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Abstract 

A better understanding of functional changes in the brain across childhood offers the 

potential to better support neurodevelopmental and learning challenges. However, neuroimaging 

tools such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) 

are vulnerable to head motion and other artifacts, and studies have had limited reproducibility. 

To accomplish research goals, we need to understand the reliability and validity of data 

collection, processing, and analysis strategies. Neuroimaging datasets contain individually 

unique information, but identifiability is reduced by noise or lack of signal, suggesting it can be a 

measure of validity. The goal of this thesis was to use identifiability to benchmark different 

methodologies, and describe how identifiability associates with age across early childhood.  

I first compared several different fMRI preprocessing pipelines for data collected from 

young children. Preprocessing techniques are often controversial due to specific drawbacks and 

have typically been assessed with adult datasets, which have much less head motion. I found 

benefits to the use of global signal regression and temporal censoring, but overly strict censoring 

can impact identifiability, suggesting noise removed must be balanced against signal retained. 

I also compared several different EEG measures of functional connectivity (FC). EEG 

can be vulnerable to volume conduction artifacts that can be mitigated by only considering 

shared information with a time delay between signals. However, I found that mitigation 

strategies result in lower identifiability, suggesting that while removing confounding noise they 

also discard substantial signal of interest. 

Individual experiences may shape development in an individually unique way, which is 

supported by evidence that adults have more individually identifiable patterns of FC than 
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children. I found that across 4 to 8 years of age, identifiability increased via increased self-

stability, but without changes in similarity-to-others.  

In the absence of ground truth, it is difficult to argue for or against analysis decisions 

based solely on a theoretical framework and need to also be validated. My work highlights the 

importance of not thinking about techniques in a valid-invalid dichotomy; certain methods may 

be sub-optimal while still being preferable to alternatives if they better manage the trade off 

between noise removed and signal retained. 
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Preface 

Chapters 2-4 of this thesis consist of primary research articles that are either published (Chapters 

2 and 3) or are in preparation (Chapter 4). References to these articles are provided below: 

 

Chapter 2: Graff, K., Tansey, R., Ip, A., Rohr, C., Dimond, D., Dewey, D., Bray, S., 2022a. 

Benchmarking common preprocessing strategies in early childhood functional connectivity and 

intersubject correlation fMRI. Developmental Cognitive Neuroscience 54, 101087. 

https://doi.org/10.1016/j.dcn.2022.101087 

 

Chapter 3: Graff, K., Tansey, R., Rai, S., Ip, A., Rohr, C., Dimond, D., Dewey, D., Bray, S., 

2022b. Functional connectomes become more longitudinally self-stable, but not more distinct 

from others, across early childhood. NeuroImage 258, 119367. 

https://doi.org/10.1016/j.neuroimage.2022.119367 

 

Chapter 4: Graff, K., Rai, S., Yin, S., Godfrey, K., Merrikh, D., Tansey, R., Vanderwal, T., 

Protzner, A., Bray, S. 2023.  Reliability and validity of the electrophysiological connectome 

across phase-based connectivity measures. Manuscript in preparation. 

 

All content from these works is included here with permission from co-authors (Appendix E). 
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Chapter 1: Introduction 

Neuroscience has long sought to understand human neurodevelopment. While interesting 

in and of itself, a more thorough understanding of functional changes during development has 

potential societal benefits, such as offering the possibility of developing interventions to help 

struggling students, including those with learning disabilities or neurodiverse populations.  

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are 

two of the primary methodologies to investigate human brain function and its development. 

Investigations into synchrony between brain regions – known as functional connectivity (FC) - 

have successfully been used to measure changes over time (Grayson and Fair, 2017), understand 

differences between neurotypical and neurodiverse individuals (González-Madruga et al., 2022), 

and better understand behavior (Rosenberg et al., 2020). However, data collected from fMRI and 

EEG have a relatively low signal-to-noise ratio, and are vulnerable to artifacts such as head 

motion, leading to concerns about reliability and validity. Sufficient reliability and validity are a 

major challenge to inference in developmental connectomics, and arguably limited reliability of 

measurements has led to poor reproducibility in the field (Marek et al., 2022). 

Reliability is the extent to which multiple recordings of the same features, such as the 

same individual or the same group under similar conditions, produce consistent measurements, 

such as stable estimates of FC. On the other hand, validity is the extent to which measurements 

accurately capture the feature of interest. While reliability is a precondition for validity, more 

reliable measurements are not always more valid, as data can be systematically biased. For 

example, a poorly calibrated scale could consistently give the same inaccurate reading of an 

object's weight. This can occur in neuroimaging: Earlier fMRI research reliably showed that 

young children have weaker long-range connectivity, but the validity of these findings was later 
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reassessed, as head motion that is not properly accounted for causes longer connections to look 

weaker, and children tend to move more in the scanner (Grayson and Fair, 2017; Power et al., 

2012).  

It can be difficult to assess validity in human neuroscience, as non-invasive measures 

such as fMRI and EEG have limitations, and there is typically no ground truth available. 

Nonetheless, several properties associate with validity. One is the ability to capture individually 

specific information, allowing for participant identifiability. While previous work often describes 

individual distinctiveness as "reliability" (Noble et al., 2019), here I use "reliability" in a more 

limited sense of any repeatable measurement, to emphasize that certain features can be 

consistently captured while deviating from underlying ground truth, while noting that 

identifiability is only a proxy of true validity. In this thesis, I used participant identifiability, 

along with other measures of validity, to assess the reliability and validity of fMRI and EEG FC 

in developmental samples, and I assessed changes in identifiability with age in an early 

childhood sample. 

 

1.1.1 Functional magnetic resonance imaging 

Magnetic resonance imaging (MRI) uses strong magnetic fields and radio waves to create 

images of the body’s anatomy and physiology. In addition to many clinical uses, it has become 

well used in neuroscience research to non-invasively image the human brain in terms of structure 

and function. Functional MRI is sensitive to changes in blood oxygenation, which is an indirect 

measure of neuronal activity (Ogawa et al., 1990). This is accomplished by utilizing the 

properties of hemoglobin, the protein responsible for transporting oxygen in red blood cells, 

which exists in two forms. The first, oxyhemoglobin (HbO), is the form actively carrying 
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oxygen. By nature of how oxygen binds to hemoglobin, HbO has no unpaired electrons and is 

therefore diamagnetic, i.e., repelled from external magnetic fields. The second form, 

deoxyhemoglobin (HbR), is the form not carrying oxygen. It has unpaired electrons, causing it to 

be paramagnetic, i.e., attracted to external magnetic fields, and thus creates local magnetic field 

distortions. 

The relationship between neural activity and blood flow is known as neurovascular 

coupling (Hillman, 2014). Through neurovascular coupling, when neurons fire, blood flow 

increases to the region of neuronal activity to increase oxygen delivery. HbO exceeds what is 

necessary to account for an increase in oxygen demand, resulting in a drop in the concentration 

in HbR. fMRI utilizes the magnetic field changes due to HbR to map changes in the blood 

oxygen-level dependent (BOLD) response (Hillman, 2014). That is, a drop in the HbR 

concentration leads to magnetic field changes that are recorded as an increased fMRI BOLD 

signal. Therefore, in BOLD fMRI we interpret higher BOLD signals as more neural activity, 

although the relationship is complex and not fully understood (Glover, 2011; Kim, 2018; 

Logothetis, 2002) 

In a typical BOLD fMRI acquisition, the whole brain is imaged in a few seconds (or 

fractions of a second with multi-slice accelerated sequences), generating hundreds of volumes of 

data over a span of minutes. For example, if a brain volume is recorded in 2 seconds, then in a 1-

minute scan 30 volumes of data are collected. For any given voxel (a 3-dimensional pixel) there 

will then be a 30-point time series. While a lot can be learned about brain activity at this 

temporal resolution, fMRI is poorly suited for investigating higher frequency brain activity (>0.5 

Hz). One of the biggest advantages of fMRI compared to other non-invasive methodologies used 

to investigate human brain function (such as EEG) is excellent spatial resolution, with whole 
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brain imaging at the millimetre scale. Despite this comparative advantage, any given fMRI voxel 

is coalescing data from tens of thousands of neurons and other cells, limiting interpretability at 

the cellular level. Further, fMRI is susceptible to distortion and signal drop out in specific 

regions (Rua et al., 2018). Despite these limitations, fMRI is currently the most popular method 

used to investigate human FC. 

 

1.1.2 fMRI functional connectivity 

In addition to the investigation of task-evoked neural responses – such as how flashing 

lights lead to BOLD signal changes in the occipital cortex (Kwong et al., 1992) – fMRI can also 

be used to investigate the interactions between different regions of the brain. One way to assess 

this is with FC, which quantifies the statistical relationship in activity between brain regions 

(Biswal et al., 1995). In fMRI, FC is typically determined by calculating the Pearson correlation 

between the temporal signals from two voxels or brain regions, with higher correlations in 

activity interpreted as a stronger functional connection. However, note that a strong statistical 

correlation does not necessarily reflect or imply direct physical connections. 

FC-fMRI studies have been used to generate maps of ‘connections’ within the brain, 

known as functional connectomes. Connectomes are typically created by parcellating the brain 

into a set of regions, often using a predefined atlas, such as the Schaefer atlas (Schaefer et al., 

2018). Afterwards, the average time series is calculated within each region, and then FC is 

calculated between all pairs of brain regions. These functional connectomes can then be 

compared between people (Jung et al., 2020), longitudinally within people (Calabro et al., 2020), 

or when switching between tasks (Harrewijn et al., 2020), revealing both inter-individual 

differences and intra-individual changes. While connectomes can be generated using data 
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collected with traditional task-based paradigms, such as memory or motor tasks, they are often 

used to investigate 'intrinsic' fluctuations in brain activity. To do this, a participant is given either 

instructions to stare at a fixation cross (a resting state scan), or a prolonged attention task, such as 

watching a movie (often called passive viewing). These scans can last up to hours (Gordon et al., 

2017), allowing detailed investigations into an individual's connectivity patterns. 

Connectome studies have shown that the brain is organized into a set of distinct 

functional networks, where each functional network shows greater intra-network connectivity 

than inter-network connectivity (Bressler and Menon, 2010). The exact number of networks and 

their location can vary by dataset, study, and methodology, but network descriptions generally 

include 7 to 11 networks (Shen et al., 2013; Urchs et al., 2019). These include networks covering 

sensory and motor regions, such as the somatomotor and visual networks, networks involved in 

task-positive cognition, such as the dorsal attention and the frontoparietal networks, and the 

default mode network (DMN). The DMN in particular has been well-studied, as it tends to be 

negatively correlated with attention networks and is related to self-referential mental activity and 

recollecting prior experiences (Raichle, 2015). Some brain networks are primarily localized to a 

single bilateral location, while others consist of spatially distinct regions, such as the DMN 

which consists of the ventral medial prefrontal cortex, the dorsal medial prefrontal cortex, and 

the posterior cingulate cortex (Raichle, 2015).  

 

1.1.3 A novel measure of validity: fingerprinting and individualization 

Finn et al. (2015) showed that FC-fMRI is both stable and robust enough to successfully 

match two connectomes from the same person from among a set of connectomes from other 

people. Specifically, given a dataset where participants are scanned at least twice, by calculating 
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a functional connectome for each scan and then calculating the correlation between 

connectomes, >90% of the time a scan’s highest correlation is a second scan from the same 

participant, rather than with someone else. Finn et al. (2015) tested this method using both the 

entire connectome and only specific networks. By testing 8 networks individually, they found 

that the medial frontal and frontoparietal networks were best for a successful match, while visual 

networks tended to be the worst, with the DMN being in the middle. Using the medial frontal 

and frontoparietal networks together led to higher matching rates than using the whole brain. 

This suggests that the medial frontal and frontoparietal networks are more individualized from 

person to person, while visual networks are more similar. 

A number of related studies have further validated the fingerprinting approach and 

expanded our understanding of the individualization of functional connectomes. Using youth 

participants (7.5-14.6 years old), Miranda-Dominguez et al. (2018) found average correlations 

between longitudinal scans from the same person of R = 0.58, compared with correlations of R = 

0.44 between siblings and R = 0.42 between unrelated individuals, with the last two values being 

significantly different from each other. This suggests that an individual’s functional connectome 

is relatively stable across up to two years of development, and that siblings have more similar 

functional connectomes than unrelated individuals. Similar findings were also seen in adults, 

with higher correlations in the frontoparietal, DMN, and attention networks. Peña-Gómez et al. 

(2018) found that a small subset of connections, primarily in the frontoparietal network, are 

sufficient for fingerprinting success, with Byrge and Kennedy (2019) found that as few as 40 

connections, when selected on the basis of their distinctiveness, can be used to successfully 

fingerprint an individual, while also finding that seemingly all edges contain individually 

specific information. 
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More valid data should contain more individually specific information, allowing for 

better identifiability. This has been demonstrated in a variety of studies, which have found that 

methodological decisions affect fingerprinting success. Finn et al. (2015) found that matching 

accuracy was affected by choice of task, with match rates ranging from 64% to 99%. The highest 

match rates were found when matching resting state connectomes to resting state connectomes, 

compared with rest-to-task, task-to-rest, or task-to-task, where tasks included working memory, 

motor, language, and emotion tasks. Further, Vanderwal et al. (2017) found that passive viewing 

led to even higher fingerprinting success than resting state, which was found both when watching 

a movie or a tranquil video. Some studies have considered the relationship between scan length 

and fingerprinting success, with longer scans having higher accuracy (Finn et al., 2015; Horien et 

al., 2018). Other factors have been shown to affect fingerprinting success, such as choice of 

parcellation (Finn et al, 2015) and quantity of head motion (Horien et al., 2018). Thus, while 

individually specific information in a connectome has primarily been investigated as a feature of 

interest, it can also be used as a benchmark of data validity, as low quality data will have reduced 

identifiability due to connectomes looking more similar across participants (Horien et al., 2018; 

Waller et al., 2017). 

 

1.2.1 How does fMRI preprocessing impact reliability and validity? 

Due to motion-related, physiological, and other noise in fMRI, it has become standard to 

carry out a set of preprocessing steps as part of fMRI and FC-fMRI studies. Many of these steps 

have seen almost universal adoption throughout the literature, however their implementation 

often varies from study to study. Steps typically include rigid body realignment, slice time 

correction, masking out non-brain regions, registration of images to a template, spatial 



8 
 

smoothing, detrending and other temporal filtering, and white matter (WM) and cerebrospinal 

fluid (CSF) signal regression (Ciric et al., 2018). However, one of the biggest challenges in fMRI 

data analysis is the impact of motion-related artifacts. Initially, it was assumed that regressing 

out estimates of participant motion from voxel time courses was largely sufficient for removing 

motion-related noise (Friston et al., 1996), but several studies reported that even with regression, 

head motion leads to immediate and substantial changes in fMRI signal that are systematic 

(Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). These systematic changes 

are problematic for FC-fMRI studies as they result in long-distance correlations decreasing and 

short-distance correlations increasing. This appreciation of methodological challenges has led to 

a number of previous findings being reconsidered, especially in the clinical and developmental 

literature (Grayson and Fair, 2017), while also leading to a greater emphasis on noise mitigation. 

Denoising strategies typically come with various strengths and drawbacks, leading to debate on 

the most appropriate methods; two such debated strategies are volume censoring and global 

signal regression (GSR). 

To remove the effect of specific motion contaminated volumes, it has become common to 

either remove or interpolate over the temporal signal at specific time points, in a process known 

as censoring or scrubbing. This is due to sharp scan-to-scan head movements having a larger 

effect on data than total movement across the entire scan duration (Power et al., 2012). 

Censoring approaches lead to a loss of data and disrupt temporal autocorrelations, which have 

the potential to affect FC estimates, though the exact effect has not been well studied. While 

censoring removes the volumes most damaged by noise, it fails to remove prolonged signal 

changes due to spin history, and it requires the adoption of a motion threshold, above which 

volumes are removed and below which any signal changes persist. Exact censoring thresholds 
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have been debated, along with whether to censor out only contaminated volumes or neighbouring 

volumes as well (Satterthwaite et al., 2019). 

GSR has become a widely used and widely debated preprocessing step (Murphy and Fox, 

2017). By regressing out the mean time series for the whole brain, head motion and other 

artifacts can be removed from the data, based on the assumption that any process captured brain-

wide cannot be due to regional neuronal activity. GSR is a simple and effective denoising 

technique, improving the specificity of positive correlations and showing results that are more 

consistent with anatomy (Murphy and Fox, 2017). GSR has the drawback of changing the 

distribution of FC so that it is nearly zero centered, decreasing positive BOLD responses and 

creating or amplifying anti-correlations (Aguirre et al., 1998). The global signal has also been 

shown to resemble established networks and to be significantly related to life outcomes and 

psychological function, suggesting it contains information on cognition and behavior (Li et al., 

2019), and that by extension GSR should be used with caution as it removes information of 

interest in addition to noise. 

A large collection of additional preprocessing steps has also been developed, and there 

has been little consistency in which steps are applied and the order that they are applied in. A 

study by Carp (2012) showed that of 241 fMRI articles, nearly every one had a slightly different 

preprocessing pipeline. While there have been attempts in the community to standardize 

preprocessing, such as through the use of fMRIprep (Esteban et al., 2019), there remains a need 

to understand the appropriateness of different strategies, especially in high-motion datasets such 

as those collected from children. 
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1.2.2 Benchmarking pipelines: how do preprocessing choices impact reliability and 

validity? 

In response to the proliferation of preprocessing approaches, recent studies have 

compared the effectiveness of different pipelines (Churchill et al., 2017; Ciric et al., 2017; Parkes 

et al., 2018). Typically, these papers have looked at the amount of noise remaining in a dataset 

following preprocessing by using a metric known as quality control – functional connectivity 

(QC-FC). For a set of participants, QC-FC is the correlation between the strength of a given 

network edge, across participants, and the mean amount of participant motion (as measured by 

framewise displacement between volumes). Based on the assumption that there should be no 

correlation between motion and FC, if such a correlation exists then one can argue that there is 

motion-related noise in the data. QC-FC has two main uses – one is to look at the quantity of 

network edges related to motion, while the other is to assess whether an edge’s QC-FC is related 

to the inter-node distance – i.e., are short-range connections more vulnerable to head-motion than 

long-range connections? (Power et al., 2015). While QC-FC is a useful benchmark, it only 

estimates noise due to motion and not other possible sources of noise, such as physiological 

effects. 

Both Ciric et al. (2017) and Parkes et al. (2018) found that pipelines with GSR have 

fewer edges significantly related to subject motion, but show distance-dependent effects, though 

it is unclear whether GSR increases distance-dependence or fails to successfully remove 

components of noise. Additionally, pipelines containing censoring were particularly effective at 

removing motion. However, Parkes et al. (2018) also found that preprocessing pipelines with the 

highest amount of remaining noise had the highest test-retest reliability, suggesting a component 

of noise is highly reproducible across repeated scans from the same individual. Ciric et al. (2017) 
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noted that “…certain de-noising methods could conceivably both minimize QC-FC relationships 

and even enhance reliability by aggressively removing both signal and noise, but in the process 

diminish sensitivity to meaningful individual differences.” This suggests that reliability and 

measures of validity related to noise contamination are not sufficient to assess the overall validity 

of preprocessing decisions, and that a wider array of benchmarks are necessary. One useful 

approach for further pipeline comparison could be to specifically assess how information about 

individual differences changes as a function of preprocessing steps. Preprocessing pipelines that 

better retain signal of interest, even if noisier, may allow for better fingerprinting, suggesting 

higher validity (Phạm et al., 2023). 

Preprocessing pipelines have been compared using data from adults, but they have not 

been systematically compared in young children. There are a number of reasons why studies 

with children are different than studies of adults, necessitating further validation of preprocessing 

strategies. Young children are a population with much higher motion than adults (Dosenbach et 

al., 2017), which systemically alters FC. To reduce movement, FC-fMRI studies in children are 

increasingly conducted using passive viewing tasks such as movies (Greene et al., 2018; Rohr et 

al., 2017), and it is unknown how this stimulus might interact with preprocessing steps. 

Additionally, children have physiological differences from adults. These include faster 

respiratory rates and heart rates (Fleming et al., 2011), which may affect physiological noise in 

ways unaccounted for with QC-FC benchmarks. Similarly, smaller head sizes and other 

fundamental differences in brain structure may impact distance-dependent preprocessing 

strategies such as GSR. 
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1.3.1 Connectome changes with age 

Functional network development begins prior to birth (Dehaene-Lambertz and Spelke, 

2015), with development continuing through childhood, adolescence, and into adulthood (Sydnor 

et al., 2021). Across the brain, connection strength increases across the first years of 

development in both connections that are initially strong and initially weak (Lin et al., 2008), and 

by two years of age the brain strongly resembles adult functional organization, with immature 

versions of all networks (Grayson and Fair, 2017). While network neurodevelopment is multi-

faceted, development roughly progresses from 'lower order' sensory and motor networks to 

'higher order' association networks responsible for executive, socioemotional, and mentalizing 

functions (Sydnor et al., 2021). Newborns already show adult-like topographies in motor, visual, 

and auditory networks (Gao et al., 2015b; Gilmore et al., 2018). These networks have been 

shown to display little internetwork change from early childhood to adulthood, staying well-

segregated (Gu et al., 2015), though within these networks age correlates with the strength of 

connections (Rohr et al., 2018). Higher order networks tend to develop adult-like architecture 

more gradually – i.e., between birth and two years of age – and then continue to slowly change 

over the next decades (Emerson et al., 2016; Gilmore et al., 2018; Sydnor et al., 2021). For 

example, the DMN tends to only show adult-like spatial synchrony by six months of age (Gao et 

al., 2015a), though within-network connections remain weak even at nine years old, with 

connections strengthening into adulthood (Fair et al., 2008). In adolescents, networks involved in 

higher level cognition, such as salience, attention, and executive skills, become increasingly 

segregated from other networks and with a more variable spatial structure (Bassett et al., 2018; 

Dosenbach et al., 2010; Gu et al., 2015).  
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It was originally shown that over childhood the brain shifts from a more local to a more 

global functional organization (Fair et al., 2009), but the validity of these findings have been 

questioned as the systematic effects of head motion on FC have been investigated in more detail 

(Grayson and Fair, 2017; Power et al., 2012; Satterthwaite et al., 2012). More recent findings 

suggest that brain development trajectories from childhood to adulthood involves more specific 

functional changes, such as more integration between the cingulo-opercular/salience and 

somatomotor networks (Marek et al., 2015), and more synchronicity with DMN connections (Gu 

et al., 2015). However, much remains unknown, especially in early childhood due to difficulties 

with obtaining usable data (Vanderwal et al., 2019). While some broad patterns of typical 

development trajectories seem clear, there remains a lack of large-scale longitudinal studies and 

a lack of replication across data sets. As thus, more precise trajectories and how they relate to 

underlying structural changes remains to be studied. Further, while there is substantial variation 

between people, individual-specific developmental changes have not been well-investigated. 

 

1.3.2 Age and connectome identifiability 

While high identifiability – as demonstrated with connectome fingerprinting – has been 

shown in adults, the extent to which individualization is a developmental process is not well 

understood. Broadly speaking, studies seem to suggest that longitudinal identifiability increases 

with age. Under 25% matching rates were shown in a study matching 1.5-month-old children to 

themselves at 9 months old (Dufford et al., 2021), up to 38% matching accuracies were shown in 

older children, between 6 and 15 (Sato et al., 2021), and no difference in longitudinal match rates 

were found between adolescents and adults (Jalbrzikowski et al., 2020). However, no study has 
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directly investigated the effect of age on longitudinal identifiability across early childhood, 

raising questions if these findings can be better explained by differences in data quality. 

Further, it remains unclear what might be driving changes in age and identifiability, as 

identifiability is related to both self-stability and similarity-to-others. Some evidence suggests 

that adults have higher longitudinal self-stability than adolescents (Liao et al., 2021), though the 

relationship between age and short-term across-task self-stability has shown inconsistent findings 

(Kaufmann et al., 2017; Vanderwal et al., 2021). Vanderwal et al. (2021) also found no 

relationship between age and similarity-to-others, while some evidence suggests that participants 

with higher self-stability have greater, rather than reduced, similarity-to-others (Vanderwal et al., 

2021; Liao et al, 2021).  

A related question is whether age-related changes in individualization vary across 

networks. Since sensorimotor networks tend to show reduced identifiability in adults compared 

to higher order networks such as the DMN (Finn et al., 2015; Byrge and Kennedy, 2019; 

Vanderwal et al., 2017), they may also show reduced identifiability in children. On the other 

hand, given the protracted development of higher order networks and their continued change 

across early childhood (Gilmore et al., 2018), higher order network identifiability may be 

impaired relative to the fully developed adult versions of these networks. A better understanding 

of these differences may illuminate the extent to which the brain develops in individually 

specific ways and the patterns in which this occurs across early childhood. 

 

1.4.1 Electroencephalography 

While much has been learned with fMRI and it will remain a useful tool going forward, 

the validity of findings can be better assessed if they can be replicated and expanded upon with 
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other, complementary, modalities. One area of opportunity is with EEG. While BOLD fMRI 

only indirectly measures neural activity, EEG directly measures electric fields generated from 

neuronal activity. Further, while fMRI makes measurements on the order of 1 Hz, EEG can be 

recorded at 1000 Hz or higher. EEG also has the advantage of being far more cost efficient than 

fMRI, making research more accessible. 

In EEG, electrodes placed on a participant’s scalp record activity from underlying brain 

regions. Neuronal action potentials are the result of a rapid exchange of ions across the cell 

membrane, which generates electromagnetic fields; when several nearby neurons fire in unison, 

the resulting field can be detected by the electrodes (Cohen, 2014; St. Louis et al., 2016). Each 

electrode measures the difference in electrical potential between itself and a reference electrode 

(or electrodes) placed elsewhere on the scalp, often at the vertex of the head. While EEG can be 

carried out with just a single electrode (plus reference), typically dozens of electrodes 

simultaneously record brain activity. These are arranged in standardized positions, such as the 

10-20 system, to capture information across the entire scalp. One convenient approach to EEG is 

using a sensor net, where electrodes are imbedded in a cap that can be quickly placed on a 

participant’s head. These caps often have 32, 64, 128, or 256 electrodes.  

While EEG has several advantages compared to fMRI, its major drawback is spatial 

resolution. In general, EEG does a poor job of detecting activity from deeper brain structures and 

is mostly limited to measuring the activity of the cerebral cortex. A related issue is that of 

volume conduction (Nunez et al., 1997). Due to the spatial separation between where electric 

fields are generated (the brain) and where they are recorded (the scalp), the signal picked up 

from one electrode will reflect the activity of multiple brain regions, and conversely, the activity 

at a single brain region will be picked up across multiple electrodes. Together, these limitations 
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make EEG a poor analysis technique for testing hypotheses involving precise functional 

localization. One partial workaround is that various source localization algorithms have been 

developed that attempt to reconstruct the underlying brain activity by combining information 

about the electrodes’ spatial orientation and what they recorded (Pascual-Marqui, 2002). 

However, no perfect solution exists for this process - nor can exist - and each algorithm requires 

specific assumptions (Sadaghiani et al., 2022). Further, source localization cannot fully eliminate 

volume conduction effects (Nolte et al., 2004; Sarvas, 1987). Even after source localization the 

same underlying activity will show up in multiple estimated sources, an effect known as spatial 

leakage (Wens et al., 2015). 

 

1.4.2 EEG FC and volume conduction  

Inspired by fMRI findings, researchers have begun analyzing the functional connectome 

with EEG (Sadaghiani et al., 2022). However, answering developmental questions using EEG 

FC can be difficult due to the dozens of EEG FC measures that have been deployed, making it 

challenging to choose an analytic approach and to synthesize findings across studies (Cao et al., 

2022). One driver in the proliferation of measures is attempts to handle the aforementioned 

problem of volume conduction (Nolte et al., 2004; Stam et al., 2007). If the same underlying 

brain activity is recorded in multiple electrodes, estimates of FC will be artificially inflated. One 

dependable way to assess true synchrony is therefore with a time lag. If two electrodes or brain 

regions have a consistent pattern of activity with a slight delay between them, it is generally 

assumed that there is a genuine interaction between them. On the other hand, signal synchrony 

without a measured time delay could either be true synchrony or the result of the same signal 

being measured twice. The earliest EEG FC studies did not mitigate volume conduction, utilizing 
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FC measures such as coherence, but concerns about result validity crept in (Nunez et al., 1997). 

Thus, connectivity measures were developed that mitigated volume conduction artifacts by 

ignoring synchrony with zero lag, likely failing to capture some true connectivity in the process 

(Nolte et al., 2004; Stam et al., 2007). These measures include imaginary coherence, phase lag 

index, and phase slope index. While the effectiveness of FC measures that mitigate volume 

conduction has been demonstrated (Nentwich et al., 2020; Nolte et al., 2004; Stam et al., 2007; 

Wirsich et al., 2021), it is currently unknown if the benefits of reduced noise outweigh the 

drawback of capturing less signal of interest. A better understanding of the reliability and 

validity of EEG FC measures will allow for more useful EEG connectome research going 

forward. 

 

1.5 Overview of thesis 

Reliable and valid data are necessary to meaningfully investigate the relationship 

between brain activity and characteristics such as age and behavior. This is especially important 

to consider in developmental studies, as data collected from children often contains more noise, 

while processing and analysis methods are typically validated using adult data. Both excessive 

noise and insufficient signal of interest can hamper validity. As attempts to remove noise can 

invertedly remove signal of interest or change the signal in undesirable ways, it is difficult to 

determine best practices. This makes it necessary to benchmark different methodologies, 

establishing their overall validity.  

Findings from fingerprinting studies suggest that individuals have a unique and stable 

functional connectome, but that data quality can affect identifiability. Thus, fingerprinting can be 

used to assess validity, as lower quality data, due to excess noise or lack of signal, will have 
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lower fingerprinting success. This can be used along with other measures of validity to 

benchmark the quality of preprocessing pipelines or to compare different measures of 

connectivity. Using strategies to improve the reliability and validity of neuroimaging data 

collected from young children can allow for better investigation of developmental questions. 

 

1.5.1 Chapter 2 

In Chapter 2 I compared different preprocessing strategies for FC fMRI in young 

children. While preprocessing pipeline effects have been studied in adults, they have not been 

systematically examined in young children, and previous measures have focused more on noise 

remaining after preprocessing rather than signal of interest retained. By comparing fingerprinting 

success across several preprocessing pipelines, I assessed whether pipelines that are successful at 

removing noise are inadvertently removing signal-of-interest (i.e., information about individual 

differences). I used a dataset of 56 children, initially between 4 and 7, who were scanned twice, 

one year apart. Further, by comparing preprocessing pipeline effects in both low and high motion 

scans, I also assessed whether high-motion groups warrant more aggressive preprocessing due to 

increased noise contamination.  

 

1.5.2 Chapter 3 

In Chapter 3 I investigated how identifiability changes across early childhood. I 

considered two aspects related to identifiability: self-stability over time, and (dis)similarity 

compared to others. While the literature has shown that functional organization is consistent in 

adults, both over a matter of days and over a one-year period, networks are likely undergoing 

refinement in early childhood. Self-stability may thus increase across early childhood. 
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Developmental changes, if individually unique, may also correspond to decreased similarity to 

others. Using an expanded version of the dataset from Chapter 3, I looked at 73 children, initially 

between 4 and 7, who were scanned twice, one year apart. While I investigated this in the whole 

brain, I also considered changes in identifiability within individual networks. Since most sensory 

and motor network development occurs prior to 4 years of age, these networks may show little 

change in identifiability between 4 and 7. On the other hand, higher order networks such as the 

frontoparietal network, which are thought to continue to develop across early childhood, may 

show more age-related changes. 

 

1.5.3 Chapter 4 

In Chapter 4, I investigated the reliability and validity of different EEG connectivity 

measures. This study utilized a unique dataset where 80 minutes of EEG data per participant was 

collected from 25 parent-child pairs, with data collected across 4 sessions and 3 passive viewing 

tasks. This dense sampling allowed me to better investigate reliability across days and allowed 

for multiple ways to assess validity. FC measures that mitigate volume conduction ignore 

synchrony with no time delay. This reduces both noise and signal-of-interest, and it is unknown 

if this improves or impairs reliability and validity. I thus compared 6 different FC measures, 

where 4 of them utilized strategies to mitigate volume conduction artifacts. I assessed reliability 

by considering the across-session self-stability of the connectome and I assessed validity with 

participant identifiability, along with task- and age-sensitivity.  

 



20 
 

1.6 Statement of contributions 

Chapters 2-4 of this thesis cover research articles that were co-authored with 

collaborators. This section outlines how each co-author contributed to these works, using the 

Contributor Roles Taxonomy (CRediT) format. 

 

1.6.1 Chapter 2 

Article: Graff, K., Tansey, R., Ip, A., Rohr, C., Dimond, D., Dewey, D., Bray, S., 2022a. 

Benchmarking common preprocessing strategies in early childhood functional connectivity and 

intersubject correlation fMRI. Developmental Cognitive Neuroscience 54, 101087. 

https://doi.org/10.1016/j.dcn.2022.101087 

 

Author contributions: Kirk Graff: Conceptualization, Methodology, Validation, Formal 

analysis, Investigation, Writing – original draft, Writing – review & editing, Visualization, 

Funding acquisition. Ryann Tansey: Investigation, Writing – review & editing. Amanda Ip: 

Resources, Investigation. Christiane Rohr: Investigation, Writing – review & editing. Dennis 

Dimond: Investigation, Writing – review & editing. Deborah Dewey: Methodology, Writing – 

review & editing. Signe Bray: Conceptualization, Investigation, Methodology, Supervision, 

Project administration, Funding acquisition, Writing – review & editing. 

 

1.6.2 Chapter 3 

Article: Graff, K., Tansey, R., Rai, S., Ip, A., Rohr, C., Dimond, D., Dewey, D., Bray, S., 2022b. 

Functional connectomes become more longitudinally self-stable, but not more distinct from 
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others, across early childhood. NeuroImage 258, 119367. 

https://doi.org/10.1016/j.neuroimage.2022.119367 

 

Author contributions: Kirk Graff: Conceptualization, Methodology, Validation, Formal 

analysis, Investigation, Writing – original draft, Writing – review & editing, Visualization, 

Funding acquisition. Ryann Tansey: Investigation, Writing – review & editing. Shefali Rai: 

Investigation, Writing – review & editing. Amanda Ip: Resources, Investigation. Christiane 

Rohr: Investigation, Writing – review & editing. Dennis Dimond: Investigation, Writing – 

review & editing. Deborah Dewey: Methodology, Writing – review & editing. Signe Bray: 

Conceptualization, Investigation, Methodology, Supervision, Project administration, Funding 

acquisition, Writing – review & editing. 

 

1.6.3 Chapter 4 

Article: Graff, K., Rai, S., Yin, S., Godfrey, K., Merrikh, D., Tansey, R., Vanderwal, T., 

Protzner, A., Bray, S. 2023.  Reliability and validity of the electrophysiological connectome 

across phase-based connectivity measures. Manuscript in preparation. 

 

Author contributions: Kirk Graff: Conceptualization, Methodology, Validation, Formal 

analysis, Investigation, Writing – original draft, Writing – review & editing, Visualization, 

Funding acquisition. Shefali Rai: Investigation, Writing – review & editing. Shelly Yin: 

Investigation, Writing – review & editing. Kate Godfrey: Investigation, Writing – review & 

editing. Daria Merrikh: Investigation, Writing – review & editing. Ryann Tansey: 

Investigation, Writing – review & editing. Tamara Vanderwal: Methodology, Writing – review 
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& editing. Andrea Protzner: Methodology, Writing – review & editing. Signe Bray: 

Conceptualization, Investigation, Methodology, Supervision, Project administration, Funding 

acquisition, Writing – review & editing. 
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Chapter 2: Benchmarking Common Preprocessing Strategies in Early Childhood 

Functional Connectivity and Intersubject Correlation fMRI 

2.0 Abstract 

Preprocessing choices present a particular challenge for researchers working with 

functional magnetic resonance imaging (fMRI) data from young children. Steps which have been 

shown to be important for mitigating head motion, such as censoring and global signal regression 

(GSR), remain controversial, and benchmarking studies comparing preprocessing pipelines have 

been conducted using resting data from older participants who tend to move less than young 

children. Here, we conducted benchmarking of fMRI preprocessing steps in a population with 

high head-motion, children aged 4-8 years, leveraging a unique longitudinal, passive viewing 

fMRI dataset. We systematically investigated combinations of global signal regression (GSR), 

volume censoring, and ICA-AROMA. Pipelines were compared using previously established 

metrics of noise removal as well as metrics sensitive to recovery of individual differences (i.e., 

connectome fingerprinting), and stimulus-evoked responses (i.e., intersubject correlations; ISC). 

We found that: 1) the most efficacious pipeline for both noise removal and information recovery 

included censoring, GSR, bandpass filtering, and head motion parameter (HMP) regression, 2) 

ICA-AROMA performed similarly to HMP regression and did not obviate the need for 

censoring, 3) GSR had a minimal impact on connectome fingerprinting but improved ISC, and 4) 

the strictest censoring approaches reduced motion correlated edges but negatively impacted 

identifiability.  
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2.1 Introduction 

Functional connectivity magnetic resonance imaging (FC-MRI) has become a popular 

tool for investigating functional brain development (Ball et al., 2014; Grayson and Fair, 2017; 

Marek et al., 2015) and brain-behavior associations in children (Fair et al., 2012; Rohr et al., 

2017; Vanderwal et al., 2021). While FC-MRI identifies consistent FC patterns across 

individuals (Damoiseaux et al., 2006; Fox et al., 2005), it is highly sensitive to artifacts from 

physiological sources, such as heart rate and respiration, and head motion (Power et al., 2012; 

Satterthwaite et al., 2012; Van Dijk et al., 2012). This presents a particular challenge in fMRI 

studies that include young children as they have increased head motion in the scanner 

(Dosenbach et al., 2017; Greene et al., 2018) leading to systematic artifacts (Fair et al., 2012; 

Power et al., 2012). For this reason, developmental fMRI studies have struggled to collect usable 

resting state data from young children, and consequently have often excluded participants 

younger than seven (Vanderwal et al., 2019), with at least one large study revising their study 

protocol to omit the resting scan from children younger than six years of age due to difficulty in 

obtaining high-quality data (Alexander et al., 2017).  

To reduce head motion and increase compliance, early childhood FC-MRI studies are 

increasingly conducted using passive viewing tasks such as movies (Alexander et al., 2017; 

Moraczewski et al., 2018; Reynolds et al., 2020; Rohr et al., 2017; Vanderwal et al., 2019). 

Movie watching significantly reduces head motion in participants younger than 10 years of age, 

with Greene et al. (2018) reporting a more than 70% reduction in mean framewise displacement 

(FD). Importantly, FC networks derived from passive viewing paradigms have been shown to be 

globally similar to those derived from resting-state data (Bray et al., 2014; Greene et al., 2018; 

Vanderwal et al., 2019). Despite these improvements, as in all FC-MRI studies, head motion 
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noise remains a major concern, and noise mitigating preprocessing steps are essential to prepare 

data for analysis. Such steps involve tradeoffs, however, and remain widely debated (Murphy 

and Fox, 2017; Satterthwaite et al., 2019); there is currently no gold-standard preprocessing 

pipeline, for early childhood studies or otherwise.  

In response to the proliferation of preprocessing approaches (Carp, 2012), several studies 

have compared the effectiveness of different pipelines (Churchill et al., 2017; Ciric et al., 2017; 

Kassinopoulos and Mitsis, 2021; Parkes et al., 2018; Taymourtash et al., 2020), but no study has 

specifically considered the impact of preprocessing steps on data from young children, which is 

important for several reasons. First, children move more than adults, even when implementing 

strategies such as passive viewing (Dosenbach et al., 2017; Greene et al., 2018), meaning that 

child datasets may be particularly sensitive to the impact of preprocessing choices. Further, 

smaller head size could alter the impact of rotational motion, and because GSR shows distance-

dependent effects, this step warrants investigation in young children. Children also have faster 

respiratory and heart rates than adults (Fleming et al., 2011), which may alter the temporal 

characteristics of physiological noise. Notably, physiological noise is not accounted for with 

quality control – functional connectivity (QC-FC), a widely used benchmarking metric that is 

specific to head motion (Power et al., 2012; Satterthwaite et al., 2013). Impacts of physiological 

noise may be better assessed using metrics sensitive to information recovery.  

Common motion-correction strategies include regression of motion estimates, 

independent component analysis (ICA)-based approaches, regression of the global signal, 

censoring volumes of high FD, and temporal filtering. Regressing out motion estimates remains 

one of the most common denoising approaches (Satterthwaite et al., 2019). However, based on 

QC-FC benchmarks, Ciric et al. (2017) suggest that this approach is insufficient on its own and 
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leads to concerns about losses in degrees of freedom. An alternative approach is to remove 

effects of head motion through ICA-based approaches, such as ICA-AROMA (Pruim et al., 

2015), which decomposes data into components that reflect either brain activity or structured 

noise. ICA-AROMA automatically classifies components as noise using both temporal features 

(high frequency content, correlation with realignment parameters) and spatial features (near CSF 

or the edge of the brain) (Pruim et al., 2015). These structured noise components can then be 

regressed from the data (Thomas et al., 2002). 

Global signal regression (GSR) is an often used but widely debated preprocessing step 

(Chai et al., 2012; Gotts et al., 2013; Murphy and Fox, 2017). GSR is a simple and arguably 

effective (Ciric et al., 2017; Parkes et al., 2018) denoising technique, improving the specificity of 

positive correlations and showing results that are more consistent with anatomical connectivity 

(Fox et al., 2009). However, the use of GSR tends to increase the apparent strength of short-

range connections while decreasing the apparent strength of long-range connections (Ciric et al., 

2017; Parkes et al., 2018; Saad et al., 2012), and creates anti-correlations which may not exist by 

effectively centering the connectome (Aguirre et al., 1998). The global signal has been shown to 

temporally resemble established networks and significantly associates with behavioral data (Li et 

al., 2019), suggesting GSR should be used with caution as it may remove signal of interest in 

addition to noise. 

To mitigate the effect of specific motion contaminated volumes, it has become common 

to either remove, or interpolate over, specific time points by censoring or ‘scrubbing’ (Power et 

al., 2012). Despite efficacy in removing noise (Ciric et al., 2017) there are concerns with 

censoring, such as disrupting temporal autocorrelations, and leaving variable amounts of scan 

data between participants. Further, even if the number of censored volumes is matched across 
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individuals, not all volumes are equally rich in information (Power et al., 2015). Censoring 

strategies vary widely across early childhood studies (Fair et al., 2012; Miranda-Dominguez et 

al., 2018; Rohr et al., 2019; Vanderwal et al., 2021) and it is unclear which level of censoring 

optimizes the recovery of individual-specific FC information.  

A further step to consider is temporal filtering, as fMRI signals at both very low 

frequencies (under 0.01 Hz) and high frequencies (above 0.1 Hz) are variably filtered out to 

remove noise (Satterthwaite et al., 2013). It has been suggested that filtering above 0.1 Hz may 

also be removing connectivity information (Niazy et al., 2011), or artificially increasing 

correlations by introducing sample dependence (Davey et al., 2013), leading to concerns 

regarding the appropriateness of a bandpass filter compared to a highpass filter (Satterthwaite et 

al., 2019).  

 Ciric et al. (2017) speculated that aggressive preprocessing choices could be removing 

both signal and noise, improving outcomes on metrics sensitive to noise removed, such as QC-

FC, but in the process reducing sensitivity to individual differences. Intra-class correlation (ICC; 

Shrout and Fleiss, 1979) is a commonly used measure of test-retest reliability, and has been used 

as a preprocessing benchmark of signal retention after preprocessing (Parkes et al., 2018; 

Kassinopoulos and Mitis, 2021). However, both Parkes et al. (2018) and Kassinopoulos and 

Mitis (2021) counterintuitively found that pipelines with poor denoising had higher ICC, 

suggesting higher reliability with less denoising. An alternative metric that provides information 

about individual-specific information remaining or recovered following preprocessing is 

functional connectome fingerprinting (Finn et al., 2015; subsequently referred to simply as 

“fingerprinting”), which aims to match scans from the same participant based on connectome 

similarity. Analysis of connectome individuality through fingerprinting has become popular in 
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recent years, though how preprocessing affects FC information necessary for individual 

identifiability is not yet well understood.  

As there is no ground-truth in resting FC-MRI analyses, it has been suggested that 

preprocessing benchmark studies should ideally consider task-evoked effects to ensure that while 

noise is mitigated signal variation of interest is preserved (Bijsterbosch et al., 2021). Here we 

leverage the passive viewing task to assess how preprocessing choices impact functional 

responses to the video using temporal intersubject correlation (ISC; Hasson et al., 2004). ISC is 

calculated as the temporal signal correlation between a given brain region across individuals 

during passive viewing of the same video stimulus.  

 The aim of the present study is to extend previous pipeline benchmarking studies (Ciric et 

al., 2017; Parkes et al., 2018) to passive viewing fMRI data from young children, while 

extending benchmarks beyond metrics sensitive to head motion, namely with the inclusion of 

ICC, fingerprinting, and ISC. As preprocessing steps likely have a larger impact in noisier 

samples, we also investigate whether preprocessing strategies are particularly efficacious 

depending on quantity of head motion by dividing scans into lower- and higher- motion groups. 

Our findings can support researchers conducting fMRI in early childhood samples to consider 

the tradeoffs and effectiveness of common preprocessing steps. 

 

2.2 Methods 

2.2.1 Participants 

Data were collected as part of a longitudinal study of early childhood brain development 

(Dimond et al., 2020b, 2020a; Rohr et al., 2019, 2017). Participants were recruited from the local 

community through advertisements and existing databases. All procedures were approved by the 
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University of Calgary Conjoint Health Research Ethics Board. Parents provided informed 

consent and children provided assent to participate. Participants were children between 4 and 7 

years of age at baseline without any major health concerns. Children were excluded if they had 

full-scale IQ more than 2 standard deviations below the standardized population mean of 100 on 

the Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition, a history of 

neurodevelopmental or psychiatric disorders, or any neurological diagnoses. At the time the 

analyses for this study were initiated, 168 participants had completed a baseline scan and of these 

59 (15 male) had completed a 12-month follow-up scan. From the sample of participants with 

both baseline and follow-up data, participants were included if after volume-wise censoring of 

the fMRI data (described in more detail below), both scans retained at least 11 minutes of 

uncensored data. 56 of the 59 children (14 male) reached this threshold, for a total of 112 scans 

used in the present study. 

 

2.2.2 Data collection 

MRI data were acquired on a 3T GE MR750w MRI (Waukesha, WI) scanner using a 32-

channel head coil, at the Alberta Children’s Hospital. fMRI was acquired during a passive-

viewing task, where participants watched clips from a children’s television show (Elmo’s World) 

for 1100 s. Prior to scans, children underwent a practice scan in an MRI simulator during which 

they watched the same video and practiced staying still. fMRI scans were collected using a 

gradient-echo echo-planar imaging (EPI) sequence (TR = 2.5 s, TE = 30 ms, FA = 70°, voxel 

size 3.5x3.5x3.5 mm3). An anatomical scan was acquired using a T1w 3D BRAVO sequence 

(TR = 6.764 ms, TE = 2.908 ms, FA = 10°, voxel size 0.8x0.8x0.8 mm3). 
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2.2.3 Higher- vs. lower-motion subgroups 

Preprocessing steps may impact data differently depending on the amount of 

contamination from motion or other sources. Low motion samples may see only modest 

improvements with more aggressive strategies such as censoring or GSR, whereas metrics 

derived from high motion samples will likely change more if, for example, a greater number of 

volumes are censored. Therefore, we consider here how preprocessing may differentially impact 

lower- and higher- motion scans. Towards this goal, after preprocessing pipelines were first 

compared using the whole sample of 112 scans, the 112 scans were median-split into two groups 

of 56 scans, based on average FD. The preprocessing pipelines were then separately compared 

for the higher- and lower-motion subgroups, using the metrics described below.  

 

2.2.4 First-stage preprocessing steps common across pipelines 

The following first-stage preprocessing steps were run on all scans, ahead of the specific 

pipeline variations tested here (described below). All preprocessing was carried out with custom 

Python scripts integrating Nipype functionality (version 1.1.5; Gorgolewski et al., 2011) using 

FSL version 6.0.0 (Smith et al., 2004), ANTs version 3.0.0.0 (Avants et al., 2011), and AFNI 

version 18.3.03 (Cox, 1996). Scans from the same individual were preprocessed separately. 

Structural (T1w) images were preprocessed using ANTs, including bias field correction, brain 

extraction, and tissue segmentation. For generation of WM and CSF time courses for regression, 

tissue masks were eroded using AFNI (CSF eroded twice, WM eroded 7 times).  

Basic preprocessing for EPI data was as follows, largely following the procedure 

described by Ciric et al. (2018): a) FSL MCFLIRT to estimate head motion parameters (HMPs) 

and FD (Jenkinson et al., 2002). B) FSL slicetimer for slice time correction. C) FSL MCFLIRT 
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for rigid body realignment. We followed the recommendation in Power et al. (2017) to estimate 

HMP on raw data but carry out slice time correction prior to rigid body realignment, 

necessitating two FSL MCFLIRT steps. D) FSL BET to skull-strip EPI images (Smith, 2002). E) 

ANTs Registration (Avants et al., 2011) to generate a transformation matrix to warp the EPI 

image to a study-specific EPI template. This template was produced based on the procedure 

described by Huang et al. (2010). Specifically, a 3D EPI reference image was taken from each 

fMRI scan, chosen as a volume of low motion approximately in the middle of the scan. These 

references were warped to MNI space, then averaged together and smoothed to create the final 

study-specific template. F) FSL FLIRT boundary-based registration (Jenkinson et al., 2002) was 

used to generate a transformation matrix to warp the EPI image to the T1w image, then the 

inverse transformation matrix was used to warp tissue segmentations to functional image space. 

All preprocessing and confound mitigation steps were carried out in native space. G) A linear 

regression to remove the mean, linear trends, and quadratic trends from each voxel was 

conducted. For pipelines that include censoring, time points marked for censoring were excluded 

from the model to calculate linear and quadratic trends. In pipelines that did not include 

censoring, all timepoints were included. 

 

2.2.5 Preprocessing pipelines 

 After first-stage preprocessing, pipelines varied systematically in whether they used GSR, 

censoring, and ICA-AROMA, as shown in Table 2.1. For comparison, we also tested two 

minimal pipelines: M1, which included first-stage preprocessing and temporal filtering, but no 

nuisance regression, and M2, which included first-stage preprocessing, temporal filtering, and 

regression of the WM and the CSF time series. 
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Table 2.1. Preprocessing pipelines tested to compare effects of ICA-AROMA, global signal 

regression and censoring. 

 

2.2.6 Additional preprocessing 

2.2.6.1 ICA-AROMA 

For pipelines I1 through I4, ICA-AROMA was applied immediately following the first-

stage preprocessing steps described above. Given that this was a relatively high motion sample, 

we used ICA-AROMA's aggressive denoising feature, where all variance associated with noise 

components are removed (Pruim et al., 2015), but otherwise default options. The ICA-AROMA 

code was modified to warp to MNI space via the ANTs transformation matrix rather than a 

FNIRT transformation. 

 

2.2.6.2 Temporal filtering 

For all pipelines, data were temporal bandpass filtered (0.01 – 0.08 Hz) using a fast 

Fourier transform. For pipelines I1 through 14, this occurred following ICA-AROMA. For all 

other pipelines, this occurred immediately after first-stage preprocessing. In follow-up 

comparisons we tested the effect of a highpass filter; see section 2.2.9.1. Filtering. To avoid 

Pipeline Primary motion 

artifact removal 

WM + CSF 

regression 

Global signal 

regression 

(GSR) 

Censoring 

M1 
None 

   

M2 Yes   

R1 
Regress head 

motion parameters 

(HMPs) 

Yes   

R2 Yes Yes  

R3 Yes  Yes 

R4 Yes Yes Yes 

I1 

ICA-AROMA 

Yes   

I2 Yes Yes  

I3 Yes  Yes 

I4 Yes Yes Yes 
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reintroducing artifacts, HMPs were also filtered, and WM, CSF, and the global signal were 

calculated following temporal filtering (Lindquist et al., 2019).  

 

2.2.6.3 Nuisance regression 

Following filtering, nuisance regression was applied as part of all pipelines, with the 

exception of M1, which did not undergo further preprocessing. Excepting M1, all pipelines 

included WM + CSF regression. In pipelines R1 through R4 the six HMPs were regressed. 

Pipelines R2, R4, I2 and I4 included GSR. For all nuisance parameters, both linear and quadratic 

terms, along with the first temporal derivative of those terms were regressed (i.e., 4 regressors 

per parameter). Censoring was carried out as part of the regression step for pipelines R3, R4, I3 

and I4. As a default, we censored volumes above a FD threshold of 0.25 mm (based on FSL 

MCFLIRT, i.e., FDJenkinson as described in Ciric et al., 2018), and censored only the identified 

frames. Varied censoring schemes were tested separately as described below. Pipelines are 

summarized in Table 2.1. 

 

2.2.7 Connectome generation 

Following preprocessing, each scan was registered to the study specific template using 

the ANTs transformation matrix. Each voxel was then assigned to one of 325 nodes (regions) 

within the MIST 325 parcellation (Urchs et al., 2019). The mean time course was calculated for 

each node by averaging the time courses for all voxels within the node. The Pearson correlation 

between each pair of nodes was then calculated, generating 52650 edges. Correlation values 

were Fisher z- transformed to better approximate a normal distribution. 
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2.2.8 Pipeline comparison metrics 

2.2.8.1 Motion correlated edges (QC-FC) 

QC-FC was calculated using the approach described in Satterthwaite et al. (2013). 

Specifically, for each edge the correlation was calculated between average FD (as estimated from 

the first FSL MCFLIRT step) and edge strength, across all 112 scans. Due to the concern that 

preprocessing steps such as GSR affect edges differently depending on the inter-node distance, 

we also assessed distance-dependent effects by plotting the edge strength-motion correlation vs. 

Euclidian inter-node distance for each edge (Satterthwaite et al., 2013). Inter-node distance was 

calculated as the Euclidian distance between the center of mass of the two nodes linked by a 

given edge, as defined by the MIST parcellation. Three QC-FC metrics were extracted: (1) the 

percentage of edges correlated with head motion at a p-value <0.05 uncorrected; (2) the mean of 

the absolute value of the correlation between head motion and edge strength; absolute value was 

used to assess the magnitude of the motion-effect, rather than the direction; and (3) QC-FC 

distance dependence as the correlation between edge strength-motion correlation and Euclidian 

edge length. In theory, more effective preprocessing pipelines will lead to fewer edges 

significantly associating with head motion, and ideally this relationship would not depend on 

distance, such that across these three metrics, smaller values are considered better. 

 

2.2.8.2 Fingerprinting 

Pipelines that aggressively remove noise may also have the undesirable side-effect of 

removing signal of interest (Ciric et al., 2017). We used functional connectome fingerprinting to 

determine whether information unique to an individual is reduced or amplified by noise-

mitigation steps. Following the approach used by Finn et al. (2015) and related work (Byrge and 
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Kennedy, 2019; Kaufmann et al., 2017; Miranda-Dominguez et al., 2018), connectomes were 

vectorized, then correlated for each pair of scans. The fingerprinting match rate was calculated 

by determining how often a scan correlated most strongly with the second scan from the same 

individual, and dividing by the total number of scans (112). We expressed this as a percentage. 

For each scan we also calculated 1) group similarity, i.e., the mean correlation to a scan from 

another individual, 2) stability, i.e., the correlation between scans from the same person, and 3) 

individualization, the difference between stability and the highest correlation to a scan from 

another individual (nearest miss). Negative individualization scores reflect scans that did not 

successfully match. To assess whether pipelines affected associations with head motion, for each 

pipeline we regressed stability and individualization against head motion, calculating R2, the 

slope, and the intercept. For each individual, we used the higher of their scans' two motion values 

for this analysis. 

 

2.2.8.3 Intra-class correlation (ICC) 

 For each pipeline, we calculated the intra-class correlation (ICC; Shrout and Fleiss, 1979) 

of each edge as a measure of test-retest reliability. ICC was calculated in two ways: 1) a between 

session ICC, where we used the two scans from each individual to calculate the within-subject 

mean square, and 2) a within-session (split-half) ICC for each participant's first session, where 

each scan's time series was split in two in order to calculate the within-subject mean square. For 

pipelines that included censoring, split-half time series were generated based on volumes 

retained after censoring.  
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2.2.8.4 Intersubject correlation (ISC) 

We used intersubject correlation (ISC; Hasson et al., 2004) to assess whether stimulus-

evoked activity is amplified or suppressed by noise-mitigation. Preprocessing pipelines that fail 

to adequately remove noise, or remove task-evoked signal, will have lower ISC values. ISC 

values were calculated as the temporal correlation between pairs of individuals for each node, 

and averaged across pairs. For pipelines that included censoring, we did not include time points 

that were censored for either scan in a given pair. ISC calculated on passive viewing fMRI are 

typically highest in visual and auditory regions (Hasson et al., 2004; Kauppi et al., 2010). For 

pipeline comparisons, we identified the 10 nodes with the highest average ISC across all 

pipelines and averaged these generate a single ISC score for each scan for each pipeline. In 

addition to group-level ISC, we calculated the "intra-subject correlation", or the time series 

correlation between scans from the same participant. 

As noted above, scans were median-split into higher- and lower- motion subgroups. For 

ISC, when both of a participant's scans were in the same subgroup, we only retained the more 

representative scan, i.e., the lower motion scan in the lower-motion subgroup, or the higher 

motion scan in the higher-motion subgroup.  

 

2.2.8.5 Intra-scan inter-pipeline correlation 

Preprocessing choices may have relatively large or relatively small effects on 

connectomes, and these may influence downstream analyses and convergence across studies. To 

assess the impact of preprocessing choices on FC estimates, for each scan we calculated the 

correlation between edge strengths across pipelines. These were Fisher z-transformed, averaged 

across the 112 scans, then converted back to correlations for ease of comparison.  
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2.2.9 Follow-up comparisons 

2.2.9.1. Filtering  

In addition to the highpass filter applied as part of nearly all fMRI analyses, the use of a 

lowpass filter has become common as a noise mitigation step in FC-FMRI due to frequencies 

above approximately 0.1 Hz being more highly associated with noise than signal of interest 

(Satterthwaite et al., 2019). However, this remains controversial, as connectivity information at 

higher frequencies will be lost (Niazy et al., 2011). We therefore repeated benchmark 

comparisons using a highpass (>0.01 Hz) rather than a bandpass filter. All other preprocessing 

steps were identical.  

 

2.2.9.2 Varying censoring parameters 

We conducted an additional comparison focusing specifically on the effect of different 

censoring strategies. There is variation in thresholds used in the literature, with older studies 

generally using more lenient censoring relative to more recent work (Satterthwaite et al., 2019). 

There is also variation in the literature as to whether censoring a single volume per motion 

artifact (Satterthwaite et al., 2013) or censoring multiple volumes per motion artifact (Power et 

al., 2012) is preferred. Thresholding decisions are challenging because there is limited guidance 

in early childhood samples.  

We used pipeline R4 above, which performed well on all metrics, and modified the 

approach to censoring using 11 additional pipelines that varied in the censoring threshold and the 

volumes censored per motion artifact (Table 2.2). In pipelines that censored 3 volumes per 

motion artifact, we censored volumes immediately before and after any volume or series of 

volumes flagged for censoring. Similarly, for pipelines that censored 4 volumes per motion 
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artifact, 1 volume prior and 2 volumes after the motion-contaminated volume(s) were censored. 

All 112 scans were included for these comparisons, even if stricter censoring caused scans to fall 

below the threshold of 11 minutes of uncensored data. 

 

Volumes 

censored per 

artifact 

Censoring 

threshold (mm 

FD) 

Mean and std of 

number of volumes 

censored 

1 0.3 31.8 ± 35.0 

0.25 39.3 ± 41.1 

0.2 51.0 ± 49.8 

0.15 72.2 ± 62.2 

3 0.3 57.6 ± 59.4 

0.25 69.7 ± 67.6 

0.2 88.6 ± 77.7 

0.15 121.9 ± 91.0 

4 0.3 67.6 ± 68.2 

0.25 81.3 ± 76.6 

0.2 102.5 ± 86.5 

0.15 139.3 ± 98.5 

 

Table 2.2. Preprocessing pipelines tested to compare effects of censoring at different thresholds 

and volumes censored per motion artifact. Note that the pipeline with 1 volume censored at a 

threshold of 0.25 mm is equivalent to pipeline R4 described in Table 1. 

 

 

2.2.10 Statistical Comparisons 

To statistically assess the impact of specific preprocessing steps, we compared pairs of 

pipelines that differed in their use of GSR, censoring, ICA-AROMA, or temporal filtering. For 

most analyses, pipelines were compared using paired samples t-tests with uncorrected p-values 

and Cohen's d reported. We note there are multiple ways to calculate Cohen's d for a paired test; 

here we use mean difference ÷ standard deviation of the difference. We do not report p-values 

for edgewise comparisons due to the lack of independence between edges. We note that across 
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metrics sample sizes vary depending on what specifically is being assessed, so statistical 

analyses are not directly comparable. 

 

2.3 Results 

2.3.1 Participant characteristics 

The mean age of participants at baseline was 5.47 years old (standard deviation: 0.76 

years), and 6.52 for the second scan. Time from initial to follow up scan ranged from 0.88 to 

1.19 years (mean: = 1.05 years, SD = 0.069 years). The average motion of our sample was high, 

with a mean average FD of 0.126 mm across all 112 scans (median average FD 0.095 mm). For 

comparison, in a study of adolescents aged 8-23, the whole sample had a mean average FD of 

0.062 mm, with lower- and higher- motion subgroups having a mean average FD of 0.029 mm 

and 0.097 mm respectively (Satterthwaite et al., 2013).  

The correlation in average FD between scans from the same participant was r = 0.18 (p = 

0.19). While other studies found comparatively large within-subject FD correlation (Zeng et al., 

2014), we attribute a smaller correlation to the long period of time between scans in a developing 

sample, where motion may be less trait-like. We used a linear mixed model to assess the 

correlation between age and mean FD and found a non-significant negative relationship (p = 

0.186; Supplemental Figure 2.1, Appendix A). 

For analyses in which scans were divided into two groups based on median head motion, 

the 56 low motion scans had a mean average FD of 0.062 mm (range: 0.035 to 0.094 mm, std = 

0.016 mm). The 56 high motion scans had a mean average FD of 0.191 mm (range: 0.097 to 

0.506 mm, std = 0.088 mm). Mean age at scan was similar across groups (lower-motion: 6.01 

years, std = 0.920 years; higher-motion: 5.98 years, std = 0.935 years). For the higher- and 
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lower-motion group ISC analysis, scans were divided into two groups based on median head 

motion, such that only one scan per individual was included in each group, resulting in a total of 

40 scans per group. The lower-motion scans had a mean average FD of 0.059 mm (range: 0.035 

to 0.092 mm, std = 0.016 mm). The higher-motion scans had a mean average FD of 0.202 mm 

(range: 0.097 to 0.506 mm, std = 0.096 mm). Mean age at scan remained similar across groups 

(lower-motion: 6.13 years, std = 0.888 years; higher-motion: 6.03 years, std = 0.934 years). 

 

 

Figure 2.1. Quality control-functional connectivity (QC-FC) across pipelines. a) Percentage 

of edges with a significant correlation between edge value and head motion across all 112 scans 

(uncorrected p < 0.05). b) Mean and 99% confidence interval of the absolute correlation between 

edge strength and subject motion across all 112 scans. c) Example QC-FC distance dependence 

plot, from pipeline R4 (regress HMP + WM/CSF + GSR + censor). Each point is an edge in the 

connectome, plotted based on the length between its nodes (edge distance) and correlation 

between edge strength and subject motion. Overlapping points are represented by brighter colors. 

d) QC-FC distance dependence for each pipeline. This is the correlation between edge length and 

the association between edge strength and subject motion. 
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2.3.2 QC-FC 

Figure 2.1a shows the percentage of edges significantly correlated with motion, ranging 

from 19% to 79%. In the minimally processed M1 pipeline, the vast majority of edges were 

correlated with motion (79%). Regressing only WM and CSF (M2) reduced this to 44%. Both 

GSR and censoring further reduced the number of edges correlated with motion, and pipelines 

that paired these two steps had the smallest number of motion-associated edges (e.g., R1: 44% 

vs. R4: 19%). In general, ICA-AROMA pipelines fared better than comparable pipelines that 

regressed HMP, though the pipeline with the fewest QC-FC associated edges (R4 – regress 

HMP+GSR+censoring) did not use ICA-AROMA.  

Figure 2.1b (Supplemental Table 1, Appendix B) shows the mean absolute correlation 

with motion for all edges. Here the same trends are observed, with a large motion effect in 

minimally processed data (M1) greatly reduced with the inclusion of regressing WM and CSF 

(M1: z = 0.375 vs. M2: z = 0.189, d = 0.88). Again, GSR and censoring further reduced the 

effect of motion when paired (e.g., R1: z = 0.189 vs. R4: z = 0.115). Intermediate improvements, 

with smaller effect sizes, were seen when using only one of GSR or censoring (Supplemental 

Table 1). 

Figure 2.1c shows an example from pipeline R4 of edge correlation with motion vs. edge 

distance with a linear fit. Figure 2.1d shows the QC-FC distance dependence for each pipeline. 

Pipelines that include GSR were associated with a more negative correlation (e.g., R1: r = -0.305 

vs. R2: r = -0.421), suggesting that GSR affects shorter edges differently than longer edges, with 

shorter edges having more remaining motion influence and longer edges more likely to be 

negatively correlated with motion. However, censoring reduced this correlation, partially 

compensating for the effect of GSR.  
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Figure 2.2. Quality control-functional connectivity (QC-FC) across pipelines, separately for 

lower or higher motion scans. Higher and lower motion scans were identified as above or 

below median average framewise displacement. a, b) Percentage of edges that have a significant 

correlation between edge strength and head motion (uncorrected p < 0.05). c, d) Mean and 99% 

confidence interval of absolute correlation between edge strength and subject motion. e, f) QC-

FC distance dependence. The correlation between edge distance and association between edge 

strength and head motion. 

 

 

When scans were split into lower- and higher- motion subgroups, the higher-motion 

scans fared worse on all metrics (Figure 2.2a vs 2.2b, 2.2c vs 2.2d, 2.2e vs 2.2f). Both the lower- 

and higher-motion groups had fewer edges significantly correlated with motion than the entire 

group (Figures 2.2a and 2.2b vs 2.1a), and differences between pipelines on mean absolute 

correlation with motion showed smaller effect sizes (Supplemental Tables 2 and 3 vs 
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Supplemental Table 1, Appendix B). We attribute these changes to a smaller sample size and a 

narrower range of motion values. In the lower- motion group, with the exception of the poor-

performing minimal pipelines, choice of pipeline had a minimal effect on the percent of edges 

correlated with motion (ranging from 6.1% to 8.3% in pipelines R1-R4, I1-I4; Figure 2.2a). We 

saw a similar lack of impact on the mean absolute correlation with motion, ranging from z = 0.11 

to z = 0.12 in pipelines R1-R4 and I1-I4 (Figure 2.2c), and effect sizes comparing pipelines 

smaller than 0.15 (Supplemental Table 2). Small improvements were seen with censoring, and 

pipelines that included GSR fared slightly worse. Most of the effects noted in the entire sample 

(Figure 2.1) were only seen in the higher-motion group (Figures 2.2b and 2.2d; Supplemental 

Table 3), where censoring and GSR used together improved the percentage of edges significantly 

correlated with motion (e.g., R1: 22% vs. R4: 11%) and the mean absolute correlation with 

motion (e.g., R1: z = 0.17 vs. R4: z = 0.13, though effect sizes remained small). For inter-

pipeline distance dependence, trends were similar to the entire sample in lower- and higher-

motion groups (2e and 2f vs 1d), with GSR making the association stronger, but censoring 

mitigating this effect. 

 

2.3.3 Fingerprinting 

Fingerprinting match-rate was assessed for each pipeline (Figure 2.3a). Overall, except 

for the two minimally processed pipelines (M1 and M2), both with under 50% success, the 

match rate was high for all pipelines tested, ranging from 71% to 90% (chance <1%). GSR had a 

minimal effect on the overall match rate (e.g., R1: 75.0% vs. R2: 76.8%), but pipelines that 

included censoring were more successful, especially when regressing HMP rather than using 

ICA-AROMA (e.g., R3: 88.4% and R4: 90.2%). 
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Figure 2.3. Functional connectome fingerprinting across pipelines. a) Match rate across 

pipelines. A scan matched if its highest correlation was to the other scan from the same 

individual. b) Group similarity across pipelines. Each dot represents an individual scan. Group 

similarity was assessed as the average correlation to scans from other participants. Lines 

represent mean values. c) Stability across pipelines. Each dot represents one individual. Stability 

was assessed as the correlation between scans from the same individual. Solid lines represent 

mean values, dashed lines represent the average group similarity (from 3b) for comparison. d) 

Individualization across pipelines. Each dot represents one scan. Individualization was assessed 

as the difference between stability and the highest correlation to a scan from another participant. 

Any point below 0 fails to successfully match. Lines represent mean values. 

 

While group similarity varied minimally in terms of absolute numbers across pipelines 

(Figure 2.3b), effect sizes comparing pipelines were large, suggesting consistent effects across 

participants (e.g., R1: z = 0.565 vs. R2: z = 0.572, p ≈ 10-31, d = 1.57; Supplemental Table 4, 

Appendix B). The two pipelines with the highest stability were R3 (z = 0.81) and R4 (z = 0.79; 

Figure 2.3c), though interestingly pipeline I4 (ICA-AROMA+GSR+censoring) had a comparably 
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high stability (z = 0.79), but a smaller gap between stability and group similarity. Effect sizes 

between pipelines were large for stability (e.g., R1 vs. R3: d = 1.41, p ≈ 10-14; Supplemental 

Table 5, Appendix B).  

Figure 2.3d (Supplemental Table 6, Appendix B) shows individualization (i.e., the 

fingerprinting margin) for each of the 112 scans. As expected, pipelines with a higher match-rate 

(Figure 2.3a) had a higher average individualization, which ranged from z = 0.040 to z = 0.081 

for less successful pipelines (R1, R2, I1 through I4), while reaching z = 0.12 for R3 and R4 (d > 

1.6 when comparing other pipelines to R3 or R4). There was no significant difference between 

R3 and R4. The similar distributions and large effect sizes between pipelines suggests that in 

more successful pipelines, scans that fail to match nonetheless see greater recovery of individual 

information via a reduced margin of failure.  

Figure 2.4 shows individualization plotted against head motion; a higher r2 value 

indicates greater sensitivity to motion noise. Censoring was the most impactful option on 

reducing this metric (e.g., R1: r2 = 0.40 vs. R3: r2 = 0.27), suggesting greater impact of censoring 

on higher motion scans. The participant with the most motion (mean FD of 0.51 mm for one of 

their two scans) could be considered an outlier – repeating the analysis with that participant 

removed reduces the r2 and makes the slopes less negative, but trends between pipelines remain 

(Supplemental Figure 2.2, Appendix A). We repeated the analysis using stability rather than 

individualization (Supplemental Figure 2.3, Appendix A). Here we did not find differences 

between pipelines differing in GSR or censoring, but ICA-AROMA pipelines tended to have 

modestly higher r2 values on this metric (e.g., R2: r2 = 0.36 vs. I2: r2 0.41). 
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Figure 2.4. Individualization as a function of head motion. The difference between each 

scan's stability (self-correlation) and the highest correlation to a scan from another participant, 

plotted by motion. Motion was calculated by taking the worse of each participant’s two scans’ 

mean relative framewise displacement; each participant has two points for their two scans. Any 

point below 0 on the y axis fails to successfully match.  
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Figure 2.5. Intra-class correlation (ICC). a) Mean and 99% confidence interval for between-

session ICC across pipelines. b) Mean and 99% confidence interval for the within session (split-

half) ICC by pipeline. 

 

 

2.3.4 Intra-class correlation (ICC) 

 For between-session ICC (Figure 2.5a; Supplemental Table 7, Appendix B), pipelines 

that regressed HMP had higher average ICC than corresponding pipelines using ICA-AROMA 

(e.g., R1: 0.278 vs. I1: 0.228, d = 0.32). Across pipelines, the use of GSR lowered ICC 

coefficients (e.g., R1: 0.278 vs. R2: 0.239, d = 0.34). Meanwhile, the use of censoring raised ICC 
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coefficients (e.g., R1: 0.278 vs. R3: 0.303, d = 0.27). The two minimal preprocessing pipelines 

(M1 and M2) had low average ICC coefficients, of 0.163 and 0.216 respectively.  

Within-session ICC showed a much smaller range across pipelines, ranging from 0.46 to 

0.537 (Figure 2.5b; Supplemental Table 8, Appendix B). M1, the pipeline with no regressors, 

had the third highest mean ICC (0.513). Both GSR and censoring resulted in lower ICC 

coefficients, with the value dropping from 0.537 for R1 (regress HMP+no GSR+no censor) to 

0.479 for R4 (regress HMP+GSR+censor). Pipelines differing in censoring and regressing HMP 

vs ICA-AROMA had small effect sizes (d < 0.27), while pipelines differing in use of GSR had 

larger effect sizes (d > 0.37). 

 

2.3.5 Intersubject correlation (ISC) 

Figure 2.6a (Supplemental Table 9, Appendix B) shows each scan’s mean ISC across 

pipelines, averaged across the 10 nodes with the highest values (See Supplemental Figure 2.4 for 

location of these nodes, Appendix A). Both GSR and censoring improved ISC, with large effect 

sizes (d > 2). Figure 2.6b (Supplemental Table 10, Appendix B) shows each participant's 

"intrasubject correlation" across their two scans. While intrasubject correlations showed a greater 

range than mean ISC, this is likely related to being a comparison between only two scans, rather 

than an average across many scans. Average intrasubject correlations were higher than inter-SC, 

but trends between pipelines were the same, with GSR and censoring raising the correlation (p < 

10-7, d > 0.89).  

When only lower- motion scans were compared using ISC (Figure 2.6c; Supplemental 

Table 11, Appendix B) the benefits of censoring were reduced, with or without GSR. GSR itself 

increased ISC (e.g., R1: z = 0.19 vs. R2: z = 0.22, p ≈ 10-22, d = 3.14). However, when only 
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higher- motion scans were compared (Figure 2.6d; Supplemental Table 12, Appendix B), the 

benefits of censoring were more apparent, especially in combination with GSR (e.g., R2: z = 

0.17 vs. R4: z= 0.19, p ≈ 10-24, d = 3.77). 

 

 
Figure 2.6. Mean intersubject correlation (ISC) values. Each point represents the mean ISC 

for a scan to all other scans, averaged across the 10 nodes with the highest ISCs. Lines represent 

mean values. a) Mean ISCs for all 112 scans, each compared to all other scans. b) Each 

participant's intrasubject correlation, the correlation between time series from the two scans' time 

series. c) Mean ISCs for each of the 40 below-median-motion scans. d) Mean ISCs for each of 

the 40 above-median-motion scans, compared to the other 39. 

 

 

2.3.6 Intrascan inter-pipeline correlation 

With the exception of the two minimally preprocessed pipelines, correlations between 

connectomes from different pipelines were high overall, ranging from 0.67 to 0.97 (Figure 2.7a). 

A correlation as low as 0.67 for the same scans preprocessed in two different ways – in this case 
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Figure 2.7. Intrascan inter-pipeline correlations. For each pair of pipelines, the correlation 

between connectomes from the same individual across the two pipelines was calculated, Fisher 

z-transformed, averaged across scans, then converted back to correlations. Pipelines are listed in 

Table 1, briefly: M1 – no regression; M2 – regress WM/CSF; R1 – regress HMP + WM/CSF; R2 

– regress HMP + WM/CSF + GSR; R3 – regress HMP + WM/CSF + censor; R4 – regress HMP 

+ WM/CSF + GSR + censor; I1 – ICA-AROMA + WM/CSF; I2- ICA-AROMA + WM/CSF + 

GSR; I3 – ICA-AROMA + WM/CSF + censor; I4 – ICA-AROMA + WM/CSF + GSR + censor. 

a) Average correlation based on all 112 scans. b) Average correlation using the 56 scans below 

the median average framewise displacement. c) Average correlation using the 56 scans above the 

median average framewise displacement.  
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between pipelines R3 (regress HMP+no GSR+censor) and I2 (ICA-AROMA+GSR+no censor) – 

highlights concerns about replicability given the influence of preprocessing choices. Figure 2.7 

also highlights how each preprocessing choice progressively alters functional connectivity 

estimates. Pipelines that differed only in the use of one of GSR or censoring were similar (e.g., 

R1 vs. R3: r = 0.97) while pipelines that differed in multiple preprocessing steps showed 

incremental differences (e.g., R1 vs. R4: r = 0.82). The choice to use ICA-AROMA vs. 

regressing HMP had a relatively larger effect, with correlations ranging from 0.73 to 0.83. 

Again, these correlations decreased further if the pipelines also differed in use of GSR or 

censoring. Unsurprisingly, preprocessing choices had a smaller effect on lower-motion scans 

(Figure 2.7b), with correlations between pipelines ranging from 0.72 to 0.99 for pipelines R1-R4, 

I1-I4, though were as low as 0.61 between M1 (regress nothing) and I2. For higher-motion scans 

(Figure 2.7c), correlations ranged from 0.61 to 0.93 for pipelines R1-R4, I1-I4, dropping as low 

as 0.48 between M1 and I4.  

 

2.3.7 Filtering comparison 

For highpass relative to bandpass filtering, overall trends between pipelines were quite 

similar (see Supplemental Figures 2.5-2.7, Appendix A). With a highpass filter, the number of 

edges significantly correlated with motion ranged from 25-50% for pipelines R1-R4, I1-I4 

(Supplemental Figure 2.5a). Other than for pipeline I1 (which fared poorly on this metric 

regardless), bandpass filtering resulted in fewer edges significantly correlated with motion than 

highpass filtering (e.g., R4: 19% for bandpass vs. 26% for highpass). Similarly, pipelines that 

used bandpass filtering had a smaller mean absolute correlation with motion (e.g., R4: z = 0.12 

for bandpass vs. z = 0.13 for highpass, d = 0.24; Supplemental Figure 2.5b; Supplemental Table 
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13, Appendix B). Highpass filtering resulted in more negative motion vs. edge distance 

correlations than bandpass filtering (e.g., R4: r = -0.304 for highpass vs r = -0.175 for bandpass; 

Supplemental Figure 2.5c), suggesting a bandpass filter leads to reduced distance dependent 

effects.  

For fingerprinting, running the analysis with a highpass filter usually led to a lower 

fingerprinting match rate (Supplemental Figure 2.6a), such as 67% vs 77% for pipeline R2 

(regress HMP+GSR+no censor). However, pipeline R4 (regress HMP+GSR+censor; 90% match 

rate) was equally successful using either style of filter. Pipelines that used highpass filtering 

showed increased stability and group similarity (e.g., for mean stability, R4: z = 0.87 for 

highpass, z = 0.79 for bandpass, p ≈ 10-128, d = 11.22; Supplemental Figure 2.6b; Supplemental 

Tables 14 and 15, Appendix B), suggesting a highpass filter makes all scans’ FC estimates more 

similar to each other, relative to bandpass. Filtering choice had a variable effect on 

individualization (Supplemental Figure 2.6c; Supplemental Table 16, Appendix B). For some 

pipelines, using a highpass filter led to a lower fingerprinting margin (e.g., R2: z = 0.057 for 

highpass, z = 0.077 for bandpass, p ≈ 10-7, d = 0.051), but for pipelines R3 and R4 this margin of 

fingerprinting success improved with a highpass filter (e.g., R4: z = 0.13 for highpass, z = 0.12 

for bandpass, p ≈ 10-10, d = 0.27). Bandpass filtering increased ISC and intrasubject correlations 

for all pipelines compared to highpass filtering (e.g., for ISC, R4: z = 0.18 for highpass, z = 0.20 

for bandpass, p ≈ 10-74, d = 3.74; Supplemental Figure 2.7; Supplemental Tables 17 and 18, 

Appendix B).  
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2.3.8 Censoring comparison 

Starting from the pipeline that performed best on most metrics (R4), we repeated our 

analyses with variable censoring. When one volume was censored per motion artifact, a lower 

(more stringent) threshold for censoring resulted in fewer edges correlating with motion, 

lowering from 20% of edges at a threshold of 0.30 mm, to 17% of edges at a threshold of 0.15 

mm (Figure 2.8a). However, the censoring threshold had a minimal effect on the number of 

edges significantly correlated with motion when 3 or 4 volumes were censored per artifact, 

ranging from 13% to 15%. Effects were similar in the mean absolute correlation with motion 

(Figure 2.8b; Supplemental Table 19, Appendix B), with a lower threshold at one volume per 

artifact reducing the correlation from z = 0.116 at 0.30 mm to z = 0.108 at 0.15 mm, but having 

minimal effect at 3 or 4 volumes (ranging from z = 0.099 mm to 0.104 mm). However, effect 

sizes between pipelines were comparatively small (d < 0.37) for this analysis. 

The fingerprinting match-rate decreased as censoring became more stringent (Figure 

2.8c), suggesting that although censoring can help with identifiability, there is an optimal range, 

above which individual information is reduced. At 1 volume censored per motion artifact, the 

decrease was from 90% to 88% across thresholds (0.3 mm to 0.15 mm), but at 4 volumes 

censored per artifact the match-rate fell from 88% to 80%. With stricter censoring, both stability 

and group similarity decreased (Figure 2.8d; Supplemental Tables 20 and 21, Appendix B), for 

example at 3 volumes per motion artifact the mean stability dropped from z = 0.778 to z = 0.720 

across thresholds (p ≈ 10-20, d = 1.40). Mean individualization was less affected by censoring 

(Figure 2.8e; Supplemental Table 22, Appendix B), though effect sizes remained large for most 

comparisons between pipelines. Censoring had a minimal effect on mean ISC (Figure 2.8f; 
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Supplemental Table 23, Appendix B), except for the strictest censoring. With ISC, effect sizes 

remained large for most comparisons between pipelines.  

 

 

Figure 2.8. Pipeline benchmarks with different censoring thresholds. Colored bars depict 

four threshold levels and across the x-axis a different number of volumes is censored around the 

high motion frame. a) Percentage of edges with a significant correlation between edge strength 

and head motion across all 112 scans (uncorrected p < 0.05). b) Mean and 99% confidence 

interval for absolute correlation between edge strength and motion across all 112 scans.  c) 

Fingerprinting match rate across pipelines. d) Each scan’s stability (darker points) and group 

similarity (lighter points), for each pipeline. Group similarity was assessed as the average 

correlation to scans from other participants; stability was assessed as the correlation between 

scans from the same individual. Lines represent mean values. e) Individualization across 

pipelines. Each dot represents one scan. Individualization was assessed as the difference between 

stability and the highest correlation to a scan from another participant. Lines represent mean 

values. f) Mean ISCs for all 112 scans. 
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2.4 Discussion 

This study extended preprocessing benchmark comparisons, which have previously been 

performed in youth and adult resting data, to an early childhood passive viewing sample. Our 

results support and extend previous findings, suggesting that the highest performing pipelines 

include both GSR and censoring and that these steps have greater impact in higher-motion data, 

but remained beneficial in lower-motion data. Further extending previous work, we used 

connectome fingerprinting to estimate how individual-specific information was retained, or 

enhanced, by preprocessing steps. In fingerprinting, we found that volume censoring conferred 

more benefit than GSR, and pipelines with HMP regression outperformed pipelines with ICA-

AROMA. When examining ISC, GSR offered the greatest improvement, with censoring showing 

a specific benefit for high motion scans. Censoring multiple volumes per motion artifact 

improved QC-FC metrics but had minimal or even a negative effect on other metrics, suggesting 

an important tradeoff between removal of noise and signal of interest. When examining overall 

effects of preprocessing choices on connectomes, we found that connectomes differed 

substantially depending on preprocessing choices, particularly in our higher motion subgroup, 

which is a concern for cross-study replicability in early childhood fMRI. Overall, our work 

suggests that for relatively high motion data from early childhood the best preprocessing pipeline 

includes a bandpass filter, GSR, regressing HMP rather than using ICA-AROMA, and moderate 

censoring.  

When comparing ICA-AROMA pipelines to pipelines that regressed HMPs, we found 

ICA-AROMA to be less effective on most metrics. This is somewhat surprising, given that ICA-

AROMA primarily works by removing independent components strongly associated with motion 

estimates (Pruim et al., 2015). Previous benchmarking studies found that ICA-AROMA pipelines 
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were among the most effective of pipelines that did not include censoring in terms of reducing 

the quantity of edges correlated with motion – more effective than regressing HMP – though the 

difference was small between ICA-AROMA+GSR and HMP+GSR (Ciric et al., 2017; Parkes et 

al., 2018). While our QC-FC results are consistent with previous findings, we found that ICA-

AROMA performed relatively poorly on individualization metrics. Even when ICA-AROMA 

fared comparably well on stability (as in pipeline I4), a necessary component for 

individualization, it had an elevated similarity to others, decreasing individual identifiability 

relative to pipelines that regressed HMP. However, ICA-AROMA pipelines showed no obvious 

difference from regressing HMP on ISC metrics, which measure the evoked response common 

across participants. One interpretation could be that ICA-AROMA removes both noise and 

individual-specific information although retaining signal common across participants. Further 

work is needed to clarify whether ICA-AROMA is less effective in samples of young children or 

high-motion samples, or whether connectome identifiability is generally poorer in ICA-AROMA 

relative to HMP pipelines. Other implementations of ICA-based preprocessing exist and are 

worth systematically investigating. ICA-AROMA is often used in conjunction with ICA-FIX, 

another ICA-based denoising strategy (Salimi-Khorshidi et al., 2014), and ICA-AROMA can 

also be run without their aggressive denoising option. Some studies have combined ICA-based 

denoising with regressing HMPs (Jalbrzikowski et al., 2020; Kaufmann et al., 2017), which may 

have advantages, though effectively removes aspects of the signal related to motion twice, 

contrary to the original intent of ICA-AROMA (Pruim et al., 2015).  

While GSR remains contentious in the field, our results suggest there are advantages to 

using GSR in a high-motion dataset such as the early childhood sample used here. GSR reduced 

the number of edges significantly correlated with motion, especially when applied with 
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censoring. Similarly, while there are distance-dependent effects when GSR is used, this effect 

was largely mitigated in pipelines that also included censoring, consistent with QC-FC results 

from previous studies. Ciric et al. (2017) found that their 6 best pipelines, based on fewest edges 

correlated with motion, all included GSR, while Parkes et al. (2018) found that all 6 pipeline-

pairs that differed in the use of GSR benefited from its inclusion. Both studies found that GSR 

introduced distance-dependent effects but that censoring diminished the impact. Ciric et al. 

(2017) suggests that GSR introduces these effects by more effectively denoising long range 

connections; we speculate that censoring mitigates this by removing the worst motion damage 

that may be missed by GSR. While these aforementioned studies both considered resting state 

data from adults, a benchmarking paper on fetal fMRI (Taymourtash et al., 2020) found similar 

benefits to GSR, suggesting that GSR has benefits regardless of age range or scan protocol. 

Notably, however, GSR had no obvious impact on connectome individualization metrics. 

This suggests that while GSR alters FC estimates, most notably via distance-dependent effects, 

these changes may have a more global and less regionally specific impact compared to censoring 

(Power et al., 2015). The finding that GSR had a minimal impact on fingerprinting, our metric of 

individual information, may alleviate concerns about its use when comparing healthy controls 

and clinical populations, or in developmental research, even in light of research that suggests the 

global signal is significantly related to life outcomes and psychological function (Li et al., 2019). 

We also found benefits to the use of GSR in improving signal-to-noise in ISC metrics, 

suggesting that the benefits in terms of motion and physiological noise removal in an early 

childhood sample may outweigh the cost of removing some signal of interest (Behzadi et al., 

2007). 
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We found relatively small effects of a bandpass filter compared to a highpass filter, with 

the main advantage of bandpass filtering on QC-FC metrics. In connectome fingerprinting, while 

stability was higher in pipelines that used a highpass filter, so too was group similarity by 

comparable levels. This suggests that any resulting changes to the functional connectome by 

including higher frequencies are consistent across individuals and are unlikely to reflect 

individual-specific information. Bandpass filtering also increased ISC metrics; this may suggest 

that bandpass filtering is effective for removing noise while retaining task signal, but this 

improvement may also be explained in part by signals composed of a narrower range of 

frequencies being inherently more similar across individuals. 

We found benefits to volume censoring across metrics. On QC-FC benchmarks, we found 

that censoring improved both the quantity of edges associated with motion and distance-

dependent effects. These effects are in line with Ciric et al. (2017) and Parkes et al. (2018) who 

both found that censoring pipelines outperformed alternatives on edges associated with motion, 

with both studies finding that the most effective pipelines included censoring. Our work extends 

these findings to early childhood passive viewing fMRI as well as to other benchmarks. In 

connectome fingerprinting, censoring increased accuracy more than any of the other 

preprocessing steps compared here, with censoring also conferring additional benefits to 

pipelines that used ICA-AROMA, despite ICA-AROMA being intended partially as an 

alternative to censoring (Pruim et al., 2015). Censoring had only a small effect on lower-motion 

scans for ISC comparisons, but censoring increased ISC between higher-motion scans.  

When only one volume was censored per motion artifact, the more stringent the 

censoring threshold, the fewer edges significantly correlated with motion, dropping from 20% to 

17% of edges. While this pattern was less appreciable when censoring multiple volumes per 
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motion artifact, even at the most lenient threshold tested multivolume censoring outperformed 

single volume censoring on this metric. Stricter censoring tended to decrease both stability and 

group similarity. This suggests that removing data points removes information that is common 

across participants. Interestingly, the distribution of individualization values was relatively 

unaffected by the censoring threshold, except when very strict censoring was used, even though 

the overall match rate decreased when censoring became stricter. This suggests not all scans are 

affected in the same way by changes in censoring parameters. While censoring had a minimal 

effect on mean ISC, except for the strictest censoring, it should be noted that for the purposes of 

ISC, censoring one scan necessarily censors the scan it is being compared to, since the same time 

points need to be compared. A stricter censoring protocol will lead to a disproportionate 

reduction in shared time points, so benefits in the removal of noise may be balanced by the 

decrease in data being compared. Altogether, while we found censoring to be beneficial, and can 

advise against overly strict censoring, the exact implementation of censoring seems to involve 

tradeoffs, making it challenging to advocate a one-size-fits-all approach. Future work may 

further consider how censoring is implemented, with the possibility of utilizing a scan-specific 

approach.  

Previous work has found that ICC values are generally higher in more minimal pipelines 

that perform worse on other benchmarks (Parkes et al., 2018; Kassinopoulos and Mitis, 2021), 

suggesting a trade-off between reliability and validity (Noble et al., 2021) due to correlated noise 

across sessions. Here, we show that within-session ICC scores are consistent with previous work, 

but between-session ICC values (with ~12 months between sessions) were generally higher in 

pipelines with more aggressive denoising. Our interpretation of differences across studies is that 

greater time between scans in a developmental sample reduces the shared influence of motion 
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and physiological artifacts. Indeed, in our sample the correlation between initial and follow-up 

scan head motion was non-significant. This interpretation is supported by analyses in Parkes et 

al. (2018), who similarly found that while poorer performing pipelines had higher ICC, this 

effect was reduced when scans were collected on average 90 days apart, rather than within the 

same session. Given the conceptual difficulty of separating reproducible head motion from its 

biological confounds (Engelhardt et al., 2017; Hodgson et al., 2017), our data presents an 

advantage. We further note that ICC or other measures of test-retest reliability may be imperfect 

benchmarks for addressing head motion, and a broader collection of benchmarks, such as those 

included here, may be more appropriate to best understand how preprocessing choices affect 

signal changes (Kassinopoulos and Mitis, 2021). 

Our findings on the intrascan interpipeline correlations are concerning towards the goal 

of replicable results in FC-MRI studies. While preprocessing choices have a smaller impact on 

lower-motion data, our work suggests that when analyzing high motion data, such as data from 

young children, each preprocessing choice has a measurable and cumulative effect on FC 

estimates (Li et al., 2021). While broader methodological differences or group-level participant 

differences are often cited as reasons for different findings among studies, we suggest that 

differences in preprocessing are likely to also play a role. Preprocessing choices should be both 

closely considered and accurately reported. While we compared the correlation between the 

entire functional connectome, future work should explore regionally-specific effects in more 

detail. 

There are several limitations to our work. Our study was done in young children who 

were participating in a passive viewing task, and our results may not be directly applicable to 

other populations or other study protocols. Likewise, the benefits of any step we tested may not 
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be transferable to a more traditional task-based fMRI study, especially censoring data points 

during the task. We note that several of the steps implemented here could have been applied in 

alternative forms, which also restricts generalizability. For example, we used a 24 HMP model 

rather than 6 or 12 HMP (Friston et al., 1996). Similarly, there are many other thresholds that can 

be used for temporal filtering or censoring, or conceptually similar strategies such as despiking 

(Patel et al., 2014). There are also other possible approaches to noise mitigation, such as 

CompCor (Behzadi et al., 2007) or ANATICOR (Jo et al., 2010), that warrant further 

investigation. 

We also acknowledge that choices such as registration and parcellation may have 

impacted our findings. Previous studies using functional connectome fingerprinting have used a 

similar number or fewer nodes; for example, Finn et al (2015) used a 268-node atlas while 

Miranda-Dominguez et al. (2018) used a 333-node atlas. Finn et al. (2015) also found lower 

fingerprinting success using a 68-node atlas; it is unknown if a higher number of nodes may 

offset the difference between preprocessing strategies on fingerprinting metrics, especially if 

considering a specific subset of edges rather than the full connectome (Byrge and Kennedy, 

2019). While we chose metrics that we believe are meaningful to gauge the effect of 

preprocessing, other metrics could have instead been chosen. For example, we did not consider 

the effect preprocessing has on the magnitude of FC edges, and we also did not consider the 

effect preprocessing might have on individual networks within the broader connectome 

(Kassinopoulos and Mitsis, 2021), or other changes in functional organization.  

This study implemented ISC by comparing nodes across scans, rather than a voxel-based 

approach (Hasson et al., 2004). This has the potential to average out the effect of the task, as not 

all voxels within a parcel will respond to the passive viewing task in a similar way. We also 
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chose to focus on the nodes with the highest average ISC values. These choices limit the extent 

our findings can be generalized across the whole brain or to voxel-specific changes. Our analysis 

has assumed that a higher ISC value reflects greater recovery of true signal, based on the 

assumption that unremoved noise will lower the temporal correlation between scans. Parkes et al. 

(2018) suggest that reproducible, individual-specific noise can increase FC test-retest reliability. 

It is unknown whether noise has a similar effect between subjects in the context of ISC, though 

there is the potential for head movements to be more likely at specific times in a video (e.g., due 

to laughter). Future work is needed that specifically investigates the effect of preprocessing 

choices on ISC values across the brain, especially in high noise scans. 

 

2.5 Conclusions 

Due to the impact that both head motion and preprocessing choices have on FC estimates, 

benchmarking preprocessing steps in high-motion early childhood samples is critical to support 

researchers in making informed choices. While in different datasets the optimal preprocessing 

choices may vary, our results suggest that GSR, censoring, a bandpass filter, and HMP 

regression are preferable in high motion datasets from early childhood populations engaging in a 

passive viewing task. In particular, GSR and censoring showed few disadvantages across our 

metrics, and ICA-AROMA showed no major improvement compared to regressing out HMPs, 

especially when used without censoring. 

All preprocessing choices have unintended effects on data; in light of the major effect that 

preprocessing choices has on FC estimates, we urge awareness of the effect of preprocessing 

choices within any given research protocol. Ideally, studies should aim to reduce head motion at 
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the time of scan, for instance through the use of passive viewing, and new preprocessing 

strategies should aim to improve the signal-to-noise ratio with fewer tradeoffs. 
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Chapter 3: Functional Connectomes Become More Longitudinally Self-Stable, but Not 

More Distinct from Others, Across Early Childhood 

3.0 Abstract 

Functional connectomes, as measured with functional magnetic resonance imaging (fMRI), are 

highly individualized, and evidence suggests this individualization may increase across 

childhood. A connectome can become more individualized either by increasing self-stability or 

decreasing between-subject-similarity. Here we used a longitudinal early childhood dataset to 

investigate age associations with connectome self-stability, between-subject-similarity, and 

developmental individualization, defined as an individual’s self-stability across a 12-month 

interval relative to their between-subject-similarity. fMRI data were collected during an 18-

minute passive viewing scan from 73 typically developing children aged 4-7 years, at baseline 

and 12-month follow-up. We found that young children had highly individualized connectomes, 

with sufficient self-stability across 12-months for 98% identification accuracy. Linear models 

showed a significant relationship between age and developmental individualization across the 

whole brain and in most networks. This association appeared to be largely driven by an increase 

in self-stability with age, with only weak evidence for relationships between age and similarity 

across participants. Together our findings suggest that children’s connectomes become more 

individualized across early childhood, and that this effect is driven by increasing self-stability 

rather than decreasing between-subject-similarity.  
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3.1 Introduction 

Individuality is a fundamental aspect of the human experience. Functional connectomes, 

measures of inter-regional synchrony across the brain, are highly individualized in adults (Byrge 

and Kennedy, 2019; Finn et al., 2015; Vanderwal et al., 2021), and reflect individual cognitive 

and behavioural characteristics (Barch et al., 2013; Dadi et al., 2019; Mevel and Fransson, 2016). 

It has been suggested that individualization is a developmental process, where unique 

experiences may push the brain towards increasing individualization as children mature (Freund 

et al., 2013; Kaufmann et al., 2017; Vanderwal et al., 2021). However, findings on functional 

connectome individualization in development have been mixed (Kaufmann et al., 2017; 

Vanderwal et al., 2021). Here we used functional magnetic resonance imaging (fMRI) to 

examine whether functional connectomes become more individualized across early childhood, a 

period of rapid brain maturation.  

 Connectome individualization can be assessed as self-stability (self-similarity) – across 

two scans, contexts, or timepoints – relative to between-subject-similarity. For example, 

connectome fingerprinting (Finn et al., 2015) uses correlations to match connectomes from the 

same participant if the self-correlation exceeds correlation to others. Fingerprinting accuracy 

depends on factors such as scan duration, number of potential matches, and approach to data 

cleaning, but generally has high success in adult studies (90%-99%), suggesting that the adult 

connectome is highly individualized (Byrge and Kennedy, 2019; Finn et al., 2015; Miranda-

Dominguez et al., 2014; Peña-Gómez et al., 2018; Vanderwal et al., 2017). Developmental, or 

longitudinal, individualization can be assessed by collecting pairs of scans from participants at 

different time points, and comparing self-stability over time to similarity to peers (Dufford et al., 

2021; Jalbrzikowski et al., 2020; Sato et al., 2021). Across the first-year of life, longitudinal 
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identification accuracies are low, with under 25% success matching 1.5-month-old children to 

themselves at 9 months old, or vice versa (Dufford et al., 2021). In older children (6-15 years 

old), higher matching accuracies, up to 38%, have been shown across gaps of 20-45 months 

(Sato et al., 2021), and no significant difference in longitudinal (1.5 year) match rates were found 

in a study comparing separate groups of adolescents and adults (Jalbrzikowski et al., 2020). 

While studies have varied in design, and there is a gap in data across early childhood, 

collectively they suggest that connectomes show greater developmental individualization with 

increasing age. 

Interpreting these findings is challenging, however, as it remains unclear whether age 

effects on connectome individualization are driven by increased self-stability, decreased 

between-subject-similarity, or both. Some evidence suggests that changes in developmental 

individualization are largely driven by changes in self-stability. Liao et al. (2021) found higher 

longitudinal self-stability in participants as adults compared to when the same individuals were 

adolescents. Kaufmann et al. (2017) found that age positively associated with short-term across-

task self-stability in youth aged 8-23 years, though Vanderwal et al. (2021) found no association 

between connectome self-stability and age in a similarly designed study. With regards to 

between-subject-similarity, Vanderwal et al. (2021) also found no association with age, while 

both Vanderwal et al. (2021) and Liao et al. (2021) found that participants with higher self-

stability also had greater, rather than reduced, between-subject-similarity. There also remains the 

question as to whether increasing self-stability might suggest a slowing down of developmental 

changes. If older children have more stable connectomes than younger children, the magnitude 

of change in functional edges may decrease in an asymptotic fashion. 
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In the present study, we used a longitudinal early childhood sample to separately consider 

developmental self-stability and between-subject-similarity. Specifically, we asked: 1) Do 

connectomes become more individualized over time as children get older? 2) Are age-related 

changes in developmental individualization driven more by changes in self-stability or 

(dis)similarity to others? And 3) Are changes in developmental individualization related to the 

magnitude of edge-wise connectome changes? 

We further considered network-wise effects of developmental individualization. In 

adults, frontoparietal association networks are more individualized than sensorimotor networks 

(Byrge and Kennedy, 2019; Finn et al., 2015; Miranda-Dominguez et al., 2018; Peña-Gómez et 

al., 2018; Vanderwal et al., 2017), which is believed to reflect greater variance in functional 

neuroanatomy and evolutionary expansion in association regions (Marek and Dosenbach, 2018; 

Vendetti and Bunge, 2014). However, brain development is heterochronous, with evidence 

suggesting association cortices and particularly prefrontal regions follow more protracted 

development patterns than earlier maturing sensory and motor regions (Alcauter et al., 2015; Gao 

et al., 2015a; Geng et al., 2017; Gu et al., 2015), which may alter differences between networks 

in individualization, relative to adults. Early childhood is a period when sensory and 

sensorimotor functional connectivity and white matter pathways are continuing to mature 

(Dimond et al., 2020b; Rohr et al., 2018), suggesting individualization in these regions may 

associate with age, along with later maturing association networks.  
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3.2 Methods 

3.2.1 Participants 

 173 children between 4 and 7 years of age were recruited as part of a study on early 

childhood brain maturation (Dimond et al., 2020b, 2020a; Graff et al., 2022a; Rohr et al., 2019, 

2017; Tansey et al., 2022). Children were excluded if they had a history of neurodevelopmental 

or psychiatric disorders, any neurological diagnoses, any major health concerns, any MRI 

contraindications, or if their full-scale IQ was more than 2 standard deviations below 100 (i.e., 

<70). For this study, 142 children contributed usable baseline data, and of those 77 (31 male) 

returned for a follow-up 12 months later. Data were included in this analysis if both an initial and 

12-month follow-up scan were available, and if after volume-wise censoring of the fMRI data at 

0.25 mm framewise displacement (FD; based on FSL MCFLIRT; Smith et al., 2004) both scans 

retained at least 11 minutes of data. 73 participants (29 male) reached this threshold, for a total of 

146 scans. Participants provided assent to participate, while parents provided informed consent. 

This study was approved by the University of Calgary Conjoint Health Research Ethics Board. 

 

3.2.2 Data collection 

Data was collected using a 3T GE MR750 w (Waukesha, WI) scanner with a 32-channel 

head coil, located at the Alberta Children's Hospital. A T1w 3D BRAVO sequence (TR = 6.764 

ms, TE = 2.908 ms, FA = 10°, voxel size = 0.8x0.8x0.8 mm3) and a gradient-echo EPI sequence 

(1100 seconds in duration, TR = 2.5 s, TE = 30 ms, FA = 70°, voxel size = 3.5x3.5x3.5 mm3) 

were acquired. During fMRI acquisition, participants watched clips from Elmo's World, a 

children's television show. During the T1w scan, children watched a video of their choice. 
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Before each scan, children underwent a practice scan in an MRI simulator, during which they 

watched the same sequence of video clips from Elmo’s World. 

 

3.2.3 Preprocessing 

 We chose a preprocessing pipeline in accordance with our previous work benchmarking 

preprocessing pipelines in data from young children (Graff et al., 2022). All preprocessing was 

carried out using custom Python scripts that integrated Nipype functionality (Gorgolewski et al., 

2011) using FSL version 6.0.0 (Smith et al., 2004), ANTs version 3.0.0.0 (Avants et al., 2011), 

and AFNI version 18.3.03 (Cox, 1996). We preprocessed scans from the same individual 

separately. 

EPI data preprocessing consisted of slice time correction, rigid body realignment, and 

skull stripping using FSL slicetimer, FSL MCFLIRT, and FSL BET respectively, a linear 

regression to remove the mean and linear and quadratic trends from each voxel, bandpass 

temporal filtering (0.01 – 0.08 Hz), and nuisance regression. We regressed out the six head 

motion parameters, along with the white matter, cerebrospinal fluid, and global signal; both 

linear and quadratic terms were included, along with their temporal derivatives (4 regressors per 

parameter). Censoring was carried out as part of the regression step, where we censored volumes 

above a FD threshold of 0.25 mm (based on FSL MCFLIRT) and censored only the identified 

frames. After censoring, our shortest scan had 273 volumes; for all other scans volumes 274 

onward (of volumes uncensored) were removed to match scan lengths. As not only amount but 

location of censored volumes influences connectome stability (Power et al., 2015), we carried 

out a control analysis using an alternate volume-length matching approach where the 18-minute 

scan was divided into 4.5-minute quartiles, and for each participant their 273 volumes were 
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chosen sequentially from each quadrant, from uncensored volumes. This allowed a more even 

distribution of volumes included across the 18-minute scan. We used ANTs Registration (Avants 

et al., 2011) to warp the EPI image to a study-specific EPI template (Huang et al., 2010). This 

template was produced by taking a reference volume from each fMRI scan, chosen as a volume 

of low motion approximately in the middle of the scan, warping these references to MNI space, 

then averaging them together and smoothing with a Gaussian kernel. We smoothed the study-

specific template with a kernel of σ = 3.0 mm, as we found this kernel best addressed the trade-

off between retaining anatomical information and compensating for imperfect registration of the 

reference volumes to MNI space. Functional data used in the analysis were not spatially 

smoothed prior to connectome generation. 

 

3.2.4 Connectome generation 

Following preprocessing, each voxel was assigned to one of 1095 nodes (parcels) within 

the MIST ATOM parcellation (Urchs et al., 2019). We used the MIST parcellation due to its 

inclusion of subcortical regions, including the cerebellum. Each node was assigned to one of 12 

brain networks, as defined by the MIST 12 parcellation: Basal ganglia and thalamus (for brevity, 

hereafter referred to as BG/thalamus; 39 nodes), auditory network and posterior insula (auditory 

network; 49 nodes), mesolimbic network (153 nodes), default mode network lateral (lateral 

DMN; 48 nodes), visual network (110 nodes), default mode network posteromedial 

(posteromedial DMN; 56 nodes), somatomotor network (53 nodes), default mode network 

anteromedial and left angular gyrus (anteromedial DMN; 84 nodes), ventral visual stream and 

dorsal visual stream (visual stream; 78 nodes), frontoparietal network (157 nodes), ventral 
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attention network and salience network (ventral attention network; 132 nodes), and cerebellum 

(136 nodes). 

The time courses for voxels in each node were averaged, reducing the brain to 1095 time 

courses. The Pearson correlation between every pair of nodes was calculated, generating 598 965 

edges, which were Fisher z-transformed to approximate a normal distribution. 

 

3.2.5 Self-stability, between-subject-similarity, and individualization metrics 

Figure 3.1 summarizes how metrics were generated. Following the approach used by 

Finn et al. (2015) and related work (Byrge and Kennedy, 2019; Kaufmann et al., 2017; Miranda-

Domingeuz et al., 2018), connectomes were vectorized and then each pair of scans was 

correlated. These correlations were also Fisher z-transformed prior to being included in statistical 

models. Connectome metrics were then calculated as follows: 

1. Longitudinal self-stability was assessed as the correlation between a participant's original and 

follow up scan.  

2. Average-between-subject-similarity was assessed using the mean of each participant's 

correlation to all scans from other participants. Both original and follow-up scans were used 

to generate this average (i.e., for each participant, this value is an average of 2x144=288 

correlations). We considered original and follow-up scans separately in a second model (see 

2.8. below). 

3. Developmental individualization was assessed through two metrics:  

a. The fingerprinting match rate was calculated by comparing each scan against every 

other scan and dividing the number of times a scan’s highest correlation was to the  
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Figure 3.1. Summary of methods. The MIST ATOM parcellation was applied separately to 

both scans from each participant, then functional connectivity was calculated between all 1095 

connectome nodes. The 598 965 edges were then converted into a vector. Between all pairs of 

vectorized connectomes – both within and between participants – the Pearson correlation was 

calculated to assess similarity. For each participant, metrics of interest were generated from these 

similarity values. Longitudinal self-stability was assessed as the correlation between a 

participant's original and follow up scan (in figure, blue striped box). Short-term self-stability 

was assessed by dividing scans into halves, generating the functional connectome for the halves 

separately, then calculating the similarity between these halves (split green-white boxes). 

Between-subject-similarity was assessed using the mean of each participant's correlation to scans 

from other participants (pink boxes), either using all correlations from both scan 1 and scan 2 

(average-between-subject-similarity) or determining scan 1 and scan 2 mean correlations 

separately (sessional-between-subject-similarity). Developmental individualization was assessed 

as the difference between longitudinal self-stability and average-between-subject-similarity 

(brown box).  
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other scan from the same participant by the total number of scans, expressed as a 

percentage. Here we had 73 individuals, each with two scans, for a denominator of 

146. Although this metric has been used widely (Finn et al., 2015), it reduces each 

scan to a binary score (match or no match), thus limiting its sensitivity, and is 

necessarily affected by sample size, since the larger the sample the more likely a scan 

will be compared to a very similar scan (Waller et al., 2017). To address this, we 

implemented an additional metric:  

b. The difference between longitudinal self-stability and average-between-subject-

similarity. This metric can be thought of as the extent to which a participant is 

individualized relative to the group. We used this as our main developmental 

individualization metric. 

Self-stability, average-between-subject-similarity, and developmental individualization 

were calculated for the whole connectome (all 598 965 edges) and for the edges within 

individual networks. To account for differences in network size (number of nodes in each 

network), we conducted network size-matched control analyses by randomly choosing 36 nodes 

(chosen as it was close to but smaller than the 39 nodes in our smallest network) from each 

network and only using the (630) edges between those nodes, sampled 1000 times.  

 

3.2.6 Cross-sectional age associations 

We used a linear regression to assess associations between age and self-stability, average-

between-subject-similarity, and developmental individualization. For age, we used the 

participants’ average of the age at the time of their initial scan and age at their follow up scan. 

We also included motion (mean relative FD, averaged across the two scans), time between scans, 



74 
 

and sex as covariates. Age associations were calculated for the entire connectome and individual 

networks. As described above, we also conducted analyses controlling for network size. For 

network-wise analyses, we used Bonferroni correction for multiple comparisons across networks, 

and present levels of significance both with and without the correction. Since different networks 

may have different distributions in the metric of interest (independently of age), we calculated 

standardized beta coefficients. Figures also include 95% confidence intervals around beta 

estimates. 

 

3.2.7 Longitudinal-between-subject- similarity analysis 

To assess changes in similarity with age, in addition to using average-between-subject-

similarity in a cross-sectional model, which parallels the individualization and self-stability 

models (i.e., with one value per participant), we tested a second model. For each participant, we 

calculated mean between-subject-similarity for both baseline and follow-up scan separately 

(giving two similarity values for each participant, rather than – as in section 2.7 – one similarity 

value per participant). We then used a mixed-effects model to test the effect of age on similarity, 

including motion and sex as fixed effects and participant identity as a random effect. 

 

3.2.8 Short-term split-half self-stability  

To facilitate comparison to prior work (Vanderwal et al., 2021; Kaufmann et al., 2017), 

we examined associations between age and short-term self-stability using mixed-effects models. 

Short-term self-stability was assessed using split-half correlations: for each scan we calculated 

the functional connectome for the first and second half of the scan separately, then correlated the 
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vectorized edges and Fisher z transformed the result. Models included motion (mean relative FD) 

and sex as fixed effects and participant identity as a random effect.  

To address whether short-term self-stability age effects were driven by temporal 

autocorrelation between the scan halves, we carried out an additional analysis where we 

calculated stability between the first third and last third of each scan, discarding the middle third. 

As before, the functional connectome was calculated for these thirds separately before carrying 

out the same mixed effects analysis. 

 

3.2.9 Magnitude of longitudinal change 

If longitudinal stability increases with age, this may be related to the average change in 

edge strength (functional connectivity; FC) decreasing, i.e., a slowing of developmental changes. 

To assess this, we calculated the magnitude of longitudinal change by averaging across edges the 

absolute edge differences for each participant's scan pairs, both for the whole brain and across 

networks. We then used a multiple regression to assess the effect of age on magnitude of 

longitudinal change controlling for motion, time between scans, and sex, identically to other age 

models. 

 

3.2.10 Within- and between-network effects 

In an exploratory analysis, we considered between-network connections for all pairs of 

networks. We controlled for network size by randomly choosing 18 nodes from each of the two 

networks and only using the (18x18=324) edges between those nodes, averaged over 1000 

random samplings. In this analysis, when assessing within-network we randomly chose two sets 

of 18 nodes, giving an identical 18x18=324 edges. Reported p-values are derived from using the 
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entire set of between-network edges, rather than a random subset. While we report p-values with 

and without multiple comparison correction for transparency, given the large number of 

network-network pairs we caution against over interpreting significance or lack of significance.  

 

3. Results 

3.3.1 Participant characteristics 

Figure 3.2 shows the age distribution of participants. The mean age at baseline was 5.54 

years old (standard deviation: 0.78 years). Time between scans ranged from 0.87 to 1.33 years 

(mean = 1.05 years, SD = 0.088 years); mean age at follow-up scan was 6.60 years. Our sample's 

average motion was high, with a mean average relative FD of 0.127 mm across all scans (median 

= 0.097 mm). The correlation in average relative FD between scans from the same participant 

was r = 0.25 (p = 0.035). Using a linear mixed model, age showed a trend-level negative 

association with mean FD (p = 0.081; Supplemental Figure 3.1, Appendix A), with no significant 

association between age and median FD (p = 0.22) or between age and number of censored 

volumes (p = 0.24). On average, more volumes were censored in the last quartile of the scan than 

 

Figure 3.2. Age at scan for all participants. Each dot represents a scan; lines connect scans 

from the same participant.  
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other quartiles, but no quartile showed a significant association between age and number of 

censored volumes (p = 0.97, 0.071, 0.54, 0.18 for the four quartiles respectively: Supplemental 

Table 3.1). 

 

3.3.2 Connectome individualization 

We found a high level of developmental individualization in early childhood with a 98% 

whole brain fingerprinting match-rate (Supplemental Figure 3.2a, Appendix A). Individual 

networks varied in individualization, with the frontoparietal network having the highest match 

rate at 98%, and the BG/thalamus having the lowest at 16%. The posteromedial DMN, visual, 

visual stream, and ventral attention all had match rates above 80%. When controlling for network 

size, trends between networks were nearly the same, and the whole brain match rate approached 

the average across networks (Supplemental Figure 3.2b, Appendix A). All match rates were 

significantly above chance (e.g., for 16%, the lowest average match rate, p < 10-25
, based on 24 or 

more matches out of 146, with each match having a 1/145 chance).  

Figure 3.3a shows each participant's mean developmental individualization. The 

posteromedial DMN showed the highest mean individualization, while the mesolimbic network 

showed the lowest. The whole brain, which includes internetwork connections, had a comparably 

low mean individualization. A repeated measures ANOVA showed a significant difference 

between networks (p = 4.8 x 10-82, ηp
2 = 0.38). Figures 3.3b and 3.3c show each participant's 

longitudinal self-stability and average-between-subject-similarity respectively. Differences 

between networks were more pronounced for these two measures; for self-stability we found an 

effect size of ηp
2 = 0.68 and for average-between-subject-similarity we found an effect size of ηp

2 

= 0.91. In general, networks with higher self-stabilities also had higher similarities. The 
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Figure 3.3. Developmental individualization, longitudinal self-stability, and average-

between-subject-similarity across networks. Each dot represents one participant. Lines 

represent mean values across participants. a) Developmental individualization across networks, 

calculated by taking the difference between each participant’s self-stability across one year and 

their average-between-subject-similarity. b) Longitudinal self-stability across networks, 

calculated by correlating FC estimates from the same participant, with scans collected one year 

apart. Values are Fisher-z transformed. c) Average-between-subject-similarity across networks. 

For each participant, average-between-subject-similarity was calculated as the mean correlation 

to scans from all other participants, using both their original and follow up scan. Values were 

Fisher-z transformed prior to averaging. For all three subplots, to test for differences across 

networks a repeated measures ANOVA was used to determine p and partial-eta squared values; p 

and np2 values indicated on plots.  
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posteromedial DMN had both the highest average self-stability (z = 1.24) and highest average-

between-subject-similarity (z = 0.84). Alternatively, the frontoparietal network had among the 

lowest self-stabilities (z = 0.78) and the lowest average-between-subject-similarity between 

participants (z = 0.46), suggesting high individualization can be achieved by either high self-

stability or low similarity to others. The whole brain had lower self-stability and similarity than 

any individual network, which we attribute to its inclusion of both inter- and intra-network 

connections. No noticeable trend existed between network size and individualization. Small 

networks showed both high (e.g., posteromedial DMN – 56 nodes) and low (e.g., BG/thalamus – 

39 nodes) individualization. When controlling for network size, the relative ranking of each 

networks' individualization, self-stability, and average-between-subject-similarity scores were 

essentially unchanged (Supplemental Figure 3.3, Appendix A). In general, larger networks (more 

nodes) showed larger variance, though this is at least partially an artifact of resampling, as 

smaller networks have a higher probability of resampling the same nodes. Despite this, the 

anteromedial DMN, an average-sized network (84 nodes), showed the largest range of self-

stability and average-between-subject-similarity scores, suggesting it is a relatively 

heterogeneous network. When we assessed developmental individualization, longitudinal self-

stability, and average-between-subject-similarity using the alternate volume-length matching 

approach (described in section 2.4.), measures were mostly unaffected (e.g., the largest mean 

change was z = 0.03) suggesting minimal impact of volume selection decisions (Supplemental 

Figure 3.4a,c,e, Appendix A). 
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3.3.3 Effects of age on individualization, self-stability, and average-between-subject-

similarity 

 Figure 3.4a shows associations between developmental individualization and age across 

networks. We found uncorrected significant associations (p<0.05) with age in the whole brain 

and all networks except auditory, anteromedial DMN, and BG/thalamus. Whole brain, 

frontoparietal, visual stream, ventral attention, mesolimbic, and cerebellum survived correction 

for multiple comparisons. The largest standardized effect size was found in the whole brain (b = 

0.47), followed by the ventral attention network (b = 0.43), and visual stream (b = 0.39). We note 

that the 95% confidence intervals around age effect estimates overlapped for most networks, 

suggesting caution in interpreting age differences between networks. 

 Age associations with longitudinal self-stability (Figure 3.4b) were nearly identical to 

individualization (Figure 3.4a; Spearman correlation between age-stability betas and age-

individualization betas was r = 0.99, p < 10-9). On the other hand, no network showed a 

significant age association for average-between-subject-similarity (Figure 3.4c), although we 

found a positive association between age and average-between-subject-similarity across the 

whole brain (b = 0.35; as age increased, the similarity to others increased). This suggests that the 

age effect of developmental individualization is driven by age-related increases in self-stability, 

rather than a decrease in similarity to others. Although similarity effects were mostly non-

significant, age-similarity betas were highly correlated with both age-individualization betas 

(Spearman’s correlation r = 0.71, p = 6.7 x 10-3), and age-stability betas (Spearman’s correlation 

r = 0.79, p = 1.5 x 10-3). 
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Figure 3.4. Age effects of (a) developmental individualization, (b) longitudinal self-stability, 

and (c) average-between-subject-similarity by network. A linear regression was used to 

assess associations between age and the metric of interest, controlling for sex, motion (mean 

FD), and time between a participant’s scans. Error bars depict 95% confidence intervals around 

standardized beta estimates. * = p < 0.05 uncorrected; ** = p < 0.05 Bonferroni corrected.  
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Controlling for network size, we found comparable results (Supplemental Figure 3.5, 

Appendix A), with the whole brain and the visual stream showing the largest effects for 

developmental individualization (average b = 0.36 for both), followed by the ventral attention 

network (average b = 0.35). Individualization and self-stability effect sizes closely matched. As 

before, the auditory network, anteromedial DMN, and BG/thalamus had the smallest average 

effect sizes. For each network, mean age effects for average-between-subject-similarity were 

negligibly small, as with the full network analysis, although the whole brain continued to show a 

larger, positive effect. When we assessed metrics spreading volumes across quartiles (described 

in section 2.4.), age effects were comparable to the main model (Supplemental Figure 3.4b,d,e, 

Appendix A). The most prominent change was in the mesolimbic network’s age effect on 

developmental individualization, which remained significant at an uncorrected threshold but no 

longer survived multiple comparisons correction. 

In the longitudinal-between-subject-similarity analysis, we calculated mean between-

subject similarity for each scan (giving two values per participant – one for their baseline scan, 

one for their follow up – rather than one overall average), then used a mixed-effects model to 

assess the effect of age (Supplemental Figure 3.6, Appendix A). Compared to the main, average-

between-subject-similarity, model, the whole brain showed a smaller, positive association that 

approached significance (b = 0.16, p = 0.055). In the whole brain, after controlling for sex and 

motion, we found that 35 participants had a lower mean between-subject-similarity in their 

follow up scan, while 38 participants had a higher mean between-subject-similarity in their 

follow up scan. As previously, no network showed a significant association between age and 

similarity.  
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3.3.4 Effects of age on short-term self-stability 

For comparison with previous literature, we assessed whether age associated with short 

term self-stability (i.e., the split-half correlation, rather than correlating separate scans 12-months 

apart; Supplemental Figure 3.7a, Appendix A). Significant but small effects (0.19 < b < 0.23) 

were found in the whole brain, visual stream, frontoparietal network, and ventral attention 

network, but did not survive multiple comparisons correction. Most networks showed an effect 

size of b = 0.1 or smaller, suggesting that age has a smaller effect on short-term stability than 12-

month longitudinal stability, though we note that split-half analyses use less data and thus 

provide noisier estimates of connectivity.  

In order to minimize temporal autocorrelation effects, we carried out an additional 

analysis where we assessed short-term self-stability using a “split-third” analysis, i.e., the 

correlation between the first third and last third of each scan (Supplemental Figure 3.7b, 

Appendix A). Results were comparable to the split-half analysis, though the effect size was 

moderately larger in the auditory and frontoparietal networks, the latter of which now survived 

multiple comparisons correction.  

 

3.3.5 Relationship between age and longitudinal change 

 As we found that connectomes become more longitudinally self-stable with increasing 

age, we asked whether there was less overall longitudinal change between scans in older 

participants. Figure 3.5 shows the association between age and average absolute longitudinal FC 

change. Throughout the brain, as age increased average absolute longitudinal change in FC 

decreased. Significant effects were found in the whole brain, visual network, visual stream, 

cerebellum, and mesolimbic network, though only the whole brain and visual stream survived a  
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Figure 3.5. Age effects of average change in edge strength. A linear regression was used to 

assess associations between age and average change in edge strength, controlling for sex, motion 

(mean FD), and time between scans. For each participant, average change in edge strength was 

calculated by taking the absolute difference in FC estimates across the participant’s two scans, 

collected one year apart. These differences were then averaged across all edges in the network. 

Error bars depict 95% confidence intervals around standardized beta estimates. * = p < 0.05 

uncorrected; ** = p < 0.05 Bonferroni corrected. 

 

Multiple comparisons correction. The effect was largest in the whole brain (b = -0.39). The 95% 

confidence intervals overlapped across most networks, suggesting small differences between 

networks. Comparing this analysis to the effect of age on longitudinal self-stability (Figure 3.4b) 

showed broadly similar trends, as all the networks with significant age effects on longitudinal 

change also showed age effects on stability (Spearman correlation between self-stability age 

betas and longitudinal change betas: r = -0.69, p = 8.7 x 10-3). 

 

3.3.6 Within-network and between-network effects 

 Figure 3.6 shows individualization, longitudinal self-stability, and average-between-

subject-similarity metrics for both within-network and between-network edges, matched for 

network size. In general, for most networks developmental individualization was higher within-
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network than between-networks, and networks with high within-network individualization 

tended to also have relatively high between-network individualization (Figure 3.6a). For 

example, the posteromedial DMN had an average individualization of 0.40, versus 0.34 for the 

visual network. Posteromedial DMN-to-frontoparietal had an average individualization of 0.31, 

versus 0.26 for visual-to-frontoparietal. Self-stability (Figure 3.6c) and average-between-subject-

similarity (Figure 3.6e) showed comparable effects to each other, where sets of edges with higher 

self-stability also showed higher similarity. Here we found a clearer gap between intra-network 

and inter-network connections, with intra-network edges almost universally showing higher 

average-between-subject-similarity and self-stability than inter-network connections. 

Fingerprinting match rates (Supplemental Figure 3.2c, Appendix A) were similar to 

developmental individualization, where networks with high match rates tended to also have 

internetwork edges with high match rates.  

 Age associations for individualization, longitudinal self-stability, and average-between-

subject-similarity are shown in Figures 3.6b, 3.6d, and 3.6f respectively. As for within-network 

edges, internetwork edges tended to have comparable age effects for individualization and self-

stability, while age effects for average-between-subject-similarity were comparatively small. Our 

longitudinal-between-subject-similarity model also showed small effect sizes for age 

(Supplemental Figure 3.6b, Appendix A). Networks with large age effects tended to also have 

internetwork connections with large age effects. For example, the visual stream showed larger 

age effects for self-stability than the visual network, and visual stream internetwork connections 

showed larger age effects than analogous visual internetwork connections. 
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Figure 3.6. Developmental individualization, longitudinal self-stability, and average-

between-subject-similarity across networks and their internetwork connections. a, c, e) 

Each network or internetwork’s mean developmental individualization, longitudinal self-

stability, and average-between-subject-similarity, averaged across all participants. The network 

effects, shown along the diagonals, are the same as averages shown in Figure 3.1. b, d, f) Age 

associations. Network size was controlled for by randomly choosing 18 nodes from each of the 

two networks and only using the (18x18=324) edges between those nodes. To compare the same 

number of edges, networks were similarly derived using 36 random nodes divided into two sets. 

Beta values are standardized and are averaged over 1000 random samplings. P-values are derived 

from using the entire set of edges, rather than a random subset. * = p < 0.05 uncorrected; ** = p 

< 0.05 Bonferroni corrected.  
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3.4 Discussion 

In this study, we investigated age associations with developmental individualization. We 

found that most functional networks showed greater developmental individualization with 

increasing age and that there was a clear parallel with increases in longitudinal self-stability. 

Further, using two different models we found comparatively minor age associations with 

similarity to others. Effects persisted when only using random subsets of network nodes or when 

using an alternate approach to matching scan length between participants. Taken together, these 

results suggest that across early childhood the functional connectome shows increasing 

developmental individualization that is driven primarily by increasing self-stability over time 

rather than a decrease in similarity to others.  

To better understand increasing connectome self-stability, we assessed age effects on 

longitudinal change in edge strength. Age associations for longitudinal change closely mirrored 

age associations for self-stability, where networks with large positive age effects on self-stability 

had large negative age effects on longitudinal change, with comparable beta values. For both 

measures, the largest effect was in the whole brain. This implies that increasing self-stability 

with age is at least partly due to less absolute change in FC over time, with younger children 

undergoing more change across a year of development than older children. Further, this suggests 

that developmental individualization may be sensitive to asymptotic developmental changes in 

FC. However, not all networks with increasing longitudinal self-stability showed significant age 

effects for longitudinal change, most notably the frontoparietal network. While part of increasing 

self-stability with age can be explained by less change in edge strength, more complex 

relationships may also be at play. For example, already strong edges may strengthen while 
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weaker edges either change little or weaken. Future work can more closely analyse how 

individual edges change with age to see what factors explain overall increases in self-stability. 

Altogether, our work suggests age only has a minor impact on between-subject-

similarity. No network showed a significant relationship between age and between-subject-

similarity, both in a cross-sectional model (with one, averaged similarity value per participant) 

and in a mixed-effects model (with both a baseline and a follow-up mean similarity value for 

each participant). However, when considering the whole connectome, we found a positive age 

effect for average-between-subject-similarity to others that persists when controlling for number 

of nodes. As the whole brain also showed the largest effect between age and individualization, 

this suggests that increases in self-stability outweigh increases in between-subject-similarity, 

allowing for an overall increase in individualization. This finding is consistent with previous 

work that found higher self-stability is associated with higher between-subject-similarity 

(Vanderwal et al., 2021; Liao et al., 2021). Increasing whole brain between-subject-similarity 

with age is likely influenced by internetwork effects, for example, internetwork connections 

associated with the cerebellum, mesolimbic network, and ventral attention network, which our 

exploratory findings suggest become more similar across children with increasing age (i.e., with 

effect sizes up to b = 0.26). Future work could further explore the factors that determine how 

similar individuals are to each other, even if age plays a relatively minor role overall, especially 

within networks.  

In adults, higher order networks – such as the frontoparietal and default mode networks – 

have previously been found to be more individualized than primary sensory networks (Finn et 

al., 2015; Peña-Gómez et al., 2018; Vanderwal et al., 2017). Our work generally agrees with 

these results. We found higher individualization scores and match rates in the posteromedial 
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DMN, lateral DMN, and frontoparietal network compared to the somatomotor, cerebellum, 

BG/thalamus, and mesolimbic networks. The major exception, relative to previous work, is that 

we also found high individualization scores and match rates in the visual network and visual 

stream. While one explanation is that using a passive viewing task emphasizes visual self-

stability, previous work in adults (Vanderwal et al., 2017) and older children (Vanderwal et al., 

2021) suggests instead that passive viewing conditions, relative to resting state, decreases 

identifiability in visual networks. We propose that early childhood is a period where visual 

networks are both sufficiently developed and longitudinally self-stable to allow for 

comparatively high developmental individualization; however, disentangling task from its effects 

is not possible with our design.  

Network differences in age effects on individualization were relatively minor with a high 

degree of overlap between networks in 95% confidence intervals around estimates and only the 

auditory network, anteromedial DMN and BG/thalamus showing non-significant age effects. We 

note that the degree of individualization and age effects on individualization were not well 

aligned. We found highly individualized networks with large age effects (e.g., visual stream), 

highly individualized networks with small age effects (visual network), weakly individualized 

networks with large age effects (cerebellum), and weakly individualized networks with small age 

effects (BG/thalamus). This heterogeneity persists when comparing the degree of self-stability 

and age effects on self-stability, since, in general, more self-stable networks were also more 

individualized. Inter-network connections were likewise variable, with both strongly and weakly 

individualized edges having large age effects. Together, this suggests that developmental 

individualization occurs in a heterogeneous fashion with different brain networks becoming 

more individualized at different rates, but across early childhood there is an overall trend of 
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across-network increases in longitudinal individualization. While previous research suggests that 

sensorimotor networks develop earlier than higher order networks (Alcauter et al., 2015; Gao et 

al., 2015a, 2015b; Gu et al., 2015), our work suggests they continue to undergo refinement in 

early childhood along with higher order networks. This is perhaps unsurprising as white matter 

findings from an overlapping set of participants show pronounced changes in sensorimotor tracts 

in early childhood (Dimond et al., 2020b). 

Previous studies using children have found fingerprinting match rates much lower than in 

studies using adults, whether matching participants longitudinally (Dufford et al., 2021; Sato et 

al., 2021) or across short time scales (Vanderwal et al., 2021; Kaufmann et al., 2017). Across 

studies, there is a trend towards increasing individualization with age, with very low match rates 

in infants, higher match rates in older childhood, and adult-like match rates in adolescents 

(Dufford et al., 2021; Sato et al., 2021; Jalbrzikowski et al., 2020). Contrary to these studies, we 

found near perfect (98%) match rates in the whole brain and in the frontoparietal network, with 

high (> 50%) match rates in most networks, even when only using 36 random nodes from a 

given network. Factors that may influence differences in findings include a longer scan time and 

effective preprocessing that included censoring volumes of high motion. Longer scans have been 

found to increase test-retest reliability (Noble et al., 2017) and connectome stability (Gordon et 

al., 2017), and Finn et al. (2015) found that fingerprinting match rate was dependent on scan 

length. Our comparatively long passive viewing scan, using 11 minutes of post-censoring data 

per scan, likely yielded a more accurate estimate of the functional connectome, which 

contributed to a higher match rate. Additionally, our previous work (Graff et al., 2022a) suggests 

that match rates are affected by choice of preprocessing pipeline. Studies with youth also face the 

challenge of using parcellations that are typically derived with adult data. This may artificially 
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lower metrics of individualization, either due to challenges with registration, or by averaging 

functionally distinct voxels into the same node. Infant data, as in Dufford et al. (2021), has the 

further challenge of registration due to inverted T1w contrast. This highlights some of the 

challenges in interpreting individualization findings across studies, especially between adults and 

youth, particularly as data quality and head motion tend to be worse in younger samples. 

In terms of short-term self-stability, as measured with split-half or split-third correlations, 

we found a significant relationship with age in only the whole brain and 4 of 12 networks, with 

only the frontoparietal network in the split-third analysis surviving multiple comparisons 

correction. The effect sizes were smaller than those for longitudinal self-stability, suggesting age 

associations with longitudinal self-stability are not primarily due to increasing short-term self-

stability. Short-term self-stability findings are also interesting in the context of previous work. 

For example, Kaufmann et al. (2017), in a study of 8-22-year-olds, found that older participants 

were more highly individualized, when self-stability was assessed across tasks (rest, working 

memory, and emotion recognition) from the same scan session. In contrast, Vanderwal et al. 

(2021), considering 6-21-year-olds, found no association between age and self-stability, when 

self-stability was again assessed across tasks (two rest and two passive viewing tasks) within the 

same scan session. While due to differences in tasks and age range, it is difficult to directly 

compare effects reported here with these prior studies, conceptually our short-term self-stability 

findings align with Kaufmann et al. (2017) albeit with weaker effects. It is important to note that 

study design and data quality can have a strong impact on findings and split-half analyses 

necessarily estimate functional connectomes with less data, in this case <6 minutes of post-

censoring data, which reduces the reliability of FC estimates (Gordon et al., 2017) and could 

thereby decrease effect sizes for age associations. Thus, while we only found evidence for 
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limited age-related changes in short-term self-stability, this may have been due to limitations in 

our study design. 

Our finding of increasing self-stability but more minor changes in similarity to others has 

implications for understanding how the connectome develops across early childhood. One 

explanation is that younger children experience more FC change than older children, with 

divergent (individualized) changes between individuals partially balanced with convergent 

changes that may reflect typical development trajectories. Another (not mutually exclusive) 

explanation comes from Kaufmann et al. (2017); they suggest a network tuning effect, in which 

as aging occurs edges become ‘constrained’, showing less within-individual variability in their 

strength while the difference in average strength between individuals may remain constant. 

While Kaufmann et al. (2017) proposed this across tasks, our findings could support this model 

in a more generalizable way. Children may exhibit a broader collection of connectome patterns, 

which becomes more limited with age, thus increasing self-stability, with the average difference 

between children remaining relatively constant. However, some contrary evidence suggests that 

older children utilize a larger number of connectome states within a resting state scan (Hutchison 

and Morton, 2015), though the same study found more complicated dynamic patterns when the 

brain was engaged in a task. One possible way to shed light on how children engage in different 

connectome patterns and how this may change with age is with a precision imaging approach, 

using extended data acquisition of individual subjects (Gratton et al., 2020). This could more 

thoroughly investigate FC self-stability and between-subject-similarity across a variety of time 

scales, providing a clearer understanding of how individualization develops. 

There are several limitations to our work. We measured the functional connectome 

during a passive viewing task, and we cannot directly extend our findings to other task 
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conditions, including rest. While resting state scans are often considered the standard for 

investigating FC, the pragmatic challenge of getting young children – especially under 6 years 

old (Alexander et al., 2017) – to remain sufficiently still and calm in a scanner makes this data 

impractical to collect. This challenge is amplified when collecting longer scans with reduced 

motion, as is important for reliable estimates of FC (Gordon et al., 2017; Noble et al., 2017; 

Power et al., 2012). However, there is reason to suggest our findings may extend to resting 

conditions. Similar network structure is detected in passive viewing paradigms as in rest 

conditions, suggesting an underlying organization that is well captured by either task (Bray et al., 

2015; Vanderwal et al., 2019). Our findings also may not directly line up with other studies due 

to differences in parcellations. Previous work has found higher match rates in parcellations with 

more nodes (Finn et al., 2015; Vanderwal et al., 2021), suggesting parcellation choice affects 

measured identifiability. Additionally, while we used a volume-based approach to parcellation, 

similar to much of the individualization literature (Finn et al., 2015; Kaufmann et al., 2017; 

Jalbrzikowski et al., 2020; Vanderwal et al., 2021), accuracy could potentially improve using a 

cortical surface-based approach, as volume approaches often have poor spatial localization 

(Coalson et al., 2018).  

We note that our measures of individualization can also be thought of as measures of 

reliability (Bridgeford et al., 2021; Graff et al., 2022a; Noble et al., 2019), as akin to a metric like 

interclass correlation we are assessing self-similarity relative to similarity-to-others. While we 

interpreted findings here to represent developmental changes in the connectome, other 

explanations are possible. FC estimates are biased by motion (Power et al., 2012), and younger 

children move more than older children (Greene et al., 2018; Dosenbach et al., 2017). While we 

found no significant relationship between age and median FD or number of censored volumes, 
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the relationship between age and mean FD approached significance (p = 0.081). Thus, there is 

the concern here – or in any other connectome developmental study – whether results could be 

alternatively explained by differences in motion. While this concern cannot be entirely 

dismissed, we mitigated motion-related confounds by matching scan lengths post-censoring and 

including motion as a regressor in our models. The effect size of age on FD was much smaller 

than age on individualization for most networks, suggesting even if motion could partially 

explain our findings, it could not entirely explain how age associates with individualization. 

Similarly, we note that differences between networks in self-stability may be related to 

differences in how physiological or signal-drop out artifacts may impact BOLD measurements 

and connectivity metrics. Moreover, older children have slower respiratory and heart rates than 

their younger peers (Fleming et al., 2011), which could affect age associations. As our study 

design did not include the measurement of physiological features, this potential confound is hard 

to address, although physiological noise is captured in the global signal, which we regressed 

from each voxel’s time course. Finally, the present study was specific to early childhood, and 

findings may not extend to either earlier or later periods of development. Future studies that 

probe a wider age range of children will be able to assess in more detail when and to what total 

extent developmental individualization occurs in individual networks, including visual networks. 

 

3.5 Conclusions 

In sum, the present study investigated how age was associated with developmental 

individualization in early childhood. We found that older children have higher individualization, 

and this was likely due to higher longitudinal self-stability, rather than decreased between-

subject similarity. These trends were observed in most networks of the brain and across the entire 
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functional connectome, and our findings suggest that increasing self-stability with age is partially 

due to smaller changes in FC edge strength in older children. 
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Chapter 4: Reliability and Validity of the Electrophysiological Connectome Across Phase-

Based Connectivity Measures 

 

4.0 Abstract 

EEG connectomics research offers the potential of better understanding human 

neurodevelopment, disease, and brain-behavior associations. Phase-based functional connectivity 

(FC) measures are widely used but their reliability and validity are poorly understood. Many of 

these measures mitigate volume conduction artifacts, but may miss true interactions in the 

process, which could hamper validity overall. Here, we collected a densely sampled dataset from 

25 parent-child pairs, with 80 minutes of passive viewing EEG data collected per participant 

over 4 sessions. We compared reliability across 6 FC measures by testing the self-stability of the 

functional connectome across sessions, and we assessed validity with participant identifiability, 

task-, and age-sensitivity. Measures that do not adjust for volume conduction artifacts - 

coherence and phase-locking value - had higher reliability, which we interpret as being at least 

partly artifactual. However, they also had higher identifiability alongside comparable task and 

age sensitivity. Coherence and phase locking value reached asymptotic reliability and 

identifiability with only 3 minutes of recording, while measures that mitigate volume conduction 

were still less reliable and valid with 10 times more data. Of measures that mitigate volume 

conduction, imaginary coherence had the best performance on metrics used here. Our results 

emphasize the importance of considering trade-offs between noise removal and signal retention, 

as missing true brain interactions may outweigh the benefit of removing artifact, and suggest that 

study designs should consider that mitigating volume conduction comes at a cost in terms of time 

required for stable measurements. Together our findings can support study design decisions in 

EEG connectomics research.  
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4.1 Introduction 

Electroencephalography (EEG) connectomics is a fast-growing subfield of EEG 

neuroscience research (Sadaghiani et al., 2022). While magnetic resonance imaging (MRI)-based 

modalities have dominated the connectome literature to date, EEG has the advantages of more 

directly measuring neural activity, millisecond temporal resolution, and greater cost-

effectiveness (Sadaghiani et al., 2022). Thus, EEG connectomics research has the potential to 

contribute to a better understanding of human neurodevelopment, disorders, and disease. EEG’s 

high temporal resolution and inherent confounds have led to dozens of functional connectivity 

(FC) measures being developed (Cao et al., 2022; Sadaghiani et al., 2022), but the extent to 

which they contain reliable and valid individual information, necessary for clinical and 

individual differences research, is not fully known.  

From the perspective of brain connectomics, reliability is the extent to which multiple 

recordings of the same individual produce consistent estimates of FC under similar conditions 

(Noble et al., 2019). To understand associations between brain activity and relatively stable traits 

– such as age, sex, cognitive ability, or behavioural tendencies – researchers are generally 

interested in features of the connectome that are relatively self-consistent across repeated 

measurement (Colclough et al., 2016; Graff et al., 2022b; Gratton et al., 2018; Levin et al., 2020; 

Liao et al., 2021; Noble et al., 2017; Wu et al., 2022; Zuo et al., 2013). Nevertheless, more 

reliable measurements are not always more valid, as connectivity measures are influenced by 

artifacts such as head motion, meaning that in some cases, higher reliability reflects consistent 

noise (Parkes et al., 2018). Ideally, connectivity measures should capture only information about 

brain interactions, but researchers are often faced with a trade-off between retaining signal of 

interest and removing artifactual noise (Graff et al., 2022a; Nolte et al., 2004; Stam et al., 2007).  
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Assessing validity in neuroimaging can be difficult in the absence of ground-truth 

measurements, but several desirable properties associate with validity. One is the presence of 

individually specific information, i.e., participant identifiability (Finn et al., 2015; Wu et al., 

2022). Connectomes are identifiable if self-to-self stability is greater than similarity to others, 

also known as connectome ‘fingerprinting’ (Finn et al., 2015; Kaufmann et al., 2017; Graff et al., 

2022b; Rajapandian et al., 2020). Likewise, connectomes should be sensitive to the task a 

participant is performing. While the impact that tasks have on connectomes is multifaceted 

(Gratton et al., 2018; Mostame and Sadaghiani, 2020), one straightforward marker of task 

sensitivity is that connectomes should be more similar when collected from the same task 

relative to a different task (Vanderwal et al., 2017). Connectomes should also be sensitive to age 

effects (Grayson and Fair, 2017) in that connectomes from participants within an age group 

should be more similar to one another than to connectomes from other age groups. One further 

aspect affecting reliability and validity is data quantity. Some FC measures may have high 

reliability only when sufficient data are collected, as is the case with functional MRI (fMRI) 

connectomes (Finn et al., 2015; Gordon et al., 2017; Noble et al., 2017; Zuo et al., 2013). 

In EEG there are a breadth of measures available with different underlying assumptions 

and trade-offs, making it challenging to a priori choose the ‘best’ measure. FC measures differ in 

attributes such as if they are: linear or non-linear, parametric or nonparametric, time-, frequency-

, or time-frequency-based, and sensitive to phase or amplitude synchrony (For an overview of 

EEG FC measures, see Cao et al., 2022). Here we focus on phase-based measures as they are  

commonly used (Cao et al., 2022; Sadaghiani et al., 2022) and have several advantages including 

requiring few assumptions (Cohen, 2014), and capturing distinct information from what is 

captured by fMRI (Engel et al., 2013; Wirsich et al., 2021). One of the main drawbacks to phase-
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based FC measures is that they require precise experimental timing (Cohen, 2014) but the exact 

start- and endpoint of a task is less critical when using fewer, longer task intervals, as in resting 

state or passive-viewing conditions. Importantly, long stretches of continuous data are not 

required, allowing noisy epochs to be discarded. This may be especially useful in populations 

with higher head movement, such as children. Despite their relative simplicity, the category of 

phase-based FC measures is diverse in their approach to capturing signal of interest or 

minimizing spurious noise. Some phase-based FC measures only capture phase synchrony, such 

as phase lag index (pli; Stam et al., 2007) and phase locking value (plv; Lachaux et al., 1999), 

while others are also sensitive to changes in amplitude, such as coherence (coh; Cohen, 2014) 

and imaginary coherence (imcoh; Nolte et al., 2004). Further, some phase-based measures, such 

as phase slope index (psi; Nolte et al., 2008), estimate causal influences in synchrony, making 

them effective connectivity measures. 

Another aspect differentiating phase-based FC measures is whether they mitigate the 

problem of volume conduction (Nunez et al., 1997). Due to the spatial separation between where 

electric fields are generated and where they are measured, the same underlying brain activity can 

be detected across multiple electrodes. This can lead to inflated estimates of FC across these 

electrodes when calculating FC in sensor space, hampering validity. While source space has 

become common for EEG analyses, partly as a means to correct for volume conduction (Gross et 

al., 2001; Schoffelen and Gross, 2009), artifacts remain in the estimated signals (Sarvas, 1987; 

Sadaghiani et al., 2022). Due to being the same signal recorded twice, spurious connectivity due 

to volume conduction consists of synchrony with zero lag; as thus, some FC measures, such as 

imcoh and pli, mitigate artifacts by only being sensitive to time-lagged synchrony (Nolte et al., 

2004; Stam et al., 2007). However, these measures likely fail to capture some ‘true’ connectivity 
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in the process (Nolte et al., 2004; Stam et al., 2007), and at the same time, they cannot fully 

remove spurious connectivity (Palva et al., 2018). 

Several studies have considered the reliability of various aspects of EEG FC (Büchel et 

al., 2021; Cannon et al., 2012; Haartsen et al., 2020; Hardmeier et al., 2014; Hatz et al., 2016; 

Kuntzelman and Miskovic, 2017; Lopez et al., 2023; van der Velde et al., 2019). In general, 

these studies have each only considered one or two FC measures, have not analyzed the same 

frequency bands, and have considered a range of non-overlapping graph theory metrics. One 

tentative conclusion from this work is that measures that do not correct for volume conduction 

have higher reliability (Lopez et al., 2023). In magnetoencephalography (MEG), a reliability 

study that directly compared several FC measures came to the same conclusion, but they 

interpreted the higher reliability of non-corrected measures as likely being due to artifact 

(Colclough et al., 2016), emphasizing the importance of also assessing validity.  

To our knowledge, the validity of measures has not been systematically compared 

alongside reliability. Reliability and validity are also known to be dependent (to some extent) on 

the amount of data available, however, whether EEG FC measures differ in their sensitivity to 

the amount of data collected is not yet known. Here, we compare different phase-based 

approaches to calculating EEG connectomes by assessing their reliability and validity. We focus 

on these specific questions: 1) To what extent do different EEG FC measures vary in reliability, 

as assessed with self-stability, across different measurements? 2) To what extent do different 

EEG FC measures vary in validity, as assessed with participant identifiability and task- and age-

sensitivity? 3) How do FC measures vary in the amount of data required to establish reliability 

and validity?  
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4.2 Methods 

4.2.1 Participants 

We recruited 50 participants consisting of 25 parent-child dyads (5 female-female, 7 

female-male, 8 male-female, 5 male-male). Parents were 33.75-47.13 years old (mean: 41.39, 

std: 3.63 years, 12 female). Children were typically developing and 6.56-8.92 years old at time of 

first visit (mean: 7.88, std: 0.69 years, 13 female). Our sample included two families where both 

parents and two children participated. See Supplemental Table 4.1 for more detailed participant 

information. Participants were excluded if they had psychiatric or neurodevelopmental diagnoses 

or could not understand English. Parents provided informed consent for both their own and their 

child's participation, while children provided assent. This study was approved by the University 

of Calgary Conjoint Health Research Ethics Board. 

 

4.2.2 Data collection 

Data were collected at the Alberta Children's Hospital across four sessions per parent-

child pair, with each session completed approximately one week apart (see Supplemental Table 

4.1). EEG data were collected using a 64-channel Magstim EGI HydroCel Geodesic Sensor Net 

(Eugene, Oregon), soaked in an electrolytic solution, with data sampled at 1000 Hz. The 

impedance level was kept below 50 kΩ during recording. MRI data, used for source 

reconstruction, was collected using a 3T GE MR750 w (Waukesha, WI) scanner with a 32-

channel head coil, which consisted of a T1w 3D BRAVO sequence (TR = 6.764 ms, TE = 2.908 

ms, FA = 10°, voxel size = 0.8x0.8x0.8 mm3). Functional and diffusion MRI, and other cognitive 

and behavioral data were also collected but not analysed for the present study. Order of data 

collection was pseudo-randomized, i.e., for half the participants, parents underwent EEG then 
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MRI data collection, while children underwent MRI then EEG data collection. In the other half, 

the order was reversed. 

Each of the four EEG recording sessions included three approximately 7-minute passive 

video viewing tasks, for a total of 12 unique videos that were drawn from three categories or 

‘tasks’: 

a) Relax: a continuous relaxing video with gentle music, slow-moving imagery, and no 

narration, designed to minimize cognitive load, similar in concept to Inscapes (Vanderwal et 

al., 2015). All participants watched the same Relax videos in the same order across sessions; 

the videos shown depicted: 1) a Japanese island, 2) a walk through a canyon, 3) scenes from 

Canadian cities, and 4) the Earth as seen from space. 

b) YouTube: a series of popular (i.e., viewed more than 1 million times at the time they were 

downloaded) and visually engaging YouTube clips (24-65 seconds long, mean = 46.4 

seconds), designed to provide constant visual interest with minimal narrative. Clips included 

dancing, arts and crafts, simple science experiments, scenes from video games, stop-motion 

animation, and humorous short videos. All participants watched the same YouTube clips in 

the same order across sessions. 

c) Dora: a series of scenes from Dora and the Lost City of Gold (2019), a live-action movie. 

This condition was designed to contain a continuous narrative. Over the course of the study, 

participants viewed successive clips of this movie sequentially during MR and EEG imaging. 

Whether participants underwent EEG or MRI first determined if they watched the first 

sequential video or the last sequential video during EEG recording, i.e., half the participants 

watched clips 1, 3, 6, and 9 during EEG and half watched clips 3, 6, 9, and 12 during EEG. 
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The EEG recording was timed to begin and end with video playback. Electrodes were 

checked in between videos to ensure impedances remained below 50 kΩ. Within each session, 

video category order was randomized for each participant. 

598 EEG recordings were collected in total. Four sessions of data (three recordings each) 

were excluded due to concerns with correct cap placement and five recordings were excluded 

due to too many noisy epochs (see 4.2.3 Preprocessing). This left 581 recordings in the final 

sample across 50 participants. All participants had at least 8 recordings, with at least two 

recordings of each video type; 42 participants had all 12 recordings. 

 

4.2.3 Preprocessing 

Data were preprocessed using MNE-Python (Gramfort et al., 2013). Data were 

downsampled to 250 Hz, bandpass filtered from 1-45 Hz, and notch filtered at 60 Hz. Channels 

were then visually inspected to exclude noisy channels (e.g., excessive artifacts or long stretches 

of no signal). Electrodes were re-referenced to the average signal of all (remaining) electrodes, 

data were divided into 2-second (non-overlapping) epochs, and an independent component 

analysis was carried out to remove eye and other artifacts. Components were classified as brain 

activity or artifact using mne-icalabel (Li et al., 2022), and classification was confirmed using 

visual inspection, erring on the side of being conservative with component removal. Following 

this, each epoch for each channel was checked for noise, where an amplitude exceeding ±70 μV 

or a change of 100 μV over 100 ms was classified as noisy (Schubert et al., 2015). Channels with 

noisy epochs were interpolated using data from other channels via spherical spline interpolation. 

Any epoch with more than 15 unusable channels – either requiring interpolation or having been 
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excluded during visual inspection – was removed from analysis. Recordings with fewer than 150 

non-noisy epochs were excluded. 

T1w images were preprocessed using FreeSurfer (Dale et al., 1999). Electrode 

placements were estimated based on the standard montage for a 64-channel EGI HydroCel 

Geodesic Sensor Net and by using an automated approach to coregistration with the participant's 

MRI (Houck and Claus, 2020). Source localization was carried out using the eLORETA 

algorithm (Pascual-Marqui, 2007). For each of 68 nodes in the Desikan-Killiany atlas (Desikan 

et al., 2006), the time course was extracted using the first principal component of the vertices via 

the pca_flip setting. 

 

4.2.4 Connectivity measures and connectome generation 

All connectivity measures were calculated in MNE using multitaper spectrum estimation 

with adaptive weights. We calculated six different connectivity measures, which are summarized 

in Table 4.1. 

1) The magnitude of coherency, often referred to as coherence (coh; Cohen, 2014; Nolte et al., 

2004) is one of the most established techniques to estimate electrophysiological synchrony. It 

measures the linear covariance between two spectra, incorporating both phase and power 

information. It does not incorporate any strategy to mitigate volume conduction. 

2) Phase locking value (plv; Lachaux et al., 1999) measures the degree of phase covariance. It 

was proposed as an alternative to coh that would be effective for non-stationary sources and 

would only account for phase information, ignoring amplitude covariance. Like coh, it does not 

incorporate any strategy to mitigate volume conduction. 
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3) Imaginary coherence (imcoh; Nolte et al., 2004), involves selecting only the imaginary 

component from a coherency calculation between two regions. It was proposed as an alternative 

to coh that mitigates volume conduction artifacts by being insensitive to zero time-lag synchrony 

between nodes, thereby removing spurious connectivity (while also likely removing true signal 

of interest). While imcoh and other zero time-lag synchrony measures avoid most of the direct 

effects of volume conduction, they are still affected by indirect effects such as field spread 

artifacts (Palva et al., 2018). 

4) Phase lag index (pli; Stam et al., 2007) measures the consistency of phase lag between two 

time series. Like imcoh, it ignores zero time-lag synchrony – spurious or real - but unlike imcoh 

it is only sensitive to phase covariance, ignoring amplitude effects. 

5) Weighted phase lag index (wpli; Vinck et al., 2011) is a modification of pli where phase 

differences are weighted according to the size of the difference, rather than assessing only the 

consistency of phase difference. It has been shown to be more robust against noise with 

increased statistical power (Vinck et al., 2011). 

6) Phase slope index (psi; Nolte et al., 2008) is based on the assumption that for an interaction 

with a given time delay, the phase difference between signals will increase with frequency. It 

measures the slope of these phase differences, where the sign of the slope indicates which region 

is responsible for the interaction, making it an effective connectivity measure. Like imcoh, pli, 

and wpli, it is less affected by volume conduction compared to coh and plv. 

FC was calculated across three frequency bands: alpha (8-13 Hz), beta (13-30 Hz), and 

broadband (2.5-45 Hz). We focused on alpha and beta bands because some evidence suggests 

reliability is highest in these bands (Lopez et al., 2023), which may allow validity to be better 

assessed. FC was calculated between all pairs of regions in the Desikan-Killiany atlas, yielding 
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2278 edges, which were Fisher z-transformed to approximate a normal distribution and 

vectorized.  

Measure Sensitive to Volume conduction 

mitigation 

Effective 

connectivity Phase Amplitude 

Phase slope index ✓  ✓ ✓ 

Phase lag index ✓  ✓  

Weighted phase lag index ✓  ✓  

Imaginary coherence ✓ ✓ ✓  

Coherence ✓ ✓   

Phase locking value ✓    

 

Table 4.1. Properties of several phase-based FC measures. 

 

4.2.5 Average connectomes  

For each connectivity measure and frequency band, we calculated the average 

connectome across all 581 recordings. These were visualized as connectivity matrices, with 

regions divided into hemispheres and arranged anatomically from posterior to anterior. Since 

imcoh and psi have both positive and negative FC values, we visualized the average of both 

signed and absolute values. To assess the extent to which FC methods were consistent with each 

other, we calculated the Pearson correlation between each pair of vectorized, averaged 

connectomes. 

 

4.2.6 Connectivity reliability 

While there are multiple ways to assess connectome reliability, a straightforward 

approach is to vectorize connectomes and calculate the within-subject test-retest correlation 

(Colclough et al., 2016; Finn et al., 2015; Gordon et al., 2017), hereafter referred to as self-

stability. For each connectivity measure and frequency band, pairs of connectomes from the 

same participant were Pearson correlated to generate a self-stability score. Correlations were 
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Fisher-z transformed. Unless otherwise stated, analyses refer to between-session-self-stability 

scores to minimize spuriously higher self-stability due to more similar recording conditions, e.g., 

cap placement, other electric fields, and electrolytic solution concentration. We also present 

within-session-self-stability in the supplement for ease of comparison to other studies (Colclough 

et al., 2016). Participants had between 23 and 54 (mean = 50.6) between-session-self-stability 

scores, and 5 to 16 (mean = 11.6) within-session-self-stability scores. 

 

4.2.7 Connectivity validity 

We considered 3 aspects of connectome validity: 

1) Participant identifiability: For each participant, participant identifiability was assessed with 

individualization, the difference between average self-stability and average similarity-to-others 

(Graff et al., 2022b). Similarity-to-others was assessed along the same lines as self-stability 

(Vanderwal et al., 2021), where we calculated the Pearson correlation between pairs of 

connectomes from different unrelated participants (i.e., not to their parent or their child). For the 

families where two siblings and both parents participated, siblings were not compared to each 

other as they are related, but parents were compared to each other (biologically unrelated). 

Participants had between 4488 (8×561) and 6684 (12×557) similarity-to-other scores (mean = 

6445). These were likewise Fisher z-transformed. 

We also tested two supplemental metrics of individualization: 

-Matching accuracy: for each participant, the fraction of self-stability scores that were higher 

than all similarity-to-others scores. 
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-Self-stability percentile rank: for each participant, the average percentile of self-stability scores, 

relative to similarity-to-others. A score of 50% suggests no difference between self-stability and 

the median similarity to someone else. 

2) Task sensitivity: Task sensitivity was assessed both within each connectivity measure and 

between connectivity measures. This was done by comparing every participant’s average same-

task-self-stability (e.g., Dora to Dora) with their average cross-task-self-stability (e.g., Dora to 

YouTube). Participants had between 8 and 18 same-task-self-stability scores (mean = 16.86) and 

15 to 36 cross-task-self-stability scores (mean = 33.7). Within each connectivity measure, we 

used paired t-tests to assess if same-task-self-stability was significantly higher than cross-task-

self-stability. We then calculated the difference between same-task- and cross-task-self-stability 

for each participant, and used paired t-tests to assess if these differences were significantly 

different between connectivity measures. Likewise, we also assessed task sensitivity by 

comparing same-task- and cross-task-similarity-to-others. Because tasks varied in how many 

epochs were available after the removal of bad epochs (on average, Relax: 201.6 epochs, 

YouTube: 206.1 epochs, Dora: 198.0 epochs) all connectomes were calculated using only the 

first 150 non-removed epochs to ensure consistency, where below 150 epochs was the exclusion 

threshold for a recording. 

3) Age sensitivity: Age sensitivity was assessed similarly to task sensitivity, both within each 

connectivity measure and between connectivity measures. This was done by comparing every 

participant’s average similarity-to-others in their age group (i.e., children’s similarity to other 

children, adults’ similarity to adults) with their average similarity-to-others across age groups 

(i.e., children’s similarity to adults, adults’ similarity to children). Within each connectivity 

measure, we used paired t-tests to assess if similarity-to-others was significantly greater within- 
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relative to across-age-groups. We then calculated the difference between same-age- and cross-

age-similarity-to-others for each participant, and used paired t-tests to assess if these differences 

were significantly different between connectivity measures. Because children and adults varied 

in how many epochs were available after the removal of bad epochs (on average, children: 200.0 

epochs, adults: 203.7 epochs), all connectomes were again calculated using only the first 150 

non-removed epochs. 

 

4.2.8 Effect of recording length 

fMRI connectome studies have shown that as recording length increases, reliability and 

validity increase (Finn et al., 2015; Gordon et al., 2017; Noble et al., 2019). Here we similarly 

investigated the extent to which reliability and validity are sensitive to the amount of data 

available across FC measures. Of the 42 participants with all 12 recordings, we concatenated the 

six recordings from their first two sessions, and the six from their last two sessions, generating 

two sets of data. We then calculated self-stability, similarity-to-others, and individualization 

using progressively larger quantities of data, starting with 1 epoch from each recording (6 in total 

per set) and increasing up to 6×150 epochs per set (30 minutes of data per set, 60 minutes in 

total).  

 

4.3 Results 

We found comparable results across frequency bands and therefore describe alpha-band 

findings. Beta and broadband results are available in Appendices C and D respectively. 
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Figure 4.1. Average connectomes for each connectivity measure. a) The average connectome 

across all 581 recordings. Regions were divided by hemisphere (L and R) and arranged 

anatomically from posterior (P) to anterior (A). Since imcoh and psi have both positive and 

negative FC values, both the average of signed values and absolute values are shown. b) The 

Pearson correlation between each pair of vectorized, averaged connectomes. Psi: phase slope 

index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: 

coherence; plv: phase locking value. 
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4.3.1 Average connectomes 

We considered similarities and differences between connectomes calculated using 

different measures (Figure 4.1). All connectomes show left-right hemisphere symmetry and 

stronger within-hemisphere than between-hemisphere connectivity (Figure 4.1a). Coh, plv, and 

psi show notable distance-dependent effects, where short edges are stronger than long edges. On 

the other hand, for imcoh the weakest connections appear to be between regions spatially close to 

one another. The correlation between different FC measure connectomes is shown in Figure 

4.1b. The signed versions of psi and imcoh, owing to having both positive and negative FC 

values, showed near zero similarity to other measures, except to each other (r = 0.44), but their 

absolute values – plv (abs) and imcoh (abs) – were comparable to other FC measures. As 

suggested visually, wpli and pli showed strong similarity to each other (r = 0.99). They also both 

showed strong similarity to the other measures (0.49 < r < 0.62 for psi (abs), imcoh (abs), coh, 

plv). Likewise, coh and plv were highly similar to each other (r = 0.99), with high correlations to 

psi (abs; r = 0.72 and r = 0.78 respectively), pli, and wpli, but were anti-correlated with imcoh 

(abs; r = -0.43 and r = -0.37). Overall, this suggests that the 6 FC measures capture overlapping 

but distinct aspects of brain connectivity, with some measures such as pli and wpli being highly 

similar, and others such as imcoh and plv showing more distinct FC patterns. 

 

4.3.2 Reliability and participant identifiability 

We found the highest reliability, as measured with self-stability, using the two FC 

measures most sensitive to volume conduction, coh and plv, and comparatively low self-stability 

when using psi, pli, wpli, and imcoh (Figure 4.2a). Coh and plv also showed relatively high  
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Figure 4.2. Reliability and identifiability across FC measures. Each dot represents one 

participant. Lines represent mean values across participants, which are also displayed at the top 

of each subplot. a) Mean self-stability, the average Fisher-z correlation between connectomes of 

the same participant, collected on different days. b) Mean similarity-to-others, the average 

Fisher-z correlation between a participant's connectomes and connectomes from all other 

participants. c) Individualization, the difference between mean self-stability and mean similarity-

to-others. Psi: phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: 

imaginary coherence; coh: coherence; plv: phase locking value. 
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mean similarity-to-others (Figure 4.2b), suggesting that with these FC measures all connectomes 

are more similar to one another. Nevertheless, coh and plv also had higher validity based on 

identifiability, as measured with individualization (Figure 4.2c). However, all FC measures had 

positive average individualization scores, suggesting at least some degree of validity. The 

ranking of measures using match rate (Supplemental Figure 4.1a, Appendix A) and self-stability 

percentile (Supplemental Figure 4.1b, Appendix A) were similar to individualization. Of note, 

average match rates were 51% for plv, compared to under 5% for psi, pli, and wpli. Of FC 

measures that mitigate volume conduction, imcoh outperformed psi, pli, and wpli in terms of 

both reliability and validity, while psi had the lowest scores. When repeating the analysis 

measuring self-stability using scans collected on the same day, we observed the same trend of 

coh and plv outperforming psi, pli, wpli, and imcoh, with higher identifiability for all FC 

measures (Supplemental Figure 4.2, Appendix A). 

Across reliability and validity metrics, all differences between FC measures were 

significant (uncorrected p < 0.005; Supplemental Figure 4.3, Appendix A), even if mean 

differences were small because analyses used paired tests and changes between FC measures 

were relatively consistent across participants.  

 

4.3.3 Task sensitivity 

A valid FC measure should show higher self-stability between connectomes generated 

from the same task stimuli compared to those obtained from different task stimuli. We found this 

effect in all FC measures (Figure 4.3a), though psi did not survive Bonferroni correction. When 

comparing the change in self-stability across measures, the only significant difference was 

between imcoh and pli (p = 0.04; Supplemental Figure 4.5, Appendix A), suggesting all 
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measures were near-equally valid on this metric. Likewise, pli, wpli, imcoh, coh, and plv showed 

greater similarity-to-others when comparing the same task than between different tasks, though 

the magnitude of these differences were small (average Δz < 0.01; Figure 4.3b). When 

comparing the change in similarity-to-others across measures, imcoh was significantly higher 

than psi, pli, coh, and plv, but significance did not survive multiple comparisons correction. 

 

Figure 4.3. Task sensitivity across FC measures. Each dot represents the difference between a 

participant’s average same-task score and their average cross-task score. Lines represent mean 

differences across participants, which are also displayed at the top of each subplot. For each FC 

measure, a paired t-test was used to assess if same-task and cross-task scores were significantly 

different; uncorrected p-values are shown. Bold = p < 0.05 Bonferroni corrected; italics = p < 

0.05 uncorrected. a) Mean change between same-task- and cross-task-self-stability. b) Mean 

change between same-task- and cross-task-similarity-to-others. Psi: phase slope index; pli: 

phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; 

plv: phase locking value. 
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4.3.4 Age sensitivity 

 Like task sensitivity, a valid FC measure should show greater similarity-to-others when 

participants are compared to people of similar ages. This was observed in all FC measures (p < 

0.005; Figure 4.4). The effect was smallest in psi, but no significant difference was observed 

between pli, wpli, imcoh, coh, and plv (Supplemental Figure 4.6, Appendix A), suggesting these 

measures were comparably valid on this metric. 

 

 

Figure 4.4. Age sensitivity across FC measures. Each dot represents the difference between a 

participant’s average same-age-similarity-others and their average cross-age-similarity-to-others. 

Lines represent mean differences across participants, which are also displayed at the top of each 

subplot. For each FC measure, a paired t-test was used to assess if same-age- and cross-age-

similarity-to-others scores were significantly different; uncorrected p-values are shown. Bold = p 

< 0.05 Bonferroni corrected. Psi: phase slope index; pli: phase lag index; wpli: weighted phase 

lag index; imcoh: imaginary coherence; coh: coherence; plv: phase locking value. 
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Figure 4.5. Effects of different recording lengths on reliability and identifiability, across FC 

measures. Points shown are across-participant averages. For each participant, the recordings 

from their first two sessions and from their last two sessions were concatenated, giving two sets 

of data per participant. Epochs were added sequentially, e.g., '60 epochs' refers to using the first 

10 epochs available from the 6 separate recordings that were combined. a) Mean self-stability, 

the average Fisher-z correlation between connectomes of the same participant, collected on 

different days, averaged across participants. b) Mean similarity-to-others, the average Fisher-z 

correlation between a participant's connectomes and connectomes from all other participants, 

averaged across participants. c) Individualization, the difference between mean self-stability and 

mean similarity-to-others, averaged across participants. Psi: phase slope index; pli: phase lag 

index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; plv: phase 

locking value. 
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4.3.5 Recording length 

We assessed the effect of recording length on reliability and validity. Coh and plv 

reached near-optimum self-stability with relatively short quantities of data (~50 epochs; Figure 

4.5a). Though more data was required to reach an asymptote for individualization, there was 

negligible benefit for more than ~200 epochs (Figure 4.5c). On the other hand, the four measures 

that are less sensitive to volume conduction continued to show benefit with longer and longer 

recordings. In particular, imcoh nearly closed the gap in individualization with 900 epochs, 

though it appeared to also be approaching an asymptote in self-stability, suggesting it may never 

overtake coh or plv. Regardless of recording length, psi, pli, and wpli tended to show the least 

reliability and validity, suggesting longer recording lengths are insufficient to improve reliability 

and validity of these measures.  

 

4.4 Discussion 

In this study, we investigated the reliability and validity of six different phase-based EEG 

FC measures for whole-brain connectomics. We found that measures that do not mitigate volume 

conduction, namely coh and plv, had much higher reliability, but also showed much higher 

similarity-to-others, suggesting all connectomes are more similar with these measures. We then 

assessed validity with participant identifiability, task sensitivity, and age sensitivity. We found 

that coh and plv had higher validity in terms of identifiability, and comparable validity in task 

and age sensitivity. Taken together, these results suggest that the higher reliability of coh and plv 

may be driven by volume conduction artifacts, but despite this susceptibility, coh and plv contain 

important information about individual differences. Given the proliferation of methods for EEG 

connectomics, these findings can contribute to choosing appropriate metrics for study goals. 
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The lack of improved validity when mitigating volume conduction is likely due to the 

removal of both artifact and true signal of interest. This interpretation is consistent with how 

measures like imcoh and pli were originally developed. The developers of pli (Stam et al., 2007) 

note that their approach requires accepting the risk of missing meaningful interactions that have 

near zero phase coherence, and acknowledging that the remaining connectivity information may 

be incomplete. Similarly, the developers of imcoh (Nolte et al., 2004), refer to imcoh as an 

“extreme position” that contains, “at best, only half of the picture”. These measures were 

originally proposed to be entirely artifact-free, making this trade-off more palatable, but newer 

work suggests they can still be susceptible to false positives due to field spread (Palva et al., 

2018). 

While the limitations of imcoh and similar methods may make them unappealing, it can 

be difficult to defend the utility of measures prone to artifact. Colclough et al. (2016) found 

similar reliability findings in MEG, where FC measures prone to volume conduction had higher 

within-subject and between-subject consistency, which they suggest is primarily due to volume 

conduction artifacts. For this reason, they argue against using these measures, suggesting that, 

“interpretable connectivity estimation is only possible when zero-lag connections are removed or 

otherwise ignored.” While we agree that the interpretation of FC is more difficult for measures 

susceptible to volume conduction, our work suggests that they still have utility. These 

aforementioned papers and our work here emphasize the importance of considering trade-offs 

between maximizing signal and minimizing noise, rather than imposing a false valid/invalid 

dichotomy. Though volume conduction susceptibility clearly reduces FC validity, coh and plv 

may still be useful measures if alternatives are unable to retain sufficient signal of interest. While 

it is common to use only one measure of FC in a study, both due to practical limitations and to 
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simplify analyses, we echo the recommendation from Nolte et al. (2004) to think of measures 

like imcoh not as a replacement for coh or plv, but as a necessary additional analysis. 

Of the FC measures that correct for volume conduction, imcoh outperformed psi, pli, and 

wpli on metrics assessed here. It showed both higher reliability, as measured with self-stability, 

and greater identifiability, both in terms of individualization and fingerprinting match rate. In 

terms of task sensitivity, it showed the greatest difference of all FC methods between same-task 

and cross-task similarity-to-others, and it was comparably valid for all other analyses. Of phase-

based methods that correct for volume conduction, the use of imcoh has started to become the de 

facto standard for full connectome analyses (Mahjoory et al., 2017; Nentwich et al., 2020; 

Wirsich et al., 2021). Given our results here, and the need for reproducibility across studies, this 

convergence seems appropriate. However, we found that functional connectomes generally show 

modest similarity to each other across FC measures, suggesting that they are capturing different 

aspects of true interactions. Further, psi is an effective connectivity measure, so while it failed to 

outperform imcoh on our metrics, imcoh and psi should not be thought of as interchangeable for 

all analyses. Given these considerations, it may be misleading to think of imcoh as better than 

psi, pli, or wpli, and their different underlying assumptions should always be examined when 

designing a study. 

Considering performance in relation to data quantity, we found that coh and plv required 

far shorter recordings than other measures to reach an identifiability asymptote (i.e., ~90 epochs, 

3 minutes). On the other hand, for standard recording lengths, e.g., 5 minutes (here 150 epochs), 

imcoh and other measures that correct for volume conduction may have less than half the 

identifiability of coh or plv, and less than half of the maximum identifiability a longer recording 

would provide. With sufficient data, imcoh approached the same level of individualization as 
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coh, but this required each connectome to be generated from 30 minutes of post-processed data 

collected across six recordings over two sessions. Our results suggest that even greater quantities 

of data may still prove beneficial to reaching stable imcoh values. Based on this analysis, our 

findings suggest that for applications where stable volume-conduction adjusted connectomes are 

needed, relatively long acquisitions are desirable.   

While we interpret our main findings as showing that volume conduction mitigation may 

remove valid signal of interest, other interpretations of our findings are possible. Since volume 

conduction artifacts are at least partially distance-dependent (Schoffelen and Gross, 2009), 

subject-specific head geometry will lead to subject-specific artifacts. This could improve 

identifiability despite worse validity. Similarly, we note that our age sensitivity analysis could be 

affected by volume conduction, as the impact of volume conduction artifacts is different between 

children and adults (Grieve et al., 2003). This highlights the importance of considering multiple 

metrics of validity. These concerns are mitigated by our task sensitivity analysis where 

participants are only compared to themselves under different conditions, which should result in 

similar noise profiles. Considering we found coh and plv to have similar validity to other 

measures in this analysis, it is harder to discount their validity elsewhere. We also note the 

possibility that methods that mitigate volume conduction may also have distance-dependent 

biases if nearby regions are more likely to have true near-zero-phase-lag interactions. This could 

cause longer range connections to have a higher percentage of their true signal captured by the 

FC measure and cause similar increases in identifiability despite worse validity. To our 

knowledge this has not been systematically investigated. These concerns necessitate further 

investigations into the validity of different EEG FC measures. One potential approach could 

combine conventional EEG with intracranial EEG (iEEG) - which avoids volume conduction – 
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allowing one to more accurately verify the extent to which different FC measures are susceptible 

to noise relative to captured signal. 

There are a number of limitations of our work. While we find that coh and plv are more 

valid than alternative FC measures, their limitations may be more apparent with other study 

designs. We estimated FC in source space, which is less affected by volume conduction 

compared to sensor space (Sadaghiani et al., 2022; Nolte et al., 2004). We do not necessarily 

expect our findings to hold in sensor space, though exploring that is beyond the scope of the 

present study. Our choice of parcellation could also impact findings, as the relatively large and 

functionally heterogeneous parcels in the Desikan-Killiany atlas could avoid the worst aspects of 

volume conduction, compared to e.g., the Destrieux atlas with smaller parcels (Destrieux et al., 

2010). Relatedly, volume conduction artifacts do not impact all edges equally (Schoffelen and 

Gross, 2009), which make them especially problematic when comparing edges, e.g., when 

testing which edges are strongest under a given experimental condition or when defining 

networks. Our analyses did not include any between-edge comparisons or network 

classifications, instead opting for a whole connectome analysis which may be less affected by 

these artifacts. Other methodological choices may also limit the scope of findings. Here we split 

recordings into two-second epochs, though longer epochs may favor connectivity methods that 

discard more of the signal, such as imcoh. Similarly, we used a 64-channel sensor net, whereas 

using a 128- or 256-channel device may involve similar benefits for low-signal methods that 

mitigate noise. We also note that for our task sensitivity analysis, all of our tasks consisted of 

passive viewing. Using a broader range of tasks could reveal larger differences in validity 

between FC measures. Similarly, results could vary if we used task-free resting state conditions. 
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Although we have discussed volume conduction mitigation mainly in terms of choosing 

connectivity methods like imcoh and pli, various orthogonalization methods are also possible. In 

these approaches, linear relations between pairs of regions are removed, achieving the same goal 

of removing zero-phase lag interactions (Colclough et al., 2015; O’Neill et al., 2018). Colclough 

et al. (2016) found that after orthogonalization, plv had similar reliability as imcoh, pli, and wpli, 

suggesting that orthogonalization leads to similar outcomes as adopting alternative connectivity 

measures. We also note that while we focused our analysis on phase-based connectivity methods, 

many other EEG FC methods exist and warrant investigation. Colclough et al. (2016) argues in 

favor of amplitude envelope correlations (Hipp et al., 2012), though phase- and amplitude-

coupling are thought to reflect different aspects of brain interactions (Mostame and Sadaghiani, 

2020; Siems and Siegel, 2020). Many additional EEG FC methods exist (Cao et al., 2022), and 

other methods may have better trade-offs between retaining signal and removing noise. Future 

work should compare more connectivity methods, and more directly compare different ways to 

correct for volume conduction. 

 

4.5 Conclusions 

The present study investigated reliability and validity of phase-based EEG FC measures. 

We found that measures that do not account for volume conduction, namely coh and plv, had 

higher reliability, potentially due to artifact. However, they also had comparable or higher 

validity than measures that mitigate volume conduction, i.e., imcoh, pli, wpli, and psi, suggesting 

that mitigation strategies result in lost signal of interest. We further found that corrected 

measures require much more data to approach asymptotic reliability and validity. Based on these 

findings, we recommend careful consideration of which FC measure to use, including in relation 



123 
 

to the amount of data available, and perhaps combining uncorrected with corrected measures for 

analyses of brain-behavior relationships.  
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Chapter 5: Discussion 

5.1 Overall summary 

To improve our understanding of human functional neurodevelopment, data collected 

using tools such as fMRI and EEG needs to be both reliable and valid. In this thesis, I used 

participant identifiability and other markers of validity to assess the reliability and validity of 

different fMRI preprocessing strategies and EEG FC measures. In general, I found that 

identifiability increases as noise is removed, but can also drop if insufficient signal is retained. 

This emphasizes that there are methodological trade-offs involved with noise mitigation. I also 

assessed how identifiability changes with age as one aspect of development, finding that older 

children have higher self-stability, which may be related to slower change in FC as children get 

older, but with no difference in similarity-to-others. 

 

5.1.1 Chapter 2 

Researchers have used a variety of fMRI preprocessing strategies, each with advantages 

and drawbacks. These strategies have not been previously validated in data collected from 

children – who have higher head motion than adults – which has led to a lack of understanding of 

which strategies are most appropriate for youth participants. In Chapter 2, I compared several 

different fMRI preprocessing strategies for high motion early childhood data. I compared ICA-

AROMA with the regression of HMP, bandpass filtering with highpass filtering, and tested the 

use of GSR and censoring. I benchmarked them using QC-FC, which has previously been used 

to assess noise removed, while adding participant identifiability as a measure of signal retained. 

The use of passive viewing data also allowed me to use ISC as a further benchmark, as 

participants watching the same video should demonstrate a similar response, but which may be 
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obscured by noise or lack of task-evoked signal. I found that across benchmarks, the best 

pipeline utilized GSR, censoring, regressing HMP, and bandpass filtering. Further, I found that 

ICA-AROMA did not outperform regressing HMP, nor did it obviate the need for censoring, and 

that while overly strict censoring improved QC-FC, it negatively impacted identifiability. Taken 

together, these results showed that despite the drawbacks of certain preprocessing strategies that 

arguably remove some signal of interest along with noise, for high motion data these drawbacks 

are largely outweighed by the advantage of recovering true signal. It also demonstrated the 

usefulness of identifiability as a measure of validity, while emphasizing the importance of having 

multiple benchmarks in the absence of ground truth.  

 

5.1.2 Chapter 3 

 Individual experiences may shape development in an individually unique way, which is 

supported by evidence that adults have more individualized connectomes than children. In 

Chapter 3, I investigated how longitudinal identifiability changes across early childhood (i.e., 4-8 

years). I found that across both the whole brain and in 9 of 12 networks, identifiability increased 

with age. Increases in identifiability corresponded to increases in longitudinal self-stability, 

while I found only weak evidence for changes in similarity-to-others across the whole brain. I 

also found that older children tended to have less absolute change in FC, partially explaining 

increases in self-stability and suggesting non-linear changes even across a relatively narrow age 

range. Further, there was only weak evidence for changes in within-scan self-stability, as 

assessed with split-half correlations, suggesting increases in longitudinal identifiability are 

unlikely an artifact related to data quality. Together, this suggests that increased longitudinal 

identifiability with age is primarily driven by increased self-stability, related to progressively 
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smaller FC changes over time. This work also shows that in addition to being a marker of 

validity, identifiability may be a feature that increases with age across early childhood.  

 

5.1.3 Chapter 4 

A variety of EEG FC measures have been adopted throughout the literature, but the 

extent to which they capture reliable and valid information is poorly understood. Some measures 

mitigate volume conduction artifacts, but may fail to capture sufficient signal of interest. In 

Chapter 4, I compared several different phase-based EEG FC measures on reliability and 

validity. I found that measures that do not correct for volume conduction had higher reliability, 

but as they also had higher similarity-to-others, this effect was likely primarily driven by artifact. 

However, these measures also had higher validity based on identifiability and comparable 

validity based on both task- and age-sensitivity. Furthermore, measures that do not mitigate 

volume conduction reached peak reliability and validity with far shorter recording lengths. This 

suggests that while it is desirable to remove known sources of artifact, such as by utilizing FC 

measures that are less sensitive to volume conduction, there may be a cost in terms of reduced 

signal of interest. This work further emphasizes the importance of having multiple benchmarks 

to assess validity, and like in chapter 2, demonstrates that aggressive artifact removal can overall 

hamper validity. 

 

5.2 Identifiability as a measure of validity 

Validity is an important criterion for scientific measurements but is difficult to establish 

in practice with neuroimaging as there is often no ground truth available. While work has 

considered how different aspects of data quality affect identifiability, such as scan length and 
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motion contamination (Horien et al., 2018), to my knowledge identifiability has not previously 

been used as a benchmark of validity. Here I calculated identifiability by comparing vectorized 

connectomes both within and across participants, determining if within-subject self-stability is 

higher than between-subject-similarity. I then compared identifiability across preprocessing 

pipelines and FC measures, arguing that strategies with greater identifiability were more valid. 

This approach is based on several assumptions, and has various strengths and drawbacks. It is 

also worth considering other ways to calculate identifiability as a potential benchmark. 

 

5.2.1 Assumptions 

The most basic assumption behind using participant identifiability as a measure of 

connectome validity is that there is stable and individually unique information captured within 

functional connectomes. This has been demonstrated in a variety of studies that have included 

adults (Finn et al., 2015), adolescents (Jalbrzikowski et al., 2020), children (Miranda-Dominguez 

et al., 2018; Vanderwal et al., 2021), and infants under 1 year of age (Dufford et al., 2021), 

including longitudinally (Horien et al., 2019; Sato et al., 2021), and across task paradigms (Finn 

et al., 2015; Gratton et al., 2018; Vanderwal et al., 2017). However, to be a useful measure of 

validity, identifiability must positively associate with measurement accuracy (i.e., low noise and 

bias), reliability, and other aspects of data quality. In other words, we assume that individual 

information within data can be enhanced with data cleaning, and that identifiability will improve 

if we remove noise while retaining signal. In the absence of ground truth this is difficult to 

conclusively determine, but several studies suggest that at least certain measures of data quality 

are related to identifiability. It has been shown that longer scans are necessary to establish 

connectome stability (Gordon et al., 2017), which matches the finding that connectome 
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fingerprinting increases as scan length increases (Finn et al., 2015; Horien et al., 2018). Further, 

considering the systematic bias that head motion can impose on data, it is reassuring that 

previous work (Horien et al., 2018) and my work in Chapter 2 demonstrates lower identifiability 

with more motion contamination.  

However, this assumption may not apply in all situations. Some evidence suggests that 

artifacts are replicable within a participant, leading to higher reliability despite noise 

contamination (Noble et al., 2021; Parkes et al., 2018). For motion artifacts, this may be more 

pronounced across short time intervals, e.g., scans from the same session (Parkes et al., 2018), 

which I similarly found in Chapter 2. This may limit the usefulness of identifiability if a 

participant is only scanned once. Further, certain methodologies or measures may have low 

identifiability but remain effective at capturing information about other features of interest. This 

may be the case with psi, which my work in Chapter 4 suggests captures relatively little 

information about identifiability, but other studies have used psi to demonstrate properties such 

as working memory processing (Li et al., 2023) and cognitive decline (González-López et al., 

2022). Thus, lack of identifiability (as measured here) does not necessarily imply lack of validity 

for all possible analyses, such as when considering task effects. Higher identifiability could also 

be achieved by emphasizing subject-specific features that may not be of interest, such as brain 

size and shape. If a methodology is more vulnerable to noise, but also more sensitive to these 

characteristics, identifiability could improve despite worse measurement accuracy. As thus, 

researchers should always consider if high identifiability can be alternately explained, and should 

not be overly eager to dismiss methods with low individualization scores. 
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5.2.2 Advantages 

There are several advantages to using identifiability as a measure of validity. While a 

wide range of potential benchmarks exist for validating different methodological choices (see 

5.2.6 Other Benchmarks), identifiability makes relatively minor and fairly intuitive assumptions 

about how brain connectomes should look – i.e., that there is more self-stability than similarity-

to-others. Other benchmarks make assumptions such as how FC should change during certain 

tasks (Nolte et al., 2004) or between certain groups (Stam et al., 2007), or the degree to which 

connectomes show network structure (Ciric et al., 2017), which can be harder to justify a priori. 

Identifiability has the related advantage of transferability, as a wide range of validation studies 

could use identifiability as a benchmark. A measure such as QC-FC is likely inappropriate for 

comparing anything not directly related to head motion, while for a benchmark such as network 

modularity, what is known about fMRI connectomes may not transfer to EEG connectomes. 

While I here used identifiability for both fMRI and EEG connectomes, identifiability has also 

been observed with structural data (Sato et al., 2021), suggesting it could also be used to validate, 

e.g., white matter connectomes. Identifiability also has the advantage of testing the validity of the 

entire connectome. By comparison, a benchmark that considers a specific task may say relatively 

little about regions of the connectome unrelated to that task, e.g., non-motor regions when 

considering a motor task (Nolte et al., 2004). Finally, identifiability (especially fingerprinting) is 

easy to calculate and easy to interpret; given the importance of reproducibility in science, 

straightforward measures that anyone can adopt are important towards broader scientific goals. 
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5.2.3 Drawbacks 

The biggest drawback to identifiability is that there are both floor and ceiling effects. 

With fingerprinting in particular, match rates cannot exceed 100%, and several studies, including 

my work here in Chapters 2 and 3, have match rates near this boundary (Finn et al., 2015; 

Vanderwal et al., 2017). A methodology could therefore significantly reduce noise or improve 

signal of interest without noticeably changing identifiability. Likewise, match rates can only drop 

as low as ~0%, and some work suggests older datasets may have match rates near this lower 

bounds when using large sample sizes (Waller et al., 2017). While I was able to mitigate this 

drawback by using individualization, which quantifies the degree of separation between self-

stability and similarity-to-others (rather than a binary match/miss), ceiling effects remain. 

Fundamentally, people are similar to each other, and this similarity is captured within 

connectomes (Vanderwal et al., 2021), while at the same time, self-stability seemingly has an 

upper limit (Gordon et al., 2017). Therefore, while it is likely desirable to remove as much noise 

as possible from a dataset, beyond a certain threshold, improvements may not be reflected with 

improved identifiability. 

There are also drawbacks in measuring identifiability by utilizing the whole connectome. 

Edges vary in identifiability (Byrge and Kennedy, 2019), with a lot of variation in networks and 

subnetworks (Finn et al., 2015). While using more edges offers more power, certain strategies 

may improve overall identifiability while having negative effects on specific edges, which may 

be of interest. Thus, there may be benefits to considering how identifiability changes in both the 

whole connectome and in individual networks (Phạm et al., 2023). This could perhaps be useful 

to better benchmark measures such as psi, which I found to have low full-connectome 
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individualization, but may capture individually specific information within specific subsets of the 

connectome. 

Another drawback is that when comparing connectomes using Pearson correlations, as 

done here, the absolute difference between edges is not accounted for, only how the connectomes 

covary. In other words, the correlation between two vectorized connectomes is unaffected by 

either vector’s mean or standard deviation. Given that global FC is associated with Alzheimer’s 

(Franzmeier et al., 2017), depressive disorder (Pan et al., 2022), and attention (Chen et al., 2023), 

and that increases in FC have been shown brain-wide with development (Lin et al., 2008), 

comparing participants without considering average edge strength likely misses meaningful 

differences. Similarly, if across development strong edges get stronger, while weak edges stay 

the same or weaken, such global changes would not be reflected via Pearson correlation. While 

this has implications for developmental studies or studies with neurodiverse participants, there is 

also the concern that identifiability might improperly benchmark methodologies that involve 

global changes in FC. For example, while I found little change in identifiability when comparing 

pipelines either with or without GSR, this may be due to Pearson correlations failing to detect 

connectome differences that are lost with GSR. 

 

5.2.4 Other implementations 

Identifiability can be measured differently than the approach implemented here, which 

could improve its sensitivity and validity as a benchmark. One question is whether it is best to 

use Pearson correlations to compare connectomes. An alternative approach is to calculate the 

geodesic distance between the correlation matrices that make up the connectome (Abbas et al., 

2021; Venkatesh et al., 2020). In addition to improving identifiability in rest and across tasks 
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(Venkatesh et al., 2020), this may be theoretically preferable, as the vectorized Pearson 

correlation approach implicitly assumes that all FCs are uncorrelated, which is untrue (Abbas et 

al., 2021). Pearson correlations are also sensitive to outliers, which could disproportionately 

affect similarity if certain edges are unusually strong. However, the geodesic approach can 

require a regularization procedure, which is not always possible (Abbas et al., 2021), limiting its 

adoptability. Nevertheless, this alternative is worth investigating as both a benchmark of validity 

and a feature of development. 

While using the full connectome is likely preferable in most situations, only using a 

random subset of the connectome could potentially avoid ceiling effects. For example, 

Vanderwal et al. (2017) compared match rates across viewing conditions; 14 of 30 conditions 

had match rates of 90% or higher, which may underemphasize the difference between them. A 

wider range of identifiability scores could be present if only using, e.g., 100 random edges. This 

might similarly better distinguish some of the preprocessing pipelines tested in chapter 2. 

Pipelines that regressed HMP and used censoring all had high (~90%) match rates, despite 

varying in the use of GSR, the exact censoring parameters, and whether they used bandpass or 

highpass filtering. However, a random connectome subset approach needs to be validated, as it 

may instead only shift results down without increasing distinguishability. While random edge 

selection could decrease the power of analysis, if sufficient sampling occurs (e.g., 10 000 random 

samples), this strategy could still validate the whole connectome. 

 

5.2.5 Alternative measures of identifiability 

It is also possible to assess identifiability using different approaches than the comparison 

of vectorized connectomes. In MEG, high identifiability has been observed based on how tasks 
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affect the power spectrum and by using the correlation between timepoints (rather than between 

spatial nodes; Wu et al., 2022). A potential fMRI analogue is ISC (Hasson et al., 2004). My work 

in Chapter 2 suggests that while there is a gap between within- and between-subject correlations, 

it is relatively minor, which may hinder its potential for fingerprinting. Nevertheless, it may 

remain an appropriate benchmark if higher identifiability can be achieved with noise mitigation, 

which has not been well studied. Task responses may capture individually unique information 

that is not present in functional connectomes, for e.g., the speed and duration of response to a 

stimulus. My work here has established the importance of multiple benchmarks; this could be 

extended to utilizing both connectome-based and ISC-based identifiability. 

 

5.2.6 Other benchmarks 

In addition to identifiability, a wide range of other benchmarks have been previously used 

to validate both preprocessing pipelines and EEG FC measures. Like identifiability, these metrics 

have strengths and drawbacks, and future validation work that utilizes identifiability should also 

consider the metrics briefly described here.  

While QC-FC is the most commonly used benchmark to test fMRI-FC preprocessing 

strategies, a number of further approaches have been used. One approach is to divide participants 

into low- and high-motion groups and calculate the difference in average FC, where it has been 

argued that pipelines that better account for noise will show fewer between-group differences 

(Parkes et al., 2018; Pruim et al., 2015; Satterthwaite et al., 2013). Another strategy is to measure 

test-retest reliability of FC via ICC (Parkes et al., 2018; Van Dijk et al., 2012), a metric that I 

also integrated into my work. Several studies have considered various network properties, such 

as network modularity (Ciric et al., 2017), the reproducibility of networks within a participant 
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(Pruim et al., 2015), and comparing within- and between-network connections (Kassinopoulos 

and Mitsis, 2021; Pruim et al., 2015). These strategies assume that better preprocessing strategies 

should better identify consistent brain networks. Finally, several studies have considered the 

costliness of preprocessing by considering the degrees of freedom lost in confound regression 

(Ciric et al., 2017; Parkes et al., 2018; Pruim et al., 2015).  

EEG FC measures have not been compared as extensively, limiting the number of 

benchmarks that have been used. Arguably the most comparable study to my work in Chapter 4 

comes from MEG, which also considered the self-stability and similarity-to-others of a variety of 

FC measures (Colclough et al., 2016). They also randomly divided participants into two groups 

and calculated group-average connectomes, then measured their consistency. Several more 

benchmarks come from the papers that first proposed novel FC measures. Nolte et al. (2004) 

demonstrated the usefulness of imcoh by showing the existence of FC between left and right 

motor areas during a motor task. Stam et al. (2007) compared FC measures on several metrics: 

sensitivity to synchronization using a model of oscillation, FC differences during seizure, and FC 

differences comparing Alzheimer's patients and healthy controls. Psi was tested based on false 

positives when noise was added to simulation data, and by showing connectivity patterns in an 

eyes open vs closed experiment (Nolte et al., 2008). While not explicitly for the purposes of 

benchmarking FC measures, several studies have considered the test-retest reliability of EEG FC 

measured using ICC (Cannon et al., 2012; Hardmeier et al., 2014; Hatz et al., 2016; Kuntzelman 

and Miskovic, 2017). In addition to considering the reliability of connectivity estimates 

themselves, these reliability studies also assessed the reliability of graph theory metrics such as 

clustering coefficient, path length, and small-world index. 
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5.3 Methodological trade-offs 

 My work through this thesis emphasizes the importance of considering trade-offs when 

debating methods to investigate hypotheses. Many tools I have advocated for here have 

legitimate drawbacks. For example, the global signal contains information related to trait level 

cognition and behavior (Li et al., 2019) which is lost with GSR. Likewise, GSR changes the 

distribution of edges, impacting interpretability (Murphy and Fox, 2017). However, my work in 

chapter 2 suggests the inclusion of GSR can reduce the number of edges correlated with motion 

by around 50%, without negatively impacting identifiability, strongly backing its inclusion in 

preprocessing. Ultimately, there is no single correct decision, and different study designs or 

hypotheses may favor or disfavor GSR’s inclusion. My work on censoring similarly shows its 

advantages, but for study designs that require the comparison of timepoints across participants, 

such as with ISC, it may be necessary to avoid censoring, or at least, use less stringent censoring 

thresholds. While consistent methodologies are preferable towards the goal of reproducibility, 

some degree of flexibility may be necessary to properly account for study-specific trade-offs.  

A related consideration is that methods that better remove noise, despite other unwanted 

characteristics, may allow the inclusion of participants who are otherwise excluded, or allow the 

study of groups who would otherwise be impossible to investigate. Given the difficulty of 

studying young children with fMRI (Vanderwal et al., 2019), developmental studies may need to 

be more willing to adopt imperfect methods that are effective at removing motion noise, 

regardless of other negative characteristics, particularly when motion associates with the 

outcome of interest (age or clinical symptoms). While investigations involving large datasets 

such as the Healthy Brain Network (Alexander et al., 2017) give researchers the opportunity to 

exclude a large percentage of their sample, such exclusion rates could bias results in other 
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undesirable ways. For example, if a dataset has 1000 scans from 5-year-olds available, a 

researcher could choose to only include 5-year-olds who meet stringent criteria for lack of head 

motion and still be left with a relatively large sample size of 200 participants. However, this 

could be a poor representation of a typical 5-year-old, making it preferable to instead adopt 

looser exclusion criteria (including more participants) and utilize stricter noise-removal strategies 

even if they have drawbacks. 

Although time consuming, one possibility for researchers faced with difficult 

methodology decisions is to first benchmark their specific dataset. If for a given study design 

avoiding censoring is preferable, they could first measure QC-FC and identifiability to see if 

their data is sufficiently noise-free based on certain thresholds, e.g., >85% match rates and <25% 

of edges significantly correlated with motion. This would require researchers to choose 

appropriate benchmarks that are sufficiently unrelated to their question of interest in order to 

avoid circularity. Another possibility is that researchers can adopt multiple methodologies 

simultaneously, seeing if results are consistent across strategies. For example, data could be 

preprocessed both with and without GSR (Rohr et al., 2019), or using both imcoh and coh as 

suggested in Nolte et al. (2004). 

 

5.4 EEG vs fMRI connectomes 

EEG connectomics can provide complementary information to fMRI connectomics, but 

they are not strictly comparable. Notably, they fundamentally consider different aspects of brain 

activity, with EEG directly measuring neural activity, while fMRI measures blood flow which 

supports neural activity in a non-linear fashion (Hillman, 2014). Previous work has demonstrated 

a correlation between the two modalities of r ~ 0.3, which was shown with both phase and 
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amplitude FC measures (Wirsich et al., 2021), though other work has found lower similarity 

values (Nentwich et al., 2020). This suggests that while there are likely common features, there 

is a large amount of unexplained variance between modalities. While some of these differences 

are no doubt due to fundamental differences in neural and vascular activity, EEG also measures 

at a much faster timescale, capturing different patterns of activity. Relatedly, while EEG source 

localization algorithms can be used to measure brain activity with the same parcellations as in 

fMRI, the inherently decreased spatial resolution results in much noisier estimates of FC between 

regions. Together, this suggests that certain connectome features or developmental changes may 

be modality specific, both due to the signal of interest they are able to capture and having 

different noise vulnerabilities. 

My work here demonstrates that individually unique information is available in both 

fMRI and EEG connectomes. While I found much higher match rates and individualization 

scores with fMRI, these findings should not be overinterpreted. I used fewer, larger parcels in my 

EEG study (68 in chapter 4, vs 325 in chapter 2 and 1095 in chapter 3), and previous work 

suggests coarser parcellations result in lower match rates (Byrge and Kennedy, 2019; Finn et al., 

2015). However, while studies have utilized higher resolution parcellations with EEG (Nentwich 

et al., 2020; Wirsich et al., 2021), at least one study suggests EEG has a resolution limit of 

around 70 parcels (Farahibozorg et al., 2018), meaning that there may not be identifiability 

benefits with higher resolution EEG parcellations. Regardless, my EEG work in chapter 4 also 

considered match rates both within and across tasks, while in chapters 2 and 3 I only considered 

within task for fMRI; cross-task match rates have been found to be lower (Vanderwal et al., 

2017). Relatedly, each recording in chapter 4 had many more potential false matches, potentially 

lowering fingerprinting rates. There are thus some reasons to suggest my EEG identifiability 
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scores were deflated, and true identifiability may be comparable in both modalities, at least for 

FC measures such as plv with high fingerprinting success. Future work can better establish how 

fMRI and EEG connectomes compare in the extent to which they capture individually unique 

information. 

 

5.5 Limitations 

 There are several limitations to my work in this thesis. In each study chapter, I only used 

one dataset. As thus, my work may not generalize to other study populations or other 

methodologies, and it is worth considering how each design decision may influence findings. For 

example, in Chapter 2 I found a censoring threshold of ~0.25 mm FD to be optimal, but this 

could change based on who is scanned with what parameters. For participants who move less, a 

stricter threshold may be more appropriate if the quantity of data remaining post-censoring is 

comparable. Similarly, my censoring analysis was based off of a TR of 2.5 s. In a multislice 

sequence with a faster TR, a stricter threshold may be necessary to remove artifacts of the same 

absolute size. While it is important in this way to consider the impact that every choice may 

have, here I will focus on two broad decisions: video tasks, and parcellation choice. 

 

5.5.1 Video tasks 

Through all three body chapters of this thesis, I used passive viewing tasks. While 

passive viewing has the advantage of increasing compliance in the scanner, reducing head 

motion (Greene et al., 2018), the effects it has on FC should be noted. While passive viewing 

connectomes share marked similarities with resting state connectomes, especially with regards to 

network structure (Greene et al., 2018), passive viewing still has task-evoked properties (Bray et 
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al., 2014; Vanderwal et al., 2019). This suggests that resting state datasets should not necessarily 

be used for replication or even comparison (Vanderwal et al., 2019). This could be worth taking 

into account when comparing my work to others; for example, Sato et al. (2021) found lower 

match rates in a similar age range, but using resting state data, potentially limiting comparability. 

Different passive viewing tasks also result in different FC patterns (Vanderwal et al., 2019), 

which may mean that results gathered using one specific video may not generalize to other 

viewing tasks. This leaves open the possibility that the specific passive viewing task used in 

chapter 3 could be responsible for discrepancies with other research. Future investigations into 

the effects of age on identifiability could use multiple videos to increase confidence in findings, 

as I did in chapter 4. One concern with passive viewing is that participants vary in how engaging 

they find specific videos. Relatedly, participants may have already seen a video, or vary in how 

familiar they are with the characters in a video, such as Elmo or Dora. This could partially 

confound my results in chapter 3, as younger children may have found clips from Elmo's World 

more engaging, or they may have more recently seen Elmo content, resulting in some association 

between age and FC. Differences in task engagement could also be a driver in my task sensitivity 

benchmark employed in chapter 4, potentially hampering its effectiveness as a measure of 

validity. However, it is worth noting that these limitations of passive viewing can also apply to 

resting state – people's mental state during resting tasks vary, and there may be associations 

between age and the types of thoughts people have during a scan (including how comfortable 

they are during the MRI). 
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5.5.2 Parcellation 

 Choice of parcellation in particular may limit generalizability. While parcellation is 

useful as a strategy of dimensionality reduction, it necessarily averages together the activity from 

separate brain volumes with distinct patterns of activity. Dozens of parcellations have been 

developed, which vary in both underlying assumptions and in their granularity (Eickhoff et al., 

2018), which may limit the transferability of findings. Since parcellations with more nodes seem 

to better capture individually unique variation in brain activity (Byrge and Kennedy, 2019; Finn 

et al., 2015), my identifiability findings in Chapter 3 may require similar resolution parcellations 

to be replicable. For example, I found high individualization in visual networks, contrary to 

previous works that used lower resolution parcellations, suggesting that the visual network may 

be relatively homogenous across people at low resolutions but more individually unique 

information is available at higher resolutions. However, the discrepancy could also be due to the 

relatively heterogeneous definitions of the canonical networks between parcellations, making it 

hard to compare, for example, the visual network or visual stream I considered in the 1095 node 

MIST network with any of the 3 visual networks in the 268 node Shen parcellation (Finn et al., 

2015). These reasons, along with other differences in study design, make it difficult to interpret 

differences in results. 

 Parcel size could similarly affect my findings in Chapter 4, where I analyzed relatively 

large parcels in the 68-node Desikan Killiany atlas. A smaller number of larger parcels will mean 

increased distances between the centers of neighboring parcels. This could reduce the impact of 

volume conduction artifacts, meaning that it may be more important to mitigate against them 

when using a higher resolution parcellation. On the other hand, smaller parcels necessitate 

averaging the signal from fewer voxels, which may mean less signal of interest is captured 
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within each node. This could disadvantage measures like imcoh that already capture less signal 

in the first place. As thus, it is not clear how parcellation choice affects the validity of EEG FC 

measures. 

 Choice of parcellation could also more broadly affect the extent to which identifiability is 

an appropriate measure of validity. In order to be a useful benchmark for functional 

neuroimaging datasets, identifiability should be based on patterns of brain activity, rather than 

individually specific spatial properties. It is typically necessary to register all brains into a 

common space; however, brain sizes and positions do not have a 1-to-1 correspondence across 

participants (Klein et al., 2009). Parcellations with fewer, larger parcels may be less vulnerable 

to misalignment between participants since each parcel averages data from a larger spatial region 

that better overlaps between participants. Similarly, since EEG has poor spatial resolution, larger 

parcels may better ensure correspondence between participants. In either case, if parcels poorly 

align between participants then higher identifiability could be achieved without increased data 

validity. 

 

5.6 Future directions 

 In this thesis I demonstrated the utility of imperfect preprocessing pipelines and FC 

measures. While it is important to be willing to accept trade-offs, future work should still attempt 

to find better ways to reduce noise while retaining signal, shifting the balance on the trade-off. 

This could exist in the form of newer processing strategies, for example a version of GSR with 

fewer drawbacks (perhaps by decomposing the global signal into noise and signal of interest) or 

better EEG source localization algorithms. Further, work could be done to reduce artifact at time 
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of data collection, such as testing a wide range of strategies to reduce in-scanner motion or better 

EEG caps that are less sensitive to volume conduction.  

The work in this thesis establishes identifiability as a measure of validity. This will 

hopefully be adopted for a variety of studies going forward. For example, Sadaghiani et al. 

(2022), outlines several areas of future EEG research. These include the development of models 

of connectivity that consider “a diversity of signal components across the broad frequency 

spectrum” along with better consideration of cross-frequency interactions. These goals may 

require developing new measures of connectivity that could be validated with identifiability. 

Similarly, machine learning algorithms are currently a popular approach for analyzing resting 

state fMRI (Khosla et al., 2019). Considering the diversity of machine learning approaches and 

their relative novelty, their validity could be better tested with identifiability, e.g., to compare 

clustering algorithms or to test feature selection approaches. 

The broader goal of my thesis is to improve the quality of neuroimaging data analysis, 

leading to a better understanding of neurodevelopment. In my work I benchmarked different 

methodologies, but a big remaining question is why different preprocessing strategies or FC 

measures are better than others. For example, while my work suggests that coh is more valid than 

imcoh despite volume conduction, I did not determine what features of the connectome coh 

managed to capture that disadvantaged imcoh. Determining the exact advantages and 

disadvantages of coh and imcoh could better determine when to use one over the other, or if the 

data from both could be combined in a meaningful way. Further, given the broad collection of 

methods I tested, a deeper understanding of how they are sensitive to noise and how they capture 

signal could reveal major blind spots, pointing towards future methodologies that better explain 

features of interest. These may require simulations of, e.g., how brain data is detected by EEG 
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(Barzegaran et al., 2019), or a better understanding of the ground truth of neurovascular coupling 

(Phillips et al., 2016). 

 

5.7 Significance 

The work in this thesis has direct implications for how connectome research with 

children is carried out. My work in Chapter 2 suggests preferable preprocessing techniques and 

my work in Chapter 4 has implications for which FC measures to use when assessing EEG 

connectomes. I have here established identifiability as a benchmark of validity, which can be 

adopted for future benchmarking studies.  

More broadly, the significance of this thesis is in more deeply considering the validity of 

neuroimaging methods. Neuroimaging studies have suffered from a lack of replicability when 

studying associations between brain data and more complicated phenotypes, such as 

neurodiverse conditions or development (Marek et al., 2022). This suggests a lack of reliability 

or validity, requiring reconsideration of many assumptions.  

In the absence of ground truth, it is difficult to argue for or against preprocessing 

strategies, FC measures, or other analysis decisions based solely on a theoretical framework of 

how these techniques might affect the data. Techniques need to be validated, and validation 

needs to occur in a variety of datasets with a range of benchmarks. Techniques established in 

adults should not be assumed to also work in children. My work here also highlights the 

importance of not thinking about techniques in a valid-invalid dichotomy; certain methods may 

be valid for exploring certain hypotheses but not others, or they may have drawbacks while still 

being better than existing alternatives. Ideally, future neuroimaging methodologies will be able 
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to capture brain function more reliably with minimal noise, but given current techniques we 

should be prepared to embrace imperfect strategies. 

 

5.8 Thesis conclusions 

In this thesis, I compared fMRI preprocessing strategies and EEG FC measures, using 

identifiability as a benchmark of validity. For noisy, early childhood datasets, my work here 

suggests fMRI preprocessing strategies that adopt GSR and censoring are preferable, despite the 

drawbacks to these strategies. Similarly, EEG FC measures that do not mitigate volume 

conduction, while vulnerable to artifact, may better capture signal of interest (i.e., stable 

individual differences). I also considered identifiability as an aspect of neurodevelopment, 

finding that identifiability increases across early childhood as connectomes become more self-

stable. The work in this thesis is important towards the broader goal of improving reproducibility 

in neuroimaging research, by emphasizing the importance of validating methodologies and 

considering trade-offs between signal retained and noise removed. 
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Appendix A: Supplemental Figures 

 

 
 

Supplemental Figure 2.1. The mean relative framewise displacement (FD) for each scan, 

plotted by age of participant at time of scan. Each point represents one scan, with lines between 

points linking scans from the same participant. Line of best fit derived from a linear mixed 

model used to predict mean relative FD by age. 
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Supplemental Figure 2.2. Individualization as a function of head motion. This is similar to 

Figure 2.4 with one outlier removed (participant with 0.51 mm FD). The difference between 

each scan's stability (self-correlation) and the highest correlation to a scan from another 

participant, plotted by motion. Motion was calculated by taking the worse of each participant’s 

two scans’ mean relative framewise displacement; each participant has two points for their two 

scans. Any point below 0 on the y axis fails to successfully match.  
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Supplemental Figure 2.3. Stability as a function of head motion. The correlation between 

each participant's two scans’ FC estimates, plotted as a function of motion. Motion was 

calculated by taking the worse of each participant’s two scans’ mean relative FD.  
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Supplemental Figure 2.4. Location of the 10 nodes with the highest average ISC. For each 

node defined by the MIST 325 parcellation, the average ISC was calculated across participants 

for each pipeline. Shown are the 10 nodes with the highest ISC values, averaged across all 

pipelines tested. Visualization was created with BrainNet Viewer (Xia et al., 2013, 

http://www.nitrc.org/projects/bnv/).   
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Supplemental Figure 2.5. Quality control-functional connectivity (QC-FC) across pipelines 

with a highpass filter. a) Percentage of edges with a significant correlation between edge 

strength and motion across all 112 scans (uncorrected p < 0.05). b) Mean and 99% confidence 

interval of the absolute correlation between edge strength and motion across all 112 scans. c) The 

correlation between edge distance and correlation between edge strength and motion. 
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Supplemental Figure 2.6. Functional connectome fingerprinting across pipelines with a 

highpass filter. a) Match rate across pipelines. A scan matched if its highest correlation was to 

the other scan from the same individual. b) Each scan’s stability (darker points) and group 

similarity (lighter points), for each pipeline. Group similarity was assessed as the average 

correlation to scans from other participants; stability was assessed as the correlation between 

scans from the same individual. Lines represent mean values. c) Individualization across 

pipelines. Each dot represents one scan. Individualization was assessed as the difference between 

stability and the highest correlation to a scan from another participant. Lines represent mean 

values. 
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Supplemental Figure 2.7. Mean intersubject correlation (ISC) values with a highpass filter. 

Each point represents the mean ISC for a scan to all other scans, averaged across the 10 nodes 

with the highest ISC. Lines represent mean values. a) Mean ISCs for all 112 scans, each 

compared to all other scans from other participants. b) Each participant's intrasubject correlation, 

the correlation between their two scans' time series. 
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Supplemental Figure 3.1. Mean relative framewise displacement (FD) for each scan by age 

of participant at time of scan. Each dot represents one scan, with lines between dots showing 

scans from the same participant. A linear mixed model to predict mean relative FD by age was 

used to derive the age coefficient, age p value, and line of best fit. Raw data is shown, with both 

the raw and standardized age coefficient presented. 

 

 

 

 

 Mean (± std) number 

volumes censored 

Median number 

volumes censored 

Number volumes 

censored vs age (p value) 

First quartile 8.59 ± 10.69 4 0.97 

Second quartile 8.51 ± 11.51 3.5 0.071 

Third quartile 9.38 ± 12.04 5 0.54 

Fourth quartile 12.43 ± 14.07 7 0.18 

Whole scan 38.91 ± 39.04 26 0.24 

 

Supplemental Table 3.1. Temporal censoring summary, by scan quartile. Censoring was 

carried out as part of the regression step, where we censored volumes above a FD threshold of 

0.25 mm. A linear mixed model was used to predict number of volumes censored by age for the 

whole scan and each scan quartile separately. 
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Supplemental Figure 3.2. Functional connectome fingerprinting match rate across 

networks. A scan matched if its self-stability was higher than the correlation to all other scans; 

successful match percentages are shown. a) Match rate when using all network edges. b) Match 

rate when controlling for network size using a subset of 36 randomly selected nodes, sampled 

1000 times. Each dot represents one sampling; lines represent averages across samplings. c) 

Match rates in both networks and internetworks, controlling for network size. For each pair of 

networks, internetwork connectomes were derived from 18 random nodes from each network, 

and the (18x18=324) edges between those nodes. To compare the same number of edges, 

networks were similarly derived using 36 random nodes divided into two sets. Match rates are 

averaged over 1000 random samplings.  
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Supplemental Figure 3.3. (a) Developmental individualization, (b) longitudinal self-

stability, and (c) average-between-subject-similarity, controlling for network size. 

Connectomes were derived from 36 random nodes, sampled 1000 times. Each dot represents the 

mean value for the metric of interest for one sampling, averaged across all participants. Lines 

represent averages across samplings.  
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Supplemental Figure 3.4. Alternate volume-length matching analysis of developmental 

individualization, longitudinal self-stability, and average-between-subject-similarity across 

networks. This is similar to figures 3.3 and 3.4, using the alternate volume-length matching 

approach, described in 3.2.3. Preprocessing. a, c, e) Each participant’s developmental 

individualization, longitudinal self-stability, and average-between-subject-similarity. Lines 

represent mean values across participants. b, d, f) Age associations. A linear regression was used 

to assess associations between age and the metric of interest, controlling for sex, motion (mean 

FD), and time between a participant’s scans. Error bars depict 95% confidence intervals around 

standardized beta estimates. * = p < 0.05 uncorrected; ** = p < 0.05 Bonferroni corrected. 
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Supplemental Figure 3.5. Age effects of (a) developmental individualization, (b) 

longitudinal self-stability, and (c) average-between-subject-similarity, controlling for 

network size. Connectomes were derived from 36 random nodes, sampled 1000 times. Each dot 

represents the standardized age beta value for the metric of interest for one sampling. Lines 

represent averages across samplings.  
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Supplemental Figure 3.6. Age effect of longitudinal-between-subject-similarity. Network 

effects are shown in (a), while both network and internetwork effects are shown in (b). For each 

participant, mean between-subject-similarity was calculated for their baseline and follow-up scan 

separately. A linear mixed effects model was used to test for the effect of age, controlling for 

motion and sex as fixed effects and participant identity as a random effect. Error bars in plot (a) 

represent 95% confidence intervals around standardized beta estimates. No effect was significant 

(p < 0.05 uncorrected). In plot (b), the network effects, shown along the diagonals, are the same 

values shown in figure (a). 
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Supplemental Figure 3.7. Age effect of short-term self-stability, using either (a) a split-half 

correlation or (b) a ‘split-third’ correlation, the correlation between the first and last third 

of the scan. A linear mixed model was used to assess associations between age and each scan’s 

split-half or ‘split-third’ correlation, controlling for sex and motion (average FD) as fixed effects, 

and participant identity as a random effect. Error bars represent 95% confidence intervals around 

standardized beta estimates. * = p < 0.05 uncorrected; ** = p < 0.05 Bonferroni corrected. 
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Family 

Parent Child Days after visit 1 

Sex Age (Visit 1; years) Sex Age (Visit 1; years) Visit 2 Visit 3 Visit 4 

1 F 40.44 F 7.46 11 14 22 

2 F 36.77 M 7.26 51 86 125 

3 F 36.78 M 7.21 53 111 467 

4 F 39.56 M 8.91 7 28 35 

4B M 42.05 M 7.34 7 28 147 

5 M 44.57 M 8.84 28 35 42 

5B F 44.04 F 7.22 7 49 63 

6 F 45.03 M 7.26 70 77 84 

7 M 38.03 M 7.62 78 118 126 

8 F 44.25 M 8.90 17 103 129 

9 F 42.00 M 8.70 77 92 108 

10 F 44.92 M 8.07 81 116 145 

11 M 36.77 M 7.57 7 14 42 

12 F 40.22 F 7.94 56 109 182 

13 M 43.60 M 8.02 7 21 34 

14 M 46.94 F 7.60 28 35 98 

15 M 42.63 F 8.55 7 14 35 

16 M 33.75 F 8.26 23 26 50 

17 F 47.13 F 8.82 7 36 41 

18 M 41.73 F 8.48 28 35 42 

19 M 42.12 F 7.98 7 13 20 

20 F 44.46 F 8.49 7 45 59 

21 M 38.09 F 7.03 6 42 49 

22 M 34.88 F 6.90 7 14 21 

23 M 43.58 F 6.56 21 43 50 
Supplemental Table 4.1. Age, sex, and visit schedule of participants. 
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Supplemental Figure 4.1. Additional identifiability metrics across FC measures. Each dot 

represents one participant. Lines represent mean values across participants, which are also 

displayed at the top of each subplot. a) Match rate, the percentage of self-stability scores that 

were higher than all similarity-to-others scores. b) Self-stability percentile, the average percentile 

of self-stability scores, relative to similarity-to-others. Psi: phase slope index; pli: phase lag 

index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; plv: phase 

locking value. 
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Supplemental Figure 4.2. Within-session reliability and identifiability across FC measures. 

This is similar to Figure 4.2 and Supplemental Figure 4.1 but calculating self-stability by 

comparing connectomes from the same session, rather than different sessions. Each dot 

represents one participant. Lines represent mean values across participants, which are also 

displayed at the top of each subplot. a) Mean self-stability, the average Fisher-z correlation 

between connectomes of the same participant, collected on the same day. b) Individualization, 

the difference between mean self-stability and mean similarity-to-others. c) Match rate, the 

percentage of self-stability scores that were higher than all similarity-to-others scores. d) Self-

stability percentile, the average percentile of self-stability scores, relative to similarity-to-others. 

Psi: phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary 

coherence; coh: coherence; plv: phase locking value.  
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Supplemental Figure 4.3. Statistical comparisons between reliability and identifiability 

measures, as presented in Figure 4.2 and Supplemental Figure 4.1. Between each FC 

measure, a paired t-test was used to assess the statistical difference between participants’ scores. 

Yellow shading = p < 0.05 Bonferroni corrected; green shading = p < 0.05 uncorrected. Psi: 

phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary 

coherence; coh: coherence; plv: phase locking value.  
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Supplemental Figure 4.4. Statistical comparisons between within-session reliability and 

identifiability measures, as presented in Supplemental Figure 4.2. Between each FC 

measure, a paired t-test was used to assess the statistical difference between participants’ scores. 

Yellow shading = p < 0.05 Bonferroni corrected; green shading = p < 0.05 uncorrected. Psi: 

phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary 

coherence; coh: coherence; plv: phase locking value.  
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Supplemental Figure 4.5. Statistical comparisons between FC measures of task sensitivity, 

as presented in Figure 4.3. Between each measure, a paired t-test was used to assess the 

statistical difference between participants’ scores. Yellow shading = p < 0.05 Bonferroni 

corrected; green shading = p < 0.05 uncorrected. Psi: phase slope index; pli: phase lag index; 

wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; plv: phase 

locking value. 
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Supplemental Figure 4.6. Statistical comparisons between FC measures of age sensitivity, 

as presented in Figure 4.4. Between each measure, a paired t-test was used to assess the 

statistical difference between participants’ similarity-to-others difference. Yellow shading = p < 

0.05 Bonferroni corrected; green shading = p < 0.05 uncorrected. Psi: phase slope index; pli: 

phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; 

plv: phase locking value. 
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Appendix B: Supplemental Tables for Chapter 2 

 
 

Supplemental Table 1. Absolute correlation with motion, statistical comparisons between 

pipelines. See Figure 2.1b for main results. Cohen's d was used to compare pipelines across all 

52650 edges.  
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Supplemental Table 2. Absolute correlation with motion for low motion scans, statistical 

comparisons between pipelines. See Figure 2.2c for main results. Cohen's d was used to 

compare pipelines across all 52650 edges.  
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Supplemental Table 3. Absolute correlation with motion for high motion scans, statistical 

comparisons between pipelines. See Figure 2.2d for main results. Cohen's d was used to 

compare pipelines across all 52650 edges.  
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Supplemental Table 4. Group similarity, statistical comparisons between pipelines. See 

Figure 2.3b for main results. A paired t-test was used to compare pipelines across 112 scans. P-

values are uncorrected.  
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Supplemental Table 5. Stability, statistical comparisons between pipelines. See Figure 2.3c 

for main results. A paired t-test was used to compare pipelines across 56 participants. P-values 

are uncorrected.  
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Supplemental Table 6. Individualization, statistical comparisons between pipelines. See 

Figure 2.3d for main results. A paired t-test was used to compare pipelines across 112 scans. P-

values are uncorrected  
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Supplemental Table 7. Between session ICC, statistical comparisons between pipelines. See 

Figure 2.5a for main results. Cohen's d was used to compare pipelines across all 52650 edges.  
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Supplemental Table 8. Within session ICC, statistical comparisons between pipelines. See 

Figure 2.5b for main results. Cohen's d was used to compare pipelines across all 52650 edges.  
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Supplemental Table 9. Intersubject correlation, statistical comparisons between pipelines. 

See Figure 2.6a for main results. A paired t-test was used to compare pipelines across 112 scans. 

P-values are uncorrected.  
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Supplemental Table 10. Intrasubject correlation, statistical comparisons between pipelines. 

See Figure 2.6b for main results. A paired t-test was used to compare pipelines across 56 

participants. P-values are uncorrected.  
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Supplemental Table 11. Intersubject correlation for low motion scans, statistical 

comparisons between pipelines. See Figure 2.6c for main results. A paired t-test was used to 

compare pipelines across 40 scans. P-values are uncorrected.  
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Supplemental Table 12. Intersubject correlation for high motion scan, statistical 

comparisons between pipelines. See Figure 2.6d for main results. A paired t-test was used to 

compare pipelines across 40 scans. P-values are uncorrected.  
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Supplemental Table 13. Absolute correlation with motion when using a highpass filter, 

statistical comparisons between pipelines. See Supplemental Figure 2.5b for main results. 

Cohen's d was used to compare pipelines across all 52650 edges.  
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Supplemental Table 14. Stability when using a highpass filter, statistical comparisons 

between pipelines. See Supplemental Figure 2.6b for main results. A paired t-test was used to 

compare pipelines across 56 participants. P-values are uncorrected.  
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Supplemental Table 15. Group similarity when using a highpass filter, statistical 

comparisons between pipelines. See Supplemental Figure 2.6b for main results. A paired t-test 

was used to compare pipelines across 112 scans. P-values are uncorrected.  
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Supplemental Table 16. Individualization when using a highpass filter, statistical 

comparisons between pipelines. See Supplemental Figure 2.6c for main results. A paired t-test 

was used to compare pipelines across 112 scans. P-values are uncorrected.  
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Supplemental Table 17. Intersubject correlation when using a highpass filter, statistical 

comparisons between pipelines. See Supplemental Figure 2.7a for main results. A paired t-test 

was used to compare pipelines across 112 scans. P-values are uncorrected.  
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Supplemental Table 18. Intrasubject correlation when using a highpass filter, statistical 

comparisons between pipelines. See Supplemental Figure 2.7b for main results. A paired t-test 

was used to compare pipelines across 56 participants. P-values are uncorrected.  
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Supplemental Table 19. Absolute correlation with motion when varying censoring, 

statistical comparisons between pipelines. See Figure 2.8b for main results. Cohen's d was 

used to compare pipelines across all 52650 edges.  
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Supplemental Table 20. Stability when varying censoring, statistical comparisons between 

pipelines. See Figure 2.8d for main results. A paired t-test was used to compare pipelines across 

56 participants. P-values are uncorrected.  
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Supplemental Table 21. Group similarity when varying censoring, statistical comparisons 

between pipelines. See Figure 2.8d for main results. A paired t-test was used to compare 

pipelines across 112 scans. P-values are uncorrected.  
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Supplemental Table 22. Individualization when varying censoring, statistical comparisons 

between pipelines. See Figure 2.8e for main results. A paired t-test was used to compare 

pipelines across 112 scans. P-values are uncorrected.  
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Supplemental Table 23. Intersubject correlation when varying censoring, statistical 

comparisons between pipelines. See Figure 2.8f for main results. A paired t-test was used to 

compare pipelines across 112 scans. P-values are uncorrected.  
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Appendix C: Beta Band Results for Chapter 4 

In Chapter 4, results were presented for alpha band connectivity. Here, results are presented for 

beta band connectivity (13.0 – 30.0 Hz). For ease of comparison, figures are labelled as either 

'Figure' or 'Supplemental Figure' to match their designation in Chapter 4 or Appendix A. 
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Figure C.1. Average connectomes for each connectivity measure. (a) The average 

connectome across all 581 recordings. Regions were divided by hemisphere (L and R) and 

arranged anatomically from posterior (P) to anterior (A). Since imcoh and psi have both positive 

and negative FC values, both the average of signed values and absolute values are shown. (b) 

The Pearson correlation between each pair of vectorized, averaged connectomes. Psi: phase 

slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; 

coh: coherence; plv: phase locking value.  
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Figure C.2. Reliability and identifiability across FC measures. Each dot represents one 

participant. Lines represent mean values across participants, which are also displayed at the top 

of each subplot. (a) Mean self-stability, the average Fisher-z correlation between connectomes of 

the same participant, collected on different days. (b) Mean similarity-to-others, the average 

Fisher-z correlation between a participant's connectomes and connectomes from all other 

participants. (c) Individualization, the difference between mean self-stability and mean 

similarity-to-others. Psi: phase slope index; pli: phase lag index; wpli: weighted phase lag 

index; imcoh: imaginary coherence; coh: coherence; plv: phase locking value.  
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Figure C.3. Task sensitivity across FC measures. Each dot represents the difference between a 

participant’s average same-task score and their average cross-task score. Lines represent mean 

differences across participants, which are also displayed at the top of each subplot. For each FC 

measure, a paired t-test was used to assess if same-task and cross-task scores were significantly 

different; uncorrected p-values are shown. Bold = p < 0.05 Bonferroni corrected; italics = p < 

0.05 uncorrected. (a) Mean change between same-task- and cross-task-self-stability. (b) Mean 

change between same-task- and cross-task-similarity-to-others. Psi: phase slope index; pli: 

phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; 

plv: phase locking value.  
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Figure C.4. Age sensitivity across FC measures. Each dot represents the difference between a 

participant’s average similarity-to-same-age-others and their average similarity-to-different-age-

others. Lines represent mean differences across participants, which are also displayed at the top 

of each subplot. For each FC measure, a paired t-test was used to assess if same-age- and cross-

age-similarity-to-others scores were significantly different; uncorrected p-values are shown. Bold 

= p < 0.05 Bonferroni corrected. Psi: phase slope index; pli: phase lag index; wpli: weighted 

phase lag index; imcoh: imaginary coherence; coh: coherence; plv: phase locking value. 
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Figure C.5. Effects of different recording lengths on reliability and identifiability, across 

FC measures. Points shown are across-participant averages. For each participant, the recordings 

from their first two sessions and from their last two sessions were concatenated, giving two sets 

of data per participant. Epochs were added sequentially, e.g., '60 epochs' refers to using the first 

10 epochs available from the 6 separate recordings that were combined. (a) Mean self-stability, 

the average Fisher-z correlation between connectomes of the same participant, collected on 

different days, averaged across participants. (b) Mean similarity-to-others, the average Fisher-z 

correlation between a participant's connectomes and connectomes from all other participants, 

averaged across participants. (c) Individualization, the difference between mean self-stability and 

mean similarity-to-others, averaged across participants. Psi: phase slope index; pli: phase lag 

index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; plv: phase 

locking value.  
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Supplemental Figure C.1. Additional identifiability metrics across FC measures. Each dot 

represents one participant. Lines represent mean values across participants, which are also 

displayed at the top of each subplot. (a) Match rate, the percentage of self-stability scores that 

were higher than all similarity-to-others scores. (b) Self-stability percentile, the average 

percentile of self-stability scores, relative to similarity-to-others. Psi: phase slope index; pli: 

phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; 

plv: phase locking value. 
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Supplemental Figure C.2. Within-session reliability and identifiability across FC measures. 

This is similar to Figure C.2 and Supplemental Figure C.1 but calculating self-stability by 

comparing connectomes from the same session, rather than different sessions. Each dot 

represents one participant. Lines represent mean values across participants, which are also 

displayed at the top of each subplot. (a) Mean self-stability, the average Fisher-z correlation 

between connectomes of the same participant, collected on the same day. (b) Individualization, 

the difference between mean self-stability and mean similarity-to-others. (c) Match rate, the 

percentage of self-stability scores that were higher than all similarity-to-others scores. (d) Self-

stability percentile, the average percentile of self-stability scores, relative to similarity-to-others. 

Psi: phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary 

coherence; coh: coherence; plv: phase locking value.  
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Supplemental Figure C.3. Statistical comparisons between reliability and identifiability 

measures, as presented in Figure C.2 and Supplemental Figure C.1. Between each FC 

measure, a paired t-test was used to assess the statistical difference between participants’ scores. 

Yellow shading = p < 0.05 Bonferroni corrected; green shading = p < 0.05 uncorrected. Psi: 

phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary 

coherence; coh: coherence; plv: phase locking value.  
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Supplemental Figure C.4. Statistical comparisons between within-session reliability and 

identifiability measures, as presented in Supplemental Figure C.2. Between each FC 

measure, a paired t-test was used to assess the statistical difference between participants’ scores. 

Yellow shading = p < 0.05 Bonferroni corrected; green shading = p < 0.05 uncorrected. Psi: 

phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary 

coherence; coh: coherence; plv: phase locking value.  
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Supplemental Figure C.5. Statistical comparisons between FC measures of task sensitivity, 

as presented in Figure C.3. Between each measure, a paired t-test was used to assess the 

statistical difference between participants’ scores. Yellow shading = p < 0.05 Bonferroni 

corrected; green shading = p < 0.05 uncorrected. Psi: phase slope index; pli: phase lag index; 

wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; plv: phase 

locking value. 
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Supplemental Figure C.6. Statistical comparisons between FC measures of age sensitivity, 

as presented in Figure C.4. Between each measure, a paired t-test was used to assess the 

statistical difference between participants’ similarity-to-others difference. Yellow shading = p < 

0.05 Bonferroni corrected; green shading = p < 0.05 uncorrected. Psi: phase slope index; pli: 

phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; 

plv: phase locking value. 
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Appendix D: Broadband Results for Chapter 4 

In Chapter 4, results were presented for alpha band connectivity. Here, results are presented for 

broadband connectivity (2.5 – 45.0 Hz). For ease of comparison, figures are labelled as either 

'Figure' or 'Supplemental Figure' to match their designation in Chapter 4 or Appendix A. 

 

 

 

  



216 
 

 
Figure D.1. Average connectomes for each connectivity measure. (a) The average 

connectome across all 581 recordings. Regions were divided by hemisphere (L and R) and 

arranged anatomically from posterior (P) to anterior (A). Since imcoh and psi have both positive 

and negative FC values, both the average of signed values and absolute values are shown. (b) 

The Pearson correlation between each pair of vectorized, averaged connectomes. Psi: phase 

slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; 

coh: coherence; plv: phase locking value.  
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Figure D.2. Reliability and identifiability across FC measures. Each dot represents one 

participant. Lines represent mean values across participants, which are also displayed at the top 

of each subplot. (a) Mean self-stability, the average Fisher-z correlation between connectomes of 

the same participant, collected on different days. (b) Mean similarity-to-others, the average 

Fisher-z correlation between a participant's connectomes and connectomes from all other 

participants. (c) Individualization, the difference between mean self-stability and mean 

similarity-to-others. Psi: phase slope index; pli: phase lag index; wpli: weighted phase lag 

index; imcoh: imaginary coherence; coh: coherence; plv: phase locking value.  
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Figure D.3. Task sensitivity across FC measures. Each dot represents the difference between a 

participant’s average same-task score and their average cross-task score. Lines represent mean 

differences across participants, which are also displayed at the top of each subplot. For each FC 

measure, a paired t-test was used to assess if same-task and cross-task scores were significantly 

different; uncorrected p-values are shown. Bold = p < 0.05 Bonferroni corrected; italics = p < 

0.05 uncorrected. (a) Mean change between same-task- and cross-task-self-stability. (b) Mean 

change between same-task- and cross-task-similarity-to-others. Psi: phase slope index; pli: 

phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; 

plv: phase locking value. 
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Figure D.4. Age sensitivity across FC measures. Each dot represents the difference between a 

participant’s average similarity-to-same-age-others and their average similarity-to-different-age-

others. Lines represent mean differences across participants, which are also displayed at the top 

of each subplot. For each FC measure, a paired t-test was used to assess if same-age- and cross-

age-similarity-to-others scores were significantly different; uncorrected p-values are shown. Bold 

= p < 0.05 Bonferroni corrected. Psi: phase slope index; pli: phase lag index; wpli: weighted 

phase lag index; imcoh: imaginary coherence; coh: coherence; plv: phase locking value. 
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Figure D.5. Effects of different recording lengths on reliability and identifiability, across 

FC measures. Points shown are across-participant averages. For each participant, the recordings 

from their first two sessions and from their last two sessions were concatenated, giving two sets 

of data per participant. Epochs were added sequentially, e.g., '60 epochs' refers to using the first 

10 epochs available from the 6 separate recordings that were combined. (a) Mean self-stability, 

the average Fisher-z correlation between connectomes of the same participant, collected on 

different days, averaged across participants. (b) Mean similarity-to-others, the average Fisher-z 

correlation between a participant's connectomes and connectomes from all other participants, 

averaged across participants. (c) Individualization, the difference between mean self-stability and 

mean similarity-to-others, averaged across participants. Psi: phase slope index; pli: phase lag 

index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; plv: phase 

locking value.  
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Supplemental Figure D.1. Additional identifiability metrics across FC measures. Each dot 

represents one participant. Lines represent mean values across participants, which are also 

displayed at the top of each subplot. (a) Match rate, the percentage of self-stability scores that 

were higher than all similarity-to-others scores. (b) Self-stability percentile, the average 

percentile of self-stability scores, relative to similarity-to-others. Psi: phase slope index; pli: 

phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; 

plv: phase locking value. 
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Supplemental Figure D.2. Within-session reliability and identifiability across FC measures. 

This is similar to Figure D.2 and Supplemental Figure D.1 but calculating self-stability by 

comparing connectomes from the same session, rather than different sessions. Each dot 

represents one participant. Lines represent mean values across participants, which are also 

displayed at the top of each subplot. (a) Mean self-stability, the average Fisher-z correlation 

between connectomes of the same participant, collected on the same day. (b) Individualization, 

the difference between mean self-stability and mean similarity-to-others. (c) Match rate, the 

percentage of self-stability scores that were higher than all similarity-to-others scores. (d) Self-

stability percentile, the average percentile of self-stability scores, relative to similarity-to-others. 

Psi: phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary 

coherence; coh: coherence; plv: phase locking value.  
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Supplemental Figure D.3. Statistical comparisons between reliability and identifiability 

measures, as presented in Figure D.2 and Supplemental Figure D.1. Between each FC 

measure, a paired t-test was used to assess the statistical difference between participants’ scores. 

Yellow shading = p < 0.05 Bonferroni corrected; green shading = p < 0.05 uncorrected. Psi: 

phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary 

coherence; coh: coherence; plv: phase locking value.  
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Supplemental Figure D.4. Statistical comparisons between within-session reliability and 

identifiability measures, as presented in Supplemental Figure D.2. Between each FC 

measure, a paired t-test was used to assess the statistical difference between participants’ scores. 

Yellow shading = p < 0.05 Bonferroni corrected; green shading = p < 0.05 uncorrected. Psi: 

phase slope index; pli: phase lag index; wpli: weighted phase lag index; imcoh: imaginary 

coherence; coh: coherence; plv: phase locking value.  
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Supplemental Figure D.5. Statistical comparisons between FC measures of task sensitivity, 

as presented in Figure D.3. Between each measure, a paired t-test was used to assess the 

statistical difference between participants’ scores. Yellow shading = p < 0.05 Bonferroni 

corrected; green shading = p < 0.05 uncorrected. Psi: phase slope index; pli: phase lag index; 

wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; plv: phase 

locking value. 
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Supplemental Figure D.6. Statistical comparisons between FC measures of age sensitivity, 

as presented in Figure D.4. Between each measure, a paired t-test was used to assess the 

statistical difference between participants’ similarity-to-others difference. Yellow shading = p < 

0.05 Bonferroni corrected; green shading = p < 0.05 uncorrected. Psi: phase slope index; pli: 

phase lag index; wpli: weighted phase lag index; imcoh: imaginary coherence; coh: coherence; 

plv: phase locking value. 
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