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Abstract

A widespread adoption of city surveillance systems has led to an increase in the use of

surveillance videos in order to maintain public safety and security. This thesis tackles the

problem of detecting anomalous events in surveillance videos. The goal is to automatically

identify abnormal events by learning from both normal and abnormal videos. Most previous

works considered any deviation from learned normal patterns as an anomaly. However, this

may not always be valid since the same activity could be normal or abnormal under different

circumstances. To address this issue, this thesis utilized Two-Stream Inflated 3D (I3D) Con-

volutional Networks to extract spatial and temporal video features and demonstrated how it

outperformed the 3D Convolutional Network (C3D) used in prior work as a feature extractor.

To avoid annotating abnormal activities in training videos, a weakly supervised anomaly detec-

tion model was implemented based on the Multiple Instance Learning (MIL) framework. The

model considers normal and abnormal videos as bags and video clips as instances. It learns a

ranking model to predict high anomaly scores for video clips containing anomalies. The thesis

further shows that the choice of features input, such as concatenating RGB and Flow features,

and careful choice of optimization settings, such as optimizer, can significantly improve the

performance of the anomaly detection model on some evaluation metrics.

Keywords: Anomaly Detection, weakly-supervised learning, Multiple Instance Learning

(MIL), Deep Learning, Feature Extraction
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Summary for Lay Audience

Anomaly detection in computer vision is the task of recognizing rare or abnormal events or

behaviors in videos. This includes the presence of unexpected objects, changes in expected

motion patterns, or deviations from the norm. Video anomaly detection has many applications,

including medical imaging, traffic monitoring, and surveillance. Anomaly detection in surveil-

lance videos is a vital tool for identifying potential security threats and alerting security per-

sonnel to act. However, traditional video analysis methods rely on human monitoring, which

can be error-prone and time-consuming. Therefore, developing an automatic video anomaly

detection system is crucial to reduce human resources and improve detection accuracy. The

development of a video anomaly detection system involves feature extraction from video data.

This is where appearance-based and motion-based features are identified and selected to dif-

ferentiate normal behavior from abnormal behavior. Machine learning models are then trained

using these features to identify anomalous behavior in video data. Recent advancements in

deep learning have led to the emergence of novel methods for anomaly detection in surveillance

videos, potentially achieving superior performance compared to traditional machine learning

systems. In this thesis, we proposed an anomaly detection system based on both appearance-

based and motion-based features to detect anomalies happened in surveillance videos. Our

model demonstrated promising results in detecting abnormal events in videos.
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Chapter 1

Introduction

Anomaly detection is one of the most complicated challenges in computer vision [10,36,41,45,

56,66,75,80]. Video anomaly detection is an area of research that concentrates on recognizing

uncommon or abnormal behaviors or incidents in videos. It includes a wide range of events

such as the presence of unexpected objects or incidents, a person falling, a car crash, a medical

emergency, changes in the expected motion pattern, and other deviations from the standard,

which are illustrated in Figure 1.1.

Figure 1.1: Several instances of anomalies are present in the UCSD anomaly detection dataset

[41].
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Chapter 1. Introduction 2

Anomaly detection in videos is rapidly expanding and has diverse applications such as

medical imaging, traffic monitoring, and surveillance. As abnormal occurrences are rare, it

can be challenging for people to recognize them while watching videos. Therefore, developing

a method to detect patterns that differ from normal ones is crucial. Traditional video analysis

methods depend on human monitoring, which can be error-prone and and time-consuming [12].

Anomaly detection systems are designed to detect anomalies in video footage and alert

users to their presence as soon as possible. This can be beneficial in various situations, in-

cluding surveillance, industrial monitoring, and other scenarios where it is crucial to detect

abnormalities.

The rising demand for urban security has caused an increase in surveillance videos used

in urban environments to observe human activity and prevent abnormal events. Essentially,

detecting anomalies in surveillance videos is a vital tool for security and surveillance, as it

helps detect potential security threats and alerts security personnel to take action. Typically,

continuous monitoring by trained personnel for abnormal events in surveillance videos is labor-

intensive and time-consuming. Therefore, research efforts in automatic video anomaly detec-

tion are essential to reduce the human resources required for video monitoring and improve

detection accuracy.

To develop a video anomaly detection system, the initial step is to extract relevant features

from the videos. Feature extraction is a critical aspect of this process, as it involves identify-

ing and selecting significant patterns and attributes from the video data, which can be used to

differentiate normal behavior from abnormal behavior. This requires analyzing the video data

and identifying specific characteristics such as appearance-based and motion-based features.

Appearance-based features are derived from an object’s visual appearance, such as color, tex-

ture, and shape. They can be used to detect unusual behavior in video data based on changes

in object appearance over time. In contrast, motion-based features are derived from the speed,

direction, and acceleration of an object’s motion. These features can be used to detect abnor-

mal movements or sudden changes in motion that may indicate an anomaly.
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In recent years, researchers have been utilizing various techniques, such as CNNs, VGG

architectures, and C3D models, for extracting features from visual data. However, a common

challenge encountered by these methods is their limited capacity to effectively capture temporal

features within videos, which are crucial for tasks like anomaly detection. In our study, our

primary focus was on addressing this challenge through innovative strategies. Specifically,

we explored the utilization of a two-stream Inflated 3D CNN as our chosen feature extractor.

This novel approach enables the extraction of both appearance-based (RGB) and motion-based

(flow) features from video data. We hypothesized that this combined approach could lead

to enhanced outcomes, given that the integration of both appearance-based and motion-based

features offers a more comprehensive representation of video content. As a result, we expected

an improvement in the accuracy and reliability of video anomaly detection systems.

Following feature extraction from video data, these features are used to train machine learn-

ing models to accurately detect any anomalous behavior in the video data. In this regard, a

variety of techniques have been developed for detecting anomalies. Recent advancements in

deep learning have led to the emergence of new methods for anomaly detection in surveillance

videos. When more data is utilized, deep learning methods have the potential to outperform

conventional machine learning systems [81].

Many existing approaches to anomaly detection assume that anomalies are deviations from

a learned normal pattern. However, this assumption may not hold in the case of surveillance

videos, which capture complex real-world anomalies that cannot be constructed from normal

activities [66]. Furthermore, it is impossible to enumerate all possible normal activities that can

be considered normal under different conditions, as some activities may be normal or abnormal

depending on the context [12].
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1.1 Thesis contributions

To address the limitations of previous works mentioned earlier, the principal accomplishment

of this thesis is the implementation of an anomaly detection system capable of detecting anoma-

lies with minimal supervision and less reliance on prior information. This thesis takes the

following approaches:

• The proposed approach in this thesis involves a two-stream based anomaly detection

system for videos. This system utilizes a two-stream Inflated 3D (I3D) Convolutional

Neural Network to extract RGB and Flow features from the video. The RGB stream ex-

tracts information related to the appearance of objects and scenes, while the optical Flow

stream captures the motion and dynamics of objects between frames. We then combined

the information from both streams by concatenating the learned RGB and Flow features.

This provides a more complete understanding of the video content, leading to improved

anomaly detection accuracy.

• We extended and enhanced the anomaly detection model proposed in [66] using the

PyTorch framework [57]. The detector is trained to detect anomalies using videos that are

weakly labeled as normal or abnormal. We utilized the Multiple Instance Learning (MIL)

framework to devise a weakly-supervised approach based on video-level annotations. We

treated anomaly detection as a regression problem. The MIL framework is employed to

assign a higher anomaly score to videos that are expected to contain anomalies.

• We evaluated our proposed method on the UCF-Crime [66] dataset and conducted exper-

iments to assess its effectiveness in detecting anomalies. The results of these experiments

demonstrate that our model performs well and is effective in detecting anomalies in the

surveillance videos.
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1.2 Thesis outline

We organize the rest of this thesis as following:

Chapter 1 introduces the research problem and proposed approach. Chapter 2 provides back-

ground information on relevant concepts. Chapter 3 reviews existing work on feature extraction

techniques and video anomaly detection methods. Chapter 4 presents our proposed anomaly

detection model. Chapter 5 discusses evaluation metrics and presents experimental results. Fi-

nally, Chapter 6 provides conclusions and avenues for future research that can build upon our

work.



Chapter 2

Background

This chapter provides a brief summary of the relevant background topics related to the thesis.

It is divided into two main sections. Section 2.1 will go through the concept of deep learning

as well as the deep learning related techniques used to develop the anomaly detection system.

Feature extraction techniques will be discussed in Section 2.2.

2.1 Machine Learning

Machine learning is a subset of artificial intelligence that involves training machines to learn

from data and use that knowledge to make decisions or predictions.

The goal of the training process is to minimize the difference between the predicted outputs

and the actual outputs of the model, which is achieved by adjusting the model parameters. This

difference, also known as error, is determined using a loss or objective function, which takes in

the parameter values as input and attempts to find the optimal parameter values that minimize

the error [65].

Machine learning can broadly be categorized into three main subcategories: Supervised

Learning, Unsupervised Learning, and Weakly-Supervised Learning. Supervised learning in-

volves training the model with labeled data, whereas unsupervised learning involves using

unlabeled data to identify patterns and relationships. In weakly supervised learning, some part

6



Chapter 2. Background 7

of the training is labeled and the remainder of the data is either unlabeled or weakly labeled. In

this research, our model is based on weakly supervised learning. As a result, a brief explanation

of this approach is provided in the following section.

2.1.1 Weakly Supervised Learning

Weakly Supervised Learning (WSL) [87] is a form of machine learning in which training data

is not completely labeled. WSL is a type of supervision in which only a subset of the training

data is labeled and the remainder of the data is either unlabeled or weakly labeled. This can

happen when obtaining completely labeled data is costly or time-consuming, or when the data

is intrinsically ambiguous or difficult to label. Unlike fully supervised learning, where a model

is trained with a comprehensive set of labeled data, WSL utilizes a set of weak or incomplete

labels. These labels are image tags, text documents, or a set of data points that belong to a

certain class, but not all of them. WSL aims to improve the performance of models trained on

a smaller quantity of labeled data by leveraging the large amount of available unlabeled data.

Weakly supervised learning has gained popularity in recent years due to the availability

of large-scale datasets and the cost and time associated with manual annotation. Unlike fully

supervised learning, where the model is trained on fully labeled data, in weakly supervised

learning, the model is trained on data that is partially annotated or has weak annotations such

as image tags, image-level labels, or bounding boxes. This enables the learning process to be

performed on a much larger scale, as annotating large-scale datasets can be time-consuming

and costly [66].

WSL has a variety of practical applications, including computer vision, natural language

processing, and bioinformatics, where acquiring a huge amount of labeled data can be difficult

and resource-intensive. In computer vision, WSL can be applied to training object detection

models using image tags or bounding boxes rather than full object annotations. In natural

language processing, using a small set of labeled data and a large set of unlabeled data, WSL

can be applied to train models for text classification or sentiment analysis. In bioinformatics,

WSL can be utilized to train models with limited labeled data to find new drugs, predict how
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proteins work, and study how genes are expressed.

There are several techniques used in WSL, such as self-training and multiple instance learn-

ing. These techniques attempt to leverage weak labels to learn a model that can generalize to

new data, even in the face of incomplete or noisy labels.

Self-training [84] is a common method for training models without enough annotated data

in weakly supervised learning. It is a type of semi-supervised learning in which a model is

trained on a small amount of labeled data and then used to predict the labels of the rest of the

unlabeled data. The predicted labels are then added to the labeled data to form a new, more

extensive labeled dataset. This procedure is repeated multiple times until a suitable result is

obtained.

According to [85], self-training is used to improve the model’s performance by leveraging

a large amount of unlabeled data. It has been demonstrated that self-training is effective for

different computer vision and natural language processing tasks. As highlighted in [85], self-

training has been employed in object detection, text classification, and semantic segmentation

to improve the performance of models trained on limited annotated data.

Multiple Instance Learning (MIL) is a weakly supervised learning methodology [87]. Based

on [50], MIL is a sort of learning paradigm in which the training data comprises sets of in-

stances known as ”bags,” where each bag is associated with a single class label but the instances

within the bag may or may not be labeled. In fact, the purpose of MIL is to learn a topic using

both positive and negative bags of instances. Each bag may contain multiple instances, but a

bag is considered positive when only a single instance meets the idea. On the other hand, a

bag is only designated negative if every instance contained within it is negative [50]. MIL is

beneficial when obtaining instance-level labels is difficult or costly, while bag-level labels are

readily available.

MIL aims to train a model that can predict the class label of a new set of instances, given

only the bag-level labels for the training data [8]. Figure 2.1 presents a comparison between

supervised learning and multi-instance learning, where the classifier is trained using bags of

instances instead of individual instances [38]. According to [8], the main idea behind MIL is
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to use bag-level labels to deduce the class labels of instances within the bag and then build a

model that can generalize to new instances. MIL is used for a variety of computer vision tasks

Figure 2.1: Comparison of supervised learning and multi-instance learning [38]

where annotations are limited or difficult to acquire. For example, the goal of object detection

is to detect objects in an image, and the annotations are often image-level labels indicating the

presence or absence of objects in the image, rather than instance-level annotations indicating

the location and shape of objects in the image. In addition, MIL has been utilised in bio-

informatics to estimate the function of a protein based solely on gene expression data.

There are two main approaches to solving the MIL problem: instance-level approaches and

bag-level approaches. Instance-level approaches model the relationship between the instance

features and the instance labels, while bag-level approaches model the relationship between

the bag features and the bag labels. Instance-level approaches require more annotations than

bag-level approaches, but they provide more precise predictions.

2.2 Deep Learning

Deep learning is a type of machine learning inspired by the human brain’s adaptability and

can perform human-like tasks with greater accuracy. It is more powerful than other machine

learning approaches because it can automatically and optimally extract features as part of the
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learning process [65]. Deep learning methods are based on neural networks, which process in-

put data through computational layers to produce classification outputs. Each layer consists of

interconnected neurons, which combine data from the previous layer using weighted connec-

tions. The activation function of each neuron evaluates the weighted sum of inputs to determine

its effect on later layers. During training, the network performs a forward pass for each data

sample, and the weights are adjusted to optimize a loss function after each pass.

Deep Neural Networks (DNNs) are neural networks that have many computational layers

between an input layer and an output layer. These computational layers, which are also known

as hidden layers, are where learning takes place. By having multiple hidden layers, DNNs

can learn from multiple levels of abstraction [24]. Figure 2.3 illustrates the structure of a deep

neural network.

Figure 2.2: Deep Neural Network Architecture [2]

2.2.1 Convolutional Neural Networks

Convolutional neural networks (CNN) are a type of deep neural network that processes visual

data such as images and videos. CNNs can learn various levels of abstraction from an input
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image at different layers. The first layers usually learn basic features like edges and colors,

whereas deeper layers extract more complex features such as shapes and objects [24]. A CNN

is composed of several layers, including an input layer, convolutional layers, pooling layers,

fully connected layers, and an output layer. During training, the input layer receives a batch of

images, where each image has specific dimensions for width, height, and channel size. Con-

Figure 2.3: Convolutional Neural Network Architecture [1]

volutional Layers: A convolutional layer in a CNN uses a kernel to perform element-wise

multiplication on local regions of the input image and produce a feature map that extracts spe-

cific features from the image [24].

Activation Function: An activation function is commonly applied after each convolu-

tional layer. This function takes the sum of the values of each element in the filter and applies

a non-linear transformation to produce an output. Each element in the filter is a weight that

is multiplied by a corresponding element in the input image, within the receptive field of the

filter [79]. Activation functions used in CNNs add non-linearity, which is essential for up-

dating the weights after each forward pass through the network. This process is called back-

propagation, which uses the chain rule to find the partial derivatives or gradients of the loss or

objective function with respect to each weight. When calculating the gradients, the derivatives

of the activation functions also must be considered. Linear activation functions do not provide

non-linearity and result in a constant factor during weight updates, preventing any significant

improvement in the network output. The rectified linear unit (ReLU) is a widely used non-
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linear activation function in CNNs because it is simple, fast, and produces a more predictable

gradient during back-propagation compared to other non-linear activation functions.

Pooling Layer:

CNNs use pooling layers to reduce data dimension by down-sampling it. This is achieved

by either averaging or finding the maximum value in each region of the feature map from pre-

vious layers and passing the resulting value to the next layer. The process of taking the average

of a region is called average pooling, while taking the maximum value of a region is called

max pooling.

Fully Connected Layers: CNNs’ fully connected layers make the final classification de-

cision. Flattening the final convolutional layer’s output into a vector feeds one or more fully-

connected layers. The output of each neuron in a fully connected layer is the weighted sum

of the inputs followed by an activation function. The fully connected layers link the convolu-

tional layers’ high-level features to class scores, which indicate the probability of each input

belonging to a particular class.

Output Layer: In the last layer of a CNN, the model produces a final classification. The

raw output values are usually processed through a SoftMax function, which normalizes them

to real values between 0 and 1. These normalized values are considered probabilities for each

class, and the class with the highest probability is chosen as the final output. SoftMax is typi-

cally used for multi-class classification, and it is similar to the sigmoid function used in binary

classification.

The formula for SoftMax is as follows:

σ(xi) =

 exi∑
j

ex j

 j = 1, ..., n (2.1)
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where x i is the i th element of the input vector, N is the size of the input vector, e is the base

of the natural logarithm, and sum(e(̂x j)) is the sum of the exponential values of all elements in

the input vector.

2.3 Feature Extraction from videos

Feature extraction is a process used in computer vision and machine learning to extract im-

portant information from video streams, which can be used for various purposes such as clas-

sification, tracking, and action detection. The choice of features for video anomaly detection

depends on the type of analysis required. In this process, spatial and temporal features are

usually used. These features help detect abnormal behavior in a video by capturing color in-

formation and motion patterns, which can be indicative of suspicious activities or events.

2.3.1 Representing videos as RGB and Flow features

This section discusses the two main types of features used in computer vision: spatial and tem-

poral. Spatial features, such as RGB, provide information about the visual characteristics of an

object or region of interest, including its location, shape, color, and texture. These features are

commonly used in tasks such as recognizing objects and separating them from the background.

On the other hand, temporal features, such as flow, capture object movement in video. They are

computed based on the apparent motion of pixels between consecutive frames. These features

are useful for tasks such as recognizing actions, detecting events, and summarizing videos.

Combining both spatial and temporal features can provide a more complete representation of

the video content, which is useful in various tasks such as action recognition, object tracking,

and anomaly detection. By combining both types of features, we can gain a better understand-

ing of the content and movement in the video, leading to more accurate analysis and detection

of significant events.
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2.3.2 Features Extraction Techniques

Techniques for Extracting Spatial Features

The widespread popularity of Convolutional Neural Networks (CNNs) has been propelled by

their remarkable ability to extract spatial features from images and videos. Originally intro-

duced in 1988 for the analysis of medical images [70], CNNs have evolved significantly since

their inception, overcoming early limitations rooted in processing power and dataset avail-

ability. The surge of deep learning and computational advancements has elevated CNNs to

a pivotal role in an array of image and video tasks, encompassing areas like face detection,

speech recognition, image classification, and recommendation systems [81]. Diverging from

traditional neural networks, CNNs employ convolutions instead of matrix multiplications, thus

diminishing the weight count and overall network complexity. An intriguing facet is that raw

images can be directly input into the network [81], bypassing the need for feature extraction in-

herent in conventional learning methods. The architectural design of CNNs adeptly capitalizes

on spatial relationships, leading to a reduction in network parameters [81], while optimization

through back-propagation algorithms further augments their performance. As we delve into

the subsequent sections, we explored several advancements beyond CNNs that have emerged

in the quest for improved feature extraction methodologies.

VGG which stands for Visual Geometry Group, represents a widely recognized deep Con-

volutional Neural Network (CNN) architecture distinguished by its multiple layers. The term

”deep” indicates the considerable number of layers, with VGG-16 and VGG-19 featuring 16

and 19 convolutional layers, respectively. K. Simonyan and A. Zisserman [63] created the

VGG16 Convolutional Neural Network model. This model achieved a test accuracy of 92.7%

in ImageNet, which is a dataset containing over 14 million images categorized into 1000

classes [16]. The structure of VGG16 is depicted in Figure 2.4 [19]. It consists of thirteen

convolutional layers and three fully connected layers. All of the hidden layers have a non-

linearity function called rectification (ReLU). Each of the thirteen convolutional layers can be
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divided into five different blocks [81]. The first block has two distinct layers with 64 channels.

Block 2 has two convolutional layers with 128 channels. The number of channels in Block 3

is increased from 256 to 512 [81]. The final two blocks have three convolutional layers each

with 512 channels. After each block, there is a max-pooling layer with a size of 2x2. After the

sixth block, three fully connected layers are added, the first two of which have a total of 4096

channels, and the third layer has 1000 channels. The number of channels in the fully connected

layers can be adjusted according to the specific requirements of different datasets. The last layer

is called Soft-Max. The VGG19 model adheres to the same foundational structure as VGG16,

Figure 2.4: The structure of VGG16 network [19]

albeit with an extension to accommodate 19 layers. The numerical labels ”16” and ”19” cor-

respond to the count of weight layers within the model, specifically the convolutional layers.

As a result, VGG19 incorporates an additional set of three convolutional layers in comparison

to its predecessor, VGG16. The VGG model improves on Convolutional Neural Networks by

introducing two key changes. The first change is to reduce the convolutional kernel size to 3x3.
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This reduces the amount of computation and the number of parameters required compared to

larger kernels. The second change is to increase the depth of the CNN, showing that deeper

networks can achieve better performance. These improvements make VGG a highly effective

CNN model for image classification tasks.

Dense Convolutional Neural Network (DenseNet): A DenseNet is a type of Convolutional

Neural Network that uses interconnected layers to enhance its functionality [31]. While tra-

ditional CNNs aimed to increase network depth and layer size, DenseNet prioritizes feature

development. This approach allows for a more efficient and effective network.

DenseNet architecture is composed of several dense blocks, each of which contains multiple

convolutional layers, as depicted in Figure 2.5. Unlike VGG16, where layers within a block

are not interconnected, layers in the same block in DenseNet are connected, with each layer

receiving the output features of the layers above it. DenseNet typically utilizes small convolu-

tional kernels and employs an 11 Convolutional layer after each average pooling layer to act as

a transition between two dense blocks. Compared to other models, DenseNet requires fewer

feature images, as each layer in the network receives feature maps from all previous layers,

allowing for a more compact network. Furthermore, the dense blocks collect more data, reduc-

ing the number of parameters and feature images required to maintain the stability of the entire

training phase.

Figure 2.5: A DenseNet model with three dense blocks [31].
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Techniques for Extracting Temporal Features

Recurrent Neural Network (RNN): Recurrent Neural Networks (RNNs) are specifically de-

signed for sequential or time-series data processing tasks, such as Natural Language Processing

(NLP) and video processing. They are characterized by their memory feature, which allows

past inputs to affect the current output [32]. Figure 2.6 demonstrates the difference between

RNNs and other types of networks. The input layer’s value is represented by x, and o represents

the output layer’s value. The hidden layer consists of three value-handling matrices, namely U,

V, and W. In traditional Neural Networks, U and V directly process each input x, and the re-

sulting structure produces the output. Therefore, x1 contributes to output O1. However, RNNs

utilize an additional matrix W to manage the values of previous hidden layers. As a result, the

subsequent output O2 is still influenced by the preceding input x1, allowing RNNs to maintain

a memory of previous inputs [81].

Figure 2.6: (a) Traditional Neural Network Architecture (b) The Structure of RNN [81]

Long Short-term Memory (LSTM): Recurrent Neural Networks (RNNs) are well-suited for

processing sequential data, but their basic structure is prone to issues like gradient disappear-
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ance or explosion when working with excessively large sequential data. To address this, Long

Short-term Memory (LSTM) has emerged as a replacement solution to enhance the fundamen-

tal structure of RNNs [29]. In an RNN, only the hidden state S t is passed to the following

moment. However, LSTM introduces a new state, called the cell state (Ct), which carries in-

formation across time steps. The LSTM structure is illustrated in Figure 2.5 [29]. Each LSTM

unit contains gates that determine whether the input should be retained, updated, or passed

through. As a result, LSTM can handle inputs and hidden states, effectively addressing the

limitations of conventional RNNs.

Figure 2.7: LSTM Structure [29]

Two-stream Based Model: The two-stream model is an alternative approach to RNNs and

LSTM for temporal feature extraction, with a focus on capturing motion information and tem-

poral dynamics. The structure of the two-stream model for temporal feature extraction is shown

in Figure 2.8 [62]. This model consists of two streams, the spatial and the temporal stream.

The spatial stream takes a randomly sampled video frame as input and uses a simple CNN

model with four convolutional layers and two fully connected layers to extract spatial features

that are crucial for image classification tasks. On the other hand, the temporal stream uses a

Convolutional Neural Network structure and takes as input the optical flow displacement fields
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between frames. Optical flow captures horizontal and vertical motion information in the video,

which enables the extraction of temporal features from this stream. Compared to RNNs and

LSTMs, which attempt to extract information from sequential data, the two-stream model sep-

arates the spatial and temporal aspects of the data, allowing it to capture motion information

and temporal dynamics effectively.

Figure 2.8: Two-stream structure for video classification [62]

Convolutional 3D (C3D): Traditional convolutional neural networks (CNNs) are limited in

their ability to capture temporal information in videos as they are designed to focus on static

images or short sequences of images. To address this limitation, 3D convolutional networks

(C3D) have been developed as an extension of CNNs. Unlike 2D convolutional kernels which

produce 2D feature maps irrespective of whether they are applied to static or video images,

3D kernels can extract temporal features due to the additional temporal dimension [69]. The

initial structure of the C3D model is shown in Figure 2.9. The architecture is similar to a 2D

CNN, but it is designed to extract temporal features from video data. The model consists of

eight convolutional layers and two fully connected layers. The 3D convolution kernels used in

the model are set to 3 x 3 x 3, corresponding to the length (number of input frames), height,

and width of the input data, respectively. The pooling kernels have a size of 2 x 2 x 2. The first

convolutional layer of the model has 64 filters, and the number of filters in each subsequent
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convolutional layer is doubled after each pooling layer [69].

C3D inherits some advantages from traditional 2D CNNs. For example, all model kernels

are identical, which reduces computational load. The model extracts local features, and as the

number of convolutional layers increases, global features can be extracted. However, because

of the additional temporal dimension, the C3D structure is more complex, and training is more

challenging. Describing the features of each 3D convolutional layer can be difficult, which

makes C3D a black box model.

Figure 2.9: C3D architecture with eight convolution layers [18]

Inflated 3D (I3D): Inflated 3D (I3D) Convolutional Neural Network is a type of deep learn-

ing architecture used in computer vision tasks, particularly for action recognition in videos. It

was proposed by Joao Carreira and Andrew Zisserman in 2016 [11], and it has since become

a popular method for video analysis tasks. It is trained on large video datasets such as Kinet-

ics 400 [33], which is an action recognition dataset of realistic action videos obtained from

YouTube, containing 306,245 videos from 400 action categories. It has demonstrated strong

performance in action recognition benchmark datasets and has been widely used in various

applications such as video classification, human pose estimation, and activity recognition.

It is based on the concept of 2D Convolutional Neural Network inflation, where 2D Convo-

lutional Neural Network filters and pooling kernels are extended to 3D. This extension enables

the network to learn spatio-temporal feature extractors from videos. Figure 4.3 shows the archi-

tecture of I3D. The main difference between I3D and C3D is their architecture and the way they
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Figure 2.10: Structure of Inflated 3D Convolutional Neural Network [11]

process video data. I3D is based on the 2D Convolutional Neural Network inflation approach,

where the filters and pooling kernels of 2D Convolutional Neural Networks are expanded to

3D, enabling the learning of spatio-temporal feature extractors from video. I3D networks are

pre-trained on large-scale datasets such as ImageNet and Kinetics, and then fine-tuned for spe-

cific video classification tasks. The architecture of I3D is deeper than that of C3D, with more

convolutional layers, and it has larger filter sizes, which allows it to learn more complex spatio-

temporal features. I3D also uses a two-stream architecture, where one stream processes RGB

inputs and the other stream processes optical flow inputs. This approach allows I3D to capture

both appearance and motion information and has shown to provide state-of-the-art performance

on many video recognition tasks.

C3D, on the other hand, is purely 3D Convolutional Neural Network, which means it pro-

cesses video data directly in 3D space. It has eight convolutional layers and two fully connected

layers, with all of the 3D convolutional kernels having dimensions of 3x3x3, and all pooling

kernels having a configuration of 2x2x2. C3D is trained end-to-end on specific video classi-

fication tasks, without pre-training on other datasets. Unlike I3D, C3D only processes RGB

inputs.

In terms of performance, I3D has shown better accuracy in several video recognition tasks

compared to C3D, due to its ability to leverage pre-training on large-scale image classification
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datasets. Additionally, I3D is faster to train and requires less memory than C3D, as it uses

pre-trained 2D models as a starting point for feature extraction.
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Related work

The detection of anomalies in videos is known as ”video anomaly detection.” Due to the rarity

of abnormal occurrences, it might be challenging for a person to watch videos and detect the

probable abnormal activities that are taking place in the movie [81]. Therefore, it is essential

to develop a method for detecting video patterns that deviate from an established concept of

normal patterns. Anomaly detection is the term that we use for these kinds of activities [12].

Figure 3.1: An example of anomaly [12]

A simple example of an anomaly is depicted clearly in Figure 3.1. The data exhibits a pair

23
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of normal distributions, denoted N1 and N2. Outliers, such as points o1 and o2 and those in

region O3, are considered anomalies [12].

Video anomaly detection is one of the most complicated challenges in computer vision

[9, 10, 36, 41, 45, 56, 66, 75, 80, 83]. In this chapter, we review how prior work addressed the

problem of anomaly detection in videos.

3.1 Traditional Anomaly Detection Methods

The preliminary work in detecting anomalies in videos is founded on the assumption that

anomalies arise abruptly and are rare, and any deviation from the standard pattern is con-

sidered as an abnormal event [25]. To encode normal patterns, various statistical models are

used, including Gaussian process based models [13, 40], social force models [53], Hidden

Markov-based models [25, 30, 37], histogram-based methods [15], motion patterns [61], mix-

tures of dynamic textures model [42], the spatial-temporal Markov random field based mod-

els [25, 54, 72], and context-driven method [88]. The mentioned methods consider anomalies

to be outliers [25]. However, these traditional methods have limitations when it comes to ana-

lyzing large volumes of video data. They may not perform well under such circumstances and

may not be scalable enough to identify outliers [81].

3.2 Deep Learning-based Anomaly Detection Methods

Recent studies have employed deep learning algorithms to address the limitations of using tra-

ditional methods in anomaly detection. Deep learning algorithms are more adept at handling

such data, and have been shown to improve the performance of anomaly detection. The emer-

gence of deep learning techniques has transformed computer vision [82,89], and in the last few

years, these methods have become the primary means of detecting anomalies in videos. These

methods aim to train models to detect abnormalities based on learned features. There are three

categories of deep learning-based methods: reconstruction-based, prediction-based and hybrid
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methods [39].

Reconstruction-based methods are the most commonly used deep learning methods for

video anomaly detection, according to recent studies [4, 14, 21, 86]. These methods involve

training a deep learning model to reconstruct the frames in a video, and the difference between

the original and reconstructed frames is used to differentiate between normal and abnormal

events. Abnormal events have a higher reconstruction error than normal events because they

deviate more from the training data. The architecture of models used for video anomaly de-

tection is similar to image-based models like CNNs, but additional methods like LSTM and

3D Convolutional Neural Networks are included to process temporal features and extend the

image-based structure to videos [62]. Reconstruction-based methods, including convolutional

auto-encoders, are used in studies such as [22,26,59], while [60] incorporates deep adversarial

training into the reconstruction models. In the realm of video surveillance applications, various

efforts have been made to detect instances of violence or aggression within videos. Kooij et

al. [35] utilized both video and audio data to identify aggressive actions in surveillance videos.

Mohammadi et al. [55] introduced a novel behavior heuristic-based approach for categorizing

videos as either violent or non-violent. Incorporating tracking methodologies, authors in [73]

introduced an alternative perspective beyond distinguishing between violent and non-violent

patterns. They proposed modeling the typical motion of individuals and subsequently detecting

anomalies by identifying deviations from this established normal motion. Because acquiring

dependable tracks can be challenging, some methodologies circumvent tracking and instead

learn overarching motion patterns using techniques like topic modeling [30], histogram-based

methods [15], motion patterns [61], and Hidden Markov Model (HMM) applied to local spatio-

temporal volumes [36]. Indeed, by utilizing training videos that depict typical behaviors, these

approaches gain an understanding of the statistical distributions associated with normal mo-

tion patterns. Consequently, they are able to detect patterns that exhibit lower probabilities

as potential anomalies. However, reconstruction-based methods focus solely on reconstructing

individual frames or patches, without considering the temporal relationships between frames in

a video. This approach can limit their effectiveness in detecting anomalies that occur over mul-
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tiple frames or have unique temporal characteristics that cannot be captured through individual

frame reconstructions.

Prediction-based methods for video anomaly detection involve using predictions of future

frames based on historical data to detect anomalies in video streams. These methods generate

anomalous frames with the same features as the training video using auto-encoders [44, 51].

Anomalies are anything that deviates from the forecast of a deep learning model. In studies

such as [48, 49, 52], sequence models such as Convolutional LSTM (ConvLSTM) are used for

future frame prediction and anomaly detection. Additionally, generative adversarial networks

(GANs) are utilized for anomaly detection based on prediction in [23, 78]. Prediction-based

methods take into account the temporal nature of video data, which can make them more

accurate than reconstruction-based methods for detecting anomalies that occur over time. By

predicting future frames based on historical data, prediction-based methods can detect subtle

changes in the video stream that may not be apparent in a single frame or even a short sequence

of frames.

The previously discussed methods rely heavily on prior knowledge to detect anomalies,

assuming that any deviation from normal patterns is an abnormality. Furthermore, obtaining

normal training data requires annotations, which is challenging and time-consuming, especially

for videos. The assumption that an anomaly is a deviation from a normal pattern, as made by

previous methods, may not always be valid. This is because it is difficult to define all normal

patterns that can be considered normal in all situations [66]. For example, the same activity

can be considered normal or abnormal depending on the context. Additionally, some anomalies

can be complex and cannot be reconstructed from normal patterns [66].

To address the limitations of anomaly detection methods that rely on prior knowledge of

events, it is necessary to develop methods that require minimal supervision and do not heavily

rely on prior knowledge. One such approach is to treat anomaly detection as a classification

or regression problem using weakly labeled training videos, which requires less annotation

effort. As a binary classification task, a classifier can generate precise features for normal and

abnormal videos, whereas treating it as a regression problem allows the use of an anomaly
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score to measure the likelihood of a video being anomalous.

Hybrid methods for detecting anomalies in videos involve training the anomaly detection

model using both normal and abnormal videos. These methods use a technique called Multiple

Instance Learning (MIL) to model motion patterns in a weakly supervised setting. In this

setting, the model distinguishes between videos containing normal or abnormal events using

only video-level labels [6, 28, 66, 83]. Sultani et al. [66] created a binary classifier based on

MIL to detect anomalies. In [83], a graph convolutional neural network is utilized to clean

up label noise. They approached anomaly detection as a regression problem and used a deep

ranking model to predict anomaly scores in a weakly supervised setting.

In this study, we developed a weakly supervised anomaly detection system by extending

the baseline approach proposed by Sultani et al. [66]. The baseline approach utilizes C3D

(Convolutional 3D) [69] to extract features from videos; however, C3D only captures spa-

tial information and does not incorporate temporal information that can be crucial for video

anomaly detection. To address the limitations of the C3D feature extractor, we proposed an ap-

proach that utilizes Two-Stream Inflated 3D Convolutional Neural Network (I3D) as a feature

extractor, which integrates both spatial and temporal information from the video frames. This

integration of spatial and temporal features provided by I3D Convolutional Neural Networks

provides a more comprehensive understanding of the video content, resulting in enhanced per-

formance in anomaly detection tasks compared to using only temporal features extracted by

C3D.
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Proposed Framework and Methodologies

In the previous chapter, we reviewed key prior work that addressed the problem of video

anomaly detection. In this chapter, we present a two-stream based system for detecting anoma-

lies and elaborated on how spatial and temporal features are extracted from videos. We discuss

a basic approach to weakly supervised anomaly detection introduced in [66]. While we imple-

ment a similar pipeline, we propose a different approach that employs a two-stream Inflated 3D

(I3D) Convolutional Neural Network to extract both RGB and Flow features from the video,

instead of C3D as used in [66]. Finally, we explain how we could analyze this pipeline from

various aspects such as visual inputs.

4.1 High-Level Architecture

The process of detecting anomalies in surveillance videos can be broken down into two stages.

The first stage involves extracting RGB and Flow features from the videos using a feature ex-

tractor module, which creates I3D features. In the second stage, these features are used to

detect anomalies in the videos. Our approach to this task involves using a two-stream I3D net-

work to extract features and a weakly-supervised anomaly detector based on multiple instance

learning to detect abnormal behaviors. The overall structure of our framework is shown in

Figure 4.1.

28
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Figure 4.1: High-Level Proposed System Architecture

To begin, we extract visual features from the input video using an Inflated 3D Convolution

Neural Network. These features are then passed on to an anomaly detector. We use the UCF-

Crime dataset [66], which includes 1900 surveillance videos with 13 different types of realistic

anomalies, as the basis for our research. In the following sections, we provide more details

about our framework, which consists of two main components: a two-stream I3D network as

a feature extractor and a weakly-supervised anomaly detector. We further explain how visual

features are extracted from the videos and how anomalies are detected based on the extracted
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features.

4.2 Feature Extractor

Here we describe our input and output representation for feature extraction from videos.

4.2.1 Input/output representation

To extract features from a video, the first step is to divide it into N segments, denoted by vi

(where i = 1,2,...,N). After dividing the video into segments, the video segments are inputted

into the two-stream I3D Convolutional Neural Networks. In the next section, we explained the

structure of the feature extractor, illustrated in Figure 4.2.
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Figure 4.2: The architecture of the two-stream Inflated 3D Convolutional Neural Networks

4.2.2 Method

We utilized a two-stream Inflated 3D (I3D) Convolutional Neural Network to extract features

from videos. It was trained on a large dataset called Kinetics 400 [33], which contains over

300,000 videos depicting various action categories. I3D [11] is an extension of 2D Convolu-

tional Neural Networks commonly used for image classification. However, unlike 2D Convo-

lutional Neural Networks that only consider spatial information, I3D considers both spatial and
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temporal information in videos. This is achieved by inflating 2D filters to 3D filters, allowing

the network to learn spatiotemporal features from video data [11].

To elaborate, the I3D model is created by expanding a 2D convolutional neural network (CNN)

called InceptionV1 [67]. This expansion includes inflating all 2D filters and pooling kernels to

3D equivalents by adding a time dimension. The model is initialized using pre-trained parame-

ters from the Kinetics 400 dataset, which involves repeating the weights of the 2D convolution

kernels N times along the time dimension and re-scaling them by dividing them by N. In order

to accurately represent the spatiotemporal information in videos, it’s important to balance the

size of the time dimension of the 3D filters. If the time dimension is too large, it can lead to

distorted edges, and if it’s too small, key dynamic information may be lost. Therefore, when

converting 2D filters to 3D filters, factors such as frame rate and image size must also be con-

sidered. Additionally, to preserve features extracted by the shallow network, the initial two

max-pooling layers have kernels of size 1 × 3 × 3 with time dimension strides of 1, while the

kernel of the last average-pooling layer has dimensions 2 × 7 × 7 with a time dimension stride

of 2 [77]. Figure 4.3 illustrates the overall structure of I3D and the Inception module.

Figure 4.3: The structure of I3D Convolutional Neural Network [11]

The two-stream I3D Convolutional Neural Networks is a version of the I3D architecture

designed for video action detection that combines RGB and optical flow data. The structure of

the proposed two-stream Inflated 3D Convolutional Neural Networks is shown in Figure 4.2.
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The model consists of two parallel I3D networks, where one network is trained on RGB frames

and the other on optical flow data. By using both streams, the model can extract spatial and

temporal information from video data. The RGB stream captures information on the appear-

ance of objects and scenes in a video. In contrast, the optical flow stream includes information

about the motion and dynamics of objects between consecutive frames [77]. The combina-

tion of these streams allows the model to capture a more comprehensive understanding of the

actions in the video.

Extracting Features from RGB Frames

The RGB stream of an I3D network consists of several blocks of convolutional and pooling

layers. The convolutional layers use 3D filters that are inflated from 2D filters to capture both

spatial and temporal information in the video by sliding the kernels across sequential video

frames. The pooling layers reduce the spatial dimensions of feature maps while retaining

temporal information. The final layer of the RGB stream is a fully-connected layer that makes

predictions based on the learned features.

The extracted RGB features provide visual information about the video’s content. This

includes the position and shape of objects and people, as well as information about lighting

and color. In summary, after processing a video segment through the RGB stream, the output

is a 1024-dimensional tensor which represents the RGB features of the segment, denoted as fr.

Extracting Features from Optical Flow Data

In order to compute Flow features in the I3D network, optical flow between consecutive video

frames must be calculated first [11]. We used the TVL1 algorithm to calculate this optical flow.

TV-L1 is an optical flow method that minimizes the Total Variation (TV) and the L1 norm of the

flow between two frames. It balances the smoothness of the flow with the accuracy of the flow

vector at each pixel, producing results that are both smooth and accurate [74]. The optical flows

are then passed through the inflated 3D convolutional kernels of the I3D network to extract

Flow features in the same way as RGB features, undergoing batch normalization, activation
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functions (such as ReLU), and pooling layers to obtain high-level, abstract features used for

video classification. The extracted Flow features encompass a wide range of information,

including the motion and activity of objects and individuals within the scene. Therefore, the

flow stream generates a tensor with 1024 dimensions that represents Flow features for a specific

video segment. This tensor is referred to as f f .

Fusion Layer

RGB and Flow features complement each other and can be merged to produce a more com-

prehensive representation of video content. To achieve this, the outputs of both streams are

combined in a late fusion step. This step involves concatenating the features learned from

both streams to create a final prediction. Essentially, two-stream I3D produces two 1024-

dimensional tensors - one for RGB features and the other for Flow features. These tensors are

then combined by concatenation to create a 2048-dimensional tensor that contains both RGB

and Flow features. This concatenated tensor, denoted by ft is used as input for the anomaly

detection model, as described in the next section.

4.3 Weakly-Supervised Anomaly Detection Model

4.3.1 Input/output representation

As described in the previous section, the concatenated feature vector, denoted by ft, which

includes both RGB and Flow features, for every video segment was inputted into the anomaly

model. In the following section, we described an anomaly detector that detects anomalies given

vector features from the first stage, as summarized in Figure 4.4.
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Figure 4.4: The architecture of the proposed anomaly detection model
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Method

This thesis aims to develop a model for detecting abnormal events or incidents, which only re-

quires weakly labeled data. We extended the anomaly detection model proposed in [66] as our

baseline anomaly detector based on PyTorch [57]. The detector was trained to detect anomalies

using surveillance videos with weakly labeled data. This implies that the videos are classified

as normal or abnormal, without specifying the exact locations of the anomalies. Therefore,

the model relies on video-level labels instead of instance-level labels to detect anomalies. To

leverage video-level annotations in weakly-supervised methods, we used the Multiple Instance

Learning (MIL) framework [50].

Multiple Instance Learning is a type of learning approach where the training data consists

of groups of instances called ”bags,” where each bag is assigned to a single class label but the

instances within the bag may or may not be labeled. MIL is used to learn a concept using both

positive and negative bags of instances. A bag is classified as positive if at least one instance is

positive. Conversely, a bag is classified as negative if all instances within it are negative [50].

To apply MIL approach to our problem, we divided each video into N segments, each of the

segments was defined by vi (where i = 1,2,...,N), and each video was represented by V = {v}Ni .

Therefore, we considered each video as a bag and each video segment as an instance within

the bag. If a video has at least one segment that contains anomalies, it is labeled a positive

bag and denoted by Ba. Conversely, if all segments in the video are normal, it is considered a

negative bag and denoted by Bn. We then extracted I3D features from each video segment of

both positive and negative bags by using the two-stream I3D network, described in Fiqure 4.3.

Once we extracted I3D features for the video segments, we trained a three-layer fully con-

nected neural network to assign an anomaly score to each segment.

Ranking Model: In our approach, we addressed the challenge of limited abnormal videos

for training, as well as the time-consuming task of annotating segment-level labels, by treating

anomaly detection as a regression problem instead of a classification problem.



Chapter 4. Proposed Framework andMethodologies 36

We employed a deep ranking loss, as proposed in [66], to generate high anomaly scores for

abnormal segments compared to normal segments, such as:

f (va) > f (vn) (4.1)

In Equation 4.1, f (va) refers to the predicted anomaly score for an abnormal video segment,

and f (vn) refers to the predicted score for a normal video segment. Due to the lack of explicit

annotations for video segments, we computed the ranking loss between the highest scored

instances in the positive bag, denoted by Ba, (segments containing anomalies) and the negative

bag, denoted by Bn, (segments without anomalies). In this regard, the above ranking function

4.1 is modified as follows:

max
iϵBa

f (vi
a) > max

iϵBn
f (vi

n) (4.2)

where f (v) denotes the predicted score for given video segment. The purpose of this approach

is to train the anomaly detector to distinguish between abnormal and normal segments even in

the absence of explicit annotations.

The ranking loss between the top-scoring instances in the positive bag and the negative bag

is computed using the hinge-loss function, as stated in [66]. The formula for the hinge-loss

function is derived from equation 4.2 and is as follows:

l(Ba, Bn) = max(0, 1 −max
iϵBa

f (vi
a) +max

iϵBn
f (vi

n) (4.3)

Due to the short duration of anomalies, their corresponding anomaly scores in video segments

should be sparse. To address this issue, the sparsity constraint is incorporated into the loss

function for this task. The smoothness constraint is also introduced to make sure that the

change in anomaly score is gradual across adjacent segments, which is important because video

is a sequence of segments [66]. Together, these constraints improve the algorithm’s ability to

detect anomalies in short video segments. Therefore, the resulting loss function is given by:



Chapter 4. Proposed Framework andMethodologies 37

l(Ba, Bn) = max(0, 1 −max
iϵBa

f (vi
a) +max

iϵBn
f (vi

n) (4.4)

+λ1

n∑
i

f (vi
a) + λ2

n−1∑
i

( f (vi
a) − f (v(

ai + 1)))2 (4.5)

Where λ1 represents the sparsity parameters, and λ2 denotes the smoothness parameter. For

better performance, we set them to 0.00008 as mentioned in [66].
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Experimental Setup and Results

In this chapter, we explain our experimental setup including the dataset, implementation de-

tails, evaluation metrics and quantitative experiment results, respectively.

5.1 UCF-Crime dataset

We chose to conduct our experiments using the UCF-Crime dataset [66] for specific reasons,

given its distinct advantages over other available datasets. This dataset encompasses extended

surveillance videos that portray a wide array of complex real-world anomalies. Unlike many

alternative anomaly detection datasets, the UCF-Crime dataset offers a substantial collection

of videos with longer durations. Moreover, its anomalies are intricately designed to closely

resemble real-world scenarios, making it highly suitable for detecting sophisticated anomalies

in surveillance videos. The dataset contains a significant amount of video content, totaling 128

hours, thereby providing a comprehensive representation of diverse and intricate anomalies that

occur in complex environments. Table 5.1 presents a comprehensive comparison of existing

anomaly detection datasets [66].

38
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Dataset Dataset length Number of videos Average number of frames per video

UMN [64] 5 min 5 1290

Avenue [46] 30 min 37 839

UCSD Ped1 [41] 5 min 70 201

UCSD Ped2 [41] 5 min 28 163

Subway Entrance [5] 1.5 hours 1 121,749

Subway Exit [5] 1.5 hours 1 64,901

UCF-Crime [66] 128 hours 1900 7247

Table 5.1: A comparison between anomaly datasets [66].

5.1.1 Dataset statistics

The UCF-Crime dataset [66] contains 128 hours of video. It comprises 1900 lengthy, unedited,

real-world surveillance videos with 13 realistic anomalies [66]. On average, there are 950

videos containing real-world anomalies and 950 normal videos. The number of instances of

anomalies in each class is presented in Table 5.2.
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Anomaly Numbers of videos Anomaly Numbers of videos

Abuse 50 Robbery 150

Arrest 50 Shooting 50

Arson 50 Shoplifting 50

Assault 50 Stealing 100

Burglary 100 Vandalism 50

Road Accidents 150 Explosion 50

Fighting 50 Normal events 950

Table 5.2: The total number of videos associated with each anomaly in the UCF-Crime dataset

[66].

The UCF-Crime dataset includes multiple illustrations of abnormalities extracted from the

training and testing videos. Some of these examples are exhibited in the figures below.
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Figure 5.1: Illustrations of anomalies extracted from the UCF-Crime dataset [66].
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5.1.2 Class mappings

We adopted the UCF-Crime dataset mapping. There are 13 classes for anomalies and one class

for normal videos, which are used to train the anomaly detection model. These 13 categories for

anomalies are Abuse, Arrest, Arson, Assault, Road Accident, Burglary, Explosion, Fighting,

Robbery, Shooting, Stealing, Shoplifting, and Vandalism. Table 5.3 displays a comparison of

anomaly classes present in various datasets.

Dataset Anomaly classes

UMN [64] Run

Avenue [46] Run, throw, new object

UCSD Ped1 [41] Bikers, small carts, walking across walkways

UCSD Ped2 [41] Bikers, small carts, walking across walkways

Subway Entrance [5] Wrong direction, No payment

Subway Exit [5] Wrong direction, No payment

UCF-Crime [66] Abuse, arrest, arson, assault, accident, burglary, fighting

Table 5.3: Comparison of anomaly classes. Numbers from the [66] paper.

5.1.3 Train and test splits

The UCF-Crime dataset consists of 1900 surveillance videos, with the training set consisting

of 800 normal videos and 810 abnormal videos. The testing set includes 150 normal videos

and 140 anomaly videos, covering all 13 anomaly categories in both sets. In our experiment,

we utilized the default class mapping of the UCF-Crime dataset to facilitate comparison with

the baseline results.



Chapter 5. Experimental Setup and Results 45

5.2 Implementation Details

We implemented our model with PyTorch [57]. To create the proposed model, we first extracted

visual features, including RGB and Flow features, from the last layer of the I3D network [11].

To accomplish this, we divided each video into 32 segments, each containing 16 consecutive

frames. We then fed each video segment into the proposed two-stream Inflated 3D Convolu-

tional Neural Network (I3D) network, trained on the Kinetics dataset. From the RGB and Flow

streams, we generated two 1024-dimensional tensors representing the RGB and Flow features

for each video frame. We then calculated the average of the extracted features for all 16 frames

within each video segment to compute the features for that segment. The RGB stream provides

information about the visual appearance of objects and scenes in a video, such as color, texture,

and shape. On the other hand, the optical flow stream provides information about the motion

and dynamics of objects, such as the direction, speed, and acceleration of movement within the

video frames. By combining these two streams of information, a more comprehensive under-

standing of video can be achieved. We concatenated RGB and Flow features as input to our

model.

After concatenating the RGB and Flow features, resulting in a 2048-dimensional tensor,

this tensor is fed into a three-layer fully connected (FC) neural network as described in [66].

The first FC layer of this network has 512 units, followed by a second FC layer with 32 units,

and a final FC layer with only 1 unit. We recreated the anomaly detector proposed in [66] using

PyTorch and considered it as our baseline. In our experiments, we set the batch size to 30, and

randomly selected 30 videos from both the abnormal and normal video datasets to train the

model. We trained the model with the Adagrad [17] optimizer using the 0.001 learning rate.

5.3 Hyper-parameter Tuning

As part of our model optimization process, we conducted a hyper-parameter search for opti-

mizers and learning rates. Specifically, we considered two of the most popular optimization

algorithms in deep learning, namely Adam [34] and Adagrad [17]. We tested these optimizers
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with learning rates selected from a grid of [0.01, 0.001, 0.0001].

Upon analyzing the results, illustrated in Figure 5.2 and Figure 5.3, we observed that Adagrad

outperformed Adam in detecting anomalies in our model. We attribute this superior perfor-

mance to the fact that Adagrad has lower complexity than Adam. Adagrad uses a per-parameter

adaptive learning rate, which allows it to automatically adjust the learning rate of each param-

eter based on its previous gradients. This results in a more efficient and accurate optimization

process, particularly when dealing with sparse data or high-dimensional feature spaces.

Overall, our hyperparameter search suggests that Adagrad may be a more effective optimizer

than Adam for anomaly detection tasks, particularly in complex deep learning models.

Figure 5.2: The AUC results based on Adagrad Optimizer

Figure 5.3: The AUC results based on Adam Optimizer
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5.4 Evaluation metrics

In this section, we delve into the assessment of the proposed anomaly detection model’s per-

formance using the UCF-Crime dataset as the foundation. The selected evaluation metric for

this study is the Area Under the Curve (AUC) derived from the Receiver Operating Charac-

teristic (ROC) curve, the most common metric used in previous research on video anomaly

detection [7, 27, 43, 44, 47, 58, 66, 68, 71, 76]. In our proposed approach, we treated anomaly

detection as a regression task, focusing on ranking instances based on their likelihood of be-

ing anomalies. Traditional classification metrics such as F1 score, Precision, and Recall may

not align with our proposed ranking-based anomaly detection system [20]. To elaborate, the

proposed anomaly detection system assigns a ranking or score to each instance to indicate its

anomaly likelihood. The final decision on classifying an instance as an anomaly depends on

applying a threshold to these scores, leading to different levels of Precision and Recall. The

F1 score overlooks the significance of the threshold at which anomalies are identified, making

it less relevant for ranking-based systems. Moreover, obtaining accurate anomaly labels can

be challenging in real-world situations, making precise calculation of metrics like Precision,

Recall, or F1 score difficult.

Given these challenges, it is more appropriate to use evaluation metrics that are specifically

designed for ranking anomaly detection tasks. The Area Under the ROC Curve (AUC-ROC) is

considered a good evaluation metric for ranking-based anomaly detection tasks for the follow-

ing reasons:

• Threshold Independence: The AUC-ROC metric is not influenced by a particular

threshold value. It assesses how well a model can differentiate between different classes

without needing a specific threshold to be defined. This characteristic is well-suited for

our proposed anomaly detection approach, where we treated anomaly detection as a re-

gression task and assigned high anomaly scores to videos that contain anomalies.

• Comprehensive Assessment: The AUC provides an aggregate measure of performance

across all possible thresholds. Since the AUC considers performance over the entire
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range of thresholds, it provides a comprehensive view of the model’s ability to rank

instances correctly, regardless of where the threshold is set. This property is especially

valuable in situations where the optimal threshold might vary based on the specific needs

of the application or the trade-offs between false positives and false negatives. The ROC

curve, which plots the true positive rate against the false positive rate at different thresh-

olds, provides a graphical representation of the trade-off between true positive rate and

false positive rate as the threshold changes.

In conclusion, while F1 score, Precision and Recall is useful metrics for traditional classifi-

cation tasks, it might not capture the complexities and priorities of our proposed anomaly de-

tection system that relys on ranking scores. Using metrics tailored to ranking-based tasks like

AUC can provide a more accurate and informative evaluation of the system’s performance.

The AUC-ROC metric serves as the benchmark to gauge the efficacy of our proposed approach,

allowing us to both evaluate its effectiveness and make comparisons with other state-of-the-art

methods in the anomaly detection domain.

5.4.1 ROC-AUC

The Area Under the Curve (AUC) of the Receiver Operating Character- istic (ROC) curve is

a performance evaluation metric commonly used in binary classification problems. It plots

the True Positive Rate (TPR) versus the False Positive Rate (FPR) at different classification

thresholds to assess a classification model’s ability to discriminate between positive and nega-

tive classes, as demonstrated in Figure 5.4. The true positive rate (TPR) is the ratio of correctly

predicted positive instances (true positives) to the total actual positive instances. On the other

hand, the false positive rate (FPR) is the ratio of incorrectly predicted positive instances (false

positives) to the total actual negative instances. TPR and FPR are calculated as follows:

TruePositiveRate =
T P

T P + FN
(5.1)
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FalsePositiveRate =
T N

FP + T N
(5.2)

The AUC provides an aggregate measure of performance across all possible thresholds. A

perfect classifier would have an AUC of 1, indicating a TPR of 1 and an FPR of 0 across

all possible threshold values. A random classifier would have an AUC of 0.5, indicating no

ability to distinguish between the two classes. Therefore, the higher the AUC, the better the

performance of the classifier.

Figure 5.4: The Receiver Operating Characteristic (ROC) Curve [3]

5.5 Experimental Results

In this section, we assess how well the model performs depending on the type of video feature

extraction network employed. We evaluated the model’s performance by calculating the AUC

for three different scenarios. Firstly, we presented the results obtained using the I3D RGB

stream network, as depicted in Figure 5.5. Secondly, we evaluated anomaly detection perfor-



Chapter 5. Experimental Setup and Results 50

mance using the I3D flow stream network, as illustrated in Figure 5.6. Finally, we calculated

the AUC for the two-stream network, which fuses both RGB and flow stream networks, illus-

trated in Figure 5.7. Moreover, the model loss during the training phase for the two-stream

network is also calculated and presented in Figure 5.8.

Figure 5.5: The AUC results based on I3D RGB stream network
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Figure 5.6: The AUC results based on I3D Flow stream network

Figure 5.7: The AUC results based on two-stream I3D network
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Figure 5.8: The model loss based on the two-stream network
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Figure 5.9 presents a comparison of the AUC results of the three scenarios discussed in

Section 5.5 on the UCF-Crime dataset. It is evident that the anomaly detection model based

on the two-stream I3D network outperforms the RGB and Flow stream networks. Therefore, it

can be concluded that the combination of RGB and Flow features provides more comprehen-

sive information, which is advantageous for detecting anomalies in surveillance videos.

Figure 5.9: AUC results of different models on UCF-Crime
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The Receiver Operating Characteristic (ROC) Curve of the proposed system is depicted in

Figure 5.10, displaying the correlation between the True Positive Rate (TPR) and the False

Positive Rate (FPR). This curve effectively visualizes the system’s ability to differentiate be-

tween true positive detections and false positive instances.

Figure 5.10: ROC Curve of the proposed method: TPR versus FPR
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We compared our approach with existing anomaly detection methods. Hasan et al. [27]

suggested a method based on a fully convolutional feed-forward deep autoencoder to train a

classifier by learning local features. Lu et al. [47] introduced a dictionary-based method that

learns normal behavior patterns and uses reconstruction errors to detect anomalies. Sultani et

al. presented a model that detects anomalies by extracting C3D features. We adopted their

approach as our baseline approach. Table 5.4 presents a quantitative comparison of different

methods based on the AUC metric on the UCF-Crime dataset. Our proposed approach, which

uses the two-stream I3D network as a feature extractor, achieves better performance than the

baseline method proposed by Sultani et al. [66], as indicated by the AUC values in the table.

These results demonstrate the effectiveness of our method for detecting anomalies in surveil-

lance videos.

Method AUC

Hasan et al. [27] 50.6

Lu et al. [47] 65.51

Sultani et al. (C3D) [66] 75.41

Ours (I3D RGB) 80.93

Ours (I3D Flow) 82.20

Ours (I3D RGB & Flow) 85.41

Table 5.4: Quantitative comparison on UCF-Crime
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Time evaluation: The inference time of a model is a critical performance metric that

measures the time taken to process an input and produce an output. In the context of anomaly

detection, a fast inference time is highly desirable, as it can enable the system to quickly de-

tect anomalous behavior and trigger appropriate responses. In our case, the measurement of

approximately 7 seconds for the inference time suggests that our model is efficient in detecting

anomalies in a timely manner.

5.6 Practical Application of the Proposed System

The practical implementation of the proposed system discussed in this section pertains to its

potential utilization in various real-world scenarios. The anomaly detection system developed

within this thesis presents opportunities for deployment in practical contexts, such as enhanc-

ing campus safety and security. Regarding campus safety, the system could be seamlessly

integrated into existing surveillance systems, allowing for the monitoring and identification of

abnormal activities or incidents occurring on the campus premises. Through the analysis of

video streams from strategically positioned cameras across the campus, the system could ef-

fectively detect behaviors that deviate from the established norm, thereby notifying security

personnel of potential threats or uncommon occurrences.

Nevertheless, it’s crucial to acknowledge that while the proposed system has showcased

its effectiveness using the UCF-Crime dataset, its suitability in a distinct environment like a

campus necessitates customization and fine-tuning. The definitions of normal and abnormal

behavior are context-dependent, leading to the requirement for tailored adjustments. As a

result, to ensure optimal performance, the proposed system would need to be retrained or fine-

tuned using a dataset specifically collected from the campus setting.
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Conclusion

This thesis addresses the complex challenge of detecting anomalies in video surveillance. It

discusses how traditional approaches to anomaly detection assume that anomalies are devia-

tions from a learned normal pattern. However, this may not hold in surveillance videos, which

capture complex real-world anomalies that cannot be constructed from normal activities. To

overcome this, the thesis proposes an approach that relies less on prior information. This ap-

proach utilizes a Two-Stream Inflated 3D Convolutional Neural Network to extract both RGB

and Flow features from videos. By combining both streams, a more comprehensive understand-

ing of video content can be achieved. This improves the anomaly detection model’s accuracy.

The proposed method is evaluated on the UCF-Crime dataset, and the results demonstrate its

superior performance compared to existing approaches to detecting anomalies in surveillance

video.

6.1 Limitations and Future work

6.1.1 Limitations

Although the anomaly detection system proposed in the study achieves high performance, its

computational cost is relatively high compared to simpler models such as C3D. This is due

to the fact that the I3D model has more parameters and requires more computation. The I3D
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model utilizes two separate streams of convolutional networks to incorporate both spatial and

temporal information. Each stream is specialized in processing one type of information. This

means that each video frame needs to be processed twice, once for the spatial stream and once

for the temporal stream. This is before the two feature sets are combined. As a result, this

process requires more computation and memory compared to simpler models like C3D, which

only extract temporal features. Moreover, it is important to highlight that the proposed anomaly

detection method operates under a weakly supervised framework, eliminating the need for ex-

plicit annotations of anomalous events during training. While this approach brings notable

advantages, such as reduced annotation effort, it can also introduce a higher risk of false pos-

itives in certain scenarios, particularly in low-light or dark scenes. To mitigate this limitation

and enhance the system’s accuracy, several strategies can be considered. One approach in-

volves supplementing the training process with labeled anomalous data, thereby refining the

model’s understanding of diverse anomalies. Additionally, incorporating data from auxiliary

sources, such as thermal imaging or audio cues, can provide complementary information that

aids in distinguishing true anomalies from false positives. By carefully integrating these strate-

gies, the overall robustness and reliability of the anomaly detection system can be substantially

improved.

6.1.2 Future work

While the proposed method shows promising results, further research can be conducted in the

following areas, listed below:

1. Drone-based Anomaly Detection: As a future direction, drones could be used to collect

videos and generate a new dataset for evaluating the proposed anomaly detection model.

Through this method, it could be possible to investigate the effectiveness of the model

under different environmental conditions, as well as its robustness to a variety of anoma-

lies that may not be present in the current dataset. In some scenarios, a single camera

may not be enough to capture all the necessary information. In these situations, drones

have several benefits over traditional cameras. As an example, drones could provide a
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more comprehensive view of an area, capture footage from multiple angles and heights,

as well as transmit live video to a monitoring station for constant monitoring, improving

the accuracy of anomaly detection. Moreover, using drones may be more cost-effective

and safer than using traditional cameras, because they can be deployed in inaccessible or

hazardous areas where using humans or traditional cameras would be unsafe.

2. Utilizing other modalities: While the proposed approach leverages both RGB and Flow

features, there are other modalities, such as depth and sound. These modalities can

provide additional information about the video content. Exploring these modalities could

improve anomaly detection accuracy.

3. Dealing with occlusions: Another limitation of the proposed approach is that it assumes

that all objects in the video are visible and can be captured by the RGB and Flow features.

However, in real-world scenarios, objects may be partially or fully occluded, which can

lead to false positives or negatives. Future work can investigate ways to handle occlu-

sions and improve the robustness of the anomaly detection system.

4. Exploring the use of additional data sources: In this thesis, we only use video data

to train the anomaly detection model. Future research can explore the use of additional

data sources such as audio, text, and sensor data to improve the model’s accuracy.

5. Investigate the integration of human-in-the-loop approaches: Human operators can

enhance the performance of anomaly detection system by providing feedback.
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