connected to 

bone microarchitecture and other structural features266, 267. The trabecular bone score offers further 

details, such as bone microarchitecture, that are not possible to infer from the areal bone mineral 

density. 
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In this study, we aimed to investigate the association between bone mineral density, measured 

across multiple skeletal sites, and dementia risk in community-dwelling older adults. 
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Methods 

Study population 

This study was performed within the Rotterdam Study, a prospective ongoing cohort study that 

started in 1990, and all participants aged ≥ 45 years were invited for studying chronic diseases 

in the general population 45. The Rotterdam cohort comprises one original cohort (RS-I, 

initiated in 1990, 7,983 participants aged ≥55 years) and other two cohorts (RS-II, starting from 

2000, 3,011 participants aged ≥ 55 years; and RS-III, starting from 2006, 3,932 aged ≥ 45 

years), respectively. Every four to five years, participants participated in consecutive follow-

up home interviews and diverse physical tests at the medical research center. The study has 

been approved by the medical ethics committee of the Erasmus Medical Centre (Rotterdam, 

the Netherlands), and the review board of the Netherlands Ministry of Health, Welfare and 

Sports (1068889-159521-PG). At baseline between 2002 and 2005, participants of RS-I and 

RS-II underwent a bone scans. A total of 3,651 persons with DXA scans and without prevalent 

dementia were finally included in this study (Figure1). 

Measurements of bone mineral density 

Bone mineral density at the femoral neck, the lumbar spine, and the total body were measured 

using specific Prodigy DXA densitometer as described elsewhere 268. A trained technician 

performed and verified all bone scans and made adjustments when necessary. A total of 3,651 

had completed at least one scan of bone mineral density, of whom 3,584 participants had data 

on the bone mineral density at the femoral neck, 3,608 at the lumbar spine, and 3,633 of the 

total body.  

Measurement of trabecular bone score 

Trabecular bone score was calculated using the trabecular bone score iNsight software (Med-

Imaps, Geneva, Switzerland) 266. Briefly, the trabecular bone score is a novel gray-level texture 

measurement 266, 267, and a higher score indicates stronger and more fracture-resistant 
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microarchitecture 269. For each region of measurement (the L2, L3, and L4 vertebrae) 269, 

trabecular bone score was assessed using gray-level analysis of the DXA images and the 

methodology of the trabecular bone score has been described elsewhere 267. Trabecular bone 

score was available for 3,573 participants at baseline.  

Dementia assessment 

The Mini-Mental State Examination (MMSE) and the Geriatric Mental Schedule (GMS) were 

used for detecting dementia at baseline and subsequent visits 45. Further investigation and 

interview, including the Cambridge Examination for Mental Disorders of the Elderly, were 

conducted on participants with a MMSE score < 26 or GRS score > 0. Additionally, the study 

database was electronically linked to medical records from general practitioners and the 

regional institute for outpatient mental health care, allowing for the ongoing monitoring of 

incident dementia. When necessary, cognition tests and clinical neuroimaging were utilized to 

confirm dementia subtypes 45. An adjudication panel headed by a consultant neurologist 

established the final diagnosis in accordance with the accepted dementia diagnostic criteria 

(Diagnostic and Statistical Manual of Mental Disorder, Third Edition-Revised: DSM-III-R) 

and Alzheimer’s disease (AD) (National Institute of Neurological and Communicative 

Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association: NINCDS–

ADRDA). The follow-up were stopped until meeting any of following scenarios, including 

incident dementia diagnosis, death, loss to follow-up, or 1 January 2020, whichever came first. 

Covariables 

Potential covariables were selected according to literature evidence demonstrating an 

association with bone mineral density, dementia, or both 37, 58, 268. Baseline covariables included 

age, sex, education level (primary education, lower education, intermediate education, higher 

education), smoking status (never, former, current), systolic blood pressure (mmHg), diastolic 

blood pressure (mmHg), total cholesterol level (mmol/L), high-density lipoprotein cholesterol 
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(mmol/L), triglycerides (mmol/L), body mass index (kg/m2, calculated by weight [kg] divided 

by height [m] squared), measurements of physical activity and chronic disorders (diabetes and 

stroke). For determining apolipoprotein E (APOE) genotype, a PCR was used in RS-I and a bi-

allelic TaqMan assay (rs7412 and rs429358) was employed on labelled DNA samples in both 

RS-II and RS-III. This study included the first two sub-cohorts (RS-I and RS-II). APOE-ε4 

allele represented carrier ship of at least one ε4 alleles. Participants were divided into three 

different groups: high genetic risk (ε2ε4, ε3ε4, or ε4ε4), intermediate risk (ε3ε3) or low risk 

(ε2ε2 or ε2ε3) for dementia 270.  

Statistical analysis 

For baseline characteristics, normally distributed variables are described as mean ± standard 

deviation (SD) and non-normally distributed continuous variables as median (interquartile 

range) among women and men. 

Cox proportional-hazards models were used for investigating the association between bone 

mineral density and dementia risk. Follow-up time started on the baseline date of bone scan 

and ended until the date of diagnosis of dementia, death, loss to follow-up, or 1 January 2020. 

Schoenfeld residuals were calculated for checking the proportional hazards assumption. And 

the proportional hazards assumptions were not violated, if P-values were above 0.05. We used 

Kaplan–Meier survival curves to map group differences in bone mineral density and trabecular 

bone score tertiles with respect to time to dementia. Cox proportional hazard models were 

adjusted for age, sex, APOE genotypes, education attainment, physical activity, smoking status, 

body mass index, systolic blood pressure, diastolic blood pressure, cholesterol level, high-

density lipoprotein cholesterol, and history of chronic disorders (stroke and diabetes mellitus).  

Age and sex are two strong risk factors for both low bone mineral density, as bone mineral loss 

is manifested after age 50 years or menopause 271, 272, therefore, the tertile categories of bone 

mineral density were derived by generating tertiles from the residuals of linear regression 
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models adjusted for age (continuously) and sex. Effects of bone mineral density were also 

assessed when expressed as per one standard deviation (SD) decrease. Associations were 

determined by measuring the effects of each tertile or per one SD decrease of bone mineral 

density at the femoral neck, the lumbar spine, and total body, and trabecular bone score on the 

dementia risk.  

As a consequence of the proportionality assumption of the Cox model being violated in some 

analyses, stratified Cox models by incremental epochs of follow-up time were used to examine 

how the aforementioned risk of incident dementia changed over follow-up duration (extending 

epochs e.g., baseline to 5 years, baseline to 10 years, baseline to over 10 years). In addition, we 

stratified analyses by sex and APOE-ε4 allele carrier ship (carrier versus non-carrier), which 

were suggested as possible effect modifiers 58, 273, 274. 

A p-value of <0.05 was considered statistically significant. Data analyses were done using R 

version 3.6.0 (www.R-project.org.) (http://CRAN.R-project.org/package=lme4). Missing 

covariates were computed using predictive mean matching for numeric variables and logistic 

regression for binary variables using the MICE package 52. 

 

http://cran.r-project.org/package=lme4
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Results 

Clinical characteristics  

As shown in Table1, among 3,651 participants (median age 72.3±10.0 years), 2113 (57.9%) are 

women. During a median follow-up duration of 11.1 years, 688 (18.8%) developed incident 

dementia, of whom 528 (76.7%) developed Alzheimer’s disease.  

Bone mineral density and dementia risk over incremental epochs of follow-up duration 

Throughout the whole follow-up, lower bone mineral density at the femoral neck (per SD decrease), 

not at other bone sites, was related to a higher risk of all-cause dementia (Hazard ratio [HR]total 

follow-up: 1.12, 95% Confidential interval [CI]: 1.02-1.23) and Alzheimer’s disease (HR total follow-up: 

1.14, 95% CI: 1.02-1.28) (Table 2). As presented in eTable 1, results were similar when we 

categorized individuals by bone mineral density tertiles: the highest risks were observed for 

dementia and Alzheimer’s disease in the lowest group. 

Within the first ten years following baseline, associations were greatest between lower bone 

mineral density (per SD decrease) and a higher risk of all-cause dementia (femoral neck bone 

mineral density, HR0-10years 1.43; 95% CI, 1.19–1.72; total body bone mineral density, HR0-10years 

1.22; 95% CI, 1.00–1.47), and Alzheimer’s disease (femoral neck bone mineral density, HR0-10years 

1.52; 95% CI, 1.20–1.92). The hazard ratios for incident all-cause dementia comparing the lowest 

tertile of the femoral neck bone mineral density, total body bone mineral density, and trabecular 

bone score with the highest tertile were 2.03 (95% CI, 1.39–2.96), 1.42 (95% CI, 1.01–2.02), and 

1.59 (95% CI, 1.11–2.28) separately (Table 2). Similar results remained only between femoral 

neck bone mineral density, trabecular bone score, and the risk of Alzheimer’s disease, which were 

listed in eTable 1. 
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As shown in Table 2 and eTable 1, only bone mineral density at the femoral neck was related to 

all-cause dementia occurrence over the first five years of the follow-up (HR0-5years 2.13; 95% CI, 

1.28–3.57, per SD decrease). 

Kaplan-Meier curves of dementia-free survival by levels of bone mineral density 

As presented in Figure 2 and eFigure 1, within the first 5 years during the follow-up, the curves of 

dementia-free or Alzheimer’s disease-free probability were nearly overlapped at all tertile levels 

of the bone mineral density, but the curve at the lowest tertile of the femoral neck bone mineral 

density started to fall faster than that at the highest tertile later on. Similar temporal curve trends 

for dementia-free probability were also observed for the total body bone mineral density and 

trabecular bone score, but not for the lumbar spine bone mineral density.  

 Stratification 

When stratified by sex and APOE-ε4 carriership, significant associations were found between 

lower femoral neck bone mineral density (the lowest tertile vs the highest tertile) and a higher risk 

of all-cause dementia in men (HR 1.56; 95% CI, 1.12–2.16), but not in women (HR 1.13; 95% CI, 

0.87–1.47); and non-APOE-ε4 carriers (HR 1.36; 95% CI, 1.04–1.76), but not in APOE-ε4 carriers 

(HR 1.16; 95% CI, 0.84–1.60). Significant inversed associations were also presented between low 

trabecular bone score and dementia risk (Figure 3). Stratification for the HR estimates of 

Alzheimer’s disease was represented in eFigure 2. Statistically significant interactions were 

observed between sex and low trabecular bone scores (P=0.02), and between APOE-ε4 carriership 

and low trabecular bone scores (P=0.01) (data not presented).  
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Discussion 

In this study, low femoral neck and total body bone mineral density and low trabecular bone score 

were associated with an increased risk of dementia. The associations were strongest in the first ten 

years of follow-up. 

Participants with low bone mineral density at the femoral neck had an increased risk of dementia 

in both the current study and previous prospective studies 275, 276. It has also been demonstrated 

that participants with low femoral neck bone mineral density may also experience structural brain 

changes, including declined white matter volume, increased white matter hyperintensity volume, 

occurrence of silent brain infarction, and progression of parenchymal atrophy 277, 278. A small cross-

sectional study found that low total body bone mineral density was common in the earliest clinical 

stages of Alzheimer’s disease and was related to brain atrophy and memory decline 34, which was 

supported by the significant association between total body bone mineral density and dementia 

risk in this study. Potential pathophysiological mechanisms behind low bone mineral density being 

a prodrome of dementia might include the effect of amyloid-beta on suppressing osteoblast 

proliferation and enhancing osteoclast activity 279, 280, and/or impact of systemic Wnt/Beta-catenin 

signaling deficits on impeding osteoblast differentiation and bone formation 281, 282. Apart from the 

above pathway, bone-derived proteins, such as osteopontin, osteocalcin, sclerostin might also 

impact both bone loss and dementia progression 283. Moreover, the loss of cognition preceding 

dementia inevitably influences quality of life among elderly by modifying nutrition intake and 

self-care ability, which further accelerates the loss of bone mineral density and increases fracture 

risk with aging 284, 285.  

Concerning scarcity of evidence on the association between bone microarchitecture and dementia, 

an inverse association was observed between trabecular bone score and dementia risk. Low 
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trabecular bone score was associated with a weak and less fracture-resistant microarchitecture 269, 

and consequently also with fractures 262. As the disease progresses, participants with subclinical 

dementia could experience changes in body composition 286 and confront with an increased risk of 

fracture 287, which was reported as an independent risk of dementia 288. This suggests that low 

trabecular bone score might occur as a prodromal feature of dementia. Further evidence from 

prospective studies is warranted to demonstrate causality of the association.  

Our findings did not support a link between lumbar spine bone density and dementia risk, which 

contrasts with findings of prior studies 289, 290. Low bone mineral density at the lumbar spine was 

associated with cognitive decline over a 3-years follow-up period in a Korean middle-aged 

community-dwelling population 289. Moreover, a Chinese cohort study (n=946) reported an 

association between low lumbar spine bone mineral density and increased risks of Alzheimer’s 

disease and the conversion from mild cognitive impairment to the onset of dementia 290. Different 

findings might result from relatively small sample size, short follow-up time, or cross-sectional 

design of previous studies.  

Our study shows that femoral neck BMD is the most robustly associated with incident dementia. 

There are biological differences between skeletal sites which may explain these differences in 

effect. Bones within the lumbar spine consist predominantly of trabecular bone with a thin sheet 

of cortical bone surrounding them. In contrast long bones, like those of the femur, are comprised 

predominantly of a thicker sheet of cortical bone and a thin inner layer of trabecular bone. Cortical 

and trabecular bone differ in their material, mechanical and functional properties. Thus, changes 

to cortical BMD could affect dementia risk more strongly than trabecular BMD and this could be 

reflected in the differences in associations between sites. Furthermore, BMD of the femoral neck 

and total hip has been shown to decrease more rapidly with age in comparison to other skeletal 
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sites291, 292. Risk factors, such as poor diet and physical activity, may impact these bones 

differentially, in terms of their composition and rate of decline, which in turn may explain the 

differential associations with dementia. However, the exact mechanism remains unclear and 

should be the focus of future study. 

Our study added extra knowledge to previous findings that associations change with time, with the 

strength of the effect decreasing with increasing follow-up time. This suggests that total bone 

mineral density and trabecular bone score might occur as prodromal features instead of causes of 

dementia and related toxic protein accumulation in the brain. In other words, persons with 

subclinical, incipient dementia may have poor bone health due to the dementia process instead of 

vice versa. Alternatively, participants with a low level of bone mineral density are at a high risk of 

falls and other mortalities, especially with longer follow-up duration, and thus death as a 

competing risk may also affect the associations. Additionally, the results in the first five years of 

follow-up would be unstable. The small number would primarily affect the power of these analyses, 

reflected in wider confidence intervals. The effect size itself would not necessarily be affected. 

Nevertheless, given the limited number of dementia cases, the interpretation of this part result 

should be taken with caution. 

In contrast to the finding of a prior study 275, our study suggested that low bone mineral density 

increased the risk of dementia in males, but not in females. Tan ZS, et al 275 reported an increased 

risk of Alzheimer’s disease only among women with low bone mineral density at the femoral neck, 

which indicates potentially protective effect of estrogen on mediating the negative association 

through inhibiting bone resorption and deterring neuronal apoptosis, atherosclerosis and oxidative 

stress 293, 294. Although the risk of Alzheimer’s disease decreased after taking estrogen replacement 

295, this was contradicted by another study 296. In addition, little evidence supports sex differences 



136 
 

in the associations of low bone mineral density with brain atrophy 277. Future research is therefore 

needed to explore these hypotheses further. 

The aim of our study was not necessarily etiologic, but instead to demonstrate the pattern of 

association. Indeed, we do not feel that BMD per se is causally related to dementia. Unraveling 

such etiologic link could for instance be a topic of study in Mendelian Randomization studies. 

Nevertheless, as an indicator of dementia risk, intervening in BMD may improve clinical care of 

these persons, especially considering the multi-comorbidities and polypharmacy that are highly 

preventive in this group.  

The major important strength of our study is the relatively long follow-up time (mean 11.1±2.9 

years) and sufficient incident cases of dementia (n=688). One limitation of this study lies in the 

weakness in determining the causality of associations concerning inherent restraints of 

observational study, including unmeasured confounders such as vitamin D and K and osteoporosis 

medications, although a large number of covariables were adjusted for in models. Future studies 

are warranted to assess the effect of these factors on the association. Additionally, another 

weakness of this study is the violation of the proportionality assumption in some cox models. 

However, we performed stratification by incremental epochs of follow-up duration extending from 

the baseline. Finally, due to the fact that our participants were primarily of European origin, with 

a mean age over 70 years at baseline, this might restrict the extrapolation of our findings to other 

populations/ethnicities and younger populations. 

Conclusion 

In conclusion, participants with low femoral neck and total body bone mineral density and low 

trabecular bone score were more likely to develop dementia. Further studies should focus on the 

predictive ability of bone mineral density for dementia. 
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FIGURE 1 Flow chart for participants with bone mineral density scans included in the study
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TABLE 1 Baseline characteristics of participants in longitudinal analyses 

  Men Women Total 

N, (%) 

1538 

(42.1) 
2113 (57.9) 3651 (100) 

Follow-up, years 10.9 (4.3) 11.2 (2.2) 11.1 (2.9) 

Age, years 72.3 (9.5) 72.3 (10.4) 72.3 (10.0) 

Body mass index, Kg/m2, (%)    

  Normal 18.5-24.9 389 (25.3) 588 (27.8) 977 (26.8) 

  Underweight < 18.5 4 (0.3) 19 (0.9) 23 (0.6) 

  Overweight 25-30 863 (56.1) 948 (44.9) 1811 (49.6) 

  Obesity > 30 282 (18.3) 558 (26.4) 840 (23.0) 

Alcohol, g/day 12.1 (21.5) 2.9 (12.0) 7.1 (19.3) 

Smoking, (%)    

  Never 237 (15.4) 916 (43.4) 1153 (31.6) 

  Former 
1100 

(71.5) 
921 (43.6) 2021 (55.4) 

  Current 201 (13.1) 276 (13.1) 477 (13.1) 

Educational level, (%)    

  Primary 122 (7.9) 293 (13.9) 415 (11.4) 

  Low 472 (30.7) 1162 (55.0) 1634 (44.8) 

  Intermediate 602 (39.1) 528 (25.0) 1130 (31.0) 

  High 342 (22.2) 130 (6.2) 472 (12.9) 

Physical activity, hours/month 68.7 (53.3) 90.0 (56.7) 81.1 (55.4) 

Systolic blood pressure, mm/Hg 
147.0 

(27.5) 
150.0 (28.0) 148.5 (28.0) 

Diastolic blood pressure, mm/Hg 80.5 (15.0) 79.0 (14.0) 80.0 (14.5) 

Cholesterol, mmol/L 5.28 (1.23) 5.84 (1.24) 5.60 (1.28) 

High-density lipoprotein cholesterol, 

mmol/L 
1.24 (0.41) 1.51 (0.54) 1.39 (0.52) 

Diabetes, (%) 133 (8.6) 142 (6.7) 275 (7.5) 

Stroke, (%) 25 (1.6) 17 (0.8) 42 (1.2) 

APOE-ε4, (%) 390 (26.5) 527 (26.7) 917 (26.6) 

Total body bone mineral density , g/cm2 1.20 (0.13) 1.06 (0.14) 1.12 (0.17) 

Femoral neck bone mineral density, 

g/cm2 
0.92 (0.18) 0.82 (0.17) 0.86 (0.19) 

Lumbar spine bone mineral density, 

g/cm2 
1.21 (0.27) 1.04 (0.24) 1.10 (0.28) 

Trabecular bone score, mm-1 1.33 (0.12) 1.25 (0.14) 1.28 (0.14) 

Definition of abbreviations: APOE = Apolipoprotein E. Data presented as mean (SD) or median 

(interquartile range). Proportions of missing data: alcohol intake (2.1%), APOE genotype (5.6%), 

body mass index (1.5%), diabetes (5.1%), education attainment (1.6%), HDL (1.8%), physical 

activity (3.8%), serum total cholesterol (1.8%), and systolic and diastolic blood pressure (0.2%). 
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Missing data were imputed using bayesian linear regression for continuous variables, logistic 

regression for binary variables, and polytomous logistic regression for categorical variables with 

more than two subgroups. 
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TABLE 2 Bone mineral density and the risk of incident dementia stratified by incremental epochs of follow-up time 

  0~5 years 0~10 years Total follow-up 

  n/N HR (95%CI) n/N HR (95%CI) n/N HR (95%CI) 

Femoral neck bone mineral density       

Highest tertile 8/1195 1 49/1195 1 201/1195 1 

Medium tertile 7/1194 0.85 (0.26, 2.73) 67/1194 1.34 (0.91, 1.98) 236/1194 1.16 (0.96, 1.42) 

Lowest tertile 16/1195 2.32 (0.84, 6.44) 86/1195 2.03 (1.39, 2.96) 229/1195 1.26 (1.03, 1.54) 

Per SD decrease 31/3584 2.13 (1.28, 3.57) 202/3584 1.43 (1.19, 1.72) 666/3584 1.12 (1.02;1.23) 

Lumbar spine bone mineral density     
  

Highest tertile 10/1203 1 64/1203 1 224/1203 1 

Medium tertile 11/1202 1.09 (0.41, 2.91) 67/1202 1.07 (0.74, 1.54) 224/1202 0.96 (0.79, 1.17) 

Lowest tertile 12/1203 1.23 (0.47, 3.20) 80/1203 1.27 (0.89, 1.80) 233/1203 1.00 (0.82, 1.21) 

Per SD decrease 33/3608 1.04 (0.69, 1.56) 211/3608 1.08 (0.93, 1.27) 681/3608 0.97 (0.89;1.05) 

Total body bone mineral density       

Highest tertile 12/1211 1 68/1211 1 227/1211 1 

Medium tertile 6/1211 0.49 (0.16, 1.46) 57/1211 0.85 (0.58, 1.24) 227/1211 1.00 (0.83, 1.22) 

Lowest tertile 15/1211 1.00 (0.39, 2.56) 90/1211 1.42 (1.01, 2.02) 232/1211 1.00 (0.82, 1.22) 

Per SD decrease 33/3633 1.27 (0.77, 2.08)  215/3633 1.22 (1.00, 1.47) 686/3633 1.02 (0.92, 1.14) 

Trabecular bone score     
  

Highest tertile 10/1191 1 59/1191 1 210/1191 1 

Medium tertile 12/1191 2.47 (0.94, 6.52) 74/1191 1.55 (1.08, 2.21) 226/1191 1.21 (0.99, 1.47) 

Lowest tertile 11/1191 2.04 (0.73, 5.68) 77/1191 1.59 (1.11, 2.28) 236/1191 1.19 (0.98, 1.45) 

Per SD decrease 33/3573 1.37 (0.92, 2.04) 210/3573 1.16 (1.00, 1.35) 672/3573 1.04 (0.95;1.14) 

Definition of abbreviations: n = Cases, N = Total participants, APOE = Apolipoprotein E; CI = Confidence Interval; HR = Hazard Ratio; 

SD = Standard Deviation. Cox regressions were adjusted for age, sex, APOE genotype, education attainment, physical activity, smoking 

status, body mass index, systolic and diastolic blood pressure, total cholesterol levels, high-density lipoprotein cholesterol levels, and 

history of comorbidities (stroke and diabetes mellitus). 

* follow-up time started after bone mineral density scans at baseline. 
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* The tertile categories of bone mineral density were derived by generating tertiles from the residuals of linear regression models adjusted 

for age (continuously) and sex. The highest tertile as the reference group. 

Bold font corresponds to significant P-value threshold. 
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FIGURE 2 Kaplan-Meier curves of dementia-free survival at different levels of bone mineral density at each site. 

 

 

 



143 
 

 

FIGURE 3 Associations of low bone mineral density of the total body (A), the femoral neck (B), the lumbar spine (C), and trabecular 

bone scores with the risk of all-cause dementia, stratified by sex and APOE-ε4 allele carriership. APOE = Apolipoprotein E; BMD = 
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Bone Mineral Density; HR = Hazard Ratio. Participants in the highest tertile of bone mineral density were regarded as the reference 

group (hidden). Estimated HRs were obtained after adjustment of (if applicable) age, sex, APOE genotype, education attainment, 

physical activity, smoking status, body mass index, systolic and diastolic blood pressure, total cholesterol levels, high-density lipoprotein 

cholesterol levels and history of comorbidities (stroke and diabetes mellitus). 

*The tertile categories of bone mineral density were derived by generating tertiles from the residuals of linear regression models adjusted 

for age (continuously) and sex. The highest tertile as the reference group. 
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eTable 1. Bone mineral density and the risk of incident Alzheimer’s disease stratified by incremental epochs of follow-up time 

  0~5 years 0~10 years Total follow-up 

  n/N HR (95%CI) n/N HR (95%CI) n/N HR (95%CI) 

Femoral neck bone mineral density        

Highest tertile 6//1143 1 33/1143 1 151/1143 1 

Medium tertile 3/1143 0.83 (0.23, 2.96) 45/1143 1.41 (0.87, 2.27) 178/1143 1.13 (0.90, 1.42) 

Lowest tertile 8/1144 2.32 (0.81, 6.63) 65/1144 2.30 (1.45, 3.64) 183/1144 1.32 (1.05, 1.66) 

Per SD decrease 17/3429 1.85 (0.93, 3.70) 143/3429 1.52 (1.20, 1.92) 512/3429 1.14 (1.02;1.28) 

Lumbar spine bone mineral density     
  

Highest tertile 9/1150 1 48/1150 1 171/1150 1 

Medium tertile 5/1150 0.54 (0.17, 1.71) 45/1150 0.94 (0.61, 1.45)  174/1150 0.99 (0.79, 1.24) 

Lowest tertile 3/1151 0.31 (0.09, 1.13) 57/1151 1.14 (0.76, 1.72) 179/1151 0.97 (0.78, 1.21) 

Per SD decrease 17/3451 0.72 (0.48, 1.10)  150/3451 1.08 (0.89, 1.30) 524/3451 0.97 (0.88;1.08) 

Total body bone mineral density        

Highest tertile 9/1158 1 50/1158 1 170/1158 1 

Medium tertile 3/1158 0.37 (0.10, 1.33) 39/1158 0.78 (0.50, 1.23) 182/1158 1.06 (0.85, 1.32) 

Lowest tertile 5/1158 0.30 (0.10, 0.97) 63/1158 1.29 (0.85, 1.95) 175/1158 0.97 (0.78, 1.22) 

Per SD decrease 17/3474 0.74 (0.47, 1.16) 152/3474 1.20 (0.95, 1.52) 527/3474 1.00 (0.88;1.12) 

Trabecular bone score     
  

Highest tertile 5/1139 1 41/1139 1 161/1139 1 

Medium tertile 8/1139 4.88 (0.99, 23.93) 55/1139 1.66 (1.08, 2.54) 173/1139 1.21 (0.97, 1.52) 

Lowest tertile 4/1139 2.45 (0.42, 14.17) 53/1139 1.55 (1.00, 2.39)  182/1139 1.16 (0.93, 1.45) 

Per SD decrease 17/3417 1.22 (0.66, 2.27) 149/3417 1.15 (0.96, 1.39) 516/3417 1.02 (0.93;1.14) 

Definition of abbreviations: n = Cases, N = Total participants, APOE = Apolipoprotein E; CI = Confidence Interval; HR = Hazard Ratio; 

SD = Standard Deviation. Cox regressions were adjusted for age, sex, APOE genotype, education attainment, physical activity, smoking 

status, body mass index, systolic and diastolic blood pressure, total cholesterol levels, high-density lipoprotein cholesterol levels, and 

history of comorbidities (stroke and diabetes mellitus).  

* follow-up time started after bone mineral density scans at baseline. 
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* The tertile categories of bone mineral density were derived by generating tertiles from the residuals of linear regression models adjusted 

for age (continuously) and sex. The highest tertile as the reference group. 

Bold font corresponds to significant P-value threshold. 
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eFigure 1. Kaplan-Meier curves of Alzheimer’s disease-free survival at different levels of bone mineral density at each site. 
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eFigure 2. Associations of low bone mineral density of total body (A), the femoral neck (B), the lumbar spine (C), and trabecular bone 

scores with risk of Alzheimer’s disease, stratified by sex and APOE-ε4 allele carriership. APOE = Apolipoprotein E; BMD = Bone 
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Mineral Density; HR = Hazard Ratio. Participants in the highest tertile of bone mineral density were regarded as the reference group 

(hidden). Estimated HRs were obtained after adjustment of (if applicable) age, sex, APOE genotype, education attainment, physical 

activity, smoking status, body mass index, systolic and diastolic blood pressure, total cholesterol levels, high-density lipoprotein 

cholesterol levels, and history of comorbidities (stroke and diabetes mellitus). 

* The tertile categories of bone mineral density were derived by generating tertiles from the residuals of linear regression models adjusted 

for age (continuously) and sex. The highest tertile as the reference group. 
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In this thesis, I discuss the role of systemic function impairment in neurodegeneration, studied 

from a population-based prospective. In this chapter, I summarize the key findings while also 

highlighting several methodological considerations, implications, and future perspectives. 

 

MAIN FINDINGS 

In this thesis, I drew the link between the abnormality of other organ systems, neurodegenerative 

diseases, and related brain outcomes. 

 

Pulmonary System and Neurodegeneration 

In Chapter 2, I examined whether lung function impairment increases neurodegeneration using 

respiratory tests and a clinical diagnosis of chronic pulmonary disease. In Chapter 2.1 I reported 

that a decline in lung function was linked to a higher risk of dementia. In Chapter 2.2 I investigated 

whether lung function impairment is related to cognitive performance and the presence of vascular 

brain lesions. I demonstrated that people with more severe COPD or limited lung function had 

worse overall cognitive performance and a larger prevalence of lacunar infarcts.  

 

Hepatic System and Neurodegeneration 

In Chapter 3, I examined the relationship between the prevalence of neurodegenerative disorders 

and fatty liver disease (FLD). I focused on non-alcoholic fatty liver disease (NAFLD) in Chapter 

3.1 and discovered that neither NAFLD nor fibrosis was linked to an increased risk of dementia 

incidentally, nor was NAFLD linked to poorer cognitive function. A non-significant relationship 

between FLD and parkinsonism or Parkinson's disease was found in Chapter 3.2. I used both 

abdominal ultrasound and the fatty liver index to diagnose liver steatosis, in contrast to prior 
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research 169, 297, and found a negative association between fatty liver disease and neurodegenerative 

disorders.  

 

Cardiac System and Neurodegeneration 

In Chapter 4 I investigated how cardiac biomarkers impact changes in cognition and structural 

brain alteration, as well as the incidence of Parkinsonism and Parkinson’s disease. In Chapter 4.1 

I used longitudinal data to examine the effect of NT-proBNP on the trajectories of cognition and 

brain imaging markers with repeated measurements. The results demonstrated that greater baseline 

NT-proBNP levels were related to a faster deterioration in cognition but not to structural brain 

alterations. In Chapter 4.2 the perspective on neurodegeneration changed from estimating 

trajectories of brain markers to the incidence of neurodegenerative diseases, specifically 

Parkinsonism and Parkinson’s disease. I found that high levels of cardiac biomarkers were not 

related to an increased risk of Parkinson’s disease. These findings could contribute to the body of 

knowledge regarding the relationship between cardiac biomarkers and parkinsonism and 

Parkinson's disease, given the dearth of prospective studies on this subject. 

 

Musculoskeletal System and Neurodegeneration 

In Chapter 5 I determined how dementia risk was affected by bone mineral density at various 

skeletal regions in community-dwelling older adults.  In Chapter 5.1 I stratified analyses by 

incremental epochs of follow-up time and found that participants with low femoral neck, low total 

body bone mineral density, or low trabecular bone score were more likely to develop dementia.  

Similar findings temporally linking bone mineral density to dementia risk were also reported by 
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previous prospective population-based studies 256, 257,  this indicated that low bone mineral density 

might be a concurrent sign during the cognitive decline preceding the dementia onset. 

 

METHODLOGICAL CONSIDERATIONS 

The pertinent parts of this thesis have outlined the strengths and limitations of each investigation. 

Thus, I further discuss more general underpinnings on how to interpret current findings in this 

thesis. 

 

The Scope of Systemic Function Impairment  

This thesis defines systemic dysfunction as a framework that includes a variety of comorbidities, 

course of clinical conditions, and severity levels of dysfunction assessed by markers or indexes for 

specific peripheral organs. Clinically speaking, a disease is an abnormal condition that describes 

organ dysfunction or structural abnormalities. Most contemporary definitions of diseases or 

disorders combine the concepts of symptoms, imaging or biopsy evidence of abnormality, and/or 

deviating biomarkers or physical tests due to clinical complexity. However, in some instances, not 

all of the aforementioned three factors are necessary for the diagnosis of a disease, particularly for 

some treatable illnesses like non-alcoholic fatty liver disease (NAFLD). In Chapter 3, NAFLD was 

diagnosed using a fatty liver index or abdominal ultrasound scan, without any signs of symptoms. 

Most NAFLD patients do not encounter evident liver dysfunction itself or complications and will 

recover after 5-10% weight reduction 160, 298. The association between NAFLD and 

neurodegeneration was far more complicated than we expected. This relationship is also time-

dependent, particularly when it comes to the dynamic change in hepatic steatosis that occurs after 

a lifestyle change. Besides, the course and severity of a disorder are also two critical determinants 
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when considering the impact on brain health. In Chapter 2, preserved ratio impaired spirometry 

(PRISm), as an intermediate phase between normal spirometry and COPD, is a heterogeneous and 

fluctuating condition but is always undiagnosed in clinical practice 89. Longitudinal studies are still 

necessary to evaluate the impact of PRISm and the severity of COPD on neurodegenerative 

disorders. 

    Apart from the presence of disease diagnosis, we also used the clinical diagnosis markers as 

proxies to quantify specific sorts of systemic function impairment, such as using NT-proBNP to 

represent cardiac dysfunction as presented in Chapter 4. How to systemically analyze the function 

of organs will determine how much intrinsic knowledge may be unlocked to target the accuracy 

of functional loss. For instance, a thorough evaluation of cardiac function necessitates both 

anatomic and physiological assessment of the heart's structure and its physiological functioning 

299. Specific cardiac function-associated markers in plasma exhibit unique advantages in patient 

screening in population-based settings due to lower cost and a lower likelihood of measurement 

error than complex tests carried out in a specialized setting, despite reflecting less information than 

cardiac imaging 300.  

 

Bias 

Bias as a systemic error, in contrast to random variation, could impact the associations, undermine 

the robustness of conclusions, and weaken the generalizability of findings. I will discuss how three 

main epidemiological biases, including selection bias, information bias, and confounding bias, 

impact the study findings of this thesis. 

    Selection bias originates from the included participants for analyses systemically different from 

or not representative of the source population. Generally speaking, a higher response rate should 
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indicate a lower possibility of selection bias or a smaller effect on the association caused by the 

non-randomized selection of participants. Although there is overall a high response rate of over 

70% within the Rotterdam Study, selection bias at baseline might still inevitably exist, because it 

is known that healthier people are more willing or highly likely to visit the medical center for 

physical examinations and interviews. As such, it is plausible to infer that participants with better 

systemic function or cognition are more possible to participate in various function tests and brain 

imaging scans, especially in multiple rounds of visits for estimating trajectories of outcomes. 

Besides, a loss to follow-up occurs when a participant drops out from the cohort, which makes it 

impossible to assess the status of interest. The participant is then censored when performing 

analyses. If the rate of dropout varies depending on certain participant characteristics, such as when 

individuals of older age or with worse health status (difficulty in motion, severe pulmonary 

dysfunction, and et al) are more likely to drop out than those with better status, this is referred to 

as differential loss to follow-up. In practice, the follow-up on dementia, Parkinson’s disease, and 

related clinical outcomes was nearly complete in the Rotterdam Study. In addition, the average 

baseline age of about 70 years and the European ethnicity of participants restrict the 

generalizability of findings to non-Caucasians and younger populations (see also Chapter 4.1). 

    Information bias is caused by imprecise measurement or misclassification of exposures, 

outcomes, or co-variables. Within the Rotterdam Study, multiple efforts have been put into 

constructing standardized procedures and training personnel for data collection, management, 

manipulation, and interpretation. Nevertheless, information bias could be not completely 

precluded even though all the above actions have been put into execution. The misclassification 

could occur more or less within the exposure diagnosis or measurement. For instance, in Chapter 

3 I investigated fatty liver disease about neurodegenerative diseases. Hepatic steatosis was 



156 
 

diagnosed with ultrasound, as well as fatty liver index, an algorithm with cutoff values of  < 30 

and ≥ 60 to rule out or rule in hepatic steatosis, respectively, among which ultrasound presents a 

higher accuracy of detecting hepatic fat accumulation than fatty liver index 301. Pragmatically, liver 

biopsy is the clinically gold standard for the diagnosis of hepatic steatosis than other non-invasive 

methods. This suggests participants with undetected fatty liver disease could be misclassified as 

an unexposed group, which could affect the effect magnitude of the association between fatty liver 

disease and neurodegenerative diseases. Information bias may differently affect the associations 

between studies. 

Confounding bias occurs when mixing the effect of the exposure of interest with extraneous risk 

factors of the outcome, that is to say, confounding arises when the exposure and outcome share 

one or more causes. Related to this, a confounder is any variable that can be used to help eliminate 

confounding 302. Controlling for confounders is essential for reliable causal inference, and a key 

step is confounder selection. An appropriate selection of confounders requires adequate knowledge 

of a complete causal diagram and the availability of confounder measurement 303. In this thesis, 

confounders were controlled when they were common causes of the exposure and the outcome 

based on previous literature and biological plausibility. However, it has been pointed out that in 

certain circumstances this could introduce unexpected bias, such as residual confounding. Residual 

confounding would arise when there is a missing adjustment for unknown confounders based on 

current evidence. For example, in Chapter 5.1 I studied the association between cardiac biomarkers 

and the risk of Parkinson’s disease, in which only age, sex, smoking status, and education levels 

were incorporated for calculating effect estimation. Other risk factors, such as obesity, diabetes, 

alcohol consumption, and physical inactivity are the traditional causes of cardiac dysfunction or 

triggering release of cardiac biomarkers but show inconsistent relations with Parkinson’s disease 
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between different studies with heterogeneity or limitations. Taken together, it is possible that the 

majority of associations in this thesis were to some degree influenced by confounding bias. Even 

though within the Rotterdam Study there is a large number of co-variables available for control, it 

remains impossible to make a complete selection of confounders or even to adjust for all 

confounders in analyses. 

Precision is a description of random errors and increasing sample size generally increases 

precision. Small sample sizes are also associated with a decreased likelihood of initially identifying 

real effects. This raises concerns about the precision of findings in a large portion of dementia 

research. In addition, underpowered studies may give rise to publication bias due to selective 

reporting of statistically significant results. The Rotterdam Study serves as the data source for 

dementia study in the majority of the investigations in this thesis. The large sample size from this 

population-based cohort gives it a better opportunity (more power) to find real effects. However, 

there are limited cases of incident Parkinson’s disease due to an insufficient sample size. For 

example, in Chapter 3.2, I included 9,364 participants at baseline, and among them, only 74 

individuals develop Parkinson’s disease over a median follow-up of 11 years. This lack of 

precision may have unpowered us to detect small effects. 

Reverse Causality 

Reverse causality refers to the opposite direction of causality, changing from the exposure causing 

the occurrence of the outcome to the “outcome” resulting in changes in the “exposure”. Before the 

clinical onset of dementia, patients in the prediagnostic phase experience a period of accelerated 

cognitive decline, accompanied by pathological changes in the brain 83. In this scenario, the loss 

of cognition preceding dementia inevitably influences the quality of life among the elderly by 

modifying self-care ability and altering lifestyles, such as physical activity, nutrient balance, social 
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interaction, reading, et al.304, which might, in turn, impacts a change in the exposure of primary 

interest. In this scenario, the temporal relation is causal but reverse, and the association can be 

thought of as confounded by cognitive decline or neuropathology.  

    In Chapter 5.1 I investigated the bone mineral density and dementia risk. The reverse causality 

was examined via stratifying Cox models by incremental epochs of follow-up time to study how 

the risk of incident dementia changed over follow-up duration (with restricted epochs e.g., baseline 

to 5 years, baseline to 10 years, baseline to over 10 years). The risk of dementia disappearing with 

follow-up time extending implies prodromal or prediagnostic disease-disrupting bone mineral 

density at baseline. Importantly, when performing stratification on follow-up time, it is always 

challenging to keep a balance between the statistical power for detecting significant associations 

and sensitivity for testing reverse causality. Within the too short term of the follow-up period, a 

limited number of incident cases could restrict or impair the statistical power of the association. 

This analytic approach shows a temporal relation and indicates reverse causality, but could not 

preclude the possibility of a causality. With follow-up time increasing, the disappearance of risk 

or the causality could be attributed to several aspects, including 1) The pathogenesis of dementia 

comprises complex biological pathways, and the journey to disease onset contains multistage 

processes as found in a prospective population-based cohort 305. It is, therefore, plausible to infer 

that the exposure-dementia link should be both pathway- and stage-dependent, reflected by risk 

changes with different follow-up windows. 2) Accumulative effect of harmful exposures could 

increase the risk of mortality, especially with longer follow-up duration, and thus death as a 

competing risk may also affect the associations. 3) The exposure status may regress or deteriorate 

over time and this may introduce information bias when estimating the association. In Chapter 3, 

I found that over the whole follow-up, NAFLD did not increase dementia risk. Conversely, within 
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the first five years of follow-up, NAFLD exerts a protective effect against dementia, implying 

NAFLD regression before dementia occurrence. In this case, long-term trajectories of exposure 

status, instead of a single static measure at baseline, could unveil a more accurate and dynamic 

estimation of disease risk. 

 

IMPLICATIONS AND FUTURE RESEARCH 

Various directions in pathophysiological mechanisms and methodological improvements can be 

highlighted for future investigations in light of the findings in this thesis. First, other systemic 

comorbidities, i.e. olfactory deficit, osteoarthritis, and gastritis, have received little attention about 

their effect on dementia risk. Future studies could explore the effects of other ignored 

comorbidities, either in isolation or in conjunction with known comorbidities, on dementia. Second, 

Comorbidities are common among patients of Parkinson’s disease, but it remains not well explored 

regarding the direction of potential causality between comorbidities and Parkinson’s disease. Third, 

multiorgan MRI enables us to comprehensively assess structural and functional changes in brain 

and other systemic organs. Fourth, it remains to be ascertained whether the systemic dysfunction 

is causally related to incident dementia. Fifth, it is still important to investigate how determinants 

change over time in dementia, as in the real world, determinants are likely modified by various 

influences. I will discuss each of these proposed directions in the following paragraphs. 

 

Other Systemic Comorbidities and Neurodegeneration 

To gain an intact insight into pathological mechanisms linking systemic dysfunction to 

neurodegeneration, more attention should also be paid to less well-studied systemic comorbidities 

when considering their potential for dementia occurrence. The prevalence of smell sense loss is 
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around 5%, as people age, the proportion substantially increases to 13.9% in individuals aged > 

65 years 306. In recent years, a significant association has been reported between olfactory 

impairment and the risks of cognitive deficits and dementia 307-310. However, the magnitude of 

evidence could be undermined by small sample sizes and less-optimal adjustment of confounding. 

For instance, airborne lead pollution should be an important confounder and plays a role in these 

associations 311. Higher cumulative exposure to lead, as a widely known neurotoxin, is a significant 

risk factor for cognitive impairment, structural brain alteration, and deposition of 

neuropathological proteins 312-314. Apart from the olfactory system, osteoarthritis, as a common 

joint disorder among the elderly, receives extra attention regarding its role in brain health 315, 316. 

Recent studies suggest a faster Aβ accumulation and a higher level of tau deposition among 

patients with osteoarthritis or in osteoporotic bone tissues280, 317. Few cohort studies reported an 

association between osteoarthritis and a higher risk of dementia and brain atrophy 318, 319. Similarly, 

the causality between the two disorders was limited by residual confounding due to missing 

adjustments for key confounders, including bone mineral density, body mass index, and APOE 

genotype. An accumulative body of evidence indicates that the deficiency of vitamin B12 and 

anemia might be two risk factors for cognitive decline 320-323. Gastritis might lead to dementia 

occurrence regarding the fact that gastritis could impede the intake of micronutrients, including 

vitamin B12 and iron, and further cause iron deficiency anemia 324-326. It is plausible to infer 

gastritis as a possible risk factor for dementia 327, but more prospective evidence is warranted. 

Moreover, the (causal-) roles of skin on neurodegeneration have gained increasing attention but 

remained understudied 328, 329. Future studies could also explore the mixed effects of multiple 

comorbidities in conjunction, on dementia. Most of the previous studies mainly focus on how 

single comorbidity impacts brain health. As people age, it is more likely to suffer from multiple 
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comorbid conditions 8, and it is commonly observed that dementia patients are diagnosed with 

multiple comorbidities 9, 10. It will be, therefore, more clinically reasonable and valuable to study 

how various comorbidities together contribute to dementia development. 

Future research should also look into the association between systemic function impairment and 

the onset of Parkinson’s disease (PD) and secondary parkinsonism. Previous epidemiological 

studies 330-332 showed distinct burdens of various comorbidities amongst PD patients, and the most 

frequent comorbidities were hypertension, diabetes, depression, atrial fibrillation, arthritis, et al. 

Although the prevalence of some chronic diseases in PD patients is similar to the general 

population, evidence from meta-analyses suggests that patients with these comorbidities, such as 

hypertension 333 and diabetes 334, 335, have a higher risk of developing PD. The links between other 

comorbidities and PD, however, have not been well investigated. For example, COPD was 

associated with an increased risk of dementia and mild cognitive impairment, and low respiratory 

parameters (FEV1% predicted and/or FVC% predicted) were indicated as risk factors for dementia, 

stroke, poor cognition, and vascular brain lesions 48, 90, 336, 337. Given the fact that dementia and PD 

share biological processes, it is important to evaluate the association between lung function 

impairment and PD. Only one prospective study has, to date, explored the potential connection 

between COPD and PD risk 338. The absence of quantitative respiratory measures and the failure 

to account for smoking, however, hampered the results. Additionally, underlying mechanisms 

suggest that PD may contribute to cardiovascular conditions like atrial fibrillation, but these 

connections are not well established, and results from earlier studies varied widely 339. 

 

Multiorgan MRI 
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Multiorgan MRI should be used to provide objective assessments of an organ status with more 

detailed information than the single-task MRI mainly focusing only on one (or a few) traits. For 

instance, in Chapter 4.1 I studied the impact of plasma NT-proBNP levels on cognition and global 

brain structure. Limited information about cardiac and brain structure and/or function precluded 

us from obtaining an overall picture of heart-brain interplay. Although NT-proBNP is regarded as 

a well-established diagnostic marker of heart failure, it alone could not depict an overview of heart 

structure and how cardiac structural changes contribute to brain dysfunction. Similarly, the main 

focus on global brain structure also ignores the other aspects of the brain, such as regional or tract-

based structural connectivity, functional activity, et al. Comprehensive MRI modalities allow us 

to identify detailed information about specific organs’ structure and function, yielding better 

insights into pathological alterations in organs. Recently, a large-scale study quantified the heart-

brain interaction using multi-organ MRI-derived traits (82 cardiac and aortic traits and 458 brain 

traits) among >40,000 individuals 340. Heart MRI traits were observed associated with multiple 

brain modalities, including specific brain regions, white matter tracts, and functional networks. 

The findings further underscored the high values of multiorgan MRI when investigating how 

systemic dysfunction comprehensively relates to brain health. 

 

Causality 

Several methodological points should be clarified for strengthening causal inference. To ideally 

test the causality between determinants and outcome, a randomized controlled trial is the first 

choice for this purpose, but this is impractical and unethical regarding systemic dysfunction as an 

intervention in humans. There are still some study designs that help draw a causal conclusion, 

though.    
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First, Mendelian randomization (MR), a causal inference methodology that uses genetic tools 

to replace exposures, has been widely developed and used to research causal relationships of 

interest to overcome the inherent constraints of observational studies. 341. The MR design based 

on large GWAS studies could remove confounding bias because alleles are randomly allocated at 

conception, and it also avoids reverse causation bias as disease or event of interest cannot affect 

genotype 341. Amongst the previous studies, few of them have assessed causal associations of 

systemic dysfunction with dementia risk and relevant clinical manifestations using the MR design.  

Second, regarding a long period of dementia development, investigation of trajectories of brain 

structure or cognition could help plausible inferences on a temporal link between systemic 

dysfunction and markers of brain aging or cognition in longitudinal studies with repeated 

measurements. A more comprehensive insight into cerebral pathophysiology would benefit from 

clarifying the causality of the associations with dementia.  

Finally, the diagnosis of Alzheimer’s disease or dementia could be clarified by its underlying 

pathological formation of toxic proteins, such as amyloid-β plaques and neurofibrillary tau tangle 

in the brain, accompanied by progressive neuronal and synaptic loss 342, 343. Particularly, in the 

preclinical phase before the diagnosis onset, an individual without or with only subtle symptoms 

of the disease might be detected earlier with an assessment of abnormal levels of the above 

biomarkers 344, 345. The association between systemic dysfunction and changes in dementia-related 

biomarkers might assist in whether systemic dysfunction causally contributes to the onset of 

dementia. However, keep in mind that dementia-associated biomarkers may also be strongly 

associated with other chronic conditions, such as cardiovascular diseases, cancer, and multiple 

sclerosis 346-349. It is therefore pertinent to select the best dementia-specific candidates of 

biomarkers for such diagnoses as the outcome of interest.  
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Dynamic Effect 

The time-dependent effect of specific risk factors should not be ignored when estimating dementia 

risk 350, that is to say, determinants would preferably be studied throughout their life course. 

Compared with a single measurement, long-term trajectories of systemic function may serve as a 

better indicator of later dementia occurrence. And these trajectories are beneficial for capturing 

the dynamic change of a function over time and visualizing the direction and size of variability. 

Ignorance of the changes in systemic function could not help map the dynamic effect on dementia 

risk across the long-term life course. Amounting evidence indicated that the patterns of some 

disorders or specific organs’ function trajectories could also be complicated by alteration in 

lifestyle, adherence to medication, and/or growing age, which also gets involved in modifying 

dementia risk. NAFLD, as a classical example of reversible metabolic syndrome, could regress 

after weight loss through lifestyle modification 351, 352. Recent evidence has indicated that hepatic 

steatosis can be reduced with weight loss of 3% to 5% and NAFLD regression occurs after 5-10% 

weight reduction 160, 298, 353. After NAFLD diagnosis, over 50% of patients would experience above 

5% weight changes, within 2 years and these changes usually persist for a while 354. The 

relationship between NAFLD and dementia in this scenario should be dynamic rather than constant 

over time, and long-term trajectories of NAFLD status or hepatic steatosis may help redefine the 

association. 

 

Clinical Implications 

Several implications for clinical practice should be considered based on the findings in this thesis. 

Increased awareness towards possible screening or testing systemic health status (i.e. lung function, 

cardiac function, bone health) could potentially be beneficial for identifying patients at high risk 
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of dementia or cognitive impairment. This is feasible, as most of the assessments are physically 

and non-invasive methods widely accepted in clinical settings. Additionally, even though there 

isn't any causal evidence from randomized controlled trials or Mendelian randomization just yet, 

systemic function data could help develop better neurodegenerative disease prediction tools or 

models. Paying more attention to cross-talk between systemic function and PD could potentially 

lead to potentially more insights into the etiology of PD and relevant recommendations for 

prevention.  

    Another main purpose of observational studies is to provide causative evidence for selecting the 

best medication candidates to prevent or slow down the development of neurodegeneration. Based 

on findings of this thesis, among medications for treating chronic pulmonary diseases, cardiac 

dysfunction and low bone mineral density, there are should be potential candidates for dementia 

clinical trials performed in patients with corresponding systemic function impairment. Compared 

with developing new drugs to cure dementia, screening an effective candidate from widely used 

medications would inevitably more economically effective and safe as all possible side effects are 

well known. 

 

CONCLUDING REMARKS 

To conclude, this thesis provides an array of insights into the associations between systemic 

function impairment and neurodegeneration. In general, patients with systemic dysfunction could 

suffer from accelerated cognition decline and have an increased risk of dementia at a population 

level. I challenge future studies to investigate causality and provide biological insight into the link 

between these two disorders. This evidence could serve as a rationale for prevention and 
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intervention strategies. In addition, the study is scarce on how systemic function impairment relates 

to the development of Parkinson’s disease, and more attention is warranted. 
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Chapter 7 Summary/Samenvatting 
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As people age, the elderly experience a progressive loss of physiological function and structural 

alterations in multiple organs. Co-occurring comorbidities have been commonly observed in 

patients with dementia or Parkinson’s disease, and evidence from epidemiological studies has 

already demonstrated the association between systemic dysfunction and a higher risk of dementia 

development. However, it remains unexplored about the roles of other understudied systemic 

function impairments in these brain disorders. A better understanding of the association between 

systemic malfunction, cognition, and brain abnormalities would allow us to develop a multi-

system strategy for neurodegeneration prevention. This thesis's overarching goal is to better 

understand the relationship between systemic dysfunction and neurodegenerative disorders, 

notably dementia and Parkinson's disease, in middle-aged and older persons. 

 

In Chapter 2, I examined whether lung function impairment increases neurodegeneration using 

respiratory tests and a clinical diagnosis of chronic pulmonary disease. In Chapter 2.1 I reported 

that a decline in lung function was linked to a higher risk of dementia. In Chapter 2.2 I investigated 

whether lung function impairment is related to cognitive performance and the presence of vascular 

brain lesions. I demonstrated that people with more severe COPD or limited lung function had 

worse overall cognitive performance and a larger prevalence of lacunar infarcts. 

 

In Chapter 3, I examined the relationship between the prevalence of neurodegenerative disorders 

and fatty liver disease (FLD). I focused on non-alcoholic fatty liver disease (NAFLD) in Chapter 

3.1 and discovered that neither NAFLD nor fibrosis was linked to an increased risk of dementia 

incidentally, nor was NAFLD linked to poorer cognitive function. A non-significant relationship 

between FLD and parkinsonism or Parkinson's disease was found in Chapter 3.2. I used both 
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abdominal ultrasound and the fatty liver index to diagnose liver steatosis, and found a negative 

association between fatty liver disease and neurodegenerative disorders. 

 

In Chapter 4 I investigated how cardiac biomarkers impact changes in cognition and structural 

brain alteration, as well as the incidence of Parkinsonism and Parkinson’s disease. In Chapter 4.1 

I used longitudinal data to examine the effect of NT-proBNP on the trajectories of cognition and 

brain imaging markers with repeated measurements. The results demonstrated that greater baseline 

NT-proBNP levels were related to a faster deterioration in cognition but not to structural brain 

alterations. In Chapter 4.2 the perspective on neurodegeneration changed from estimating 

trajectories of brain markers to the incidence of neurodegenerative diseases, specifically 

Parkinsonism and Parkinson’s disease. I found that high levels of cardiac biomarkers were not 

related to an increased risk of Parkinson’s disease. These findings could contribute to the body of 

knowledge regarding the relationship between cardiac biomarkers and parkinsonism and 

Parkinson's disease, given the dearth of prospective studies on this subject. 

 

In Chapter 5 I determined how dementia risk was affected by bone mineral density at various 

skeletal regions in community-dwelling older adults.  In Chapter 5.1 I stratified analyses by 

incremental epochs of follow-up time and found that participants with low femoral neck, low total 

body bone mineral density, or low trabecular bone score were more likely to develop dementia.  

Our findings temporally linking bone mineral density to dementia risk indicated that low bone 

mineral density might be a concurrent sign during the cognitive decline preceding the dementia 

onset. 
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Lastly, in Chapter 6 I discussed the main findings of this thesis, methodological considerations, 

implications, and future research. As for methodological perspectives, I discussed the framework 

of systemic function impairment. Additionally, I discussed the possibility and impact of bias 

(confounding bias, information bias, and selection bias), as well as the issue of reverse causation, 

in the studies of this thesis. Lastly, I proposed the clinical implications and proffer the potential 

directions for future studies. 
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Naarmate mensen ouder worden, ervaren ouderen een progressief verlies van fysiologische functie 

en structurele veranderingen in meerdere organen. Gelijktijdig voorkomende comorbiditeiten 

worden vaak waargenomen bij patiënten met dementie of de ziekte van Parkinson, en bewijs uit 

epidemiologische studies heeft reeds de associatie aangetoond tussen systemische disfunctie en 

een hoger risico op het ontwikkelen van dementie. De rol van andere onderbelichte systemische 

functiestoornissen bij deze hersenaandoeningen is echter nog niet onderzocht. Een beter begrip 

van de relatie tussen systemische disfunctie, cognitie en hersenafwijkingen zou ons in staat stellen 

om een multi-systeem strategie te ontwikkelen voor de preventie van neurodegeneratie. Het 

overkoepelende doel van deze scriptie is om een beter begrip te krijgen van de relatie tussen 

systemische disfunctie en neurodegeneratieve aandoeningen, met name dementie en de ziekte van 

Parkinson, bij personen van middelbare leeftijd en ouder. 

 

In Hoofdstuk 2 heb ik onderzocht of een beperking van de longfunctie leidt tot verhoogde 

neurodegeneratie met behulp van ademhalingsonderzoeken en een klinische diagnose van 

chronische longziekte. In Hoofdstuk 2.1 heb ik gerapporteerd dat een afname van de longfunctie 

samenhangt met een hoger risico op dementie. In Hoofdstuk 2.2 heb ik onderzocht of een 

beperking van de longfunctie verband houdt met cognitieve prestaties en de aanwezigheid van 

vasculaire hersenlaesies. Ik heb aangetoond dat mensen met ernstigere COPD of een beperkte 

longfunctie slechtere algemene cognitieve prestaties hadden en een grotere prevalentie van 

lacunaire infarcten. 

 

In Hoofdstuk 3 heb ik gekeken naar de relatie tussen de prevalentie van neurodegeneratieve 

aandoeningen en leververvetting (FLD). Ik heb me in Hoofdstuk 3.1 specifiek gericht op niet-



174 
 

alcoholische leververvetting (NAFLD) en ontdekte dat noch NAFLD, noch fibrose in verband 

werd gebracht met een verhoogd risico op dementie. Daarnaast werd er geen verband gevonden 

tussen NAFLD en slechtere cognitieve functie. In Hoofdstuk 3.2 vond ik een niet-significante 

relatie tussen FLD en parkinsonisme of de ziekte van Parkinson. Ik heb zowel abdominale 

echografie als de Fatty Liver Index gebruikt om leversteatose te diagnosticeren, en vond een 

negatieve associatie tussen leververvetting en neurodegeneratieve aandoeningen. 

 

In Hoofdstuk 4 heb ik onderzocht hoe cardiale biomarkers van invloed zijn op veranderingen in 

cognitie en structurele hersenveranderingen, evenals de incidentie van parkinsonisme en de ziekte 

van Parkinson. In Hoofdstuk 4.1 heb ik longitudinale gegevens gebruikt om het effect van NT-

proBNP op het verloop van cognitie en markers van hersenbeeldvorming met herhaalde metingen 

te onderzoeken. De resultaten toonden aan dat hogere baselinespiegels van NT-proBNP verband 

hielden met een snellere achteruitgang van de cognitie, maar niet met structurele veranderingen in 

de hersenen. In Hoofdstuk 4.2 veranderde de focus van neurodegeneratie van het schatten van de 

trajecten van hersenmarkers naar de incidentie van neurodegeneratieve ziekten, specifiek 

parkinsonisme en de ziekte van Parkinson. Ik heb ontdekt dat hoge niveaus van cardiale 

biomarkers niet gerelateerd waren aan een verhoogd risico op de ziekte van Parkinson. Deze 

bevindingen kunnen bijdragen aan de kennis over de relatie tussen cardiale biomarkers en 

parkinsonisme en de ziekte van Parkinson, gezien het gebrek aan prospectieve studies over dit 

onderwerp. 

 

In Hoofdstuk 5 heb ik onderzocht hoe het risico op dementie werd beïnvloed door de 

botmineraaldichtheid in verschillende skeletgebieden bij oudere thuiswonende volwassenen. In 
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Hoofdstuk 5.1 heb ik de analyses onderverdeeld in oplopende periodes van follow-up tijd en 

ontdekt dat deelnemers met een lage femurhals, een lage totale botmineraaldichtheid of een lage 

trabeculaire botkwaliteit een verhoogd risico hadden om dementie te ontwikkelen. Onze 

bevindingen die een verband leggen tussen botmineraaldichtheid en het risico op dementie, 

suggereren dat een lage botmineraaldichtheid mogelijk een gelijktijdig teken zou kunnen zijn 

tijdens de cognitieve achteruitgang die voorafgaat aan het optreden van dementie. 

 

Tot slot, in Hoofdstuk 6 besprak ik de belangrijkste bevindingen van deze scriptie, 

methodologische overwegingen, implicaties en toekomstig onderzoek. Wat betreft 

methodologische perspectieven, heb ik het kader van systemische functiestoornis besproken. 

Daarnaast besprak ik de mogelijkheid en impact van bias (confounding bias, information bias, en 

selection bias), evenals het probleem van omgekeerde causaliteit in de studies van deze scriptie. 

Ten slotte stelde ik de klinische implicaties voor en bood ik potentiële richtingen voor toekomstige 

studies aan. 
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