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Abstract

Understanding the impacts of weather fluctuations, and environmental gradients, on the
abundance of vectors is fundamental to grasp the dynamic nature of the entomological
risk for disease transmission. The mosquito Armigeres subalbatus (Coquillet) is a
common vector of filariasis. Nevertheless, its population dynamics have been relatively
poorly studied. Here, we present results from a season long study where we studied
spatio-temporal abundance patterns of Ar. subalbatus across the altitudinal gradient of
Mt. Konpira in Nagasaki, Japan. Spatially, we found that abundance of adult Ar.
subalbatus decreased with altitude and increased in areas where the ground was rich in
leaf litter. Similarly, adult activity was observed only when relative humidity was over
65%. Temporally, we found that peaks in abundance followed large rainfall events.
Nevertheless, this mosquito was under significant density dependence regulation. Our
results suggest that Ar. subalbatus population peaks following large rainfall events could
reflect the recruitment of individuals that were dormant as dry eggs. We did not find a
clear signal of temperature on abundance changes of this mosquito, but only on its
phenology. Since ground cover seemed more critical than temperature to its spatial
distribution, we propose that this mosquito might have some degree of autonomy to
changes in temperature.

Key-Words: Schmalhausen’s law, Ricker model, filariasis, density-dependence, forcing
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Introduction

Mosquitoes have been widely studied because of their role as vectors of several
pathogens affecting humans and animals (Silver 2008). Mosquito population dynamics
are of particular interest because mosquito abundance shapes the entomological risk of
vector-borne disease transmission (Dye 1990). Specifically, vectorial capacity, the
ability of a pathogen to be propagated by the action of insect vectors, linearly increases
with vector-abundance (Garrett-Jones 1964). Thus, the risk for disease transmission
can be both spatially (Kitron 1998) and temporally (Chaves et al. 2011) linked to vector
abundance. Nevertheless, a detailed knowledge of factors regulating the abundance of
mosquitoes, such as density-dependence and the impact of weather changes over a
heterogenous landscape, have been relatively poorly studied for species other than
dominant vectors (Chaves and Koenraadt 2010), with few exceptions (Yang et al. 2008a,
Hoshi et al. 2014a). Studies of mosquitoes over altitudinal gradients, in the context of
climate change, allow to simultaneously evaluate mosquito abundance over the gradient
of temperatures associated with elevation (Eisen et al. 2008), where, in general,
temperature decreases with altitude. Similarly, information about mosquitoes with minor,
or without any, medical importance is fundamental to understand possible evolutionary
constraints on the response of mosquitoes, and the diseases they transmit, to climate

change (Chaves and Koenraadt 2010).

The mosquito Armigeres subalbatus is a vector of filarial worms with medical
importance, Brugia pahangi (Muslim et al. 2013) and with veterinary importance,
Dirofilaria repens (Lee et al. 2007). Ar. subalbatus has also been found infected with
Japanese Encephalitis Virus, JEV (Tanaka et al. 1979) and has been incriminated as a
JEV vector in settings without rice fields (Chen et al. 2000). Regarding bloodfeeding, it
has been reported that this mosquito was able to experimentally feed on humans, mice,
chickens and reptiles, but not amphibians (Miyagi 1972), thus reinforcing the view that

this mosquito can transmit zoonotic pathogens (Chaves et al. 2010).

The mosquito Ar. subalbatus is widely distributed in Asia (Tanaka et al. 1979,
Amerasinghe and Munasingha 1988a, b) and has been observed across altitudinal

gradients (Zea Iriarte et al. 1991), yet no detailed study has assessed its population
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regulation. Studies on the natural history of Ar. subalbatus have shown that its larvae
are common in nutrient enriched water (Senior-White 1925, Barr and Chellappah 1964),
including septic tanks (Moriya et al. 1967), especially with high ammonia concentration
(Rajavel 1992b), and the nutrient enriched water can be clear or turbid (Amerasinghe
and Munasingha 1988b). This mosquito also colonizes bamboo stumps (Kurashige
1963), artificial containers (Zea Iriarte et al. 1991) and treeholes (Tsuda et al. 1994).
Overwintering occurs in the larval stage (Mogi 1996), and larvae seem to enter
diapause because of a synergistic interaction between low temperature and short day
length (Oda et al. 1978). It has also been suggested, based on laboratory observations,
that dry conditions may lead to egg diapause (Barr and Chellappah 1964). The
phenology of adults also seems to be strongly seasonal, with latitudinal variation. For
example, in Taiwan adult Ar. subalbatus were absent from mosquito traps during
January and February (Sun 1964), at the higher latitude of Shandong province, China
from November to early May (Zhang et al. 1992). At the even higher latitude of Kyoto,
Japan adult mosquitoes have been only observed from August to October (Nakata and
Ito 1955). Rainfall has been suggested as an important factor for Ar. subalbatus
population changes, with significant adult abundance increases during and after high
rainfall (Amerasinghe and Munasingha 1988a). Here, we present results from a season
long study of Ar. subalbatus abundance patterns in Mt. Konpira in Nagasaki, Japan. We
asked what factors of the landscape where correlated with Ar. subalbatus abundance
across the altitudinal gradient of Mt. Konpira, and whether its population dynamics were
under density dependence regulation while accounting for potential impacts of weather

changes on its abundance.
Materials and Methods

Study site: Larval and adult mosquitoes were biweekly sampled across 27 locations in
Mt. Konpira (Fig. 1). Mt. Konpira is located in Nagasaki city, northwest Kyushu, western
Japan (Fig. 1). Nagasaki has a temperate seasonal climate, with 4 well defined seasons.
Temperature in the winter (from December to February) rarely drops below 0 °C and
snowfall is minimal, often absent. By contrast, the summer (mid July to mid September)

has both high relative humidity, above 65%, and temperature, above 27 °C (Isida 1969).
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Our sampling locations in Mt. Konpira followed those of a previous study in the same
area, ranging from 109 to 330 m in altitude (Zea Iriarte et al. 1991). The sampling
setting consisted of three radial transects, across an altitudinal gradient, joined at a
middle point (Fig. 1). Our sampling locations were mainly located across a secondary
forest, with diverse types of dominant vegetation according to the Japanese Ministry of

the Environment (available at http://www.vegetation.biodic.go.jp/), but there were some

urban sites in the periphery of all the sampling locations (Fig. 1). Exact coordinates for
each sampling location were measured with a Garmin Oregon 650 GPS (Garmin Ltd,
KS, USA), which was also used to measure the site altitude, in m. The altitude
measures were compared with those from an ASTER digital elevation model, DEM, for

Mt. Konpira (available at http://gdem.ersdac.jspacesystems.or.jp/), and given the low

disagreement between the two measurements, we employed the DEM data in our
analysis. At each sampling location we characterized the canopy cover in May 25" 2014
by following a standard methodology (Frazer et al. 2001) where 4 photographs were
taken with a fisheye ball lens located at ground level within a 1.5 m radius of a focal tree,
i.e., a tree where an ovitrap was located. For the photos we used a EOS 40D camera
(Canon Co., Tokyo, Japan) that had attached a normal lens (EF-S17-85mm F4-5.6 IS
USM; Canon Co., Tokyo, Japan) and a 180° fisheye lens (Nordward optronics 0.25X
Super fisheye lens 180° G2; Revel Royal Inc, Aichi, Japan), which allowed to take

hemispherical photos. The images were subsequently analyzed with the gap light

analysis mobile application for android tablets (http://gap-light-analysis-mobile-
app.android.informer.com/) to determine the average and S.D. of canopy cover for each

sampling location. We also quantified the ground cover by sampling twelve 2.5 m long
transects radiating from each focal tree. Each transect had an approximate angular
separation of 30°. We categorized each transect as: grass, leaf litter, bush, trees,
concrete and terrace, based on the dominant group type among those 6 categories. A
matrix with the percent of transects in each category at each sampling point was then
analyzed with principal components analysis (Chaves et al. 2011), and the 18! principal

component (Table S1) was then used as a ground cover index.

Mosquito Sampling: To sample immature mosquito stages we made “ovitraps” (Zea

Iriarte et al. 1991) by using 350 ml Coca-Cola® cans painted black with an acrylic spray
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paint (Kanpe Hapio Co., Ltd., Osaka, Japan) inside and outside. We made one 5 mm
opening to both hold the can to a tree, using a cord, and to drain excess water above
280 ml. All traps were uniformly set at 1.2 m above the ground level. We selected this
height given that previous reports indicated that Ar. subalbatus preferentially oviposits in
containers around this height (Amerasinghe and Alagoda 1984). Ovitraps were filled
with rain water collected during April 2014 and were set in May 18th, and then biweekly
surveyed from June 1st until November 29" of 2014. During each survey we determined
the presence of 15t to 3 instar mosquito larvae of any species, and we counted the
number 4" instar larvae of Tripteroides bambusa Yamada and Ar. subalbatus, due to
their easy identification in the field (Tanaka et al. 1979), and removed all other 4™ instar
larvae and all pupae for laboratory rearing and identification of emerged adults (Hoshi et
al. 2014a).

Adult mosquitoes were sampled using a sweep net (36-cm diam; Model 61-1B;
Shiga Insect Co., Tokyo, Japan), a common tool to sample adult mosquitoes (Hoshi et
al. 2014b). Sampling started at sunrise. We selected this sampling time given previous
reports that indicated this mosquito is active at sunrise (Berlin et al. 1975). Also sweep
nets are appropriate to sample this mosquito, which is predominant at ground level
(Tsuda et al. 2003). The use of sweep nets was standardized by staying at a fixed point
within a 2.5 m radius from the focal tree where the ovitraps were set up. After arriving to
a sampling location the net was swept around the body of the person sampling for 2
minutes, after this time period the person sampling stopped for 1 min and then swept
the net for another 2 min. During each sampling session the order of the sampling
locations was determined randomly in order to avoid any possible bias due to sampling
the same locations always at the same time. Adult mosquitoes were biweekly sampled
between May 4™ and November 15" of 2014. We selected a biweekly sampling to have
a sampling interval that coincided with the pre-adult developmental time of Ar.
subalbatus (Weathersby 1962). Similarly, we started to collect mosquitoes in May, given
that in Shandong Province, China, at the same latitude of Nagasaki, adult mosquitoes
have only been caught after May 10t (Zhang et al. 1992).
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Weather Variables: At each sampling session we recorded the air temperature and
relative humidity using a portable O-230 termohygrometer (Dretec Co., Saitama, Japan).
The water temperature in the ovitraps was measured using an AD-5617WP infrared
thermometer (A&D Co., Tokyo, Japan). Data on daily records for rainfall from May 1t
2014 to December 15t 2014 were obtained for Nagasaki city from the Japanese
Meteorological Agency Website (http:/www.jma.go.jp/ima/index.html). For the analyses

we employed the cumulative amount of rainfall on the 14 days prior to the mosquito
sampling. The weather station is located within a 5 km radius from our study site.

Mosaquito identification: Fourth instar larvae and adult mosquitoes were identified
using the taxonomic key of Tanaka et al (1979). Voucher specimens are available in the
Entomological Collection in the Institute of Tropical Medicine of Nagasaki University,
Japan and in the Mosquito Collection in the Walter Reed Biosystematics Unit —
Smithsonian Institute, Washington DC, USA.

Statistical analysis: Larvae data of Ar. subalbatus were not analyzed given that we
found them at two localities, once at one site, inside a vacant lot bordering a prickly
forest, and two times at another other site, inside an area whose vegetation was

dominated by acorns (Fig. 1).

To detect spatio-temporal clusters, i.e., hotspots, of Ar. subalbatus adults, we
employed an elliptical cluster detection mode in a SCAN spatio temporal Poisson model
(Kulldorff and Nagarwalla 1995, Kulldorff et al. 2005). We constrained the maximum
cluster size up to 50% of the samples while scanning the whole study site. We chose
the elliptical shape over a circular one given that our sampling followed transects
(Kulldorff et al. 2006). For statistical inference we employed 999 Monte Carlo
simulations. We then proceeded with a spatial analysis of Ar. subalbatus abundance in
Mt. Konpira, Nagasaki. We fitted Poisson generalized linear models (Faraway 2006) to
the total abundance per site. The total abundance per site was obtained by adding the
abundance through the 14 biweeks of sampling at each sampling location (Fig. 1). We
started by building a model that included elevation (m), mean and S.D. canopy
openness (%), mean, S.D. and kurtosis of temperature (°C) and relative humidity (%),

and the ground cover index. This model was simplified by a combined backward-
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elimination and forward-addition algorithm (Kuhn and Johnson 2013) that minimized the
Akaike Information Criterion (AIC). Briefly, AlC is a model selection criterion that weighs
the trade-off between the goodness of fit in a model and the number of parameters, and
the best model is chosen by minimizing the difference between a function of a model
log-likelihood and the number of parameters (Kuhn and Johnson 2013). Moran’s | test
(Venables and Ripley 2002) was employed to test the spatial independence of residuals
in the model selected as best, in order to ensure that inferences from the best Poisson
generalized linear model were sound (Chaves 2010).

For the temporal analysis of Ar. subalbatus abundance we generated a 14
observations adult abundance time series, given the absence of adult mosquitoes
during May 4" 2014. The time series was generated by adding the biweekly records
across the 27 sampled sites per sampling session. We used this time series for some
preliminary time series statistical analysis. We estimated the autocorrelation (ACF) and
partial autocorrelation (PACF) functions to describe the patterns of temporal
autocorrelation in Ar. subalbatus abundance (Chaves et al. 2012, Chaves et al. 2013).
The ACF presents the correlation of a time series with itself through different time lags,
while PACF shows a similar profile that only considers the correlation between
consecutive time lags (Shumway and Stoffer 2011). We also estimated the cross
correlation functions (CCFs), i.e., the temporal correlation function between two time
series for different time lags (Shumway and Stoffer 2011), between the Ar. subalbatus
abundance time series and Rainfall, Temperature and Relative Humidity. We estimated
the 95% confidence limits, CL, of the ACFs, PACFs and CCFs to test if the correlations
departed from what would be expected by random, with only correlations outside the
95% CL being considered statistically significant (Shumway and Stoffer 2011). Then,
we proceeded to study of the density-dependence regulation of Ar. subalbatus adults.
We started by plotting the per-capita growth rate (r) of this mosquito as function of its

total adult abundance (N:). The per-capita growth rate is defined by (Turchin 2003):
r=In(Ni)-In(Nt-1) (1)

Based on the results from this preliminary analysis, we fitted the Ricker model to the Ar.
subalbatus time series data. The Ricker model has been widely used to study mosquito
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populations (Yang et al. 2008a, Yang et al. 2008b, Hoshi et al. 2014a) and is defined by

the following equation:
N; = /'lONt_1exp(—bNt_1) (2)

Where A, is the intrinsic rate of population growth and b is a density-dependence
coefficient (Turchin 2003). When -b<0, it can be affirmed that a population undergoes
density-dependent regulation (Turchin 2003). Further details about this model are
presented elsewhere, including its derivation (Turchin 2003, Mangel 2006) and several

stochastic versions (Melbourne and Hastings 2008).

To fit the models to our data we assumed biweekly adult counts had a negative binomial
(NegBin) distribution, given our observations had a variance larger than their mean, i.e.,
they were over-dispersed (Bolker 2008). This assumption for the model presented in (2),
when also assuming the model has an observation error, i.e., without feedback on

future states (Bolker 2008), coincides with the assumption that mosquito abundance
follows a negative binomial environmental stochastic Ricker model (Melbourne and
Hastings 2008):

Ni{~NegBin(mean = AONHexp(—bNH), overdispersion = k) (3)

Which implies stochasticity affects individuals, in this case Ar. subalbatus mosquitoes,
independently of their density. We also fitted the model assuming stochasticity was
demographic, i.e., a function of mosquito density (Melbourne and Hastings 2008):

Ni~NegBin(mean = /10Nt_1exp(—bNt_1), overdispersion = kN;_;) (4)

We expanded the model presented in (2) to account for the potential impacts of weather
variables (WV) on the dynamics, as follows:

N; = 20N, 1exp(—=bN,, + yYWV,_,) (5)

Where yis a coefficient for the impact of a WV at any time lag z. The lag z for the WVs

was estimated with the CCFs previously described. To incorporate the forcing of
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equation (5) into equations (3) and (4), we simply changed the mean of the negative
binomial to the following:

mean = )LONHexp(—bNt_1 + yWVt_Z) (6)

To fit the model presented in (3) and its forced version (6), we employed a
negative binomial generalized linear model (Faraway 2006), using the natural logarithm
of Nt-1 as an offset, and Ni1 and WViz as covariates. Nevertheless, to fit the model
presented in (4) and its forced version (6), we wrote an R function that is available as a
supplementary online material (Appendix S1). We computed the AIC of the models for

comparison.

All statistical analysis were implemented with the statistical software R version
3.2.0, with the exception of the SCAN cluster analysis that was performed with

SaTScan version 9.3.1.
Results

We collected a total of 114 adults and 21 4™ instar larvae of Ar. subalbatus
during the duration of our study (Fig. 1). Adults of Ar. subalbatus were present through
all the land cover uses and vegetation types that we sampled, and were only absent
from one of the points that we sampled (Fig. 1). The average (£ S.D.) number of adults
per sampling location was 4.22 + 2.35, ranging from 0, i.e., a place where Ar.
subalbatus was never detected, to 9 individuals (Fig. 1). Fig. 1 also shows that adults of
Ar. subalbatus were clustered across the northernmost sampling locations, which were

all inside an area of the forest dominated by acorns.

The best spatial model showed that elevation and ground cover (Table 1) were
the best covariates explaining the spatial patterns of Ar. subalbatus abundance. The
lack of significance for the Moran’s | index (Table 1) indicates spatial independence in
the residuals, thus fulfilling the assumptions for a sound statistical inference (Chaves
2010). Fig. 2 clearly shows how the number of adult Ar. subalbatus decreased with

elevation and increased with the ground cover index, where positive values indicate a
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dominance of leaf litter over bushes and/or concrete (Table S1 online only), while

negative values indicate an abundance of bushes and/or concrete over leaf litter.

Temporal patterns of Ar. subalbatus (Fig. 3) showed that its abundance peaked
during the 5%, 7t and 9t sampling biweek, i.e., July 12t August 9t and September 6t
respectively, reaching a maximum of 34 individuals (Fig. 3A). From the 13" biweek of
sampling we did not catch any Ar. subalbatus. The average (x S.D.) number of adults
per sampling biweek was 8.14 + 10.23. In general, Ar. subalbatus abundance time
series had temporally independent observations, as indicated by the lack of significant
lags in its ACF (Fig. 3B) and PACF (Fig. 3C). Regarding fluctuations in the weather
variables, it can be seen that peaks in mosquito abundance (Fig. 3A) overlapped with
those of rainfall (Fig. 3D), but not those of temperature (Fig. 3E) nor relative humidity
(Fig. 3F), nevertheless, these two last factors seem to be related with the presence of
adult mosquitoes, which were only captured when their values where high. CCF
analysis showed that Ar. subalbatus abundance was significantly associated with
rainfall without a temporal lag (Fig. 3G), but not with temperature (Fig. 3H), nor with
Relative Humidity (Fig. 3I).

As expected in a population undergoing density-dependent regulation (Fig. 4) we
found that the per capita growth rate of Ar. subalbatus decreased with its population

size.

Estimates of the environmental negative binomial Ricker model (Table 2)
outperformed those of the demographic one (Table S2, online only). Table 2 shows the
fit considering the forcing by rainfall was better, i.e., with a lower AIC, than an
autonomous model. The effect of rainfall on the density dependent regulation of Ar.
subalbatus (Fig. 5) was to increase the number of mosquitoes, nevertheless, in all
cases the abundance of Ar. subalbatus was under a strong density dependence, with

the per capita growth rate diminishing with adult abundance in all instances.
Discussion

We found that temporal changes in adults of Ar. subalbatus were autonomous

from changes in temperature and relative humidity. Nevertheless, these two factors may
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be important for the phenology of Ar. subalbatus adult activity, since we only found the
species when temperatures were above 14 °C and relative humidity above 65%. In fact,
we found that phenology of adults of Ar. subalbatus at our study site was similar to
observations at a similar latitude in China, where adult mosquitoes were only observed
from May to October (Zhang et al. 1992). Moreover, our spatial model indicated that
abundance of Ar. subalbatus adults decreased with altitude, further supporting that
temperature might be important to the phenology and distribution of this mosquito, as
suggested by observations across different latitudes (Nakata and Ito 1955, Sun 1964,
Zhang et al. 1992) and studies on its overwintering (Oda et al. 1978). However, spatially
we also found that adults of Ar. subalbatus were more common on grounds with
abundant leaf litter, suggesting that organic matter necessary for enriching potential
larval habitats (Senior-White 1925, Rajavel 1992b) is a factor that might modulate
habitat use by adults. This ground cover also resembles the habitats where this
mosquito has been found transmitting filarial worms (Muslim et al. 2013). Therefore,
ground cover might be important to understand landscape heterogeneities in pathogen
transmission risk by Ar. subalbatus.

The positive impact of rainfall on adult Ar. subalbatus abundance can be related
to two aspects of its biology: (i) under dry conditions, eggs can enter diapause (Barr and
Chellappah 1964) and (ii) the low variability in oviposition above the water surface,
where more than 75% of the eggs were within a “threshold” of 16 mm above the
waterline (Amerasinghe and Alagoda 1984), suggest that any rainfall above the
oviposition “threshold” has the potential to synchronously trigger egg hatching in Ar.
subalbatus larval habitats, which can lead to an eventual “outbreak” or sudden large
change in mosquito abundance (Chaves et al. 2014), as we observed in our study site,
a pattern also observed in Sri Lanka (Amerasinghe and Munasingha 1988a).
Unfortunately, the scarcity of larval samples did not allow us to connect any potential
changes in larval density with adult abundance. However, a previous study (Rajavel
1992a) suggests that at high larval density Ar. subalbatus keeps its numbers in check
by cannibalizing larvae, especially if Ar. subalbatus does not co-occur with other
mosquito species, and in that regard we can mention that we found 4t instar larvae of
Ar. subalbatus only co-existing with larvae of Tp. bambusa, the most common and
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abundant mosquito in our ovitraps, following a similar pattern also observed by Zea
Iriarte et al (1991) in our study area. However, we were unable to asses any potential
interaction between these two species given the scarce Ar. subalbatus larval data that
we collected.

Our results clearly indicate that there is density dependence regulation in Ar.
subalbatus. The density dependence parameter b in the Ricker model was negative as
expected under density dependence regulation (Turchin 2003), and in congruence with
patterns observed in several mosquitoes (Makiya 1973, 1974, Yang et al. 2008a, Yang
et al. 2008b, Chaves et al. 2012, Hoshi et al. 2014a). However, although rainfall can
transiently increase the number of adults, population growth still decreases with
population abundance, highlighting the importance of density dependence regulation. It
is also interesting to note that for the autonomous environmental stochastic Ricker
model, the natural logarithm of the intrinsic rate of population growth parameter, i.e.,
In(4,) = 1.98, was close to the threshold value for weather independent oscillations,
a.k.a., bifurcations, which is In(1,) = 2 (Mangel 2006). Nonetheless, when considering
rainfall it became clear that any potential periodicities likely reflected rainfall patterns.
Finally, we can conclude that population dynamics of adult Ar. subalbatus follows
Schmalhausen’s law, the prediction that systems are more sensitive to environmental
variables more unpredictable around their mean (Chaves and Koenraadt 2010, Chaves
et al. 2012). Rainfall, the only weather variable associated with abundance changes in
Ar. subalbatus adults, undergoes less extreme changes in its mean behaviour than
temperature or relative humidity at our study site, which although more extreme, have a
more predictable pattern of change and seem to impact Ar. subalbatus phenology, but

not its abundance dynamics.
Acknowledgements

We thank Sai Zaw Min Oo, Dr. Hanako Iwashita and Prof. Mark Wilson (The University
of Michigan) for their help measuring the ground cover and canopy openness at each
sampling point. Trang T. T. Huynh also kindly helped us measuring diverse aspects of
the sampling locations and with the larval surveys. Ms. Junko Sakemoto provided

valuable administrative help.



352

353
354
355
356
357

358
359
360

361
362
363
364
365

366
367
368
369
370
371
372

14

Figure Legends

Fig. 1 Map of sampling locations. The inset figure shows the location of Mt. Konpira in Nagasaki,
Japan. Contour lines indicate the elevation. The inset legend indicates the land use types and
vegetation cover, and there is also a guide to the total abundance of Armigeres subalbatus
adults and 4™ instar larvae sampled during May to November 2014. A dashed red line indicates
a significant spatio-temporal cluster.

Fig. 2 Spatial patterns of Armigeres subalbatus abundance. Dot size is proportional to
abundance of Ar. subalbatus, ranging from 1 to 9, as function of ground cover and altitude. The
grey gradient indicates the abundance estimated with the model presented in Table 1.

Fig. 3 Temporal patterns of Armigeres subalbatus abundance. (A) Time series of Ar. subalbatus,
TSAS, biweekly abundance from May 18" to November 15" 2014. (B) Auto-Correlation function,
ACF, of TSAS, (C) Partial ACF, PACF, of TSAS. Time series of weather variables: (D) Rainfall,
(E) Temperature and (F) Relative Humidity, RH. Cross-Correlation functions between TSAS
and: (G) Rainfall, (H) Temperature and (l) RH.

Fig. 4 Per capita population growth rate (r) of Armigeres subalbatus as function of its density,
(Nt1), in Mt. Konpira, Nagasaki, Japan.

Fig. 5 Temporal Abundance of Armigeres subalbatus (N:) as function of its previous abundance
(Nt1) and Rainfall. In the plot dots are proportional to the biweekly abundance of Ar. subalbatus
(N:), which ranged from 1 to 34. The grey gradient indicates the expected number of Ar.
Subalbatus according to the Ricker model forced by Rainfall (for parameters see Table 2).
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Table 1 Parameter estimates for the best spatial Poisson Generalized Linear model explaining

Armigeres subalbatus abundance across an altitudinal gradient. This model was selected by a
combined backward-elimination and forward-addition algorithm, from a model that included
elevation (m), mean and S.D. canopy openness, mean, S.D. and kurtosis of temperature (°C)

and relative humidity (%), and a ground cover index. The AIC of the starting model was 124.05,

and the AIC for the model presented here is 111.25.

Parameter Estimate S.E. z P

Intercept 2.46 0.45 5496 <0.0001*
Elevation (m) -0.0051 0.0020 -2.521 <0.01*
Ground Cover 0.124 0.032 3.881 <0.0001*

Moran’s | -0.0652 - - 0.574

*Statistically significant (P<0.05)
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Table 2 Parameter estimates for the negative binomial environmental stochastic Ricker model
fitted to the time series of Armigeres subalbatus biweekly abundance. Models were fitted with
(Forced) and without (Autonomous) rainfall as covariate. AIC stands for the Akaike Information
Criterion.

Forced Autonomous
Parameter Estimate  S.E. z P Estimate S.E. z P
Intrinsic rate of population growth (1) 217 1.08 201 ~ 7.37 275 2.68 *
Density dependence coefficient (b) -0.12 0.03 -450 ** -0.15 0.03 -538 **
Rainfall coefficient (7) 0.0054 0.0020 2.70 ** - - - -
Negative binomial overdispersion (k) 2.68 1.53 - 1.43 0.66
AIC 74.44 78.00

NS= not significant (P>0.05), **Statistically significant (P<0.001), *Statistically significant
(P<0.05)
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Table S1

Table S1 Principal Component Analysis for the estimation of a ground cover index

Ground Cover Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Terrace 0 0 0 -0.2 0.979
Grass 0 0 -0.764 0.458 0
Tree 0 0.122 -0.255 -0.829 -0.178
Bush -0.390 -0.730 0.334 0 0
Leaf Litter 0.836 0 0.294 0.113 0
Concrete -0.381 0.671 0.39 0.221 0
% Variance 0.738 0.196 0.033 0.027 0.005
Cumulative

Variance 0.738 0.935 0.968 0.995 1.000




Table S2

Table S2 Parameter estimates for the negative binomial demographic stochastic Ricker model fitted to the time
series of Armigeres subalbatus biweekly abundance. Models were fitted with (Forced) and without
(Autonomous) rainfall as covariate. AlC stands for the Akaike Information Criterion.

Forced Autonomous
Estimate S.E. z P Estimate S.E. z P
Intrinsic rate of population growth (1) 1.57 0.83 1.88 NS 5.40 225 239 *
Density dependence coefficient (b) 010 0.02

Parameter

-4.18 * -0.13  0.02 ég *
Rainfall coefficient (7) 0.0054 0.0021 251 * - - - -
Negative binomial overdispersion (k) 0.56 0.39 - 0.27 0.14
AIC 79.32 81.89

NS= not significant (P>0.05), **Statistically significant (P<0.001), *Statistically significant (P<0.05)



Online only Appendix S1

### Appendix S1 R functions to fit the Stochastic Ricker Model
### Time Series

### Armigeres subalbatus abundance at t+1 (biweeks 2-12)

ntl<-c(4, 7, 5,34, 1,17, 5,25, 9, 1, 4)

### Armigeres subalbatus abundance at t (biweeks 1-11)

nt<-c(2, 4, 7, 5,34, 1,17, 5,25, 9, 1)

### Cumulative bi-weekly rainfall before t+1

RR<- ¢(34.5, 29.0,197.5,376.5, 34.0,301.0, 73.0,188.0, 43.5, 68.5, 53.5)

### Calling a library with the Negative Binomial Generalized linear model fitting function
library(MASS)

### Fitting the environmental stochastic Ricker model as a Neg-Bin GLM (Autonomous)
rglmnba<-glm.nb(nt1~offset(log(nt))+nt)
### Calling the model summary (to see parameter estimates)

summary(rglmnba)
### Fitting the environmental stochastic Ricker model as a Neg-Bin GLM (Forced by Rainfall)

rglmnbF<-glm.nb(ntl~offset(log(nt))+nt+RR)
### Calling the model summary

summary(rglmnbF)

### Likelihood functions

### Calling a library with convenient functions to fit Maximum likelihood models
library(bbmle)

###Function to fit the environmental stochastic Ricker model (Autonomous)
renva <- function (lambda0, b, kappa){
ntl<-ntl
nt<-nt
-sum(dnbinom(nt1, mu=(lambda0*nt*exp(-1*b*nt)),size=kappa,log=TRUE))
}
### Fitting the model
fitrenva=mle2(renva,start=list(lambda0=7.37, b=0.15, kappa=1.43))
### Calling the model summary
summary(fitrenva)

###Function to fit the environmental stochastic Ricker model (Forced by Rainfall)
renvF <- function (lambda0, b, kappa,g){
ntl<-ntl
nt<-nt
RR<-RR
-sum(dnbinom(nt1, mu=(lambda0*nt*exp(-1*b*nt+g*RR)),size=kappa,log=TRUE))



### Fitting the model

fitrenvF=mle2(renvF,start=list(lambda0=2.1714, b=0.115, kappa=2.678,g=0.0054))
### Calling the model summary

summary(fitrenvF)

###Function to fit the demographic stochastic Ricker model (Autonomous)
rdema <- function (lambda0, b, kappa){

ntl<-ntl

nt<-nt

-sum(dnbinom(nt1, mu=(lambda0*nt*exp(-1*b*nt)),size=kappa*nt,log=TRUE))
}
### Fitting the model

fitrdema=mle2(rdema,start=list(lambda0=5.4005, b=0.1314215, kappa=0.2724))
### Calling the model summary
summary/(fitrdema)

###Function to fit the demographic stochastic Ricker model (Forced by Rainfall)
rdemF <- function (lambda0, b, kappa,g){

ntl<-ntl

nt<-nt

RR<-RR

-sum(dnbinom(nt1, mu=(lambda0*nt*exp(-1*b*nt+g*RR)),size=kappa*nt,log=TRUE))
}
### Fitting the model

fitrdemF=mle2(rdemF,start=list(lambda0=1.5716, b=0.0979, kappa=0.5574,g=0.00536))
### Calling the model summary
summary(fitrdemF)



