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I. Introduction  

Energy usage is a critical factor in various human activities, ranging from individual to industrial 
scales. It plays a vital role in supporting economic growth, social welfare, and technological 
development [1]. However, with the increasing global demand for energy and the challenges posed 
by environmental changes, understanding energy usage patterns has become increasingly important. 
Accurate predictions about future energy use can provide significant benefits in decision-making [2], 
demand and supply stability [3], and energy efficiency [4]. Energy usage data often exhibits a time 
series nature, where information is recorded over a specific time span [5]. For example, hourly energy 
consumption data may be challenging to interpret directly due to its temporal nature [6]. Additionally, 
energy usage data can involve various attributes that contribute to the patterns and fluctuations of 
energy usage. Therefore, accurately forecasting future energy use poses a complex task.  

To overcome the complexity of analyzing energy usage data, Deep Learning (DL) has emerged as 
a practical approach [7]. DL is a branch of machine learning that utilizes neural networks with multiple 
layers and parameters to learn complex data representations [8]. Various DL models have been 
developed for time series analysis, including Convolutional Neural Networks (CNN) [9], Recurrent 
Neural Networks (RNN) [10], Long Short-term Memory (LSTM) [11], Bidirectional LSTM (Bi-
LSTM) [12], and Gated Recurrent Unit (GRU) [13]. CNNs have been widely used in image 

ARTICLE INFO A B S T R A C T   

Article history: 

Received 17 October 2022 

Revised 17 October 2023 

Accepted 17 October 2023 

Published online 20 October 2023 

 

Energy use is an essential aspect of many human activities, from individual to 

industrial scale. However, increasing global energy demand and the challenges posed 
by environmental change make understanding energy use patterns crucial. Accurate 
predictions of future energy consumption can greatly influence decision-making, 

supply-demand stability and energy efficiency. Energy use data often exhibits time-
series patterns, which creates complexity in forecasting. To address this complexity, 
this research utilizes Deep Learning (DL), Convolutional Neural Networks (CNN), 

Recurrent Neural Networks (RNN), Long Short-term Memory (LSTM), Bidirectional 
LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU) models. The main objective is 
to improve the accuracy of energy usage forecasting by optimizing the alpha value in 

exponential smoothing, thereby improving forecasting accuracy. The results showed 
that all DL methods experienced improved accuracy when using optimum alpha. 
LSTM has the most optimal MAPE, RMSE, and R2 values compared to other 

methods. This research promotes energy management, decision-making, and 
efficiency by providing an innovative framework for accurate forecasting of energy 
use, thus contributing to a sustainable and efficient energy system. 

This is an open access article under the CC BY-SA license 

(https://creativecommons.org/licenses/by-sa/4.0/).  

Keywords: 

Energy Efficiency 

Forecasting 

Deep Learning 

Exponential Smoothing 

Optimum Alpha      

http://u.lipi.go.id/1502081730
http://u.lipi.go.id/1502081046
http://journal2.um.ac.id/index.php/keds
mailto:keds.journal@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


171 A. P. Wibawa et al. / Knowledge Engineering and Data Science 2023, 6 (2): 170–187 

 

recognition tasks, but they can also be applied to time series data analysis. They can automatically 
extract essential features from time series data, such as seasonal patterns, trends, cycles, and 
irregularities. Unlike 2D-CNNs, which require converting time series data into image format, 1D-
CNNs [14] can directly process time series data without the need for image conversion.  

RNNs, particularly LSTM, are well-suited for modeling temporal dependencies in time series data 
[15]. RNNs maintain a hidden state that captures information about previous time steps, allowing them 
to capture long-term dependencies. LSTM, in particular, addresses the vanishing gradient problem 
commonly encountered in traditional RNNs. The vanishing gradient problem occurs when the 
gradient approaches zero, preventing updates to the network weights and causing the loss of time 
series data characteristics. LSTM overcomes this issue by using memory cells and gates to store and 
control the temporary state of the network [16]. Bi-LSTM is an extension of the LSTM model that 
incorporates information from both past and future time steps. It consists of two LSTM layers, one 
processing the input sequence in the forward direction and the other in the backward direction. By 
considering information from both directions, Bi-LSTM can capture more comprehensive temporal 
dependencies in the data [17]. This bidirectional nature makes Bi-LSTM particularly effective in tasks 
where future information is crucial for accurate predictions, such as energy usage forecasting. GRU, 
on the other hand, is a simplified version of LSTM that aims to address the computational . 

In this study, we aim to explore the application of DL models with optimum alpha for energy usage 
forecasting. We will compare the performance of different DL models and evaluate their effectiveness 
in capturing the complex patterns and fluctuations in energy usage data. Additionally, we will 
investigate the impact of data normalization techniques on the performance of DL models. The 
findings of this research will contribute to the development of accurate and efficient energy usage 
forecasting models, which can aid in decision-making and promote energy efficiency in various 
sectors. Overall, this study aims to address the challenges in analyzing energy usage data by leveraging 
the power of DL models. By utilizing DL models, we can extract meaningful features and capture 
temporal dependencies in the data, leading to improved energy usage forecasting. The results of this 
research will provide valuable insights for energy management and planning, contributing to a more 
sustainable and efficient energy future. 

II. Methods 

To facilitate a more systematic research approach, experiments were devised, as illustrated in 
Figure 1. In essence, a comparison was made between the Smoothed Deep Learning (S-DL) method 
using optimum alpha and the primary DL method. Various evaluation metrics were also employed to 
assess the performance of the optimum alpha-enhanced results. Further details regarding Figure 1 will 
be expounded upon in the following subsections. 

A. Dataset 

The dataset used in this study uses the Hourly Energy Demand Time Series Forecast dataset from 
kaggle [18]. This dataset encompasses a span of four years (January 2015 to December 2018) and 
encompasses information regarding electricity usage, production, pricing, and meteorological 
conditions in Spain. Specifically, data on electricity consumption and generation was sourced from 
ENTSOE, a publicly accessible platform for Transmission Service Operator (TSO) data. Settlement 
prices, on the other hand, were acquired from the Spanish TSO, Red Electric España. Additionally, 
weather data for the five largest cities in Spain was procured as part of a personal project, and it was 
subsequently made available to the public through the Open Weather API. What sets this dataset apart 
is its inclusion of detailed hourly records for electricity consumption, alongside forecasts provided by 
the TSO for both consumption and pricing. 

This dataset consists of 29 attributes that have 35064 instances with float data type. The target 
attribute used in this study is the actual total load attribute whose data visualization can be seen in 
Figure 2. As for the total load forecast attribute, it is not used in the research because the presence of 
this attribute in the data serves as a benchmark or comparison attribute with the target attribute.  In 
addition, there are 2 attributes that are deleted because they have NaN values. The total load forecast 
attribute was also not used in the study because the presence of this attribute in the data serves as a 
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benchmark or comparison attribute with the target attribute. Therefore, the total attributes to be used 
are 26. 

 

Fig. 1. Experimental schema 

 

Fig. 2. Total load actual 

B. Exponential Smoothing with Optimum α 

Exponential smoothing is a widely used technique in time series forecasting that aims to eliminate 
noise and capture underlying patterns in data [19]. It achieves this by assigning weights to previous 
observations, with higher weights given to more recent data points. The smoothing factor, denoted as 
α (alpha), determines the weight assigned to the most recent observation [20]. The concept of optimum 
α arises from the need to find the best value for the smoothing factor that maximizes the accuracy of 
the forecasting model [21]. The choice of α depends on the specific characteristics of the time series 
data and the desired forecasting task. The goal is to select the value of α that minimizes the forecasting 
error or maximizes the accuracy of the predictions. 

To determine the optimum α, various approaches can be employed. One standard method is to 
perform a grid search or optimization algorithm to evaluate different values of α and select the one 
that yields the lowest forecasting error. The process of finding the optimum α involves balancing the 
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trade-off between responsiveness to recent changes in the data and the level of smoothing applied. A 
higher α value gives more weight to recent observations, making the model more responsive to short-
term fluctuations but potentially less stable. Conversely, a lower α value places more emphasis on 
historical data, resulting in a smoother forecast but potentially slower to adapt to changes.  This process 
considers the characteristics of the time series data and the specific forecasting objectives, striking a 
balance between responsiveness and stability in the model's predictions.  

Equation (1) and (2) offer the single exponential smoothing [22] when 𝑡 = 0. The smoothed data 
𝑆𝑡 is the result of smoothing the raw data {𝑋𝑡}. The smoothing factor, 𝛼 is a value that determines the 
level of smoothing. The range of 𝛼 is between 0 and 1 (0 ≤ 𝛼 ≤1). When 𝛼 close to 1, the learning 
process is fast because it has a less smoothing effect. In contrast, values of 𝛼 closer to 0 have a more 

significant smoothing effect and are less responsive to recent changes (slow learnin g). 

𝑆𝑡  = 𝛼𝑋𝑡 + (1 − 𝛼) 𝑆𝑡−1 ,    𝑡 > 0 (1) 

𝑆𝑡 =  𝑆𝑡−1 + 𝛼( 𝑋𝑡 −  𝑆𝑡−1) (2) 

𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝛼 =
( 𝑋 𝑚𝑎𝑥 −   𝑋 𝑚𝑖𝑛) −

1
𝑛

∑  𝑋𝑡
𝑛
𝑖=1

𝑋 𝑚𝑎𝑥 −  𝑋 𝑚𝑖𝑛
 (3) 

The substitution of Equation (3) to (2) results in the following Equation (4). We use the optimum 

smoothed result (𝑆𝑡) to improve the DL methodperformance [21]. Pseudocode 1 show how to find 

the optimum alpha for exponential smoothing 

𝑆𝑡 =  𝑆𝑡−1 +
( 𝑋 𝑚𝑎𝑥 −   𝑋 𝑚𝑖𝑛) −

1
𝑛

∑  𝑋𝑡
𝑛
𝑖=1

𝑋 𝑚𝑎𝑥 −  𝑋 𝑚𝑖𝑛
( 𝑋𝑡 −  𝑆𝑡−1) (4) 

 
PSEUDOCODE 1. Find the optimum alpha for exponential smoothing 

Input:  

- Data time series 

 

Output: 

- Optimum value of alpha 

 

Procedure FindOptimumAlpha(data): 

    Set alpha_min = 0.1  // minimum value of alpha 

    Set alpha_max = 0.9  // maximum value of alpha 

    Set alpha_step = 0.1  // increment step for alpha 

    Set error_min = infinity  // minimum error value 

    Set alpha_optimum = 0  // optimum value of alpha 

     

    For alpha = alpha_min to alpha_max step alpha_step: 

        Apply exponential smoothing with alpha to the data 

        Calculate the error by comparing the predicted values with the actual 

data 

         

        If error < error_min: 

            Set error_min = error 

            Set alpha_optimum = alpha 

     

    Return alpha_optimum as the optimum value of alpha 

 

End Procedure 
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C. Data Normalization 

In this research, preprocessing is done by changing the original data so that it can be processed for 
further testing [23]. The inherent characteristics of the majority of time-series data exhibit dynamic 
and non-linear behavior [24]. The preprocessing carried out in this study is by normalize the data. 
Data normalization is an essential preprocessing step in energy usage forecasting to ensure that the 
input data is standardized and comparable across different scales. Normalization techniques transform 
the data into a standard range, typically between 0 and 1, without distorting the original distribution. 
This process helps to eliminate the influence of outliers and extreme values, making the data more 
suitable for training DL models.  

The choice of normalization technique depends on the characteristics of the energy usage data and 
the specific requirements of the forecasting task. It is essential to experiment with different 
normalization techniques and evaluate their impact on the performance of DL models. Proper data 
normalization can improve the convergence speed of the models, prevent numerical instability, and 
enhance the overall accuracy of energy usage forecasting. One commonly used normalization 
technique in this research is using Min-Max scaling, also known as feature scaling. This method 
rescales the data by subtracting the minimum value and dividing by the range (maximum value minus 
minimum value). The resulting values are then within the range of 0 to 1  [25]. Min-Max scaling 
preserves the relative relationships between the data points and is particularly useful when the 
distribution of the data is known to be bounded as in (5). Pseudocode 2 present the process for the 
normalization. 

𝑋𝑡(𝑛𝑜𝑟𝑚) =  
𝑋𝑡 − 𝑋 𝑚𝑖𝑛

𝑋 𝑚𝑎𝑥 − 𝑋 𝑚𝑖𝑛
 (5) 

𝑋𝑡(𝑛𝑜𝑟𝑚) is the result of normalization, 𝑋𝑡 is the data to be normalized, while 𝑋 𝑚𝑖𝑛 and 𝑋 𝑚𝑎𝑥 

stand for the minimum and maximum value of the entire data.  
 
PSEUDOCODE 2. Normalization using Min-Max 

Input:  

-Data to be normalized (X), minimum value of the data (X_min), maximum value 

of the data (X_max) 

 

Output: 

-Normalized data (X_norm) 

    

Procedure Min-Max Normalization 

  Calculate the range of the data: 

     a. Set X_range = X_max - X_min 

    

  Normalize the data: 

     a. For each data point X_t in X: 

        i. Calculate the normalized value X_norm_t using the formula: 

           X_norm_t = (X_t - X_min) / X_range 

        ii. Append X_norm_t to the normalized data X_norm 

    

  Return the normalized data X_norm 

 

End Procedure 

 
D. PSO Hyperparameter Tuning 

Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm inspired by the 
social behavior of bird flocking or fish schooling [26]. It is commonly used to tune the 
hyperparameters of machine learning models, including Deep Learning (DL) models [27]. In this 
section, we will discuss the application of PSO for hyperparameter tuning in DL models for energy 
usage forecasting. Hyperparameters are parameters that are not learned directly from the data but are 
set by the user before training the model. They control the behavior and performance of the DL model, 
such as the learning rate, number of hidden layers, and number of neurons in each layer. Finding the 
optimal values for these hyperparameters is crucial for achieving the best performance of the DL 
model. 
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PSO works by simulating the movement of particles in a multidimensional search space. Each 
particle represents a potential solution, and its position in the search space corresponds to a set of 
hyperparameters. The particles move towards the best solution found so far, called the global best, 
and are influenced by their own best solution, called the personal best. Through iterations, the particles 
explore the search space and converge towards the optimal solution. A general outline of the PSO 
hyperparameter tuning process can be seen in the Pseudocode 3. In the context of DL models for 
energy usage forecasting, PSO can be used to tune hyperparameters such as the number of DL layers, 
the number of neurons in each layer, the batch size, and the dropout rate like in Table 1. By searching 
the hyperparameter space using PSO, we can find the combination of hyperparameters that leads to 
the best performance of the DL model in terms of accuracy and prediction error.  

PSEUDOCODE 3. PSO hyperparameter tuning 

Input: 

- Data for training and validation 

- Hyperparameter search space 

 

Output: 

- Best hyperparameter settings 

 

Procedure PSO_Hyperparameter_Tuning(data): 

    Set population_size = 50  // Number of particles in the swarm 

    Set max_iterations = 100  // Maximum number of iterations 

    Set c1 = 2.0  // Cognitive parameter 

    Set c2 = 2.0  // Social parameter 

    Set w = 0.7  // Inertia weight 

 

    // Initialize the swarm 

    Initialize_swarm(population_size) 

 

    // Evaluate initial particle positions 

    Evaluate_particles(data) 

 

    // Set the global best position and fitness 

    Set_global_best() 

 

    // Main PSO loop 

    for iteration = 1 to max_iterations do: 

        for each particle in the swarm do: 

            // Update particle velocity 

            Update_velocity(particle, global_best) 

 

            // Update particle position 

            Update_position(particle) 

 

            // Evaluate new particle position 

            Evaluate_particle(data, particle) 

 

            // Update personal best position and fitness 

            Update_personal_best(particle) 

 

            // Update global best position and fitness 

            Update_global_best(particle) 

 

    // Return the best hyperparameter settings 

    Return global_best_position 

 

End Procedure 

 
To apply PSO for hyperparameter tuning, we need to define the fitness function that evaluates the 

performance of the DL model with a specific set of hyperparameters. The PSO algorithm then 
iteratively updates the positions of the particles based on their personal best, global best, and the inertia 
weight, which controls the balance between exploration and exploitation. By searching the 
hyperparameter space using PSO, we can find the optimal combination of hyperparameters that leads 
to improved performance and accurate predictions. This approach can enhance the effectiveness of 
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DL models in energy usage forecasting and contribute to better decision-making and energy 
management.  

Table 1. PSO hyperparameter tuning search space  

Parameter Search Space 

Batch Size ‘100’, ‘1000’ 

Epoch ’50’, ‘100’ 

Hidden Layer ‘2’, ‘5’, ‘10’ 

Loss Function ‘MSE’, ‘MAE’, ’huberloss’ 

Neuron ‘32’, ‘64’ 

Optimizer ‘adam’, ‘rmsprop’ 

 
E. Performance Analysis 

To measure the performance analysis in the study, we used methods in DL. DL is a subset of 
machine learning algorithms. DL itself is often called a deep neural network [28]. Neural networks 
are computational models that work by mimicking the behavior of the human brain [29]. Basically, 
DL is a neural network that has many layers and parameters [30]. The number of layers in DL allows 
the model to be able to analyze large amounts of data and have complex relationships. Early layers 
are used to learn simple features, while deeper layers learn more complex features [31]. 

• Convolutional Neural Network (CNN) 

CNN, especially 2D-CNN, have revolutionized picture classification. However, one dimension 
(1D-CNN), excel at time-series data classification [14]. 1D-CNN can automatically learn the internal 
representation of time-series data and detect essential characteristics without operator intervention 
[21]. The internal representation of time-series data includes seasonality, trends, cycles, and 
abnormalities. These properties are essential for time-series data analysis and prediction. These 
internal representations can be recorded and used for classification by 1D-CNN. 1D-CNN operate 
directly on time-series data, unlike 2D-CNN, which convert input data into numbers. This simplifies 
workflow by eliminating preprocessing processes. 1D-CNNs may capture temporal connections and 
identify significant patterns by directly examining sequential data [27] Overall, 1D-CNN for time-
series data categorization have many benefits. This allows automatic feature extraction for more 
efficient and accurate time-series data analysis. Direct processing of time-series data eliminates 
complex data transformations, simplifying modeling. Thus, 1D-CNN are useful for time-series data 
analysis and classification. The 1D-CNN architecture present in Figure 3 and for the pseudocde of 
CNN forecasting process can be seen in Pseudocode 4. 

 

Fig. 3. 1D-CNN architecture 
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PSEUDOCODE 4. CNN forecasting process 

Input: 

- Energy Dataset 

- Setting parameters according to the results of PSO hyperparameter tuning 

 

Output: 

- Trained CNN model 

 

Procedure Train_CNN(training_data, validation_data, num_conv_layers, 

num_filters, filter_size, num_fc_layers, num_neurons, learning_rate, 

num_epochs): 

    Initialize CNN model 

 

    // Add convolutional layers 

    for i = 1 to num_conv_layers do: 

        Add convolutional layer with num_filters[i] filters and filter_size[i] 

filter size 

 

    // Flatten the output from convolutional layers 

    Flatten() 

 

    // Add fully connected layers 

    for i = 1 to num_fc_layers do: 

        Add fully connected layer with num_neurons[i] neurons 

 

    // Compile the model 

    Compile model with appropriate loss function and optimizer 

 

    // Train the model 

    Train model on training_data with validation_data, using learning_rate and 

num_epochs 

 

    // Return the trained model 

    Return trained CNN model 

 

End Procedure 

 

• Recurrent Neural Network (RNN) 

The RNN developed by Paul Werbos and Ronald J. Williams in the 1980s and 1990s is the 
most commonly used model in deep learning [32]. RNNs are a class of deep learning models 
designed to process sequential data. The main characteristic of RNNs is the presence of recurrent 
connections in the network, which allows them to maintain a hidden state that captures 
information about previous time steps [33]. This hidden state makes RNNs particularly suitable 
for modeling temporal dependencies in time series data. The architecture includes a series of 
recurrent cells, each processing input data and updating the hidden state using recurrent 
connections. This recurrent structure allows the RNN to cope with sequences of varying length. 
The RNN architecture can be seen in Figure 4. Pseudocde 5 present the RNN forecasting process. 

 

Fig. 4. RNN architecture 
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PSEUDOCODE 5. RNN forecasting process 

Input: 

- Energy Dataset 

- Setting parameters according to the results of PSO hyperparameter tuning 

 

Output: 

- Trained RNN model 

 

Procedure RNN_Training(training_data, num_hidden_units, learning_rate, 

num_epochs): 

    Initialize weights and biases for input-to-hidden and hidden-to-hidden 

connections 

    Initialize the hidden state 

 

    for epoch = 1 to num_epochs do: 

        for each training example in training_data do: 

            // Forward pass 

            for t = 1 to sequence_length do: 

                Update hidden state using the current input and previous hidden 

state 

 

            // Backward pass 

            for t = sequence_length to 1 do: 

                Calculate the gradient of the loss with respect to the output 

                Update the weights and biases of the hidden-to-hidden 

connections 

 

                Calculate the gradient of the loss with respect to the hidden 

state 

                Update the weights and biases of the input-to-hidden 

connections 

 

    // Return the trained RNN model 

    Return trained_model 

 

End Procedure 

 

• Long Short-term Memory (LSTM) 

Vanishing gradient found in RNN is a condition when the gradient approaches 0  so that the 
gradient cannot provide updates to the weights in the network and make the time series data lose its 
characteristics [34]. Vanishing gradient is caused by using the same weight at each time-step. LSTM 
can overcome the vanishing gradient problem in RNN. The concept of Long Short-term Memory 
(LSTM) was first published in 1997 by Hochreiter and Schmidhuber [35]. LSTM analyzes time series 
data for the long term by applying a collection of short-term memories. This model develops the 
information storage capacity of RNNs by using "memory cells" [36]. Memory cells have connections 
that store the temporary state of the network and are controlled through 3 "gates", namely forget gate, 
input gate, and output gate [37]. Figure 5 represents the memory cell of LSTM and for the pseudocde 
of LSTM forecasting process can be seen in Pseudocode 6. 

 
Fig. 5. Memory cell LSTM 
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PSEUDOCODE 6. LSTM forecasting process 

Input: 

- Energy Dataset 

- Setting parameters according to the results of PSO hyperparameter tuning 

 

Output: 

- Trained LSTM model 

 

Procedure LSTM_Model(training_data, testing_data, num_layers, num_hidden_units, 

num_output_units, learning_rate, num_epochs): 

    // Initialize LSTM model 

    Initialize_LSTM(num_layers, num_hidden_units, num_output_units) 

 

    Set_Num_Epochs(num_epochs) 

 

    // Train LSTM model 

    for epoch = 1 to num_epochs do: 

        // Forward pass 

        for each training example in training_data do: 

            // Reset LSTM hidden state 

            Reset_Hidden_State() 

 

            // Iterate through each time step 

            for t = 1 to length(training_example) do: 

                // Perform LSTM forward pass 

                LSTM_Forward_Pass(training_example[t]) 

 

        // Backward pass 

        for each training example in training_data do: 

            // Reset LSTM gradients 

            Reset_Gradients() 

 

            // Iterate through each time step in reverse order 

            for t = length(training_example) to 1 do: 

                // Perform LSTM backward pass 

                LSTM_Backward_Pass(training_example[t]) 

 

            // Update LSTM weights 

            Update_Weights() 

 

    // Test LSTM model 

    for each testing example in testing_data do: 

        // Reset LSTM hidden state 

        Reset_Hidden_State() 

 

        // Iterate through each time step 

        for t = 1 to length(testing_example) do: 

            // Perform LSTM forward pass 

            LSTM_Forward_Pass(testing_example[t]) 

 

    // Return trained LSTM model 

    Return LSTM_Model 

 

End Procedure 

 

• Bidirectional LSTM (Bi-LSTM) 

The Bi-LSTM model is a variant of the LSTM model that incorporates bidirectional processing. 
It consists of two LSTM layers, one processing the input sequence in the forward direction and the 
other processing it in the backward direction. This bidirectional processing allows the model to 
capture both past and future dependencies in the data, making it particularly effective for time series 
analysis [38]. In the forward LSTM layer, the input sequence is processed from the beginning to the 
end, capturing the temporal dependencies and patterns in the data. This layer maintains a hidden state 
that stores information about the past time steps. The backward LSTM layer, on the other hand, 
processes the input sequence in reverse order, capturing the dependencies and patterns in the opposite 
direction. This layer maintains a separate hidden state that stores information about the future time 
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steps. By combining the outputs of both LSTM layers, the Bi-LSTM model can effectively capture 
the dependencies in both directions [39]. This allows the model to have a more comprehensive 
understanding of the temporal dynamics in the data. The outputs of the Bi-LSTM layers are then fed 
into a fully connected layer, which performs a non-linear transformation on the data and produces 
the final forecasted values. The Bi-LSTM architecture can be seen in Figure 6. Pseudocde 7 show 
the Bi-LSTM forecasting process 

 
 

Fig. 6. Bi-LSTM Architecture 

PSEUDOCODE 7. Bi-LSTM forecasting process 

Input: 

- Energy Dataset 

- Setting parameters according to the results of PSO hyperparameter tuning 

 

Output: 

- Trained Bi-LSTM model 

 

Procedure Train_BiLSTM(training_data, validation_data, num_lstm_layers, 

num_lstm_units, learning_rate, num_epochs): 

    Initialize Bi-LSTM model 

 

    // Add LSTM layers 

    for i = 1 to num_lstm_layers do: 

        Add forward LSTM layer with num_lstm_units[i] units 

        Add backward LSTM layer with num_lstm_units[i] units 

 

    // Compile the model 

    Compile model with appropriate loss function and optimizer 

 

    // Train the model 

    Train model on training_data with validation_data, using learning_rate and 

num_epochs 

 

    // Return the trained model 

    Return trained Bi-LSTM model 

 

End Procedure 

 

• Gated Recurrent Units (GRU) 

The GRU model is a sophisticated RNN variation used for sequential data processing and 
forecasting. It captures long-term time series dependencies well. Training the GRU model with the 
training set helps it understand data patterns and relationships. The GRU model uses gatin g 
techniques to preserve or discard past time step information, unlike RNNs [40] The reset and update 
gates control network information flow. The reset gate specifies which bits of the prior concealed 
state to forget, while the update gate determines how much new information to add. GRU models 
data temporal dependencies by selectively updating and forgetting information. This adaptive 
retention or discard capacity allows the model to capture short-term and long-term patterns, making 
it suitable for time series forecasting, speech recognition, and natural language processing. Its gating 
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features and capacity to identify long-term dependencies make the GRU model a formidable 
sequential data analysis and forecasting tool. It is used in many fields where understanding and 
predicting time series data patterns is crucial because to its flexibility and efficacy [41]. Figure 7 
represents the structure of GRU cell and for the pseudocde of GRU forecasting process can be seen 
in Pseudocode 8. 

 
Fig. 7. GRU cell structure 

PSEUDOCODE 8. GRU forecasting process 

Input: 

- Energy Dataset 

- Setting parameters according to the results of PSO hyperparameter tuning 

 

Output: 

- Trained GRU model 

 

Procedure Train_GRU(training_data, validation_data, num_gru_layers, 

num_hidden_units, learning_rate, num_epochs): 

    Initialize GRU model 

 

    // Add GRU layers 

    for i = 1 to num_gru_layers do: 

        Add GRU layer with num_hidden_units[i] hidden units 

 

    // Compile the model 

    Compile model with appropriate loss function and optimizer 

 

    // Train the model 

    Train model on training_data with validation_data, using learning_rate and 

num_epochs 

 

    // Return the trained model 

    Return trained GRU model 

 

End Procedure 

 

F. Data Analysis 

Performance testing is an essential step in evaluating the effectiveness and efficiency of energy 
usage forecasting models [42]. It involves assessing the model's ability to accurately predict future 
energy usage based on historical data. In this section, we will discuss the performance testing process 
and metrics used to evaluate the DL models' forecasting performance.  This research uses Mean 
Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and the Coefficient of 
Determination (R2) as calculations.  

MAPE measures the extent to which forecasting or prediction distinguishes between predicted and 
actual energy values in percentage terms as in (6). A lower MAPE indicates a more accurate model 
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[43]. RMSE calculates the square root of the average squared difference between the predicted and 
actual energy usage values [44]. RMSE is used to determine how sensitive the existing DL model can 
detect outliers in the energy forecasting value compared to the original value, as in (7). Additionally, 
the R2 is often used to assess the goodness of fit of the model as in (8). R2 represents the proportion of 
the variance in the energy usage data that is predictable by the model. A higher R2 value indicates a 
better fit of the model to the data [45].  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝐴𝑖−𝐹𝑖|

𝐴𝑖

𝑛

𝑖=1
                         (6) 

𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐹𝑖 − 𝐴𝑖)2𝑛

𝑖=1
                          (7) 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                                       (8) 

 

𝐴𝑖  is the actual value, 𝐹𝑖  is the predicted value, 𝑛 is the number of predictions, 𝑆𝑆𝑟𝑒𝑠 is the 
residual sum of squares, and SS𝑡𝑜𝑡  is the total sum of squares. We also logged the computational time 
for each method, which serves as an additional performance metric. We designate the best method 
with the shortest computational time expenditure. By conducting performance testing and evaluating 
the accuracy and efficiency of DL models, we can gain insights into their effectiveness in energy 
usage forecasting. This information can guide decision-making processes, improve energy 
management strategies, and contribute to the development of more sustainable and efficient energy 
systems. 

III. Result and Discussion 

Figure 8 through Figure 11 illustrate the comparison between DL and S-DL across all method, 
with a smoothing factor of α = 0.1 applied to the S-DL. The setting paramter of all method is used 
from the PSO hyperparameter tuning search space result as present in Table 2.  

Table 2. PSO hyperparameter tuning search space  

Parameter Search Space Result 

Batch Size 100 

Epoch 50 

Hidden Layer 2 

Loss Function MSE 

Neuron 32 

Optimizer Rmsprop 

 
Figure 8 provides a valuable comparative assessment of MAPE for various prediction methods in 

two scenarios: "Without Smoothing" and "Smoothing with Optimum Alpha," highlighting the impact 
of smoothing techniques, specifically optimized with an alpha value, on predictive accuracy. In both 
scenarios, MAPE values indicate that LSTM consistently outperforms other methods, exhibiting the 
lowest MAPE values (3.9065%) and demonstrating exceptional predictive accuracy. Conversely, Bi-
LSTM continuously records the highest MAPE values (7.6464%), suggesting lower predictive 
accuracy regardless of smoothing. Overall, Figure 8 underscores the significance of optimizing 
smoothing techniques with an alpha value to enhance predictive accuracy in data analysis and 
forecasting tasks. Although the average increase in MAPE value across all methods was a modest 
0.1385%, LSTM consistently proves to be the most accurate method. At the same time, Bi-LSTM 
always lags in predictive accuracy in both scenarios. These findings emphasize the importance of 
judiciously applying smoothing techniques for improved predictive performance.  

Figure 9 compares RMSE values for various prediction methods under two scenarios: "Without 
Smoothing" and "Smoothing with Optimum Alpha." A consistent trend observed in the data is the 
slight reduction in RMSE values across all methods when "Smoothing with Optimum Alpha" is 
applied, indicating improved prediction accuracy through smoothing. LSTM consistently outperforms 
other methods by achieving the lowest RMSE values in both scenarios (0.0624 and 0.0621), 
underscoring its accuracy. In contrast, Bi-LSTM consistently exhibits the highest RMSE values, 
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suggesting lower prediction accuracy regardless of smoothing (0.1252 and 0.1228). In summary, 
Figure 9 emphasizes the positive impact of smoothing techniques, particularly when optimized with 
an alpha value, on enhancing the predictive accuracy of these methods. The average decrease in RMSE 
of all methods after using smoothing with optimum alpha is 0.0061, this shows that smoothing with 
optimum alpha can detect outliers better and more sensitively. LSTM is the most accurate method, 
while Bi-LSTM consistently demonstrates the least accuracy, highlighting the significance of 
thoughtful smoothing application in data analysis and forecasting tasks.  

 

 

Fig. 8. MAPE evaluation result 

 

Fig. 9. RMSE evaluation result 

Figure 10 presents a comparative R2 values analysis for various prediction methods in two 
scenarios. The data consistently reveals that R2 values improve across all forms when "Smoothing 
with Optimum Alpha" is applied, indicating a superior fit to the dataset. LSTM consistently 
outperforms other methods by achieving the highest R2 values in both scenarios (0.9021 and 0.9027), 
confirming its strong alignment with the data. In contrast, Bi-LSTM continuously records the lowest 
R2 values, indicating a relatively weaker fit regardless of smoothing (0.6042 and 0.6195). Basically, 
Figure 10 underscores the positive impact of optimizing smoothing techniques with an alpha value on 
improving the goodness of fit. LSTM consistently excels at fitting the data, while Bi-LSTM 
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consistently demonstrates the weakest fit in both scenarios. These findings stress the importance of 
judiciously applying smoothing techniques to enhance the performance of these methods in data 
analysis and forecasting. 

 

Fig. 10. R2 evaluation result 

Figure 11 provides insights to assess how the application of smoothing techniques, optimized with 
an alpha value, impacts the computational efficiency of these methods when handling data. The data 
reveals that, in most cases, "Smoothing with Optimum Alpha" leads to reduced computational times 
compared to the "Without Smoothing" scenario. This suggests that smoothing can improve the 
computational efficiency of these methods. CNN consistently shows shorter computational times in 
both scenarios, highlighting its efficiency. Conversely, Bi-LSTM and GRU require more time for 
computations, particularly without smoothing. These findings emphasize the importance of 
considering computational efficiency when choosing prediction methods for da ta analysis and 
forecasting tasks. 

 

 

Fig. 11. Computational time evalution result 

 
Overall, the use of an optimum alpha value can significantly enhance the forecasting results for 

energy data in all DL method. In this study, the LSTM model consistently stands out as the top choice, 
yielding the lowest MAPE and RMSE values while achieving the highest R2 value. For computation 
time, LSTM is also in the middle, not too fast and not too long. This indicates that LSTM not only 
provides a high level of prediction accuracy but also offers the best fit to the existing data compared 
to the other evaluated methods. 
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The implications of these findings in the field of energy are that selecting the suitable model or 
method, especially when using an optimum alpha value, can significantly improve the accuracy of 
predictions in energy resource planning and management. In the energy sector, more accurate 
predictions can have a positive impact on optimizing energy usage, reducing waste, and supporting 
environmental sustainability. Furthermore, the use of DL and optimized methods like LSTM in energy 
forecasting opens up opportunities to develop more intelligent and more efficient solutions for energy 
supply management, especially in situations where energy sustainability and efficiency are becoming 
increasingly crucial. 

IV. Conclusions 

In conclusion, this study underscores the significant impact of optimizing smoothing techniques 
with an optimum alpha (𝛼) value on enhancing the accuracy of energy usage forecasting using DL 
models. Among the models tested, LSTM consistently outperforms others, displaying the lowest 
MAPE (3.9065%) and RMSE (0.0621) values and the highest R2 (0.9027), making it the top choice 
for accurate predictions. Notably, the application of optimum alpha values has proven to be more 
successful in terms of improving prediction accuracy across various metrics. Computational efficiency 
is also a critical consideration, with CNN demonstrating shorter computation times (57s). Limitations 
of this research include the specific dataset used, which may not be entirely representative of all energy 
usage scenarios, and the computational resources required for LSTM. Future research should explore 
the generalizability of these findings across diverse energy datasets and further investigate the 
computational optimization of LSTM. These findings have crucial implications for energy resource 
management, as more accurate predictions can aid in optimizing energy usage, reducing waste, and 
supporting environmental sustainability, emphasizing the relevance of thoughtful model selection and 
hyperparameter tuning. 
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